Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/genalloc.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/kthread.h>
16 #include <linux/platform_device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/clk.h>
21 #include <crypto/hmac.h>
22 #include <crypto/internal/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/of.h>
25 #include <linux/of_platform.h>
26 #include <linux/of_irq.h>
27
28 #include "mv_cesa.h"
29
30 #define MV_CESA "MV-CESA:"
31 #define MAX_HW_HASH_SIZE        0xFFFF
32 #define MV_CESA_EXPIRE          500 /* msec */
33
34 #define MV_CESA_DEFAULT_SRAM_SIZE       2048
35
36 /*
37  * STM:
38  *   /---------------------------------------\
39  *   |                                       | request complete
40  *  \./                                      |
41  * IDLE -> new request -> BUSY -> done -> DEQUEUE
42  *                         /°\               |
43  *                          |                | more scatter entries
44  *                          \________________/
45  */
46 enum engine_status {
47         ENGINE_IDLE,
48         ENGINE_BUSY,
49         ENGINE_W_DEQUEUE,
50 };
51
52 /**
53  * struct req_progress - used for every crypt request
54  * @src_sg_it:          sg iterator for src
55  * @dst_sg_it:          sg iterator for dst
56  * @sg_src_left:        bytes left in src to process (scatter list)
57  * @src_start:          offset to add to src start position (scatter list)
58  * @crypt_len:          length of current hw crypt/hash process
59  * @hw_nbytes:          total bytes to process in hw for this request
60  * @copy_back:          whether to copy data back (crypt) or not (hash)
61  * @sg_dst_left:        bytes left dst to process in this scatter list
62  * @dst_start:          offset to add to dst start position (scatter list)
63  * @hw_processed_bytes: number of bytes processed by hw (request).
64  *
65  * sg helper are used to iterate over the scatterlist. Since the size of the
66  * SRAM may be less than the scatter size, this struct struct is used to keep
67  * track of progress within current scatterlist.
68  */
69 struct req_progress {
70         struct sg_mapping_iter src_sg_it;
71         struct sg_mapping_iter dst_sg_it;
72         void (*complete) (void);
73         void (*process) (int is_first);
74
75         /* src mostly */
76         int sg_src_left;
77         int src_start;
78         int crypt_len;
79         int hw_nbytes;
80         /* dst mostly */
81         int copy_back;
82         int sg_dst_left;
83         int dst_start;
84         int hw_processed_bytes;
85 };
86
87 struct crypto_priv {
88         void __iomem *reg;
89         void __iomem *sram;
90         struct gen_pool *sram_pool;
91         dma_addr_t sram_dma;
92         int irq;
93         struct clk *clk;
94         struct task_struct *queue_th;
95
96         /* the lock protects queue and eng_st */
97         spinlock_t lock;
98         struct crypto_queue queue;
99         enum engine_status eng_st;
100         struct timer_list completion_timer;
101         struct crypto_async_request *cur_req;
102         struct req_progress p;
103         int max_req_size;
104         int sram_size;
105         int has_sha1;
106         int has_hmac_sha1;
107 };
108
109 static struct crypto_priv *cpg;
110
111 struct mv_ctx {
112         u8 aes_enc_key[AES_KEY_LEN];
113         u32 aes_dec_key[8];
114         int key_len;
115         u32 need_calc_aes_dkey;
116 };
117
118 enum crypto_op {
119         COP_AES_ECB,
120         COP_AES_CBC,
121 };
122
123 struct mv_req_ctx {
124         enum crypto_op op;
125         int decrypt;
126 };
127
128 enum hash_op {
129         COP_SHA1,
130         COP_HMAC_SHA1
131 };
132
133 struct mv_tfm_hash_ctx {
134         struct crypto_shash *fallback;
135         struct crypto_shash *base_hash;
136         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
137         int count_add;
138         enum hash_op op;
139 };
140
141 struct mv_req_hash_ctx {
142         u64 count;
143         u32 state[SHA1_DIGEST_SIZE / 4];
144         u8 buffer[SHA1_BLOCK_SIZE];
145         int first_hash;         /* marks that we don't have previous state */
146         int last_chunk;         /* marks that this is the 'final' request */
147         int extra_bytes;        /* unprocessed bytes in buffer */
148         enum hash_op op;
149         int count_add;
150 };
151
152 static void mv_completion_timer_callback(unsigned long unused)
153 {
154         int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
155
156         printk(KERN_ERR MV_CESA
157                "completion timer expired (CESA %sactive), cleaning up.\n",
158                active ? "" : "in");
159
160         del_timer(&cpg->completion_timer);
161         writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
162         while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
163                 printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
164         cpg->eng_st = ENGINE_W_DEQUEUE;
165         wake_up_process(cpg->queue_th);
166 }
167
168 static void mv_setup_timer(void)
169 {
170         setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
171         mod_timer(&cpg->completion_timer,
172                         jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
173 }
174
175 static void compute_aes_dec_key(struct mv_ctx *ctx)
176 {
177         struct crypto_aes_ctx gen_aes_key;
178         int key_pos;
179
180         if (!ctx->need_calc_aes_dkey)
181                 return;
182
183         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
184
185         key_pos = ctx->key_len + 24;
186         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
187         switch (ctx->key_len) {
188         case AES_KEYSIZE_256:
189                 key_pos -= 2;
190                 /* fall */
191         case AES_KEYSIZE_192:
192                 key_pos -= 2;
193                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
194                                 4 * 4);
195                 break;
196         }
197         ctx->need_calc_aes_dkey = 0;
198 }
199
200 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
201                 unsigned int len)
202 {
203         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
204         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
205
206         switch (len) {
207         case AES_KEYSIZE_128:
208         case AES_KEYSIZE_192:
209         case AES_KEYSIZE_256:
210                 break;
211         default:
212                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
213                 return -EINVAL;
214         }
215         ctx->key_len = len;
216         ctx->need_calc_aes_dkey = 1;
217
218         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
219         return 0;
220 }
221
222 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
223 {
224         int ret;
225         void *sbuf;
226         int copy_len;
227
228         while (len) {
229                 if (!p->sg_src_left) {
230                         ret = sg_miter_next(&p->src_sg_it);
231                         BUG_ON(!ret);
232                         p->sg_src_left = p->src_sg_it.length;
233                         p->src_start = 0;
234                 }
235
236                 sbuf = p->src_sg_it.addr + p->src_start;
237
238                 copy_len = min(p->sg_src_left, len);
239                 memcpy(dbuf, sbuf, copy_len);
240
241                 p->src_start += copy_len;
242                 p->sg_src_left -= copy_len;
243
244                 len -= copy_len;
245                 dbuf += copy_len;
246         }
247 }
248
249 static void setup_data_in(void)
250 {
251         struct req_progress *p = &cpg->p;
252         int data_in_sram =
253             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
254         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
255                         data_in_sram - p->crypt_len);
256         p->crypt_len = data_in_sram;
257 }
258
259 static void mv_process_current_q(int first_block)
260 {
261         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
262         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
263         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
264         struct sec_accel_config op;
265
266         switch (req_ctx->op) {
267         case COP_AES_ECB:
268                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
269                 break;
270         case COP_AES_CBC:
271         default:
272                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
273                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
274                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
275                 if (first_block)
276                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
277                 break;
278         }
279         if (req_ctx->decrypt) {
280                 op.config |= CFG_DIR_DEC;
281                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
282                                 AES_KEY_LEN);
283         } else {
284                 op.config |= CFG_DIR_ENC;
285                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
286                                 AES_KEY_LEN);
287         }
288
289         switch (ctx->key_len) {
290         case AES_KEYSIZE_128:
291                 op.config |= CFG_AES_LEN_128;
292                 break;
293         case AES_KEYSIZE_192:
294                 op.config |= CFG_AES_LEN_192;
295                 break;
296         case AES_KEYSIZE_256:
297                 op.config |= CFG_AES_LEN_256;
298                 break;
299         }
300         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
301                 ENC_P_DST(SRAM_DATA_OUT_START);
302         op.enc_key_p = SRAM_DATA_KEY_P;
303
304         setup_data_in();
305         op.enc_len = cpg->p.crypt_len;
306         memcpy(cpg->sram + SRAM_CONFIG, &op,
307                         sizeof(struct sec_accel_config));
308
309         /* GO */
310         mv_setup_timer();
311         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
312 }
313
314 static void mv_crypto_algo_completion(void)
315 {
316         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
317         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
318
319         sg_miter_stop(&cpg->p.src_sg_it);
320         sg_miter_stop(&cpg->p.dst_sg_it);
321
322         if (req_ctx->op != COP_AES_CBC)
323                 return ;
324
325         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
326 }
327
328 static void mv_process_hash_current(int first_block)
329 {
330         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
331         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
332         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
333         struct req_progress *p = &cpg->p;
334         struct sec_accel_config op = { 0 };
335         int is_last;
336
337         switch (req_ctx->op) {
338         case COP_SHA1:
339         default:
340                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
341                 break;
342         case COP_HMAC_SHA1:
343                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
344                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
345                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
346                 break;
347         }
348
349         op.mac_src_p =
350                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
351                 req_ctx->
352                 count);
353
354         setup_data_in();
355
356         op.mac_digest =
357                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
358         op.mac_iv =
359                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
360                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
361
362         is_last = req_ctx->last_chunk
363                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
364                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
365         if (req_ctx->first_hash) {
366                 if (is_last)
367                         op.config |= CFG_NOT_FRAG;
368                 else
369                         op.config |= CFG_FIRST_FRAG;
370
371                 req_ctx->first_hash = 0;
372         } else {
373                 if (is_last)
374                         op.config |= CFG_LAST_FRAG;
375                 else
376                         op.config |= CFG_MID_FRAG;
377
378                 if (first_block) {
379                         writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
380                         writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
381                         writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
382                         writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
383                         writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
384                 }
385         }
386
387         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
388
389         /* GO */
390         mv_setup_timer();
391         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
392 }
393
394 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
395                                           struct shash_desc *desc)
396 {
397         int i;
398         struct sha1_state shash_state;
399
400         shash_state.count = ctx->count + ctx->count_add;
401         for (i = 0; i < 5; i++)
402                 shash_state.state[i] = ctx->state[i];
403         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
404         return crypto_shash_import(desc, &shash_state);
405 }
406
407 static int mv_hash_final_fallback(struct ahash_request *req)
408 {
409         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
410         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
411         SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
412         int rc;
413
414         shash->tfm = tfm_ctx->fallback;
415         shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
416         if (unlikely(req_ctx->first_hash)) {
417                 crypto_shash_init(shash);
418                 crypto_shash_update(shash, req_ctx->buffer,
419                                     req_ctx->extra_bytes);
420         } else {
421                 /* only SHA1 for now....
422                  */
423                 rc = mv_hash_import_sha1_ctx(req_ctx, shash);
424                 if (rc)
425                         goto out;
426         }
427         rc = crypto_shash_final(shash, req->result);
428 out:
429         return rc;
430 }
431
432 static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
433 {
434         ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
435         ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
436         ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
437         ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
438         ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
439 }
440
441 static void mv_hash_algo_completion(void)
442 {
443         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
444         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
445
446         if (ctx->extra_bytes)
447                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
448         sg_miter_stop(&cpg->p.src_sg_it);
449
450         if (likely(ctx->last_chunk)) {
451                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
452                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
453                                crypto_ahash_digestsize(crypto_ahash_reqtfm
454                                                        (req)));
455                 } else {
456                         mv_save_digest_state(ctx);
457                         mv_hash_final_fallback(req);
458                 }
459         } else {
460                 mv_save_digest_state(ctx);
461         }
462 }
463
464 static void dequeue_complete_req(void)
465 {
466         struct crypto_async_request *req = cpg->cur_req;
467         void *buf;
468         int ret;
469         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
470         if (cpg->p.copy_back) {
471                 int need_copy_len = cpg->p.crypt_len;
472                 int sram_offset = 0;
473                 do {
474                         int dst_copy;
475
476                         if (!cpg->p.sg_dst_left) {
477                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
478                                 BUG_ON(!ret);
479                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
480                                 cpg->p.dst_start = 0;
481                         }
482
483                         buf = cpg->p.dst_sg_it.addr;
484                         buf += cpg->p.dst_start;
485
486                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
487
488                         memcpy(buf,
489                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
490                                dst_copy);
491                         sram_offset += dst_copy;
492                         cpg->p.sg_dst_left -= dst_copy;
493                         need_copy_len -= dst_copy;
494                         cpg->p.dst_start += dst_copy;
495                 } while (need_copy_len > 0);
496         }
497
498         cpg->p.crypt_len = 0;
499
500         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
501         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
502                 /* process next scatter list entry */
503                 cpg->eng_st = ENGINE_BUSY;
504                 cpg->p.process(0);
505         } else {
506                 cpg->p.complete();
507                 cpg->eng_st = ENGINE_IDLE;
508                 local_bh_disable();
509                 req->complete(req, 0);
510                 local_bh_enable();
511         }
512 }
513
514 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
515 {
516         int i = 0;
517         size_t cur_len;
518
519         while (sl) {
520                 cur_len = sl[i].length;
521                 ++i;
522                 if (total_bytes > cur_len)
523                         total_bytes -= cur_len;
524                 else
525                         break;
526         }
527
528         return i;
529 }
530
531 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
532 {
533         struct req_progress *p = &cpg->p;
534         int num_sgs;
535
536         cpg->cur_req = &req->base;
537         memset(p, 0, sizeof(struct req_progress));
538         p->hw_nbytes = req->nbytes;
539         p->complete = mv_crypto_algo_completion;
540         p->process = mv_process_current_q;
541         p->copy_back = 1;
542
543         num_sgs = count_sgs(req->src, req->nbytes);
544         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
545
546         num_sgs = count_sgs(req->dst, req->nbytes);
547         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
548
549         mv_process_current_q(1);
550 }
551
552 static void mv_start_new_hash_req(struct ahash_request *req)
553 {
554         struct req_progress *p = &cpg->p;
555         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
556         int num_sgs, hw_bytes, old_extra_bytes, rc;
557         cpg->cur_req = &req->base;
558         memset(p, 0, sizeof(struct req_progress));
559         hw_bytes = req->nbytes + ctx->extra_bytes;
560         old_extra_bytes = ctx->extra_bytes;
561
562         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
563         if (ctx->extra_bytes != 0
564             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
565                 hw_bytes -= ctx->extra_bytes;
566         else
567                 ctx->extra_bytes = 0;
568
569         num_sgs = count_sgs(req->src, req->nbytes);
570         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
571
572         if (hw_bytes) {
573                 p->hw_nbytes = hw_bytes;
574                 p->complete = mv_hash_algo_completion;
575                 p->process = mv_process_hash_current;
576
577                 if (unlikely(old_extra_bytes)) {
578                         memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
579                                old_extra_bytes);
580                         p->crypt_len = old_extra_bytes;
581                 }
582
583                 mv_process_hash_current(1);
584         } else {
585                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
586                                 ctx->extra_bytes - old_extra_bytes);
587                 sg_miter_stop(&p->src_sg_it);
588                 if (ctx->last_chunk)
589                         rc = mv_hash_final_fallback(req);
590                 else
591                         rc = 0;
592                 cpg->eng_st = ENGINE_IDLE;
593                 local_bh_disable();
594                 req->base.complete(&req->base, rc);
595                 local_bh_enable();
596         }
597 }
598
599 static int queue_manag(void *data)
600 {
601         cpg->eng_st = ENGINE_IDLE;
602         do {
603                 struct crypto_async_request *async_req = NULL;
604                 struct crypto_async_request *backlog = NULL;
605
606                 __set_current_state(TASK_INTERRUPTIBLE);
607
608                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
609                         dequeue_complete_req();
610
611                 spin_lock_irq(&cpg->lock);
612                 if (cpg->eng_st == ENGINE_IDLE) {
613                         backlog = crypto_get_backlog(&cpg->queue);
614                         async_req = crypto_dequeue_request(&cpg->queue);
615                         if (async_req) {
616                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
617                                 cpg->eng_st = ENGINE_BUSY;
618                         }
619                 }
620                 spin_unlock_irq(&cpg->lock);
621
622                 if (backlog) {
623                         backlog->complete(backlog, -EINPROGRESS);
624                         backlog = NULL;
625                 }
626
627                 if (async_req) {
628                         if (crypto_tfm_alg_type(async_req->tfm) !=
629                             CRYPTO_ALG_TYPE_AHASH) {
630                                 struct ablkcipher_request *req =
631                                     ablkcipher_request_cast(async_req);
632                                 mv_start_new_crypt_req(req);
633                         } else {
634                                 struct ahash_request *req =
635                                     ahash_request_cast(async_req);
636                                 mv_start_new_hash_req(req);
637                         }
638                         async_req = NULL;
639                 }
640
641                 schedule();
642
643         } while (!kthread_should_stop());
644         return 0;
645 }
646
647 static int mv_handle_req(struct crypto_async_request *req)
648 {
649         unsigned long flags;
650         int ret;
651
652         spin_lock_irqsave(&cpg->lock, flags);
653         ret = crypto_enqueue_request(&cpg->queue, req);
654         spin_unlock_irqrestore(&cpg->lock, flags);
655         wake_up_process(cpg->queue_th);
656         return ret;
657 }
658
659 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
660 {
661         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
662
663         req_ctx->op = COP_AES_ECB;
664         req_ctx->decrypt = 0;
665
666         return mv_handle_req(&req->base);
667 }
668
669 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
670 {
671         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
672         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
673
674         req_ctx->op = COP_AES_ECB;
675         req_ctx->decrypt = 1;
676
677         compute_aes_dec_key(ctx);
678         return mv_handle_req(&req->base);
679 }
680
681 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
682 {
683         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
684
685         req_ctx->op = COP_AES_CBC;
686         req_ctx->decrypt = 0;
687
688         return mv_handle_req(&req->base);
689 }
690
691 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
692 {
693         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
694         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
695
696         req_ctx->op = COP_AES_CBC;
697         req_ctx->decrypt = 1;
698
699         compute_aes_dec_key(ctx);
700         return mv_handle_req(&req->base);
701 }
702
703 static int mv_cra_init(struct crypto_tfm *tfm)
704 {
705         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
706         return 0;
707 }
708
709 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
710                                  int is_last, unsigned int req_len,
711                                  int count_add)
712 {
713         memset(ctx, 0, sizeof(*ctx));
714         ctx->op = op;
715         ctx->count = req_len;
716         ctx->first_hash = 1;
717         ctx->last_chunk = is_last;
718         ctx->count_add = count_add;
719 }
720
721 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
722                                    unsigned req_len)
723 {
724         ctx->last_chunk = is_last;
725         ctx->count += req_len;
726 }
727
728 static int mv_hash_init(struct ahash_request *req)
729 {
730         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
731         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
732                              tfm_ctx->count_add);
733         return 0;
734 }
735
736 static int mv_hash_update(struct ahash_request *req)
737 {
738         if (!req->nbytes)
739                 return 0;
740
741         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
742         return mv_handle_req(&req->base);
743 }
744
745 static int mv_hash_final(struct ahash_request *req)
746 {
747         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
748
749         ahash_request_set_crypt(req, NULL, req->result, 0);
750         mv_update_hash_req_ctx(ctx, 1, 0);
751         return mv_handle_req(&req->base);
752 }
753
754 static int mv_hash_finup(struct ahash_request *req)
755 {
756         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
757         return mv_handle_req(&req->base);
758 }
759
760 static int mv_hash_digest(struct ahash_request *req)
761 {
762         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
763         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
764                              req->nbytes, tfm_ctx->count_add);
765         return mv_handle_req(&req->base);
766 }
767
768 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
769                              const void *ostate)
770 {
771         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
772         int i;
773         for (i = 0; i < 5; i++) {
774                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
775                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
776         }
777 }
778
779 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
780                           unsigned int keylen)
781 {
782         int rc;
783         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
784         int bs, ds, ss;
785
786         if (!ctx->base_hash)
787                 return 0;
788
789         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
790         if (rc)
791                 return rc;
792
793         /* Can't see a way to extract the ipad/opad from the fallback tfm
794            so I'm basically copying code from the hmac module */
795         bs = crypto_shash_blocksize(ctx->base_hash);
796         ds = crypto_shash_digestsize(ctx->base_hash);
797         ss = crypto_shash_statesize(ctx->base_hash);
798
799         {
800                 SHASH_DESC_ON_STACK(shash, ctx->base_hash);
801
802                 unsigned int i;
803                 char ipad[ss];
804                 char opad[ss];
805
806                 shash->tfm = ctx->base_hash;
807                 shash->flags = crypto_shash_get_flags(ctx->base_hash) &
808                     CRYPTO_TFM_REQ_MAY_SLEEP;
809
810                 if (keylen > bs) {
811                         int err;
812
813                         err =
814                             crypto_shash_digest(shash, key, keylen, ipad);
815                         if (err)
816                                 return err;
817
818                         keylen = ds;
819                 } else
820                         memcpy(ipad, key, keylen);
821
822                 memset(ipad + keylen, 0, bs - keylen);
823                 memcpy(opad, ipad, bs);
824
825                 for (i = 0; i < bs; i++) {
826                         ipad[i] ^= HMAC_IPAD_VALUE;
827                         opad[i] ^= HMAC_OPAD_VALUE;
828                 }
829
830                 rc = crypto_shash_init(shash) ? :
831                     crypto_shash_update(shash, ipad, bs) ? :
832                     crypto_shash_export(shash, ipad) ? :
833                     crypto_shash_init(shash) ? :
834                     crypto_shash_update(shash, opad, bs) ? :
835                     crypto_shash_export(shash, opad);
836
837                 if (rc == 0)
838                         mv_hash_init_ivs(ctx, ipad, opad);
839
840                 return rc;
841         }
842 }
843
844 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
845                             enum hash_op op, int count_add)
846 {
847         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
848         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
849         struct crypto_shash *fallback_tfm = NULL;
850         struct crypto_shash *base_hash = NULL;
851         int err = -ENOMEM;
852
853         ctx->op = op;
854         ctx->count_add = count_add;
855
856         /* Allocate a fallback and abort if it failed. */
857         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
858                                           CRYPTO_ALG_NEED_FALLBACK);
859         if (IS_ERR(fallback_tfm)) {
860                 printk(KERN_WARNING MV_CESA
861                        "Fallback driver '%s' could not be loaded!\n",
862                        fallback_driver_name);
863                 err = PTR_ERR(fallback_tfm);
864                 goto out;
865         }
866         ctx->fallback = fallback_tfm;
867
868         if (base_hash_name) {
869                 /* Allocate a hash to compute the ipad/opad of hmac. */
870                 base_hash = crypto_alloc_shash(base_hash_name, 0,
871                                                CRYPTO_ALG_NEED_FALLBACK);
872                 if (IS_ERR(base_hash)) {
873                         printk(KERN_WARNING MV_CESA
874                                "Base driver '%s' could not be loaded!\n",
875                                base_hash_name);
876                         err = PTR_ERR(base_hash);
877                         goto err_bad_base;
878                 }
879         }
880         ctx->base_hash = base_hash;
881
882         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
883                                  sizeof(struct mv_req_hash_ctx) +
884                                  crypto_shash_descsize(ctx->fallback));
885         return 0;
886 err_bad_base:
887         crypto_free_shash(fallback_tfm);
888 out:
889         return err;
890 }
891
892 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
893 {
894         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
895
896         crypto_free_shash(ctx->fallback);
897         if (ctx->base_hash)
898                 crypto_free_shash(ctx->base_hash);
899 }
900
901 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
902 {
903         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
904 }
905
906 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
907 {
908         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
909 }
910
911 static irqreturn_t crypto_int(int irq, void *priv)
912 {
913         u32 val;
914
915         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
916         if (!(val & SEC_INT_ACCEL0_DONE))
917                 return IRQ_NONE;
918
919         if (!del_timer(&cpg->completion_timer)) {
920                 printk(KERN_WARNING MV_CESA
921                        "got an interrupt but no pending timer?\n");
922         }
923         val &= ~SEC_INT_ACCEL0_DONE;
924         writel(val, cpg->reg + FPGA_INT_STATUS);
925         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
926         BUG_ON(cpg->eng_st != ENGINE_BUSY);
927         cpg->eng_st = ENGINE_W_DEQUEUE;
928         wake_up_process(cpg->queue_th);
929         return IRQ_HANDLED;
930 }
931
932 static struct crypto_alg mv_aes_alg_ecb = {
933         .cra_name               = "ecb(aes)",
934         .cra_driver_name        = "mv-ecb-aes",
935         .cra_priority   = 300,
936         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
937                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
938         .cra_blocksize  = 16,
939         .cra_ctxsize    = sizeof(struct mv_ctx),
940         .cra_alignmask  = 0,
941         .cra_type       = &crypto_ablkcipher_type,
942         .cra_module     = THIS_MODULE,
943         .cra_init       = mv_cra_init,
944         .cra_u          = {
945                 .ablkcipher = {
946                         .min_keysize    =       AES_MIN_KEY_SIZE,
947                         .max_keysize    =       AES_MAX_KEY_SIZE,
948                         .setkey         =       mv_setkey_aes,
949                         .encrypt        =       mv_enc_aes_ecb,
950                         .decrypt        =       mv_dec_aes_ecb,
951                 },
952         },
953 };
954
955 static struct crypto_alg mv_aes_alg_cbc = {
956         .cra_name               = "cbc(aes)",
957         .cra_driver_name        = "mv-cbc-aes",
958         .cra_priority   = 300,
959         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
960                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
961         .cra_blocksize  = AES_BLOCK_SIZE,
962         .cra_ctxsize    = sizeof(struct mv_ctx),
963         .cra_alignmask  = 0,
964         .cra_type       = &crypto_ablkcipher_type,
965         .cra_module     = THIS_MODULE,
966         .cra_init       = mv_cra_init,
967         .cra_u          = {
968                 .ablkcipher = {
969                         .ivsize         =       AES_BLOCK_SIZE,
970                         .min_keysize    =       AES_MIN_KEY_SIZE,
971                         .max_keysize    =       AES_MAX_KEY_SIZE,
972                         .setkey         =       mv_setkey_aes,
973                         .encrypt        =       mv_enc_aes_cbc,
974                         .decrypt        =       mv_dec_aes_cbc,
975                 },
976         },
977 };
978
979 static struct ahash_alg mv_sha1_alg = {
980         .init = mv_hash_init,
981         .update = mv_hash_update,
982         .final = mv_hash_final,
983         .finup = mv_hash_finup,
984         .digest = mv_hash_digest,
985         .halg = {
986                  .digestsize = SHA1_DIGEST_SIZE,
987                  .base = {
988                           .cra_name = "sha1",
989                           .cra_driver_name = "mv-sha1",
990                           .cra_priority = 300,
991                           .cra_flags =
992                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
993                           CRYPTO_ALG_NEED_FALLBACK,
994                           .cra_blocksize = SHA1_BLOCK_SIZE,
995                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
996                           .cra_init = mv_cra_hash_sha1_init,
997                           .cra_exit = mv_cra_hash_exit,
998                           .cra_module = THIS_MODULE,
999                           }
1000                  }
1001 };
1002
1003 static struct ahash_alg mv_hmac_sha1_alg = {
1004         .init = mv_hash_init,
1005         .update = mv_hash_update,
1006         .final = mv_hash_final,
1007         .finup = mv_hash_finup,
1008         .digest = mv_hash_digest,
1009         .setkey = mv_hash_setkey,
1010         .halg = {
1011                  .digestsize = SHA1_DIGEST_SIZE,
1012                  .base = {
1013                           .cra_name = "hmac(sha1)",
1014                           .cra_driver_name = "mv-hmac-sha1",
1015                           .cra_priority = 300,
1016                           .cra_flags =
1017                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1018                           CRYPTO_ALG_NEED_FALLBACK,
1019                           .cra_blocksize = SHA1_BLOCK_SIZE,
1020                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1021                           .cra_init = mv_cra_hash_hmac_sha1_init,
1022                           .cra_exit = mv_cra_hash_exit,
1023                           .cra_module = THIS_MODULE,
1024                           }
1025                  }
1026 };
1027
1028 static int mv_cesa_get_sram(struct platform_device *pdev,
1029                             struct crypto_priv *cp)
1030 {
1031         struct resource *res;
1032         u32 sram_size = MV_CESA_DEFAULT_SRAM_SIZE;
1033
1034         of_property_read_u32(pdev->dev.of_node, "marvell,crypto-sram-size",
1035                              &sram_size);
1036
1037         cp->sram_size = sram_size;
1038         cp->sram_pool = of_gen_pool_get(pdev->dev.of_node,
1039                                         "marvell,crypto-srams", 0);
1040         if (cp->sram_pool) {
1041                 cp->sram = gen_pool_dma_alloc(cp->sram_pool, sram_size,
1042                                               &cp->sram_dma);
1043                 if (cp->sram)
1044                         return 0;
1045
1046                 return -ENOMEM;
1047         }
1048
1049         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1050                                            "sram");
1051         if (!res || resource_size(res) < cp->sram_size)
1052                 return -EINVAL;
1053
1054         cp->sram = devm_ioremap_resource(&pdev->dev, res);
1055         if (IS_ERR(cp->sram))
1056                 return PTR_ERR(cp->sram);
1057
1058         return 0;
1059 }
1060
1061 static int mv_probe(struct platform_device *pdev)
1062 {
1063         struct crypto_priv *cp;
1064         struct resource *res;
1065         int irq;
1066         int ret;
1067
1068         if (cpg) {
1069                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1070                 return -EEXIST;
1071         }
1072
1073         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1074         if (!res)
1075                 return -ENXIO;
1076
1077         cp = devm_kzalloc(&pdev->dev, sizeof(*cp), GFP_KERNEL);
1078         if (!cp)
1079                 return -ENOMEM;
1080
1081         spin_lock_init(&cp->lock);
1082         crypto_init_queue(&cp->queue, 50);
1083         cp->reg = devm_ioremap_resource(&pdev->dev, res);
1084         if (IS_ERR(cp->reg)) {
1085                 ret = PTR_ERR(cp->reg);
1086                 goto err;
1087         }
1088
1089         ret = mv_cesa_get_sram(pdev, cp);
1090         if (ret)
1091                 goto err;
1092
1093         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1094
1095         irq = platform_get_irq(pdev, 0);
1096         if (irq < 0) {
1097                 ret = irq;
1098                 goto err;
1099         }
1100         cp->irq = irq;
1101
1102         platform_set_drvdata(pdev, cp);
1103         cpg = cp;
1104
1105         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1106         if (IS_ERR(cp->queue_th)) {
1107                 ret = PTR_ERR(cp->queue_th);
1108                 goto err;
1109         }
1110
1111         ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1112                         cp);
1113         if (ret)
1114                 goto err_thread;
1115
1116         /* Not all platforms can gate the clock, so it is not
1117            an error if the clock does not exists. */
1118         cp->clk = clk_get(&pdev->dev, NULL);
1119         if (!IS_ERR(cp->clk))
1120                 clk_prepare_enable(cp->clk);
1121
1122         writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1123         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1124         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1125         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1126
1127         ret = crypto_register_alg(&mv_aes_alg_ecb);
1128         if (ret) {
1129                 printk(KERN_WARNING MV_CESA
1130                        "Could not register aes-ecb driver\n");
1131                 goto err_irq;
1132         }
1133
1134         ret = crypto_register_alg(&mv_aes_alg_cbc);
1135         if (ret) {
1136                 printk(KERN_WARNING MV_CESA
1137                        "Could not register aes-cbc driver\n");
1138                 goto err_unreg_ecb;
1139         }
1140
1141         ret = crypto_register_ahash(&mv_sha1_alg);
1142         if (ret == 0)
1143                 cpg->has_sha1 = 1;
1144         else
1145                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1146
1147         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1148         if (ret == 0) {
1149                 cpg->has_hmac_sha1 = 1;
1150         } else {
1151                 printk(KERN_WARNING MV_CESA
1152                        "Could not register hmac-sha1 driver\n");
1153         }
1154
1155         return 0;
1156 err_unreg_ecb:
1157         crypto_unregister_alg(&mv_aes_alg_ecb);
1158 err_irq:
1159         free_irq(irq, cp);
1160         if (!IS_ERR(cp->clk)) {
1161                 clk_disable_unprepare(cp->clk);
1162                 clk_put(cp->clk);
1163         }
1164 err_thread:
1165         kthread_stop(cp->queue_th);
1166 err:
1167         cpg = NULL;
1168         return ret;
1169 }
1170
1171 static int mv_remove(struct platform_device *pdev)
1172 {
1173         struct crypto_priv *cp = platform_get_drvdata(pdev);
1174
1175         crypto_unregister_alg(&mv_aes_alg_ecb);
1176         crypto_unregister_alg(&mv_aes_alg_cbc);
1177         if (cp->has_sha1)
1178                 crypto_unregister_ahash(&mv_sha1_alg);
1179         if (cp->has_hmac_sha1)
1180                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1181         kthread_stop(cp->queue_th);
1182         free_irq(cp->irq, cp);
1183         memset(cp->sram, 0, cp->sram_size);
1184
1185         if (!IS_ERR(cp->clk)) {
1186                 clk_disable_unprepare(cp->clk);
1187                 clk_put(cp->clk);
1188         }
1189
1190         cpg = NULL;
1191         return 0;
1192 }
1193
1194 static const struct of_device_id mv_cesa_of_match_table[] = {
1195         { .compatible = "marvell,orion-crypto", },
1196         { .compatible = "marvell,kirkwood-crypto", },
1197         { .compatible = "marvell,dove-crypto", },
1198         {}
1199 };
1200 MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1201
1202 static struct platform_driver marvell_crypto = {
1203         .probe          = mv_probe,
1204         .remove         = mv_remove,
1205         .driver         = {
1206                 .name   = "mv_crypto",
1207                 .of_match_table = mv_cesa_of_match_table,
1208         },
1209 };
1210 MODULE_ALIAS("platform:mv_crypto");
1211
1212 module_platform_driver(marvell_crypto);
1213
1214 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1215 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1216 MODULE_LICENSE("GPL");