ACPI: Make AC and battery drivers available on !X86
[sfrench/cifs-2.6.git] / drivers / crypto / ccp / ccp-ops.c
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <crypto/des.h>
20 #include <linux/ccp.h>
21
22 #include "ccp-dev.h"
23
24 /* SHA initial context values */
25 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
26         cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
27         cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
28         cpu_to_be32(SHA1_H4),
29 };
30
31 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
32         cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
33         cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
34         cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
35         cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
36 };
37
38 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
39         cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
40         cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
41         cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
42         cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
43 };
44
45 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
46         cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
47         cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
48         cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
49         cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
50 };
51
52 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
53         cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
54         cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
55         cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
56         cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
57 };
58
59 #define CCP_NEW_JOBID(ccp)      ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
60                                         ccp_gen_jobid(ccp) : 0)
61
62 static u32 ccp_gen_jobid(struct ccp_device *ccp)
63 {
64         return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
65 }
66
67 static void ccp_sg_free(struct ccp_sg_workarea *wa)
68 {
69         if (wa->dma_count)
70                 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
71
72         wa->dma_count = 0;
73 }
74
75 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
76                                 struct scatterlist *sg, u64 len,
77                                 enum dma_data_direction dma_dir)
78 {
79         memset(wa, 0, sizeof(*wa));
80
81         wa->sg = sg;
82         if (!sg)
83                 return 0;
84
85         wa->nents = sg_nents_for_len(sg, len);
86         if (wa->nents < 0)
87                 return wa->nents;
88
89         wa->bytes_left = len;
90         wa->sg_used = 0;
91
92         if (len == 0)
93                 return 0;
94
95         if (dma_dir == DMA_NONE)
96                 return 0;
97
98         wa->dma_sg = sg;
99         wa->dma_dev = dev;
100         wa->dma_dir = dma_dir;
101         wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
102         if (!wa->dma_count)
103                 return -ENOMEM;
104
105         return 0;
106 }
107
108 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
109 {
110         unsigned int nbytes = min_t(u64, len, wa->bytes_left);
111
112         if (!wa->sg)
113                 return;
114
115         wa->sg_used += nbytes;
116         wa->bytes_left -= nbytes;
117         if (wa->sg_used == wa->sg->length) {
118                 wa->sg = sg_next(wa->sg);
119                 wa->sg_used = 0;
120         }
121 }
122
123 static void ccp_dm_free(struct ccp_dm_workarea *wa)
124 {
125         if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
126                 if (wa->address)
127                         dma_pool_free(wa->dma_pool, wa->address,
128                                       wa->dma.address);
129         } else {
130                 if (wa->dma.address)
131                         dma_unmap_single(wa->dev, wa->dma.address, wa->length,
132                                          wa->dma.dir);
133                 kfree(wa->address);
134         }
135
136         wa->address = NULL;
137         wa->dma.address = 0;
138 }
139
140 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
141                                 struct ccp_cmd_queue *cmd_q,
142                                 unsigned int len,
143                                 enum dma_data_direction dir)
144 {
145         memset(wa, 0, sizeof(*wa));
146
147         if (!len)
148                 return 0;
149
150         wa->dev = cmd_q->ccp->dev;
151         wa->length = len;
152
153         if (len <= CCP_DMAPOOL_MAX_SIZE) {
154                 wa->dma_pool = cmd_q->dma_pool;
155
156                 wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
157                                              &wa->dma.address);
158                 if (!wa->address)
159                         return -ENOMEM;
160
161                 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
162
163                 memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
164         } else {
165                 wa->address = kzalloc(len, GFP_KERNEL);
166                 if (!wa->address)
167                         return -ENOMEM;
168
169                 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
170                                                  dir);
171                 if (dma_mapping_error(wa->dev, wa->dma.address))
172                         return -ENOMEM;
173
174                 wa->dma.length = len;
175         }
176         wa->dma.dir = dir;
177
178         return 0;
179 }
180
181 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
182                            struct scatterlist *sg, unsigned int sg_offset,
183                            unsigned int len)
184 {
185         WARN_ON(!wa->address);
186
187         if (len > (wa->length - wa_offset))
188                 return -EINVAL;
189
190         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
191                                  0);
192         return 0;
193 }
194
195 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
196                             struct scatterlist *sg, unsigned int sg_offset,
197                             unsigned int len)
198 {
199         WARN_ON(!wa->address);
200
201         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
202                                  1);
203 }
204
205 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
206                                    unsigned int wa_offset,
207                                    struct scatterlist *sg,
208                                    unsigned int sg_offset,
209                                    unsigned int len)
210 {
211         u8 *p, *q;
212         int     rc;
213
214         rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
215         if (rc)
216                 return rc;
217
218         p = wa->address + wa_offset;
219         q = p + len - 1;
220         while (p < q) {
221                 *p = *p ^ *q;
222                 *q = *p ^ *q;
223                 *p = *p ^ *q;
224                 p++;
225                 q--;
226         }
227         return 0;
228 }
229
230 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
231                                     unsigned int wa_offset,
232                                     struct scatterlist *sg,
233                                     unsigned int sg_offset,
234                                     unsigned int len)
235 {
236         u8 *p, *q;
237
238         p = wa->address + wa_offset;
239         q = p + len - 1;
240         while (p < q) {
241                 *p = *p ^ *q;
242                 *q = *p ^ *q;
243                 *p = *p ^ *q;
244                 p++;
245                 q--;
246         }
247
248         ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
249 }
250
251 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
252 {
253         ccp_dm_free(&data->dm_wa);
254         ccp_sg_free(&data->sg_wa);
255 }
256
257 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
258                          struct scatterlist *sg, u64 sg_len,
259                          unsigned int dm_len,
260                          enum dma_data_direction dir)
261 {
262         int ret;
263
264         memset(data, 0, sizeof(*data));
265
266         ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
267                                    dir);
268         if (ret)
269                 goto e_err;
270
271         ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
272         if (ret)
273                 goto e_err;
274
275         return 0;
276
277 e_err:
278         ccp_free_data(data, cmd_q);
279
280         return ret;
281 }
282
283 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
284 {
285         struct ccp_sg_workarea *sg_wa = &data->sg_wa;
286         struct ccp_dm_workarea *dm_wa = &data->dm_wa;
287         unsigned int buf_count, nbytes;
288
289         /* Clear the buffer if setting it */
290         if (!from)
291                 memset(dm_wa->address, 0, dm_wa->length);
292
293         if (!sg_wa->sg)
294                 return 0;
295
296         /* Perform the copy operation
297          *   nbytes will always be <= UINT_MAX because dm_wa->length is
298          *   an unsigned int
299          */
300         nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
301         scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
302                                  nbytes, from);
303
304         /* Update the structures and generate the count */
305         buf_count = 0;
306         while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
307                 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
308                              dm_wa->length - buf_count);
309                 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
310
311                 buf_count += nbytes;
312                 ccp_update_sg_workarea(sg_wa, nbytes);
313         }
314
315         return buf_count;
316 }
317
318 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
319 {
320         return ccp_queue_buf(data, 0);
321 }
322
323 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
324 {
325         return ccp_queue_buf(data, 1);
326 }
327
328 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
329                              struct ccp_op *op, unsigned int block_size,
330                              bool blocksize_op)
331 {
332         unsigned int sg_src_len, sg_dst_len, op_len;
333
334         /* The CCP can only DMA from/to one address each per operation. This
335          * requires that we find the smallest DMA area between the source
336          * and destination. The resulting len values will always be <= UINT_MAX
337          * because the dma length is an unsigned int.
338          */
339         sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
340         sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
341
342         if (dst) {
343                 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
344                 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
345                 op_len = min(sg_src_len, sg_dst_len);
346         } else {
347                 op_len = sg_src_len;
348         }
349
350         /* The data operation length will be at least block_size in length
351          * or the smaller of available sg room remaining for the source or
352          * the destination
353          */
354         op_len = max(op_len, block_size);
355
356         /* Unless we have to buffer data, there's no reason to wait */
357         op->soc = 0;
358
359         if (sg_src_len < block_size) {
360                 /* Not enough data in the sg element, so it
361                  * needs to be buffered into a blocksize chunk
362                  */
363                 int cp_len = ccp_fill_queue_buf(src);
364
365                 op->soc = 1;
366                 op->src.u.dma.address = src->dm_wa.dma.address;
367                 op->src.u.dma.offset = 0;
368                 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
369         } else {
370                 /* Enough data in the sg element, but we need to
371                  * adjust for any previously copied data
372                  */
373                 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
374                 op->src.u.dma.offset = src->sg_wa.sg_used;
375                 op->src.u.dma.length = op_len & ~(block_size - 1);
376
377                 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
378         }
379
380         if (dst) {
381                 if (sg_dst_len < block_size) {
382                         /* Not enough room in the sg element or we're on the
383                          * last piece of data (when using padding), so the
384                          * output needs to be buffered into a blocksize chunk
385                          */
386                         op->soc = 1;
387                         op->dst.u.dma.address = dst->dm_wa.dma.address;
388                         op->dst.u.dma.offset = 0;
389                         op->dst.u.dma.length = op->src.u.dma.length;
390                 } else {
391                         /* Enough room in the sg element, but we need to
392                          * adjust for any previously used area
393                          */
394                         op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
395                         op->dst.u.dma.offset = dst->sg_wa.sg_used;
396                         op->dst.u.dma.length = op->src.u.dma.length;
397                 }
398         }
399 }
400
401 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
402                              struct ccp_op *op)
403 {
404         op->init = 0;
405
406         if (dst) {
407                 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
408                         ccp_empty_queue_buf(dst);
409                 else
410                         ccp_update_sg_workarea(&dst->sg_wa,
411                                                op->dst.u.dma.length);
412         }
413 }
414
415 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
416                                struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
417                                u32 byte_swap, bool from)
418 {
419         struct ccp_op op;
420
421         memset(&op, 0, sizeof(op));
422
423         op.cmd_q = cmd_q;
424         op.jobid = jobid;
425         op.eom = 1;
426
427         if (from) {
428                 op.soc = 1;
429                 op.src.type = CCP_MEMTYPE_SB;
430                 op.src.u.sb = sb;
431                 op.dst.type = CCP_MEMTYPE_SYSTEM;
432                 op.dst.u.dma.address = wa->dma.address;
433                 op.dst.u.dma.length = wa->length;
434         } else {
435                 op.src.type = CCP_MEMTYPE_SYSTEM;
436                 op.src.u.dma.address = wa->dma.address;
437                 op.src.u.dma.length = wa->length;
438                 op.dst.type = CCP_MEMTYPE_SB;
439                 op.dst.u.sb = sb;
440         }
441
442         op.u.passthru.byte_swap = byte_swap;
443
444         return cmd_q->ccp->vdata->perform->passthru(&op);
445 }
446
447 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
448                           struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
449                           u32 byte_swap)
450 {
451         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
452 }
453
454 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
455                             struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
456                             u32 byte_swap)
457 {
458         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
459 }
460
461 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
462                                 struct ccp_cmd *cmd)
463 {
464         struct ccp_aes_engine *aes = &cmd->u.aes;
465         struct ccp_dm_workarea key, ctx;
466         struct ccp_data src;
467         struct ccp_op op;
468         unsigned int dm_offset;
469         int ret;
470
471         if (!((aes->key_len == AES_KEYSIZE_128) ||
472               (aes->key_len == AES_KEYSIZE_192) ||
473               (aes->key_len == AES_KEYSIZE_256)))
474                 return -EINVAL;
475
476         if (aes->src_len & (AES_BLOCK_SIZE - 1))
477                 return -EINVAL;
478
479         if (aes->iv_len != AES_BLOCK_SIZE)
480                 return -EINVAL;
481
482         if (!aes->key || !aes->iv || !aes->src)
483                 return -EINVAL;
484
485         if (aes->cmac_final) {
486                 if (aes->cmac_key_len != AES_BLOCK_SIZE)
487                         return -EINVAL;
488
489                 if (!aes->cmac_key)
490                         return -EINVAL;
491         }
492
493         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
494         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
495
496         ret = -EIO;
497         memset(&op, 0, sizeof(op));
498         op.cmd_q = cmd_q;
499         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
500         op.sb_key = cmd_q->sb_key;
501         op.sb_ctx = cmd_q->sb_ctx;
502         op.init = 1;
503         op.u.aes.type = aes->type;
504         op.u.aes.mode = aes->mode;
505         op.u.aes.action = aes->action;
506
507         /* All supported key sizes fit in a single (32-byte) SB entry
508          * and must be in little endian format. Use the 256-bit byte
509          * swap passthru option to convert from big endian to little
510          * endian.
511          */
512         ret = ccp_init_dm_workarea(&key, cmd_q,
513                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
514                                    DMA_TO_DEVICE);
515         if (ret)
516                 return ret;
517
518         dm_offset = CCP_SB_BYTES - aes->key_len;
519         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
520         if (ret)
521                 goto e_key;
522         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
523                              CCP_PASSTHRU_BYTESWAP_256BIT);
524         if (ret) {
525                 cmd->engine_error = cmd_q->cmd_error;
526                 goto e_key;
527         }
528
529         /* The AES context fits in a single (32-byte) SB entry and
530          * must be in little endian format. Use the 256-bit byte swap
531          * passthru option to convert from big endian to little endian.
532          */
533         ret = ccp_init_dm_workarea(&ctx, cmd_q,
534                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
535                                    DMA_BIDIRECTIONAL);
536         if (ret)
537                 goto e_key;
538
539         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
540         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
541         if (ret)
542                 goto e_ctx;
543         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
544                              CCP_PASSTHRU_BYTESWAP_256BIT);
545         if (ret) {
546                 cmd->engine_error = cmd_q->cmd_error;
547                 goto e_ctx;
548         }
549
550         /* Send data to the CCP AES engine */
551         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
552                             AES_BLOCK_SIZE, DMA_TO_DEVICE);
553         if (ret)
554                 goto e_ctx;
555
556         while (src.sg_wa.bytes_left) {
557                 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
558                 if (aes->cmac_final && !src.sg_wa.bytes_left) {
559                         op.eom = 1;
560
561                         /* Push the K1/K2 key to the CCP now */
562                         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
563                                                op.sb_ctx,
564                                                CCP_PASSTHRU_BYTESWAP_256BIT);
565                         if (ret) {
566                                 cmd->engine_error = cmd_q->cmd_error;
567                                 goto e_src;
568                         }
569
570                         ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
571                                               aes->cmac_key_len);
572                         if (ret)
573                                 goto e_src;
574                         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
575                                              CCP_PASSTHRU_BYTESWAP_256BIT);
576                         if (ret) {
577                                 cmd->engine_error = cmd_q->cmd_error;
578                                 goto e_src;
579                         }
580                 }
581
582                 ret = cmd_q->ccp->vdata->perform->aes(&op);
583                 if (ret) {
584                         cmd->engine_error = cmd_q->cmd_error;
585                         goto e_src;
586                 }
587
588                 ccp_process_data(&src, NULL, &op);
589         }
590
591         /* Retrieve the AES context - convert from LE to BE using
592          * 32-byte (256-bit) byteswapping
593          */
594         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
595                                CCP_PASSTHRU_BYTESWAP_256BIT);
596         if (ret) {
597                 cmd->engine_error = cmd_q->cmd_error;
598                 goto e_src;
599         }
600
601         /* ...but we only need AES_BLOCK_SIZE bytes */
602         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
603         ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
604
605 e_src:
606         ccp_free_data(&src, cmd_q);
607
608 e_ctx:
609         ccp_dm_free(&ctx);
610
611 e_key:
612         ccp_dm_free(&key);
613
614         return ret;
615 }
616
617 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
618                                struct ccp_cmd *cmd)
619 {
620         struct ccp_aes_engine *aes = &cmd->u.aes;
621         struct ccp_dm_workarea key, ctx, final_wa, tag;
622         struct ccp_data src, dst;
623         struct ccp_data aad;
624         struct ccp_op op;
625
626         unsigned long long *final;
627         unsigned int dm_offset;
628         unsigned int ilen;
629         bool in_place = true; /* Default value */
630         int ret;
631
632         struct scatterlist *p_inp, sg_inp[2];
633         struct scatterlist *p_tag, sg_tag[2];
634         struct scatterlist *p_outp, sg_outp[2];
635         struct scatterlist *p_aad;
636
637         if (!aes->iv)
638                 return -EINVAL;
639
640         if (!((aes->key_len == AES_KEYSIZE_128) ||
641                 (aes->key_len == AES_KEYSIZE_192) ||
642                 (aes->key_len == AES_KEYSIZE_256)))
643                 return -EINVAL;
644
645         if (!aes->key) /* Gotta have a key SGL */
646                 return -EINVAL;
647
648         /* First, decompose the source buffer into AAD & PT,
649          * and the destination buffer into AAD, CT & tag, or
650          * the input into CT & tag.
651          * It is expected that the input and output SGs will
652          * be valid, even if the AAD and input lengths are 0.
653          */
654         p_aad = aes->src;
655         p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
656         p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
657         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
658                 ilen = aes->src_len;
659                 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
660         } else {
661                 /* Input length for decryption includes tag */
662                 ilen = aes->src_len - AES_BLOCK_SIZE;
663                 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
664         }
665
666         memset(&op, 0, sizeof(op));
667         op.cmd_q = cmd_q;
668         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
669         op.sb_key = cmd_q->sb_key; /* Pre-allocated */
670         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
671         op.init = 1;
672         op.u.aes.type = aes->type;
673
674         /* Copy the key to the LSB */
675         ret = ccp_init_dm_workarea(&key, cmd_q,
676                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
677                                    DMA_TO_DEVICE);
678         if (ret)
679                 return ret;
680
681         dm_offset = CCP_SB_BYTES - aes->key_len;
682         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
683         if (ret)
684                 goto e_key;
685         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
686                              CCP_PASSTHRU_BYTESWAP_256BIT);
687         if (ret) {
688                 cmd->engine_error = cmd_q->cmd_error;
689                 goto e_key;
690         }
691
692         /* Copy the context (IV) to the LSB.
693          * There is an assumption here that the IV is 96 bits in length, plus
694          * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
695          */
696         ret = ccp_init_dm_workarea(&ctx, cmd_q,
697                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
698                                    DMA_BIDIRECTIONAL);
699         if (ret)
700                 goto e_key;
701
702         dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
703         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
704         if (ret)
705                 goto e_ctx;
706
707         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
708                              CCP_PASSTHRU_BYTESWAP_256BIT);
709         if (ret) {
710                 cmd->engine_error = cmd_q->cmd_error;
711                 goto e_ctx;
712         }
713
714         op.init = 1;
715         if (aes->aad_len > 0) {
716                 /* Step 1: Run a GHASH over the Additional Authenticated Data */
717                 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
718                                     AES_BLOCK_SIZE,
719                                     DMA_TO_DEVICE);
720                 if (ret)
721                         goto e_ctx;
722
723                 op.u.aes.mode = CCP_AES_MODE_GHASH;
724                 op.u.aes.action = CCP_AES_GHASHAAD;
725
726                 while (aad.sg_wa.bytes_left) {
727                         ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
728
729                         ret = cmd_q->ccp->vdata->perform->aes(&op);
730                         if (ret) {
731                                 cmd->engine_error = cmd_q->cmd_error;
732                                 goto e_aad;
733                         }
734
735                         ccp_process_data(&aad, NULL, &op);
736                         op.init = 0;
737                 }
738         }
739
740         op.u.aes.mode = CCP_AES_MODE_GCTR;
741         op.u.aes.action = aes->action;
742
743         if (ilen > 0) {
744                 /* Step 2: Run a GCTR over the plaintext */
745                 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
746
747                 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
748                                     AES_BLOCK_SIZE,
749                                     in_place ? DMA_BIDIRECTIONAL
750                                              : DMA_TO_DEVICE);
751                 if (ret)
752                         goto e_ctx;
753
754                 if (in_place) {
755                         dst = src;
756                 } else {
757                         ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
758                                             AES_BLOCK_SIZE, DMA_FROM_DEVICE);
759                         if (ret)
760                                 goto e_src;
761                 }
762
763                 op.soc = 0;
764                 op.eom = 0;
765                 op.init = 1;
766                 while (src.sg_wa.bytes_left) {
767                         ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
768                         if (!src.sg_wa.bytes_left) {
769                                 unsigned int nbytes = aes->src_len
770                                                       % AES_BLOCK_SIZE;
771
772                                 if (nbytes) {
773                                         op.eom = 1;
774                                         op.u.aes.size = (nbytes * 8) - 1;
775                                 }
776                         }
777
778                         ret = cmd_q->ccp->vdata->perform->aes(&op);
779                         if (ret) {
780                                 cmd->engine_error = cmd_q->cmd_error;
781                                 goto e_dst;
782                         }
783
784                         ccp_process_data(&src, &dst, &op);
785                         op.init = 0;
786                 }
787         }
788
789         /* Step 3: Update the IV portion of the context with the original IV */
790         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
791                                CCP_PASSTHRU_BYTESWAP_256BIT);
792         if (ret) {
793                 cmd->engine_error = cmd_q->cmd_error;
794                 goto e_dst;
795         }
796
797         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
798         if (ret)
799                 goto e_dst;
800
801         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
802                              CCP_PASSTHRU_BYTESWAP_256BIT);
803         if (ret) {
804                 cmd->engine_error = cmd_q->cmd_error;
805                 goto e_dst;
806         }
807
808         /* Step 4: Concatenate the lengths of the AAD and source, and
809          * hash that 16 byte buffer.
810          */
811         ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
812                                    DMA_BIDIRECTIONAL);
813         if (ret)
814                 goto e_dst;
815         final = (unsigned long long *) final_wa.address;
816         final[0] = cpu_to_be64(aes->aad_len * 8);
817         final[1] = cpu_to_be64(ilen * 8);
818
819         op.u.aes.mode = CCP_AES_MODE_GHASH;
820         op.u.aes.action = CCP_AES_GHASHFINAL;
821         op.src.type = CCP_MEMTYPE_SYSTEM;
822         op.src.u.dma.address = final_wa.dma.address;
823         op.src.u.dma.length = AES_BLOCK_SIZE;
824         op.dst.type = CCP_MEMTYPE_SYSTEM;
825         op.dst.u.dma.address = final_wa.dma.address;
826         op.dst.u.dma.length = AES_BLOCK_SIZE;
827         op.eom = 1;
828         op.u.aes.size = 0;
829         ret = cmd_q->ccp->vdata->perform->aes(&op);
830         if (ret)
831                 goto e_dst;
832
833         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
834                 /* Put the ciphered tag after the ciphertext. */
835                 ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
836         } else {
837                 /* Does this ciphered tag match the input? */
838                 ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
839                                            DMA_BIDIRECTIONAL);
840                 if (ret)
841                         goto e_tag;
842                 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
843                 if (ret)
844                         goto e_tag;
845
846                 ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
847                 ccp_dm_free(&tag);
848         }
849
850 e_tag:
851         ccp_dm_free(&final_wa);
852
853 e_dst:
854         if (aes->src_len && !in_place)
855                 ccp_free_data(&dst, cmd_q);
856
857 e_src:
858         if (aes->src_len)
859                 ccp_free_data(&src, cmd_q);
860
861 e_aad:
862         if (aes->aad_len)
863                 ccp_free_data(&aad, cmd_q);
864
865 e_ctx:
866         ccp_dm_free(&ctx);
867
868 e_key:
869         ccp_dm_free(&key);
870
871         return ret;
872 }
873
874 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
875 {
876         struct ccp_aes_engine *aes = &cmd->u.aes;
877         struct ccp_dm_workarea key, ctx;
878         struct ccp_data src, dst;
879         struct ccp_op op;
880         unsigned int dm_offset;
881         bool in_place = false;
882         int ret;
883
884         if (aes->mode == CCP_AES_MODE_CMAC)
885                 return ccp_run_aes_cmac_cmd(cmd_q, cmd);
886
887         if (aes->mode == CCP_AES_MODE_GCM)
888                 return ccp_run_aes_gcm_cmd(cmd_q, cmd);
889
890         if (!((aes->key_len == AES_KEYSIZE_128) ||
891               (aes->key_len == AES_KEYSIZE_192) ||
892               (aes->key_len == AES_KEYSIZE_256)))
893                 return -EINVAL;
894
895         if (((aes->mode == CCP_AES_MODE_ECB) ||
896              (aes->mode == CCP_AES_MODE_CBC) ||
897              (aes->mode == CCP_AES_MODE_CFB)) &&
898             (aes->src_len & (AES_BLOCK_SIZE - 1)))
899                 return -EINVAL;
900
901         if (!aes->key || !aes->src || !aes->dst)
902                 return -EINVAL;
903
904         if (aes->mode != CCP_AES_MODE_ECB) {
905                 if (aes->iv_len != AES_BLOCK_SIZE)
906                         return -EINVAL;
907
908                 if (!aes->iv)
909                         return -EINVAL;
910         }
911
912         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
913         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
914
915         ret = -EIO;
916         memset(&op, 0, sizeof(op));
917         op.cmd_q = cmd_q;
918         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
919         op.sb_key = cmd_q->sb_key;
920         op.sb_ctx = cmd_q->sb_ctx;
921         op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
922         op.u.aes.type = aes->type;
923         op.u.aes.mode = aes->mode;
924         op.u.aes.action = aes->action;
925
926         /* All supported key sizes fit in a single (32-byte) SB entry
927          * and must be in little endian format. Use the 256-bit byte
928          * swap passthru option to convert from big endian to little
929          * endian.
930          */
931         ret = ccp_init_dm_workarea(&key, cmd_q,
932                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
933                                    DMA_TO_DEVICE);
934         if (ret)
935                 return ret;
936
937         dm_offset = CCP_SB_BYTES - aes->key_len;
938         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
939         if (ret)
940                 goto e_key;
941         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
942                              CCP_PASSTHRU_BYTESWAP_256BIT);
943         if (ret) {
944                 cmd->engine_error = cmd_q->cmd_error;
945                 goto e_key;
946         }
947
948         /* The AES context fits in a single (32-byte) SB entry and
949          * must be in little endian format. Use the 256-bit byte swap
950          * passthru option to convert from big endian to little endian.
951          */
952         ret = ccp_init_dm_workarea(&ctx, cmd_q,
953                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
954                                    DMA_BIDIRECTIONAL);
955         if (ret)
956                 goto e_key;
957
958         if (aes->mode != CCP_AES_MODE_ECB) {
959                 /* Load the AES context - convert to LE */
960                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
961                 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
962                 if (ret)
963                         goto e_ctx;
964                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
965                                      CCP_PASSTHRU_BYTESWAP_256BIT);
966                 if (ret) {
967                         cmd->engine_error = cmd_q->cmd_error;
968                         goto e_ctx;
969                 }
970         }
971         switch (aes->mode) {
972         case CCP_AES_MODE_CFB: /* CFB128 only */
973         case CCP_AES_MODE_CTR:
974                 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
975                 break;
976         default:
977                 op.u.aes.size = 0;
978         }
979
980         /* Prepare the input and output data workareas. For in-place
981          * operations we need to set the dma direction to BIDIRECTIONAL
982          * and copy the src workarea to the dst workarea.
983          */
984         if (sg_virt(aes->src) == sg_virt(aes->dst))
985                 in_place = true;
986
987         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
988                             AES_BLOCK_SIZE,
989                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
990         if (ret)
991                 goto e_ctx;
992
993         if (in_place) {
994                 dst = src;
995         } else {
996                 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
997                                     AES_BLOCK_SIZE, DMA_FROM_DEVICE);
998                 if (ret)
999                         goto e_src;
1000         }
1001
1002         /* Send data to the CCP AES engine */
1003         while (src.sg_wa.bytes_left) {
1004                 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1005                 if (!src.sg_wa.bytes_left) {
1006                         op.eom = 1;
1007
1008                         /* Since we don't retrieve the AES context in ECB
1009                          * mode we have to wait for the operation to complete
1010                          * on the last piece of data
1011                          */
1012                         if (aes->mode == CCP_AES_MODE_ECB)
1013                                 op.soc = 1;
1014                 }
1015
1016                 ret = cmd_q->ccp->vdata->perform->aes(&op);
1017                 if (ret) {
1018                         cmd->engine_error = cmd_q->cmd_error;
1019                         goto e_dst;
1020                 }
1021
1022                 ccp_process_data(&src, &dst, &op);
1023         }
1024
1025         if (aes->mode != CCP_AES_MODE_ECB) {
1026                 /* Retrieve the AES context - convert from LE to BE using
1027                  * 32-byte (256-bit) byteswapping
1028                  */
1029                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1030                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1031                 if (ret) {
1032                         cmd->engine_error = cmd_q->cmd_error;
1033                         goto e_dst;
1034                 }
1035
1036                 /* ...but we only need AES_BLOCK_SIZE bytes */
1037                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1038                 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1039         }
1040
1041 e_dst:
1042         if (!in_place)
1043                 ccp_free_data(&dst, cmd_q);
1044
1045 e_src:
1046         ccp_free_data(&src, cmd_q);
1047
1048 e_ctx:
1049         ccp_dm_free(&ctx);
1050
1051 e_key:
1052         ccp_dm_free(&key);
1053
1054         return ret;
1055 }
1056
1057 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1058                                struct ccp_cmd *cmd)
1059 {
1060         struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1061         struct ccp_dm_workarea key, ctx;
1062         struct ccp_data src, dst;
1063         struct ccp_op op;
1064         unsigned int unit_size, dm_offset;
1065         bool in_place = false;
1066         unsigned int sb_count;
1067         enum ccp_aes_type aestype;
1068         int ret;
1069
1070         switch (xts->unit_size) {
1071         case CCP_XTS_AES_UNIT_SIZE_16:
1072                 unit_size = 16;
1073                 break;
1074         case CCP_XTS_AES_UNIT_SIZE_512:
1075                 unit_size = 512;
1076                 break;
1077         case CCP_XTS_AES_UNIT_SIZE_1024:
1078                 unit_size = 1024;
1079                 break;
1080         case CCP_XTS_AES_UNIT_SIZE_2048:
1081                 unit_size = 2048;
1082                 break;
1083         case CCP_XTS_AES_UNIT_SIZE_4096:
1084                 unit_size = 4096;
1085                 break;
1086
1087         default:
1088                 return -EINVAL;
1089         }
1090
1091         if (xts->key_len == AES_KEYSIZE_128)
1092                 aestype = CCP_AES_TYPE_128;
1093         else if (xts->key_len == AES_KEYSIZE_256)
1094                 aestype = CCP_AES_TYPE_256;
1095         else
1096                 return -EINVAL;
1097
1098         if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1099                 return -EINVAL;
1100
1101         if (xts->iv_len != AES_BLOCK_SIZE)
1102                 return -EINVAL;
1103
1104         if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1105                 return -EINVAL;
1106
1107         BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1108         BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1109
1110         ret = -EIO;
1111         memset(&op, 0, sizeof(op));
1112         op.cmd_q = cmd_q;
1113         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1114         op.sb_key = cmd_q->sb_key;
1115         op.sb_ctx = cmd_q->sb_ctx;
1116         op.init = 1;
1117         op.u.xts.type = aestype;
1118         op.u.xts.action = xts->action;
1119         op.u.xts.unit_size = xts->unit_size;
1120
1121         /* A version 3 device only supports 128-bit keys, which fits into a
1122          * single SB entry. A version 5 device uses a 512-bit vector, so two
1123          * SB entries.
1124          */
1125         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1126                 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1127         else
1128                 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1129         ret = ccp_init_dm_workarea(&key, cmd_q,
1130                                    sb_count * CCP_SB_BYTES,
1131                                    DMA_TO_DEVICE);
1132         if (ret)
1133                 return ret;
1134
1135         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1136                 /* All supported key sizes must be in little endian format.
1137                  * Use the 256-bit byte swap passthru option to convert from
1138                  * big endian to little endian.
1139                  */
1140                 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1141                 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1142                 if (ret)
1143                         goto e_key;
1144                 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1145                 if (ret)
1146                         goto e_key;
1147         } else {
1148                 /* Version 5 CCPs use a 512-bit space for the key: each portion
1149                  * occupies 256 bits, or one entire slot, and is zero-padded.
1150                  */
1151                 unsigned int pad;
1152
1153                 dm_offset = CCP_SB_BYTES;
1154                 pad = dm_offset - xts->key_len;
1155                 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1156                 if (ret)
1157                         goto e_key;
1158                 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1159                                       xts->key_len, xts->key_len);
1160                 if (ret)
1161                         goto e_key;
1162         }
1163         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1164                              CCP_PASSTHRU_BYTESWAP_256BIT);
1165         if (ret) {
1166                 cmd->engine_error = cmd_q->cmd_error;
1167                 goto e_key;
1168         }
1169
1170         /* The AES context fits in a single (32-byte) SB entry and
1171          * for XTS is already in little endian format so no byte swapping
1172          * is needed.
1173          */
1174         ret = ccp_init_dm_workarea(&ctx, cmd_q,
1175                                    CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1176                                    DMA_BIDIRECTIONAL);
1177         if (ret)
1178                 goto e_key;
1179
1180         ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1181         if (ret)
1182                 goto e_ctx;
1183         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1184                              CCP_PASSTHRU_BYTESWAP_NOOP);
1185         if (ret) {
1186                 cmd->engine_error = cmd_q->cmd_error;
1187                 goto e_ctx;
1188         }
1189
1190         /* Prepare the input and output data workareas. For in-place
1191          * operations we need to set the dma direction to BIDIRECTIONAL
1192          * and copy the src workarea to the dst workarea.
1193          */
1194         if (sg_virt(xts->src) == sg_virt(xts->dst))
1195                 in_place = true;
1196
1197         ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1198                             unit_size,
1199                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1200         if (ret)
1201                 goto e_ctx;
1202
1203         if (in_place) {
1204                 dst = src;
1205         } else {
1206                 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1207                                     unit_size, DMA_FROM_DEVICE);
1208                 if (ret)
1209                         goto e_src;
1210         }
1211
1212         /* Send data to the CCP AES engine */
1213         while (src.sg_wa.bytes_left) {
1214                 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1215                 if (!src.sg_wa.bytes_left)
1216                         op.eom = 1;
1217
1218                 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1219                 if (ret) {
1220                         cmd->engine_error = cmd_q->cmd_error;
1221                         goto e_dst;
1222                 }
1223
1224                 ccp_process_data(&src, &dst, &op);
1225         }
1226
1227         /* Retrieve the AES context - convert from LE to BE using
1228          * 32-byte (256-bit) byteswapping
1229          */
1230         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1231                                CCP_PASSTHRU_BYTESWAP_256BIT);
1232         if (ret) {
1233                 cmd->engine_error = cmd_q->cmd_error;
1234                 goto e_dst;
1235         }
1236
1237         /* ...but we only need AES_BLOCK_SIZE bytes */
1238         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1239         ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1240
1241 e_dst:
1242         if (!in_place)
1243                 ccp_free_data(&dst, cmd_q);
1244
1245 e_src:
1246         ccp_free_data(&src, cmd_q);
1247
1248 e_ctx:
1249         ccp_dm_free(&ctx);
1250
1251 e_key:
1252         ccp_dm_free(&key);
1253
1254         return ret;
1255 }
1256
1257 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1258 {
1259         struct ccp_des3_engine *des3 = &cmd->u.des3;
1260
1261         struct ccp_dm_workarea key, ctx;
1262         struct ccp_data src, dst;
1263         struct ccp_op op;
1264         unsigned int dm_offset;
1265         unsigned int len_singlekey;
1266         bool in_place = false;
1267         int ret;
1268
1269         /* Error checks */
1270         if (!cmd_q->ccp->vdata->perform->des3)
1271                 return -EINVAL;
1272
1273         if (des3->key_len != DES3_EDE_KEY_SIZE)
1274                 return -EINVAL;
1275
1276         if (((des3->mode == CCP_DES3_MODE_ECB) ||
1277                 (des3->mode == CCP_DES3_MODE_CBC)) &&
1278                 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1279                 return -EINVAL;
1280
1281         if (!des3->key || !des3->src || !des3->dst)
1282                 return -EINVAL;
1283
1284         if (des3->mode != CCP_DES3_MODE_ECB) {
1285                 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1286                         return -EINVAL;
1287
1288                 if (!des3->iv)
1289                         return -EINVAL;
1290         }
1291
1292         ret = -EIO;
1293         /* Zero out all the fields of the command desc */
1294         memset(&op, 0, sizeof(op));
1295
1296         /* Set up the Function field */
1297         op.cmd_q = cmd_q;
1298         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1299         op.sb_key = cmd_q->sb_key;
1300
1301         op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1302         op.u.des3.type = des3->type;
1303         op.u.des3.mode = des3->mode;
1304         op.u.des3.action = des3->action;
1305
1306         /*
1307          * All supported key sizes fit in a single (32-byte) KSB entry and
1308          * (like AES) must be in little endian format. Use the 256-bit byte
1309          * swap passthru option to convert from big endian to little endian.
1310          */
1311         ret = ccp_init_dm_workarea(&key, cmd_q,
1312                                    CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1313                                    DMA_TO_DEVICE);
1314         if (ret)
1315                 return ret;
1316
1317         /*
1318          * The contents of the key triplet are in the reverse order of what
1319          * is required by the engine. Copy the 3 pieces individually to put
1320          * them where they belong.
1321          */
1322         dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1323
1324         len_singlekey = des3->key_len / 3;
1325         ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1326                               des3->key, 0, len_singlekey);
1327         if (ret)
1328                 goto e_key;
1329         ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1330                               des3->key, len_singlekey, len_singlekey);
1331         if (ret)
1332                 goto e_key;
1333         ret = ccp_set_dm_area(&key, dm_offset,
1334                               des3->key, 2 * len_singlekey, len_singlekey);
1335         if (ret)
1336                 goto e_key;
1337
1338         /* Copy the key to the SB */
1339         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1340                              CCP_PASSTHRU_BYTESWAP_256BIT);
1341         if (ret) {
1342                 cmd->engine_error = cmd_q->cmd_error;
1343                 goto e_key;
1344         }
1345
1346         /*
1347          * The DES3 context fits in a single (32-byte) KSB entry and
1348          * must be in little endian format. Use the 256-bit byte swap
1349          * passthru option to convert from big endian to little endian.
1350          */
1351         if (des3->mode != CCP_DES3_MODE_ECB) {
1352                 u32 load_mode;
1353
1354                 op.sb_ctx = cmd_q->sb_ctx;
1355
1356                 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1357                                            CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1358                                            DMA_BIDIRECTIONAL);
1359                 if (ret)
1360                         goto e_key;
1361
1362                 /* Load the context into the LSB */
1363                 dm_offset = CCP_SB_BYTES - des3->iv_len;
1364                 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1365                                       des3->iv_len);
1366                 if (ret)
1367                         goto e_ctx;
1368
1369                 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1370                         load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
1371                 else
1372                         load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
1373                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1374                                      load_mode);
1375                 if (ret) {
1376                         cmd->engine_error = cmd_q->cmd_error;
1377                         goto e_ctx;
1378                 }
1379         }
1380
1381         /*
1382          * Prepare the input and output data workareas. For in-place
1383          * operations we need to set the dma direction to BIDIRECTIONAL
1384          * and copy the src workarea to the dst workarea.
1385          */
1386         if (sg_virt(des3->src) == sg_virt(des3->dst))
1387                 in_place = true;
1388
1389         ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1390                         DES3_EDE_BLOCK_SIZE,
1391                         in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1392         if (ret)
1393                 goto e_ctx;
1394
1395         if (in_place)
1396                 dst = src;
1397         else {
1398                 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1399                                 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1400                 if (ret)
1401                         goto e_src;
1402         }
1403
1404         /* Send data to the CCP DES3 engine */
1405         while (src.sg_wa.bytes_left) {
1406                 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1407                 if (!src.sg_wa.bytes_left) {
1408                         op.eom = 1;
1409
1410                         /* Since we don't retrieve the context in ECB mode
1411                          * we have to wait for the operation to complete
1412                          * on the last piece of data
1413                          */
1414                         op.soc = 0;
1415                 }
1416
1417                 ret = cmd_q->ccp->vdata->perform->des3(&op);
1418                 if (ret) {
1419                         cmd->engine_error = cmd_q->cmd_error;
1420                         goto e_dst;
1421                 }
1422
1423                 ccp_process_data(&src, &dst, &op);
1424         }
1425
1426         if (des3->mode != CCP_DES3_MODE_ECB) {
1427                 /* Retrieve the context and make BE */
1428                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1429                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1430                 if (ret) {
1431                         cmd->engine_error = cmd_q->cmd_error;
1432                         goto e_dst;
1433                 }
1434
1435                 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1436                 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1437                         dm_offset = CCP_SB_BYTES - des3->iv_len;
1438                 else
1439                         dm_offset = 0;
1440                 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1441                                 DES3_EDE_BLOCK_SIZE);
1442         }
1443 e_dst:
1444         if (!in_place)
1445                 ccp_free_data(&dst, cmd_q);
1446
1447 e_src:
1448         ccp_free_data(&src, cmd_q);
1449
1450 e_ctx:
1451         if (des3->mode != CCP_DES3_MODE_ECB)
1452                 ccp_dm_free(&ctx);
1453
1454 e_key:
1455         ccp_dm_free(&key);
1456
1457         return ret;
1458 }
1459
1460 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1461 {
1462         struct ccp_sha_engine *sha = &cmd->u.sha;
1463         struct ccp_dm_workarea ctx;
1464         struct ccp_data src;
1465         struct ccp_op op;
1466         unsigned int ioffset, ooffset;
1467         unsigned int digest_size;
1468         int sb_count;
1469         const void *init;
1470         u64 block_size;
1471         int ctx_size;
1472         int ret;
1473
1474         switch (sha->type) {
1475         case CCP_SHA_TYPE_1:
1476                 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1477                         return -EINVAL;
1478                 block_size = SHA1_BLOCK_SIZE;
1479                 break;
1480         case CCP_SHA_TYPE_224:
1481                 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1482                         return -EINVAL;
1483                 block_size = SHA224_BLOCK_SIZE;
1484                 break;
1485         case CCP_SHA_TYPE_256:
1486                 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1487                         return -EINVAL;
1488                 block_size = SHA256_BLOCK_SIZE;
1489                 break;
1490         case CCP_SHA_TYPE_384:
1491                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1492                     || sha->ctx_len < SHA384_DIGEST_SIZE)
1493                         return -EINVAL;
1494                 block_size = SHA384_BLOCK_SIZE;
1495                 break;
1496         case CCP_SHA_TYPE_512:
1497                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1498                     || sha->ctx_len < SHA512_DIGEST_SIZE)
1499                         return -EINVAL;
1500                 block_size = SHA512_BLOCK_SIZE;
1501                 break;
1502         default:
1503                 return -EINVAL;
1504         }
1505
1506         if (!sha->ctx)
1507                 return -EINVAL;
1508
1509         if (!sha->final && (sha->src_len & (block_size - 1)))
1510                 return -EINVAL;
1511
1512         /* The version 3 device can't handle zero-length input */
1513         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1514
1515                 if (!sha->src_len) {
1516                         unsigned int digest_len;
1517                         const u8 *sha_zero;
1518
1519                         /* Not final, just return */
1520                         if (!sha->final)
1521                                 return 0;
1522
1523                         /* CCP can't do a zero length sha operation so the
1524                          * caller must buffer the data.
1525                          */
1526                         if (sha->msg_bits)
1527                                 return -EINVAL;
1528
1529                         /* The CCP cannot perform zero-length sha operations
1530                          * so the caller is required to buffer data for the
1531                          * final operation. However, a sha operation for a
1532                          * message with a total length of zero is valid so
1533                          * known values are required to supply the result.
1534                          */
1535                         switch (sha->type) {
1536                         case CCP_SHA_TYPE_1:
1537                                 sha_zero = sha1_zero_message_hash;
1538                                 digest_len = SHA1_DIGEST_SIZE;
1539                                 break;
1540                         case CCP_SHA_TYPE_224:
1541                                 sha_zero = sha224_zero_message_hash;
1542                                 digest_len = SHA224_DIGEST_SIZE;
1543                                 break;
1544                         case CCP_SHA_TYPE_256:
1545                                 sha_zero = sha256_zero_message_hash;
1546                                 digest_len = SHA256_DIGEST_SIZE;
1547                                 break;
1548                         default:
1549                                 return -EINVAL;
1550                         }
1551
1552                         scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1553                                                  digest_len, 1);
1554
1555                         return 0;
1556                 }
1557         }
1558
1559         /* Set variables used throughout */
1560         switch (sha->type) {
1561         case CCP_SHA_TYPE_1:
1562                 digest_size = SHA1_DIGEST_SIZE;
1563                 init = (void *) ccp_sha1_init;
1564                 ctx_size = SHA1_DIGEST_SIZE;
1565                 sb_count = 1;
1566                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1567                         ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1568                 else
1569                         ooffset = ioffset = 0;
1570                 break;
1571         case CCP_SHA_TYPE_224:
1572                 digest_size = SHA224_DIGEST_SIZE;
1573                 init = (void *) ccp_sha224_init;
1574                 ctx_size = SHA256_DIGEST_SIZE;
1575                 sb_count = 1;
1576                 ioffset = 0;
1577                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1578                         ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1579                 else
1580                         ooffset = 0;
1581                 break;
1582         case CCP_SHA_TYPE_256:
1583                 digest_size = SHA256_DIGEST_SIZE;
1584                 init = (void *) ccp_sha256_init;
1585                 ctx_size = SHA256_DIGEST_SIZE;
1586                 sb_count = 1;
1587                 ooffset = ioffset = 0;
1588                 break;
1589         case CCP_SHA_TYPE_384:
1590                 digest_size = SHA384_DIGEST_SIZE;
1591                 init = (void *) ccp_sha384_init;
1592                 ctx_size = SHA512_DIGEST_SIZE;
1593                 sb_count = 2;
1594                 ioffset = 0;
1595                 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1596                 break;
1597         case CCP_SHA_TYPE_512:
1598                 digest_size = SHA512_DIGEST_SIZE;
1599                 init = (void *) ccp_sha512_init;
1600                 ctx_size = SHA512_DIGEST_SIZE;
1601                 sb_count = 2;
1602                 ooffset = ioffset = 0;
1603                 break;
1604         default:
1605                 ret = -EINVAL;
1606                 goto e_data;
1607         }
1608
1609         /* For zero-length plaintext the src pointer is ignored;
1610          * otherwise both parts must be valid
1611          */
1612         if (sha->src_len && !sha->src)
1613                 return -EINVAL;
1614
1615         memset(&op, 0, sizeof(op));
1616         op.cmd_q = cmd_q;
1617         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1618         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1619         op.u.sha.type = sha->type;
1620         op.u.sha.msg_bits = sha->msg_bits;
1621
1622         /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1623          * SHA384/512 require 2 adjacent SB slots, with the right half in the
1624          * first slot, and the left half in the second. Each portion must then
1625          * be in little endian format: use the 256-bit byte swap option.
1626          */
1627         ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1628                                    DMA_BIDIRECTIONAL);
1629         if (ret)
1630                 return ret;
1631         if (sha->first) {
1632                 switch (sha->type) {
1633                 case CCP_SHA_TYPE_1:
1634                 case CCP_SHA_TYPE_224:
1635                 case CCP_SHA_TYPE_256:
1636                         memcpy(ctx.address + ioffset, init, ctx_size);
1637                         break;
1638                 case CCP_SHA_TYPE_384:
1639                 case CCP_SHA_TYPE_512:
1640                         memcpy(ctx.address + ctx_size / 2, init,
1641                                ctx_size / 2);
1642                         memcpy(ctx.address, init + ctx_size / 2,
1643                                ctx_size / 2);
1644                         break;
1645                 default:
1646                         ret = -EINVAL;
1647                         goto e_ctx;
1648                 }
1649         } else {
1650                 /* Restore the context */
1651                 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1652                                       sb_count * CCP_SB_BYTES);
1653                 if (ret)
1654                         goto e_ctx;
1655         }
1656
1657         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1658                              CCP_PASSTHRU_BYTESWAP_256BIT);
1659         if (ret) {
1660                 cmd->engine_error = cmd_q->cmd_error;
1661                 goto e_ctx;
1662         }
1663
1664         if (sha->src) {
1665                 /* Send data to the CCP SHA engine; block_size is set above */
1666                 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1667                                     block_size, DMA_TO_DEVICE);
1668                 if (ret)
1669                         goto e_ctx;
1670
1671                 while (src.sg_wa.bytes_left) {
1672                         ccp_prepare_data(&src, NULL, &op, block_size, false);
1673                         if (sha->final && !src.sg_wa.bytes_left)
1674                                 op.eom = 1;
1675
1676                         ret = cmd_q->ccp->vdata->perform->sha(&op);
1677                         if (ret) {
1678                                 cmd->engine_error = cmd_q->cmd_error;
1679                                 goto e_data;
1680                         }
1681
1682                         ccp_process_data(&src, NULL, &op);
1683                 }
1684         } else {
1685                 op.eom = 1;
1686                 ret = cmd_q->ccp->vdata->perform->sha(&op);
1687                 if (ret) {
1688                         cmd->engine_error = cmd_q->cmd_error;
1689                         goto e_data;
1690                 }
1691         }
1692
1693         /* Retrieve the SHA context - convert from LE to BE using
1694          * 32-byte (256-bit) byteswapping to BE
1695          */
1696         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1697                                CCP_PASSTHRU_BYTESWAP_256BIT);
1698         if (ret) {
1699                 cmd->engine_error = cmd_q->cmd_error;
1700                 goto e_data;
1701         }
1702
1703         if (sha->final) {
1704                 /* Finishing up, so get the digest */
1705                 switch (sha->type) {
1706                 case CCP_SHA_TYPE_1:
1707                 case CCP_SHA_TYPE_224:
1708                 case CCP_SHA_TYPE_256:
1709                         ccp_get_dm_area(&ctx, ooffset,
1710                                         sha->ctx, 0,
1711                                         digest_size);
1712                         break;
1713                 case CCP_SHA_TYPE_384:
1714                 case CCP_SHA_TYPE_512:
1715                         ccp_get_dm_area(&ctx, 0,
1716                                         sha->ctx, LSB_ITEM_SIZE - ooffset,
1717                                         LSB_ITEM_SIZE);
1718                         ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1719                                         sha->ctx, 0,
1720                                         LSB_ITEM_SIZE - ooffset);
1721                         break;
1722                 default:
1723                         ret = -EINVAL;
1724                         goto e_ctx;
1725                 }
1726         } else {
1727                 /* Stash the context */
1728                 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1729                                 sb_count * CCP_SB_BYTES);
1730         }
1731
1732         if (sha->final && sha->opad) {
1733                 /* HMAC operation, recursively perform final SHA */
1734                 struct ccp_cmd hmac_cmd;
1735                 struct scatterlist sg;
1736                 u8 *hmac_buf;
1737
1738                 if (sha->opad_len != block_size) {
1739                         ret = -EINVAL;
1740                         goto e_data;
1741                 }
1742
1743                 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1744                 if (!hmac_buf) {
1745                         ret = -ENOMEM;
1746                         goto e_data;
1747                 }
1748                 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1749
1750                 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1751                 switch (sha->type) {
1752                 case CCP_SHA_TYPE_1:
1753                 case CCP_SHA_TYPE_224:
1754                 case CCP_SHA_TYPE_256:
1755                         memcpy(hmac_buf + block_size,
1756                                ctx.address + ooffset,
1757                                digest_size);
1758                         break;
1759                 case CCP_SHA_TYPE_384:
1760                 case CCP_SHA_TYPE_512:
1761                         memcpy(hmac_buf + block_size,
1762                                ctx.address + LSB_ITEM_SIZE + ooffset,
1763                                LSB_ITEM_SIZE);
1764                         memcpy(hmac_buf + block_size +
1765                                (LSB_ITEM_SIZE - ooffset),
1766                                ctx.address,
1767                                LSB_ITEM_SIZE);
1768                         break;
1769                 default:
1770                         ret = -EINVAL;
1771                         goto e_ctx;
1772                 }
1773
1774                 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1775                 hmac_cmd.engine = CCP_ENGINE_SHA;
1776                 hmac_cmd.u.sha.type = sha->type;
1777                 hmac_cmd.u.sha.ctx = sha->ctx;
1778                 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1779                 hmac_cmd.u.sha.src = &sg;
1780                 hmac_cmd.u.sha.src_len = block_size + digest_size;
1781                 hmac_cmd.u.sha.opad = NULL;
1782                 hmac_cmd.u.sha.opad_len = 0;
1783                 hmac_cmd.u.sha.first = 1;
1784                 hmac_cmd.u.sha.final = 1;
1785                 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1786
1787                 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1788                 if (ret)
1789                         cmd->engine_error = hmac_cmd.engine_error;
1790
1791                 kfree(hmac_buf);
1792         }
1793
1794 e_data:
1795         if (sha->src)
1796                 ccp_free_data(&src, cmd_q);
1797
1798 e_ctx:
1799         ccp_dm_free(&ctx);
1800
1801         return ret;
1802 }
1803
1804 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1805 {
1806         struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1807         struct ccp_dm_workarea exp, src, dst;
1808         struct ccp_op op;
1809         unsigned int sb_count, i_len, o_len;
1810         int ret;
1811
1812         /* Check against the maximum allowable size, in bits */
1813         if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1814                 return -EINVAL;
1815
1816         if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1817                 return -EINVAL;
1818
1819         memset(&op, 0, sizeof(op));
1820         op.cmd_q = cmd_q;
1821         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1822
1823         /* The RSA modulus must precede the message being acted upon, so
1824          * it must be copied to a DMA area where the message and the
1825          * modulus can be concatenated.  Therefore the input buffer
1826          * length required is twice the output buffer length (which
1827          * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1828          * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1829          * required.
1830          */
1831         o_len = 32 * ((rsa->key_size + 255) / 256);
1832         i_len = o_len * 2;
1833
1834         sb_count = 0;
1835         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1836                 /* sb_count is the number of storage block slots required
1837                  * for the modulus.
1838                  */
1839                 sb_count = o_len / CCP_SB_BYTES;
1840                 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1841                                                                 sb_count);
1842                 if (!op.sb_key)
1843                         return -EIO;
1844         } else {
1845                 /* A version 5 device allows a modulus size that will not fit
1846                  * in the LSB, so the command will transfer it from memory.
1847                  * Set the sb key to the default, even though it's not used.
1848                  */
1849                 op.sb_key = cmd_q->sb_key;
1850         }
1851
1852         /* The RSA exponent must be in little endian format. Reverse its
1853          * byte order.
1854          */
1855         ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1856         if (ret)
1857                 goto e_sb;
1858
1859         ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1860         if (ret)
1861                 goto e_exp;
1862
1863         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1864                 /* Copy the exponent to the local storage block, using
1865                  * as many 32-byte blocks as were allocated above. It's
1866                  * already little endian, so no further change is required.
1867                  */
1868                 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1869                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1870                 if (ret) {
1871                         cmd->engine_error = cmd_q->cmd_error;
1872                         goto e_exp;
1873                 }
1874         } else {
1875                 /* The exponent can be retrieved from memory via DMA. */
1876                 op.exp.u.dma.address = exp.dma.address;
1877                 op.exp.u.dma.offset = 0;
1878         }
1879
1880         /* Concatenate the modulus and the message. Both the modulus and
1881          * the operands must be in little endian format.  Since the input
1882          * is in big endian format it must be converted.
1883          */
1884         ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1885         if (ret)
1886                 goto e_exp;
1887
1888         ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1889         if (ret)
1890                 goto e_src;
1891         ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1892         if (ret)
1893                 goto e_src;
1894
1895         /* Prepare the output area for the operation */
1896         ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1897         if (ret)
1898                 goto e_src;
1899
1900         op.soc = 1;
1901         op.src.u.dma.address = src.dma.address;
1902         op.src.u.dma.offset = 0;
1903         op.src.u.dma.length = i_len;
1904         op.dst.u.dma.address = dst.dma.address;
1905         op.dst.u.dma.offset = 0;
1906         op.dst.u.dma.length = o_len;
1907
1908         op.u.rsa.mod_size = rsa->key_size;
1909         op.u.rsa.input_len = i_len;
1910
1911         ret = cmd_q->ccp->vdata->perform->rsa(&op);
1912         if (ret) {
1913                 cmd->engine_error = cmd_q->cmd_error;
1914                 goto e_dst;
1915         }
1916
1917         ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1918
1919 e_dst:
1920         ccp_dm_free(&dst);
1921
1922 e_src:
1923         ccp_dm_free(&src);
1924
1925 e_exp:
1926         ccp_dm_free(&exp);
1927
1928 e_sb:
1929         if (sb_count)
1930                 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1931
1932         return ret;
1933 }
1934
1935 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1936                                 struct ccp_cmd *cmd)
1937 {
1938         struct ccp_passthru_engine *pt = &cmd->u.passthru;
1939         struct ccp_dm_workarea mask;
1940         struct ccp_data src, dst;
1941         struct ccp_op op;
1942         bool in_place = false;
1943         unsigned int i;
1944         int ret = 0;
1945
1946         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1947                 return -EINVAL;
1948
1949         if (!pt->src || !pt->dst)
1950                 return -EINVAL;
1951
1952         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1953                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1954                         return -EINVAL;
1955                 if (!pt->mask)
1956                         return -EINVAL;
1957         }
1958
1959         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1960
1961         memset(&op, 0, sizeof(op));
1962         op.cmd_q = cmd_q;
1963         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1964
1965         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1966                 /* Load the mask */
1967                 op.sb_key = cmd_q->sb_key;
1968
1969                 ret = ccp_init_dm_workarea(&mask, cmd_q,
1970                                            CCP_PASSTHRU_SB_COUNT *
1971                                            CCP_SB_BYTES,
1972                                            DMA_TO_DEVICE);
1973                 if (ret)
1974                         return ret;
1975
1976                 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1977                 if (ret)
1978                         goto e_mask;
1979                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1980                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1981                 if (ret) {
1982                         cmd->engine_error = cmd_q->cmd_error;
1983                         goto e_mask;
1984                 }
1985         }
1986
1987         /* Prepare the input and output data workareas. For in-place
1988          * operations we need to set the dma direction to BIDIRECTIONAL
1989          * and copy the src workarea to the dst workarea.
1990          */
1991         if (sg_virt(pt->src) == sg_virt(pt->dst))
1992                 in_place = true;
1993
1994         ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1995                             CCP_PASSTHRU_MASKSIZE,
1996                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1997         if (ret)
1998                 goto e_mask;
1999
2000         if (in_place) {
2001                 dst = src;
2002         } else {
2003                 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2004                                     CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2005                 if (ret)
2006                         goto e_src;
2007         }
2008
2009         /* Send data to the CCP Passthru engine
2010          *   Because the CCP engine works on a single source and destination
2011          *   dma address at a time, each entry in the source scatterlist
2012          *   (after the dma_map_sg call) must be less than or equal to the
2013          *   (remaining) length in the destination scatterlist entry and the
2014          *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2015          */
2016         dst.sg_wa.sg_used = 0;
2017         for (i = 1; i <= src.sg_wa.dma_count; i++) {
2018                 if (!dst.sg_wa.sg ||
2019                     (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2020                         ret = -EINVAL;
2021                         goto e_dst;
2022                 }
2023
2024                 if (i == src.sg_wa.dma_count) {
2025                         op.eom = 1;
2026                         op.soc = 1;
2027                 }
2028
2029                 op.src.type = CCP_MEMTYPE_SYSTEM;
2030                 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2031                 op.src.u.dma.offset = 0;
2032                 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2033
2034                 op.dst.type = CCP_MEMTYPE_SYSTEM;
2035                 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2036                 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2037                 op.dst.u.dma.length = op.src.u.dma.length;
2038
2039                 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2040                 if (ret) {
2041                         cmd->engine_error = cmd_q->cmd_error;
2042                         goto e_dst;
2043                 }
2044
2045                 dst.sg_wa.sg_used += src.sg_wa.sg->length;
2046                 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2047                         dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2048                         dst.sg_wa.sg_used = 0;
2049                 }
2050                 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2051         }
2052
2053 e_dst:
2054         if (!in_place)
2055                 ccp_free_data(&dst, cmd_q);
2056
2057 e_src:
2058         ccp_free_data(&src, cmd_q);
2059
2060 e_mask:
2061         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2062                 ccp_dm_free(&mask);
2063
2064         return ret;
2065 }
2066
2067 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2068                                       struct ccp_cmd *cmd)
2069 {
2070         struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2071         struct ccp_dm_workarea mask;
2072         struct ccp_op op;
2073         int ret;
2074
2075         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2076                 return -EINVAL;
2077
2078         if (!pt->src_dma || !pt->dst_dma)
2079                 return -EINVAL;
2080
2081         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2082                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2083                         return -EINVAL;
2084                 if (!pt->mask)
2085                         return -EINVAL;
2086         }
2087
2088         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2089
2090         memset(&op, 0, sizeof(op));
2091         op.cmd_q = cmd_q;
2092         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2093
2094         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2095                 /* Load the mask */
2096                 op.sb_key = cmd_q->sb_key;
2097
2098                 mask.length = pt->mask_len;
2099                 mask.dma.address = pt->mask;
2100                 mask.dma.length = pt->mask_len;
2101
2102                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2103                                      CCP_PASSTHRU_BYTESWAP_NOOP);
2104                 if (ret) {
2105                         cmd->engine_error = cmd_q->cmd_error;
2106                         return ret;
2107                 }
2108         }
2109
2110         /* Send data to the CCP Passthru engine */
2111         op.eom = 1;
2112         op.soc = 1;
2113
2114         op.src.type = CCP_MEMTYPE_SYSTEM;
2115         op.src.u.dma.address = pt->src_dma;
2116         op.src.u.dma.offset = 0;
2117         op.src.u.dma.length = pt->src_len;
2118
2119         op.dst.type = CCP_MEMTYPE_SYSTEM;
2120         op.dst.u.dma.address = pt->dst_dma;
2121         op.dst.u.dma.offset = 0;
2122         op.dst.u.dma.length = pt->src_len;
2123
2124         ret = cmd_q->ccp->vdata->perform->passthru(&op);
2125         if (ret)
2126                 cmd->engine_error = cmd_q->cmd_error;
2127
2128         return ret;
2129 }
2130
2131 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2132 {
2133         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2134         struct ccp_dm_workarea src, dst;
2135         struct ccp_op op;
2136         int ret;
2137         u8 *save;
2138
2139         if (!ecc->u.mm.operand_1 ||
2140             (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2141                 return -EINVAL;
2142
2143         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2144                 if (!ecc->u.mm.operand_2 ||
2145                     (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2146                         return -EINVAL;
2147
2148         if (!ecc->u.mm.result ||
2149             (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2150                 return -EINVAL;
2151
2152         memset(&op, 0, sizeof(op));
2153         op.cmd_q = cmd_q;
2154         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2155
2156         /* Concatenate the modulus and the operands. Both the modulus and
2157          * the operands must be in little endian format.  Since the input
2158          * is in big endian format it must be converted and placed in a
2159          * fixed length buffer.
2160          */
2161         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2162                                    DMA_TO_DEVICE);
2163         if (ret)
2164                 return ret;
2165
2166         /* Save the workarea address since it is updated in order to perform
2167          * the concatenation
2168          */
2169         save = src.address;
2170
2171         /* Copy the ECC modulus */
2172         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2173         if (ret)
2174                 goto e_src;
2175         src.address += CCP_ECC_OPERAND_SIZE;
2176
2177         /* Copy the first operand */
2178         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2179                                       ecc->u.mm.operand_1_len);
2180         if (ret)
2181                 goto e_src;
2182         src.address += CCP_ECC_OPERAND_SIZE;
2183
2184         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2185                 /* Copy the second operand */
2186                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2187                                               ecc->u.mm.operand_2_len);
2188                 if (ret)
2189                         goto e_src;
2190                 src.address += CCP_ECC_OPERAND_SIZE;
2191         }
2192
2193         /* Restore the workarea address */
2194         src.address = save;
2195
2196         /* Prepare the output area for the operation */
2197         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2198                                    DMA_FROM_DEVICE);
2199         if (ret)
2200                 goto e_src;
2201
2202         op.soc = 1;
2203         op.src.u.dma.address = src.dma.address;
2204         op.src.u.dma.offset = 0;
2205         op.src.u.dma.length = src.length;
2206         op.dst.u.dma.address = dst.dma.address;
2207         op.dst.u.dma.offset = 0;
2208         op.dst.u.dma.length = dst.length;
2209
2210         op.u.ecc.function = cmd->u.ecc.function;
2211
2212         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2213         if (ret) {
2214                 cmd->engine_error = cmd_q->cmd_error;
2215                 goto e_dst;
2216         }
2217
2218         ecc->ecc_result = le16_to_cpup(
2219                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2220         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2221                 ret = -EIO;
2222                 goto e_dst;
2223         }
2224
2225         /* Save the ECC result */
2226         ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2227                                 CCP_ECC_MODULUS_BYTES);
2228
2229 e_dst:
2230         ccp_dm_free(&dst);
2231
2232 e_src:
2233         ccp_dm_free(&src);
2234
2235         return ret;
2236 }
2237
2238 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2239 {
2240         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2241         struct ccp_dm_workarea src, dst;
2242         struct ccp_op op;
2243         int ret;
2244         u8 *save;
2245
2246         if (!ecc->u.pm.point_1.x ||
2247             (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2248             !ecc->u.pm.point_1.y ||
2249             (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2250                 return -EINVAL;
2251
2252         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2253                 if (!ecc->u.pm.point_2.x ||
2254                     (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2255                     !ecc->u.pm.point_2.y ||
2256                     (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2257                         return -EINVAL;
2258         } else {
2259                 if (!ecc->u.pm.domain_a ||
2260                     (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2261                         return -EINVAL;
2262
2263                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2264                         if (!ecc->u.pm.scalar ||
2265                             (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2266                                 return -EINVAL;
2267         }
2268
2269         if (!ecc->u.pm.result.x ||
2270             (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2271             !ecc->u.pm.result.y ||
2272             (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2273                 return -EINVAL;
2274
2275         memset(&op, 0, sizeof(op));
2276         op.cmd_q = cmd_q;
2277         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2278
2279         /* Concatenate the modulus and the operands. Both the modulus and
2280          * the operands must be in little endian format.  Since the input
2281          * is in big endian format it must be converted and placed in a
2282          * fixed length buffer.
2283          */
2284         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2285                                    DMA_TO_DEVICE);
2286         if (ret)
2287                 return ret;
2288
2289         /* Save the workarea address since it is updated in order to perform
2290          * the concatenation
2291          */
2292         save = src.address;
2293
2294         /* Copy the ECC modulus */
2295         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2296         if (ret)
2297                 goto e_src;
2298         src.address += CCP_ECC_OPERAND_SIZE;
2299
2300         /* Copy the first point X and Y coordinate */
2301         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2302                                       ecc->u.pm.point_1.x_len);
2303         if (ret)
2304                 goto e_src;
2305         src.address += CCP_ECC_OPERAND_SIZE;
2306         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2307                                       ecc->u.pm.point_1.y_len);
2308         if (ret)
2309                 goto e_src;
2310         src.address += CCP_ECC_OPERAND_SIZE;
2311
2312         /* Set the first point Z coordinate to 1 */
2313         *src.address = 0x01;
2314         src.address += CCP_ECC_OPERAND_SIZE;
2315
2316         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2317                 /* Copy the second point X and Y coordinate */
2318                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2319                                               ecc->u.pm.point_2.x_len);
2320                 if (ret)
2321                         goto e_src;
2322                 src.address += CCP_ECC_OPERAND_SIZE;
2323                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2324                                               ecc->u.pm.point_2.y_len);
2325                 if (ret)
2326                         goto e_src;
2327                 src.address += CCP_ECC_OPERAND_SIZE;
2328
2329                 /* Set the second point Z coordinate to 1 */
2330                 *src.address = 0x01;
2331                 src.address += CCP_ECC_OPERAND_SIZE;
2332         } else {
2333                 /* Copy the Domain "a" parameter */
2334                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2335                                               ecc->u.pm.domain_a_len);
2336                 if (ret)
2337                         goto e_src;
2338                 src.address += CCP_ECC_OPERAND_SIZE;
2339
2340                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2341                         /* Copy the scalar value */
2342                         ret = ccp_reverse_set_dm_area(&src, 0,
2343                                                       ecc->u.pm.scalar, 0,
2344                                                       ecc->u.pm.scalar_len);
2345                         if (ret)
2346                                 goto e_src;
2347                         src.address += CCP_ECC_OPERAND_SIZE;
2348                 }
2349         }
2350
2351         /* Restore the workarea address */
2352         src.address = save;
2353
2354         /* Prepare the output area for the operation */
2355         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2356                                    DMA_FROM_DEVICE);
2357         if (ret)
2358                 goto e_src;
2359
2360         op.soc = 1;
2361         op.src.u.dma.address = src.dma.address;
2362         op.src.u.dma.offset = 0;
2363         op.src.u.dma.length = src.length;
2364         op.dst.u.dma.address = dst.dma.address;
2365         op.dst.u.dma.offset = 0;
2366         op.dst.u.dma.length = dst.length;
2367
2368         op.u.ecc.function = cmd->u.ecc.function;
2369
2370         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2371         if (ret) {
2372                 cmd->engine_error = cmd_q->cmd_error;
2373                 goto e_dst;
2374         }
2375
2376         ecc->ecc_result = le16_to_cpup(
2377                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2378         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2379                 ret = -EIO;
2380                 goto e_dst;
2381         }
2382
2383         /* Save the workarea address since it is updated as we walk through
2384          * to copy the point math result
2385          */
2386         save = dst.address;
2387
2388         /* Save the ECC result X and Y coordinates */
2389         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2390                                 CCP_ECC_MODULUS_BYTES);
2391         dst.address += CCP_ECC_OUTPUT_SIZE;
2392         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2393                                 CCP_ECC_MODULUS_BYTES);
2394         dst.address += CCP_ECC_OUTPUT_SIZE;
2395
2396         /* Restore the workarea address */
2397         dst.address = save;
2398
2399 e_dst:
2400         ccp_dm_free(&dst);
2401
2402 e_src:
2403         ccp_dm_free(&src);
2404
2405         return ret;
2406 }
2407
2408 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2409 {
2410         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2411
2412         ecc->ecc_result = 0;
2413
2414         if (!ecc->mod ||
2415             (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2416                 return -EINVAL;
2417
2418         switch (ecc->function) {
2419         case CCP_ECC_FUNCTION_MMUL_384BIT:
2420         case CCP_ECC_FUNCTION_MADD_384BIT:
2421         case CCP_ECC_FUNCTION_MINV_384BIT:
2422                 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2423
2424         case CCP_ECC_FUNCTION_PADD_384BIT:
2425         case CCP_ECC_FUNCTION_PMUL_384BIT:
2426         case CCP_ECC_FUNCTION_PDBL_384BIT:
2427                 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2428
2429         default:
2430                 return -EINVAL;
2431         }
2432 }
2433
2434 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2435 {
2436         int ret;
2437
2438         cmd->engine_error = 0;
2439         cmd_q->cmd_error = 0;
2440         cmd_q->int_rcvd = 0;
2441         cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2442
2443         switch (cmd->engine) {
2444         case CCP_ENGINE_AES:
2445                 ret = ccp_run_aes_cmd(cmd_q, cmd);
2446                 break;
2447         case CCP_ENGINE_XTS_AES_128:
2448                 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2449                 break;
2450         case CCP_ENGINE_DES3:
2451                 ret = ccp_run_des3_cmd(cmd_q, cmd);
2452                 break;
2453         case CCP_ENGINE_SHA:
2454                 ret = ccp_run_sha_cmd(cmd_q, cmd);
2455                 break;
2456         case CCP_ENGINE_RSA:
2457                 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2458                 break;
2459         case CCP_ENGINE_PASSTHRU:
2460                 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2461                         ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2462                 else
2463                         ret = ccp_run_passthru_cmd(cmd_q, cmd);
2464                 break;
2465         case CCP_ENGINE_ECC:
2466                 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2467                 break;
2468         default:
2469                 ret = -EINVAL;
2470         }
2471
2472         return ret;
2473 }