Merge tag 'xtensa-20190408' of git://github.com/jcmvbkbc/linux-xtensa
[sfrench/cifs-2.6.git] / drivers / crypto / atmel-sha.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL SHA1/SHA256 HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-sham.c drivers.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <linux/cryptohash.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha.h>
37 #include <crypto/hash.h>
38 #include <crypto/internal/hash.h>
39 #include <linux/platform_data/crypto-atmel.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42
43 /* SHA flags */
44 #define SHA_FLAGS_BUSY                  BIT(0)
45 #define SHA_FLAGS_FINAL                 BIT(1)
46 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
47 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
48 #define SHA_FLAGS_INIT                  BIT(4)
49 #define SHA_FLAGS_CPU                   BIT(5)
50 #define SHA_FLAGS_DMA_READY             BIT(6)
51 #define SHA_FLAGS_DUMP_REG      BIT(7)
52
53 /* bits[11:8] are reserved. */
54
55 #define SHA_FLAGS_FINUP         BIT(16)
56 #define SHA_FLAGS_SG            BIT(17)
57 #define SHA_FLAGS_ERROR         BIT(23)
58 #define SHA_FLAGS_PAD           BIT(24)
59 #define SHA_FLAGS_RESTORE       BIT(25)
60 #define SHA_FLAGS_IDATAR0       BIT(26)
61 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
62
63 #define SHA_OP_INIT     0
64 #define SHA_OP_UPDATE   1
65 #define SHA_OP_FINAL    2
66 #define SHA_OP_DIGEST   3
67
68 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
69
70 #define ATMEL_SHA_DMA_THRESHOLD         56
71
72 struct atmel_sha_caps {
73         bool    has_dma;
74         bool    has_dualbuff;
75         bool    has_sha224;
76         bool    has_sha_384_512;
77         bool    has_uihv;
78         bool    has_hmac;
79 };
80
81 struct atmel_sha_dev;
82
83 /*
84  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
85  * tested by the ahash_prepare_alg() function.
86  */
87 struct atmel_sha_reqctx {
88         struct atmel_sha_dev    *dd;
89         unsigned long   flags;
90         unsigned long   op;
91
92         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
93         u64     digcnt[2];
94         size_t  bufcnt;
95         size_t  buflen;
96         dma_addr_t      dma_addr;
97
98         /* walk state */
99         struct scatterlist      *sg;
100         unsigned int    offset; /* offset in current sg */
101         unsigned int    total;  /* total request */
102
103         size_t block_size;
104         size_t hash_size;
105
106         u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
107 };
108
109 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
110
111 struct atmel_sha_ctx {
112         struct atmel_sha_dev    *dd;
113         atmel_sha_fn_t          start;
114
115         unsigned long           flags;
116 };
117
118 #define ATMEL_SHA_QUEUE_LENGTH  50
119
120 struct atmel_sha_dma {
121         struct dma_chan                 *chan;
122         struct dma_slave_config dma_conf;
123         struct scatterlist      *sg;
124         int                     nents;
125         unsigned int            last_sg_length;
126 };
127
128 struct atmel_sha_dev {
129         struct list_head        list;
130         unsigned long           phys_base;
131         struct device           *dev;
132         struct clk                      *iclk;
133         int                                     irq;
134         void __iomem            *io_base;
135
136         spinlock_t              lock;
137         int                     err;
138         struct tasklet_struct   done_task;
139         struct tasklet_struct   queue_task;
140
141         unsigned long           flags;
142         struct crypto_queue     queue;
143         struct ahash_request    *req;
144         bool                    is_async;
145         bool                    force_complete;
146         atmel_sha_fn_t          resume;
147         atmel_sha_fn_t          cpu_transfer_complete;
148
149         struct atmel_sha_dma    dma_lch_in;
150
151         struct atmel_sha_caps   caps;
152
153         struct scatterlist      tmp;
154
155         u32     hw_version;
156 };
157
158 struct atmel_sha_drv {
159         struct list_head        dev_list;
160         spinlock_t              lock;
161 };
162
163 static struct atmel_sha_drv atmel_sha = {
164         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
165         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
166 };
167
168 #ifdef VERBOSE_DEBUG
169 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
170 {
171         switch (offset) {
172         case SHA_CR:
173                 return "CR";
174
175         case SHA_MR:
176                 return "MR";
177
178         case SHA_IER:
179                 return "IER";
180
181         case SHA_IDR:
182                 return "IDR";
183
184         case SHA_IMR:
185                 return "IMR";
186
187         case SHA_ISR:
188                 return "ISR";
189
190         case SHA_MSR:
191                 return "MSR";
192
193         case SHA_BCR:
194                 return "BCR";
195
196         case SHA_REG_DIN(0):
197         case SHA_REG_DIN(1):
198         case SHA_REG_DIN(2):
199         case SHA_REG_DIN(3):
200         case SHA_REG_DIN(4):
201         case SHA_REG_DIN(5):
202         case SHA_REG_DIN(6):
203         case SHA_REG_DIN(7):
204         case SHA_REG_DIN(8):
205         case SHA_REG_DIN(9):
206         case SHA_REG_DIN(10):
207         case SHA_REG_DIN(11):
208         case SHA_REG_DIN(12):
209         case SHA_REG_DIN(13):
210         case SHA_REG_DIN(14):
211         case SHA_REG_DIN(15):
212                 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
213                 break;
214
215         case SHA_REG_DIGEST(0):
216         case SHA_REG_DIGEST(1):
217         case SHA_REG_DIGEST(2):
218         case SHA_REG_DIGEST(3):
219         case SHA_REG_DIGEST(4):
220         case SHA_REG_DIGEST(5):
221         case SHA_REG_DIGEST(6):
222         case SHA_REG_DIGEST(7):
223         case SHA_REG_DIGEST(8):
224         case SHA_REG_DIGEST(9):
225         case SHA_REG_DIGEST(10):
226         case SHA_REG_DIGEST(11):
227         case SHA_REG_DIGEST(12):
228         case SHA_REG_DIGEST(13):
229         case SHA_REG_DIGEST(14):
230         case SHA_REG_DIGEST(15):
231                 if (wr)
232                         snprintf(tmp, sz, "IDATAR[%u]",
233                                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
234                 else
235                         snprintf(tmp, sz, "ODATAR[%u]",
236                                  (offset - SHA_REG_DIGEST(0)) >> 2);
237                 break;
238
239         case SHA_HW_VERSION:
240                 return "HWVER";
241
242         default:
243                 snprintf(tmp, sz, "0x%02x", offset);
244                 break;
245         }
246
247         return tmp;
248 }
249
250 #endif /* VERBOSE_DEBUG */
251
252 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
253 {
254         u32 value = readl_relaxed(dd->io_base + offset);
255
256 #ifdef VERBOSE_DEBUG
257         if (dd->flags & SHA_FLAGS_DUMP_REG) {
258                 char tmp[16];
259
260                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
261                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
262         }
263 #endif /* VERBOSE_DEBUG */
264
265         return value;
266 }
267
268 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
269                                         u32 offset, u32 value)
270 {
271 #ifdef VERBOSE_DEBUG
272         if (dd->flags & SHA_FLAGS_DUMP_REG) {
273                 char tmp[16];
274
275                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
276                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
277         }
278 #endif /* VERBOSE_DEBUG */
279
280         writel_relaxed(value, dd->io_base + offset);
281 }
282
283 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
284 {
285         struct ahash_request *req = dd->req;
286
287         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
288                        SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
289                        SHA_FLAGS_DUMP_REG);
290
291         clk_disable(dd->iclk);
292
293         if ((dd->is_async || dd->force_complete) && req->base.complete)
294                 req->base.complete(&req->base, err);
295
296         /* handle new request */
297         tasklet_schedule(&dd->queue_task);
298
299         return err;
300 }
301
302 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
303 {
304         size_t count;
305
306         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
307                 count = min(ctx->sg->length - ctx->offset, ctx->total);
308                 count = min(count, ctx->buflen - ctx->bufcnt);
309
310                 if (count <= 0) {
311                         /*
312                         * Check if count <= 0 because the buffer is full or
313                         * because the sg length is 0. In the latest case,
314                         * check if there is another sg in the list, a 0 length
315                         * sg doesn't necessarily mean the end of the sg list.
316                         */
317                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
318                                 ctx->sg = sg_next(ctx->sg);
319                                 continue;
320                         } else {
321                                 break;
322                         }
323                 }
324
325                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
326                         ctx->offset, count, 0);
327
328                 ctx->bufcnt += count;
329                 ctx->offset += count;
330                 ctx->total -= count;
331
332                 if (ctx->offset == ctx->sg->length) {
333                         ctx->sg = sg_next(ctx->sg);
334                         if (ctx->sg)
335                                 ctx->offset = 0;
336                         else
337                                 ctx->total = 0;
338                 }
339         }
340
341         return 0;
342 }
343
344 /*
345  * The purpose of this padding is to ensure that the padded message is a
346  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
347  * The bit "1" is appended at the end of the message followed by
348  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
349  * 128 bits block (SHA384/SHA512) equals to the message length in bits
350  * is appended.
351  *
352  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
353  *  - if message length < 56 bytes then padlen = 56 - message length
354  *  - else padlen = 64 + 56 - message length
355  *
356  * For SHA384/SHA512, padlen is calculated as followed:
357  *  - if message length < 112 bytes then padlen = 112 - message length
358  *  - else padlen = 128 + 112 - message length
359  */
360 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
361 {
362         unsigned int index, padlen;
363         u64 bits[2];
364         u64 size[2];
365
366         size[0] = ctx->digcnt[0];
367         size[1] = ctx->digcnt[1];
368
369         size[0] += ctx->bufcnt;
370         if (size[0] < ctx->bufcnt)
371                 size[1]++;
372
373         size[0] += length;
374         if (size[0]  < length)
375                 size[1]++;
376
377         bits[1] = cpu_to_be64(size[0] << 3);
378         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
379
380         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
381         case SHA_FLAGS_SHA384:
382         case SHA_FLAGS_SHA512:
383                 index = ctx->bufcnt & 0x7f;
384                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
385                 *(ctx->buffer + ctx->bufcnt) = 0x80;
386                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
387                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
388                 ctx->bufcnt += padlen + 16;
389                 ctx->flags |= SHA_FLAGS_PAD;
390                 break;
391
392         default:
393                 index = ctx->bufcnt & 0x3f;
394                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
395                 *(ctx->buffer + ctx->bufcnt) = 0x80;
396                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
397                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
398                 ctx->bufcnt += padlen + 8;
399                 ctx->flags |= SHA_FLAGS_PAD;
400                 break;
401         }
402 }
403
404 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
405 {
406         struct atmel_sha_dev *dd = NULL;
407         struct atmel_sha_dev *tmp;
408
409         spin_lock_bh(&atmel_sha.lock);
410         if (!tctx->dd) {
411                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
412                         dd = tmp;
413                         break;
414                 }
415                 tctx->dd = dd;
416         } else {
417                 dd = tctx->dd;
418         }
419
420         spin_unlock_bh(&atmel_sha.lock);
421
422         return dd;
423 }
424
425 static int atmel_sha_init(struct ahash_request *req)
426 {
427         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
428         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
429         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
430         struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
431
432         ctx->dd = dd;
433
434         ctx->flags = 0;
435
436         dev_dbg(dd->dev, "init: digest size: %d\n",
437                 crypto_ahash_digestsize(tfm));
438
439         switch (crypto_ahash_digestsize(tfm)) {
440         case SHA1_DIGEST_SIZE:
441                 ctx->flags |= SHA_FLAGS_SHA1;
442                 ctx->block_size = SHA1_BLOCK_SIZE;
443                 break;
444         case SHA224_DIGEST_SIZE:
445                 ctx->flags |= SHA_FLAGS_SHA224;
446                 ctx->block_size = SHA224_BLOCK_SIZE;
447                 break;
448         case SHA256_DIGEST_SIZE:
449                 ctx->flags |= SHA_FLAGS_SHA256;
450                 ctx->block_size = SHA256_BLOCK_SIZE;
451                 break;
452         case SHA384_DIGEST_SIZE:
453                 ctx->flags |= SHA_FLAGS_SHA384;
454                 ctx->block_size = SHA384_BLOCK_SIZE;
455                 break;
456         case SHA512_DIGEST_SIZE:
457                 ctx->flags |= SHA_FLAGS_SHA512;
458                 ctx->block_size = SHA512_BLOCK_SIZE;
459                 break;
460         default:
461                 return -EINVAL;
462                 break;
463         }
464
465         ctx->bufcnt = 0;
466         ctx->digcnt[0] = 0;
467         ctx->digcnt[1] = 0;
468         ctx->buflen = SHA_BUFFER_LEN;
469
470         return 0;
471 }
472
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476         u32 valmr = SHA_MR_MODE_AUTO;
477         unsigned int i, hashsize = 0;
478
479         if (likely(dma)) {
480                 if (!dd->caps.has_dma)
481                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482                 valmr = SHA_MR_MODE_PDC;
483                 if (dd->caps.has_dualbuff)
484                         valmr |= SHA_MR_DUALBUFF;
485         } else {
486                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487         }
488
489         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490         case SHA_FLAGS_SHA1:
491                 valmr |= SHA_MR_ALGO_SHA1;
492                 hashsize = SHA1_DIGEST_SIZE;
493                 break;
494
495         case SHA_FLAGS_SHA224:
496                 valmr |= SHA_MR_ALGO_SHA224;
497                 hashsize = SHA256_DIGEST_SIZE;
498                 break;
499
500         case SHA_FLAGS_SHA256:
501                 valmr |= SHA_MR_ALGO_SHA256;
502                 hashsize = SHA256_DIGEST_SIZE;
503                 break;
504
505         case SHA_FLAGS_SHA384:
506                 valmr |= SHA_MR_ALGO_SHA384;
507                 hashsize = SHA512_DIGEST_SIZE;
508                 break;
509
510         case SHA_FLAGS_SHA512:
511                 valmr |= SHA_MR_ALGO_SHA512;
512                 hashsize = SHA512_DIGEST_SIZE;
513                 break;
514
515         default:
516                 break;
517         }
518
519         /* Setting CR_FIRST only for the first iteration */
520         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523                 const u32 *hash = (const u32 *)ctx->digest;
524
525                 /*
526                  * Restore the hardware context: update the User Initialize
527                  * Hash Value (UIHV) with the value saved when the latest
528                  * 'update' operation completed on this very same crypto
529                  * request.
530                  */
531                 ctx->flags &= ~SHA_FLAGS_RESTORE;
532                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533                 for (i = 0; i < hashsize / sizeof(u32); ++i)
534                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536                 valmr |= SHA_MR_UIHV;
537         }
538         /*
539          * WARNING: If the UIHV feature is not available, the hardware CANNOT
540          * process concurrent requests: the internal registers used to store
541          * the hash/digest are still set to the partial digest output values
542          * computed during the latest round.
543          */
544
545         atmel_sha_write(dd, SHA_MR, valmr);
546 }
547
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549                                                 atmel_sha_fn_t resume)
550 {
551         u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553         if (unlikely(isr & SHA_INT_DATARDY))
554                 return resume(dd);
555
556         dd->resume = resume;
557         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558         return -EINPROGRESS;
559 }
560
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562                               size_t length, int final)
563 {
564         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565         int count, len32;
566         const u32 *buffer = (const u32 *)buf;
567
568         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569                 ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571         atmel_sha_write_ctrl(dd, 0);
572
573         /* should be non-zero before next lines to disable clocks later */
574         ctx->digcnt[0] += length;
575         if (ctx->digcnt[0] < length)
576                 ctx->digcnt[1]++;
577
578         if (final)
579                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581         len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583         dd->flags |= SHA_FLAGS_CPU;
584
585         for (count = 0; count < len32; count++)
586                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588         return -EINPROGRESS;
589 }
590
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595         int len32;
596
597         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600         len32 = DIV_ROUND_UP(length1, sizeof(u32));
601         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602         atmel_sha_write(dd, SHA_TPR, dma_addr1);
603         atmel_sha_write(dd, SHA_TCR, len32);
604
605         len32 = DIV_ROUND_UP(length2, sizeof(u32));
606         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607         atmel_sha_write(dd, SHA_TNCR, len32);
608
609         atmel_sha_write_ctrl(dd, 1);
610
611         /* should be non-zero before next lines to disable clocks later */
612         ctx->digcnt[0] += length1;
613         if (ctx->digcnt[0] < length1)
614                 ctx->digcnt[1]++;
615
616         if (final)
617                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620
621         /* Start DMA transfer */
622         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624         return -EINPROGRESS;
625 }
626
627 static void atmel_sha_dma_callback(void *data)
628 {
629         struct atmel_sha_dev *dd = data;
630
631         dd->is_async = true;
632
633         /* dma_lch_in - completed - wait DATRDY */
634         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641         struct dma_async_tx_descriptor  *in_desc;
642         struct scatterlist sg[2];
643
644         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647         dd->dma_lch_in.dma_conf.src_maxburst = 16;
648         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652         if (length2) {
653                 sg_init_table(sg, 2);
654                 sg_dma_address(&sg[0]) = dma_addr1;
655                 sg_dma_len(&sg[0]) = length1;
656                 sg_dma_address(&sg[1]) = dma_addr2;
657                 sg_dma_len(&sg[1]) = length2;
658                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660         } else {
661                 sg_init_table(sg, 1);
662                 sg_dma_address(&sg[0]) = dma_addr1;
663                 sg_dma_len(&sg[0]) = length1;
664                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666         }
667         if (!in_desc)
668                 return atmel_sha_complete(dd, -EINVAL);
669
670         in_desc->callback = atmel_sha_dma_callback;
671         in_desc->callback_param = dd;
672
673         atmel_sha_write_ctrl(dd, 1);
674
675         /* should be non-zero before next lines to disable clocks later */
676         ctx->digcnt[0] += length1;
677         if (ctx->digcnt[0] < length1)
678                 ctx->digcnt[1]++;
679
680         if (final)
681                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684
685         /* Start DMA transfer */
686         dmaengine_submit(in_desc);
687         dma_async_issue_pending(dd->dma_lch_in.chan);
688
689         return -EINPROGRESS;
690 }
691
692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695         if (dd->caps.has_dma)
696                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697                                 dma_addr2, length2, final);
698         else
699                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700                                 dma_addr2, length2, final);
701 }
702
703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706         int bufcnt;
707
708         atmel_sha_append_sg(ctx);
709         atmel_sha_fill_padding(ctx, 0);
710         bufcnt = ctx->bufcnt;
711         ctx->bufcnt = 0;
712
713         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717                                         struct atmel_sha_reqctx *ctx,
718                                         size_t length, int final)
719 {
720         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723                 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724                                 ctx->block_size);
725                 return atmel_sha_complete(dd, -EINVAL);
726         }
727
728         ctx->flags &= ~SHA_FLAGS_SG;
729
730         /* next call does not fail... so no unmap in the case of error */
731         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737         unsigned int final;
738         size_t count;
739
740         atmel_sha_append_sg(ctx);
741
742         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744         dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747         if (final)
748                 atmel_sha_fill_padding(ctx, 0);
749
750         if (final || (ctx->bufcnt == ctx->buflen)) {
751                 count = ctx->bufcnt;
752                 ctx->bufcnt = 0;
753                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754         }
755
756         return 0;
757 }
758
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762         unsigned int length, final, tail;
763         struct scatterlist *sg;
764         unsigned int count;
765
766         if (!ctx->total)
767                 return 0;
768
769         if (ctx->bufcnt || ctx->offset)
770                 return atmel_sha_update_dma_slow(dd);
771
772         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775         sg = ctx->sg;
776
777         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778                 return atmel_sha_update_dma_slow(dd);
779
780         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781                 /* size is not ctx->block_size aligned */
782                 return atmel_sha_update_dma_slow(dd);
783
784         length = min(ctx->total, sg->length);
785
786         if (sg_is_last(sg)) {
787                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788                         /* not last sg must be ctx->block_size aligned */
789                         tail = length & (ctx->block_size - 1);
790                         length -= tail;
791                 }
792         }
793
794         ctx->total -= length;
795         ctx->offset = length; /* offset where to start slow */
796
797         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799         /* Add padding */
800         if (final) {
801                 tail = length & (ctx->block_size - 1);
802                 length -= tail;
803                 ctx->total += tail;
804                 ctx->offset = length; /* offset where to start slow */
805
806                 sg = ctx->sg;
807                 atmel_sha_append_sg(ctx);
808
809                 atmel_sha_fill_padding(ctx, length);
810
811                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814                         dev_err(dd->dev, "dma %zu bytes error\n",
815                                 ctx->buflen + ctx->block_size);
816                         return atmel_sha_complete(dd, -EINVAL);
817                 }
818
819                 if (length == 0) {
820                         ctx->flags &= ~SHA_FLAGS_SG;
821                         count = ctx->bufcnt;
822                         ctx->bufcnt = 0;
823                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824                                         0, final);
825                 } else {
826                         ctx->sg = sg;
827                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
828                                 DMA_TO_DEVICE)) {
829                                         dev_err(dd->dev, "dma_map_sg  error\n");
830                                         return atmel_sha_complete(dd, -EINVAL);
831                         }
832
833                         ctx->flags |= SHA_FLAGS_SG;
834
835                         count = ctx->bufcnt;
836                         ctx->bufcnt = 0;
837                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838                                         length, ctx->dma_addr, count, final);
839                 }
840         }
841
842         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843                 dev_err(dd->dev, "dma_map_sg  error\n");
844                 return atmel_sha_complete(dd, -EINVAL);
845         }
846
847         ctx->flags |= SHA_FLAGS_SG;
848
849         /* next call does not fail... so no unmap in the case of error */
850         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851                                                                 0, final);
852 }
853
854 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858         if (ctx->flags & SHA_FLAGS_SG) {
859                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860                 if (ctx->sg->length == ctx->offset) {
861                         ctx->sg = sg_next(ctx->sg);
862                         if (ctx->sg)
863                                 ctx->offset = 0;
864                 }
865                 if (ctx->flags & SHA_FLAGS_PAD) {
866                         dma_unmap_single(dd->dev, ctx->dma_addr,
867                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868                 }
869         } else {
870                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871                                                 ctx->block_size, DMA_TO_DEVICE);
872         }
873
874         return 0;
875 }
876
877 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
878 {
879         struct ahash_request *req = dd->req;
880         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
881         int err;
882
883         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
884                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
885
886         if (ctx->flags & SHA_FLAGS_CPU)
887                 err = atmel_sha_update_cpu(dd);
888         else
889                 err = atmel_sha_update_dma_start(dd);
890
891         /* wait for dma completion before can take more data */
892         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
893                         err, ctx->digcnt[1], ctx->digcnt[0]);
894
895         return err;
896 }
897
898 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
899 {
900         struct ahash_request *req = dd->req;
901         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
902         int err = 0;
903         int count;
904
905         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
906                 atmel_sha_fill_padding(ctx, 0);
907                 count = ctx->bufcnt;
908                 ctx->bufcnt = 0;
909                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
910         }
911         /* faster to handle last block with cpu */
912         else {
913                 atmel_sha_fill_padding(ctx, 0);
914                 count = ctx->bufcnt;
915                 ctx->bufcnt = 0;
916                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
917         }
918
919         dev_dbg(dd->dev, "final_req: err: %d\n", err);
920
921         return err;
922 }
923
924 static void atmel_sha_copy_hash(struct ahash_request *req)
925 {
926         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
927         u32 *hash = (u32 *)ctx->digest;
928         unsigned int i, hashsize;
929
930         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
931         case SHA_FLAGS_SHA1:
932                 hashsize = SHA1_DIGEST_SIZE;
933                 break;
934
935         case SHA_FLAGS_SHA224:
936         case SHA_FLAGS_SHA256:
937                 hashsize = SHA256_DIGEST_SIZE;
938                 break;
939
940         case SHA_FLAGS_SHA384:
941         case SHA_FLAGS_SHA512:
942                 hashsize = SHA512_DIGEST_SIZE;
943                 break;
944
945         default:
946                 /* Should not happen... */
947                 return;
948         }
949
950         for (i = 0; i < hashsize / sizeof(u32); ++i)
951                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
952         ctx->flags |= SHA_FLAGS_RESTORE;
953 }
954
955 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
956 {
957         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
958
959         if (!req->result)
960                 return;
961
962         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
963         default:
964         case SHA_FLAGS_SHA1:
965                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
966                 break;
967
968         case SHA_FLAGS_SHA224:
969                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
970                 break;
971
972         case SHA_FLAGS_SHA256:
973                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
974                 break;
975
976         case SHA_FLAGS_SHA384:
977                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
978                 break;
979
980         case SHA_FLAGS_SHA512:
981                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
982                 break;
983         }
984 }
985
986 static int atmel_sha_finish(struct ahash_request *req)
987 {
988         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
989         struct atmel_sha_dev *dd = ctx->dd;
990
991         if (ctx->digcnt[0] || ctx->digcnt[1])
992                 atmel_sha_copy_ready_hash(req);
993
994         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
995                 ctx->digcnt[0], ctx->bufcnt);
996
997         return 0;
998 }
999
1000 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1001 {
1002         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1003         struct atmel_sha_dev *dd = ctx->dd;
1004
1005         if (!err) {
1006                 atmel_sha_copy_hash(req);
1007                 if (SHA_FLAGS_FINAL & dd->flags)
1008                         err = atmel_sha_finish(req);
1009         } else {
1010                 ctx->flags |= SHA_FLAGS_ERROR;
1011         }
1012
1013         /* atomic operation is not needed here */
1014         (void)atmel_sha_complete(dd, err);
1015 }
1016
1017 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1018 {
1019         int err;
1020
1021         err = clk_enable(dd->iclk);
1022         if (err)
1023                 return err;
1024
1025         if (!(SHA_FLAGS_INIT & dd->flags)) {
1026                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1027                 dd->flags |= SHA_FLAGS_INIT;
1028                 dd->err = 0;
1029         }
1030
1031         return 0;
1032 }
1033
1034 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1035 {
1036         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1037 }
1038
1039 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1040 {
1041         atmel_sha_hw_init(dd);
1042
1043         dd->hw_version = atmel_sha_get_version(dd);
1044
1045         dev_info(dd->dev,
1046                         "version: 0x%x\n", dd->hw_version);
1047
1048         clk_disable(dd->iclk);
1049 }
1050
1051 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1052                                   struct ahash_request *req)
1053 {
1054         struct crypto_async_request *async_req, *backlog;
1055         struct atmel_sha_ctx *ctx;
1056         unsigned long flags;
1057         bool start_async;
1058         int err = 0, ret = 0;
1059
1060         spin_lock_irqsave(&dd->lock, flags);
1061         if (req)
1062                 ret = ahash_enqueue_request(&dd->queue, req);
1063
1064         if (SHA_FLAGS_BUSY & dd->flags) {
1065                 spin_unlock_irqrestore(&dd->lock, flags);
1066                 return ret;
1067         }
1068
1069         backlog = crypto_get_backlog(&dd->queue);
1070         async_req = crypto_dequeue_request(&dd->queue);
1071         if (async_req)
1072                 dd->flags |= SHA_FLAGS_BUSY;
1073
1074         spin_unlock_irqrestore(&dd->lock, flags);
1075
1076         if (!async_req)
1077                 return ret;
1078
1079         if (backlog)
1080                 backlog->complete(backlog, -EINPROGRESS);
1081
1082         ctx = crypto_tfm_ctx(async_req->tfm);
1083
1084         dd->req = ahash_request_cast(async_req);
1085         start_async = (dd->req != req);
1086         dd->is_async = start_async;
1087         dd->force_complete = false;
1088
1089         /* WARNING: ctx->start() MAY change dd->is_async. */
1090         err = ctx->start(dd);
1091         return (start_async) ? ret : err;
1092 }
1093
1094 static int atmel_sha_done(struct atmel_sha_dev *dd);
1095
1096 static int atmel_sha_start(struct atmel_sha_dev *dd)
1097 {
1098         struct ahash_request *req = dd->req;
1099         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1100         int err;
1101
1102         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1103                                                 ctx->op, req->nbytes);
1104
1105         err = atmel_sha_hw_init(dd);
1106         if (err)
1107                 return atmel_sha_complete(dd, err);
1108
1109         /*
1110          * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1111          *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1112          *                its job later in the done_task.
1113          *                This is the main path.
1114          *
1115          * 0: the SHA driver can continue its job then release the hardware
1116          *    later, if needed, with atmel_sha_finish_req().
1117          *    This is the alternate path.
1118          *
1119          * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1120          *      been called, hence the hardware has been released.
1121          *      The SHA driver must stop its job without calling
1122          *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1123          *      called a second time.
1124          *
1125          * Please note that currently, atmel_sha_final_req() never returns 0.
1126          */
1127
1128         dd->resume = atmel_sha_done;
1129         if (ctx->op == SHA_OP_UPDATE) {
1130                 err = atmel_sha_update_req(dd);
1131                 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1132                         /* no final() after finup() */
1133                         err = atmel_sha_final_req(dd);
1134         } else if (ctx->op == SHA_OP_FINAL) {
1135                 err = atmel_sha_final_req(dd);
1136         }
1137
1138         if (!err)
1139                 /* done_task will not finish it, so do it here */
1140                 atmel_sha_finish_req(req, err);
1141
1142         dev_dbg(dd->dev, "exit, err: %d\n", err);
1143
1144         return err;
1145 }
1146
1147 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1148 {
1149         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1150         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1151         struct atmel_sha_dev *dd = tctx->dd;
1152
1153         ctx->op = op;
1154
1155         return atmel_sha_handle_queue(dd, req);
1156 }
1157
1158 static int atmel_sha_update(struct ahash_request *req)
1159 {
1160         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1161
1162         if (!req->nbytes)
1163                 return 0;
1164
1165         ctx->total = req->nbytes;
1166         ctx->sg = req->src;
1167         ctx->offset = 0;
1168
1169         if (ctx->flags & SHA_FLAGS_FINUP) {
1170                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1171                         /* faster to use CPU for short transfers */
1172                         ctx->flags |= SHA_FLAGS_CPU;
1173         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1174                 atmel_sha_append_sg(ctx);
1175                 return 0;
1176         }
1177         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1178 }
1179
1180 static int atmel_sha_final(struct ahash_request *req)
1181 {
1182         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1183
1184         ctx->flags |= SHA_FLAGS_FINUP;
1185
1186         if (ctx->flags & SHA_FLAGS_ERROR)
1187                 return 0; /* uncompleted hash is not needed */
1188
1189         if (ctx->flags & SHA_FLAGS_PAD)
1190                 /* copy ready hash (+ finalize hmac) */
1191                 return atmel_sha_finish(req);
1192
1193         return atmel_sha_enqueue(req, SHA_OP_FINAL);
1194 }
1195
1196 static int atmel_sha_finup(struct ahash_request *req)
1197 {
1198         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1199         int err1, err2;
1200
1201         ctx->flags |= SHA_FLAGS_FINUP;
1202
1203         err1 = atmel_sha_update(req);
1204         if (err1 == -EINPROGRESS ||
1205             (err1 == -EBUSY && (ahash_request_flags(req) &
1206                                 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1207                 return err1;
1208
1209         /*
1210          * final() has to be always called to cleanup resources
1211          * even if udpate() failed, except EINPROGRESS
1212          */
1213         err2 = atmel_sha_final(req);
1214
1215         return err1 ?: err2;
1216 }
1217
1218 static int atmel_sha_digest(struct ahash_request *req)
1219 {
1220         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1221 }
1222
1223
1224 static int atmel_sha_export(struct ahash_request *req, void *out)
1225 {
1226         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1227
1228         memcpy(out, ctx, sizeof(*ctx));
1229         return 0;
1230 }
1231
1232 static int atmel_sha_import(struct ahash_request *req, const void *in)
1233 {
1234         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1235
1236         memcpy(ctx, in, sizeof(*ctx));
1237         return 0;
1238 }
1239
1240 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1241 {
1242         struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1243
1244         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1245                                  sizeof(struct atmel_sha_reqctx));
1246         ctx->start = atmel_sha_start;
1247
1248         return 0;
1249 }
1250
1251 static struct ahash_alg sha_1_256_algs[] = {
1252 {
1253         .init           = atmel_sha_init,
1254         .update         = atmel_sha_update,
1255         .final          = atmel_sha_final,
1256         .finup          = atmel_sha_finup,
1257         .digest         = atmel_sha_digest,
1258         .export         = atmel_sha_export,
1259         .import         = atmel_sha_import,
1260         .halg = {
1261                 .digestsize     = SHA1_DIGEST_SIZE,
1262                 .statesize      = sizeof(struct atmel_sha_reqctx),
1263                 .base   = {
1264                         .cra_name               = "sha1",
1265                         .cra_driver_name        = "atmel-sha1",
1266                         .cra_priority           = 100,
1267                         .cra_flags              = CRYPTO_ALG_ASYNC,
1268                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1269                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1270                         .cra_alignmask          = 0,
1271                         .cra_module             = THIS_MODULE,
1272                         .cra_init               = atmel_sha_cra_init,
1273                 }
1274         }
1275 },
1276 {
1277         .init           = atmel_sha_init,
1278         .update         = atmel_sha_update,
1279         .final          = atmel_sha_final,
1280         .finup          = atmel_sha_finup,
1281         .digest         = atmel_sha_digest,
1282         .export         = atmel_sha_export,
1283         .import         = atmel_sha_import,
1284         .halg = {
1285                 .digestsize     = SHA256_DIGEST_SIZE,
1286                 .statesize      = sizeof(struct atmel_sha_reqctx),
1287                 .base   = {
1288                         .cra_name               = "sha256",
1289                         .cra_driver_name        = "atmel-sha256",
1290                         .cra_priority           = 100,
1291                         .cra_flags              = CRYPTO_ALG_ASYNC,
1292                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1293                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1294                         .cra_alignmask          = 0,
1295                         .cra_module             = THIS_MODULE,
1296                         .cra_init               = atmel_sha_cra_init,
1297                 }
1298         }
1299 },
1300 };
1301
1302 static struct ahash_alg sha_224_alg = {
1303         .init           = atmel_sha_init,
1304         .update         = atmel_sha_update,
1305         .final          = atmel_sha_final,
1306         .finup          = atmel_sha_finup,
1307         .digest         = atmel_sha_digest,
1308         .export         = atmel_sha_export,
1309         .import         = atmel_sha_import,
1310         .halg = {
1311                 .digestsize     = SHA224_DIGEST_SIZE,
1312                 .statesize      = sizeof(struct atmel_sha_reqctx),
1313                 .base   = {
1314                         .cra_name               = "sha224",
1315                         .cra_driver_name        = "atmel-sha224",
1316                         .cra_priority           = 100,
1317                         .cra_flags              = CRYPTO_ALG_ASYNC,
1318                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1319                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1320                         .cra_alignmask          = 0,
1321                         .cra_module             = THIS_MODULE,
1322                         .cra_init               = atmel_sha_cra_init,
1323                 }
1324         }
1325 };
1326
1327 static struct ahash_alg sha_384_512_algs[] = {
1328 {
1329         .init           = atmel_sha_init,
1330         .update         = atmel_sha_update,
1331         .final          = atmel_sha_final,
1332         .finup          = atmel_sha_finup,
1333         .digest         = atmel_sha_digest,
1334         .export         = atmel_sha_export,
1335         .import         = atmel_sha_import,
1336         .halg = {
1337                 .digestsize     = SHA384_DIGEST_SIZE,
1338                 .statesize      = sizeof(struct atmel_sha_reqctx),
1339                 .base   = {
1340                         .cra_name               = "sha384",
1341                         .cra_driver_name        = "atmel-sha384",
1342                         .cra_priority           = 100,
1343                         .cra_flags              = CRYPTO_ALG_ASYNC,
1344                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1345                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1346                         .cra_alignmask          = 0x3,
1347                         .cra_module             = THIS_MODULE,
1348                         .cra_init               = atmel_sha_cra_init,
1349                 }
1350         }
1351 },
1352 {
1353         .init           = atmel_sha_init,
1354         .update         = atmel_sha_update,
1355         .final          = atmel_sha_final,
1356         .finup          = atmel_sha_finup,
1357         .digest         = atmel_sha_digest,
1358         .export         = atmel_sha_export,
1359         .import         = atmel_sha_import,
1360         .halg = {
1361                 .digestsize     = SHA512_DIGEST_SIZE,
1362                 .statesize      = sizeof(struct atmel_sha_reqctx),
1363                 .base   = {
1364                         .cra_name               = "sha512",
1365                         .cra_driver_name        = "atmel-sha512",
1366                         .cra_priority           = 100,
1367                         .cra_flags              = CRYPTO_ALG_ASYNC,
1368                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1369                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1370                         .cra_alignmask          = 0x3,
1371                         .cra_module             = THIS_MODULE,
1372                         .cra_init               = atmel_sha_cra_init,
1373                 }
1374         }
1375 },
1376 };
1377
1378 static void atmel_sha_queue_task(unsigned long data)
1379 {
1380         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1381
1382         atmel_sha_handle_queue(dd, NULL);
1383 }
1384
1385 static int atmel_sha_done(struct atmel_sha_dev *dd)
1386 {
1387         int err = 0;
1388
1389         if (SHA_FLAGS_CPU & dd->flags) {
1390                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1391                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1392                         goto finish;
1393                 }
1394         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1395                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1396                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1397                         atmel_sha_update_dma_stop(dd);
1398                         if (dd->err) {
1399                                 err = dd->err;
1400                                 goto finish;
1401                         }
1402                 }
1403                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1404                         /* hash or semi-hash ready */
1405                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1406                                                 SHA_FLAGS_OUTPUT_READY);
1407                         err = atmel_sha_update_dma_start(dd);
1408                         if (err != -EINPROGRESS)
1409                                 goto finish;
1410                 }
1411         }
1412         return err;
1413
1414 finish:
1415         /* finish curent request */
1416         atmel_sha_finish_req(dd->req, err);
1417
1418         return err;
1419 }
1420
1421 static void atmel_sha_done_task(unsigned long data)
1422 {
1423         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1424
1425         dd->is_async = true;
1426         (void)dd->resume(dd);
1427 }
1428
1429 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1430 {
1431         struct atmel_sha_dev *sha_dd = dev_id;
1432         u32 reg;
1433
1434         reg = atmel_sha_read(sha_dd, SHA_ISR);
1435         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1436                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1437                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1438                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1439                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1440                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1441                         tasklet_schedule(&sha_dd->done_task);
1442                 } else {
1443                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1444                 }
1445                 return IRQ_HANDLED;
1446         }
1447
1448         return IRQ_NONE;
1449 }
1450
1451
1452 /* DMA transfer functions */
1453
1454 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1455                                         struct scatterlist *sg,
1456                                         size_t len)
1457 {
1458         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1459         struct ahash_request *req = dd->req;
1460         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1461         size_t bs = ctx->block_size;
1462         int nents;
1463
1464         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1465                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1466                         return false;
1467
1468                 /*
1469                  * This is the last sg, the only one that is allowed to
1470                  * have an unaligned length.
1471                  */
1472                 if (len <= sg->length) {
1473                         dma->nents = nents + 1;
1474                         dma->last_sg_length = sg->length;
1475                         sg->length = ALIGN(len, sizeof(u32));
1476                         return true;
1477                 }
1478
1479                 /* All other sg lengths MUST be aligned to the block size. */
1480                 if (!IS_ALIGNED(sg->length, bs))
1481                         return false;
1482
1483                 len -= sg->length;
1484         }
1485
1486         return false;
1487 }
1488
1489 static void atmel_sha_dma_callback2(void *data)
1490 {
1491         struct atmel_sha_dev *dd = data;
1492         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1493         struct scatterlist *sg;
1494         int nents;
1495
1496         dmaengine_terminate_all(dma->chan);
1497         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1498
1499         sg = dma->sg;
1500         for (nents = 0; nents < dma->nents - 1; ++nents)
1501                 sg = sg_next(sg);
1502         sg->length = dma->last_sg_length;
1503
1504         dd->is_async = true;
1505         (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1506 }
1507
1508 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1509                                struct scatterlist *src,
1510                                size_t len,
1511                                atmel_sha_fn_t resume)
1512 {
1513         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1514         struct dma_slave_config *config = &dma->dma_conf;
1515         struct dma_chan *chan = dma->chan;
1516         struct dma_async_tx_descriptor *desc;
1517         dma_cookie_t cookie;
1518         unsigned int sg_len;
1519         int err;
1520
1521         dd->resume = resume;
1522
1523         /*
1524          * dma->nents has already been initialized by
1525          * atmel_sha_dma_check_aligned().
1526          */
1527         dma->sg = src;
1528         sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1529         if (!sg_len) {
1530                 err = -ENOMEM;
1531                 goto exit;
1532         }
1533
1534         config->src_maxburst = 16;
1535         config->dst_maxburst = 16;
1536         err = dmaengine_slave_config(chan, config);
1537         if (err)
1538                 goto unmap_sg;
1539
1540         desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1541                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1542         if (!desc) {
1543                 err = -ENOMEM;
1544                 goto unmap_sg;
1545         }
1546
1547         desc->callback = atmel_sha_dma_callback2;
1548         desc->callback_param = dd;
1549         cookie = dmaengine_submit(desc);
1550         err = dma_submit_error(cookie);
1551         if (err)
1552                 goto unmap_sg;
1553
1554         dma_async_issue_pending(chan);
1555
1556         return -EINPROGRESS;
1557
1558 unmap_sg:
1559         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1560 exit:
1561         return atmel_sha_complete(dd, err);
1562 }
1563
1564
1565 /* CPU transfer functions */
1566
1567 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1568 {
1569         struct ahash_request *req = dd->req;
1570         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1571         const u32 *words = (const u32 *)ctx->buffer;
1572         size_t i, num_words;
1573         u32 isr, din, din_inc;
1574
1575         din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1576         for (;;) {
1577                 /* Write data into the Input Data Registers. */
1578                 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1579                 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1580                         atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1581
1582                 ctx->offset += ctx->bufcnt;
1583                 ctx->total -= ctx->bufcnt;
1584
1585                 if (!ctx->total)
1586                         break;
1587
1588                 /*
1589                  * Prepare next block:
1590                  * Fill ctx->buffer now with the next data to be written into
1591                  * IDATARx: it gives time for the SHA hardware to process
1592                  * the current data so the SHA_INT_DATARDY flag might be set
1593                  * in SHA_ISR when polling this register at the beginning of
1594                  * the next loop.
1595                  */
1596                 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1597                 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1598                                          ctx->offset, ctx->bufcnt, 0);
1599
1600                 /* Wait for hardware to be ready again. */
1601                 isr = atmel_sha_read(dd, SHA_ISR);
1602                 if (!(isr & SHA_INT_DATARDY)) {
1603                         /* Not ready yet. */
1604                         dd->resume = atmel_sha_cpu_transfer;
1605                         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1606                         return -EINPROGRESS;
1607                 }
1608         }
1609
1610         if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1611                 return dd->cpu_transfer_complete(dd);
1612
1613         return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1614 }
1615
1616 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1617                                struct scatterlist *sg,
1618                                unsigned int len,
1619                                bool idatar0_only,
1620                                bool wait_data_ready,
1621                                atmel_sha_fn_t resume)
1622 {
1623         struct ahash_request *req = dd->req;
1624         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1625
1626         if (!len)
1627                 return resume(dd);
1628
1629         ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1630
1631         if (idatar0_only)
1632                 ctx->flags |= SHA_FLAGS_IDATAR0;
1633
1634         if (wait_data_ready)
1635                 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1636
1637         ctx->sg = sg;
1638         ctx->total = len;
1639         ctx->offset = 0;
1640
1641         /* Prepare the first block to be written. */
1642         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1643         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1644                                  ctx->offset, ctx->bufcnt, 0);
1645
1646         dd->cpu_transfer_complete = resume;
1647         return atmel_sha_cpu_transfer(dd);
1648 }
1649
1650 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1651                               const void *data, unsigned int datalen,
1652                               bool auto_padding,
1653                               atmel_sha_fn_t resume)
1654 {
1655         struct ahash_request *req = dd->req;
1656         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1657         u32 msglen = (auto_padding) ? datalen : 0;
1658         u32 mr = SHA_MR_MODE_AUTO;
1659
1660         if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1661                 return atmel_sha_complete(dd, -EINVAL);
1662
1663         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1664         atmel_sha_write(dd, SHA_MR, mr);
1665         atmel_sha_write(dd, SHA_MSR, msglen);
1666         atmel_sha_write(dd, SHA_BCR, msglen);
1667         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1668
1669         sg_init_one(&dd->tmp, data, datalen);
1670         return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1671 }
1672
1673
1674 /* hmac functions */
1675
1676 struct atmel_sha_hmac_key {
1677         bool                    valid;
1678         unsigned int            keylen;
1679         u8                      buffer[SHA512_BLOCK_SIZE];
1680         u8                      *keydup;
1681 };
1682
1683 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1684 {
1685         memset(hkey, 0, sizeof(*hkey));
1686 }
1687
1688 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1689 {
1690         kfree(hkey->keydup);
1691         memset(hkey, 0, sizeof(*hkey));
1692 }
1693
1694 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1695                                          const u8 *key,
1696                                          unsigned int keylen)
1697 {
1698         atmel_sha_hmac_key_release(hkey);
1699
1700         if (keylen > sizeof(hkey->buffer)) {
1701                 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1702                 if (!hkey->keydup)
1703                         return -ENOMEM;
1704
1705         } else {
1706                 memcpy(hkey->buffer, key, keylen);
1707         }
1708
1709         hkey->valid = true;
1710         hkey->keylen = keylen;
1711         return 0;
1712 }
1713
1714 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1715                                           const u8 **key,
1716                                           unsigned int *keylen)
1717 {
1718         if (!hkey->valid)
1719                 return false;
1720
1721         *keylen = hkey->keylen;
1722         *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1723         return true;
1724 }
1725
1726
1727 struct atmel_sha_hmac_ctx {
1728         struct atmel_sha_ctx    base;
1729
1730         struct atmel_sha_hmac_key       hkey;
1731         u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1732         u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1733         atmel_sha_fn_t          resume;
1734 };
1735
1736 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1737                                 atmel_sha_fn_t resume);
1738 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1739                                       const u8 *key, unsigned int keylen);
1740 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1741 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1742 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1743 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1744
1745 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1746 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1747 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1748 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1749
1750 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1751                                 atmel_sha_fn_t resume)
1752 {
1753         struct ahash_request *req = dd->req;
1754         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1755         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1756         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1757         unsigned int keylen;
1758         const u8 *key;
1759         size_t bs;
1760
1761         hmac->resume = resume;
1762         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1763         case SHA_FLAGS_SHA1:
1764                 ctx->block_size = SHA1_BLOCK_SIZE;
1765                 ctx->hash_size = SHA1_DIGEST_SIZE;
1766                 break;
1767
1768         case SHA_FLAGS_SHA224:
1769                 ctx->block_size = SHA224_BLOCK_SIZE;
1770                 ctx->hash_size = SHA256_DIGEST_SIZE;
1771                 break;
1772
1773         case SHA_FLAGS_SHA256:
1774                 ctx->block_size = SHA256_BLOCK_SIZE;
1775                 ctx->hash_size = SHA256_DIGEST_SIZE;
1776                 break;
1777
1778         case SHA_FLAGS_SHA384:
1779                 ctx->block_size = SHA384_BLOCK_SIZE;
1780                 ctx->hash_size = SHA512_DIGEST_SIZE;
1781                 break;
1782
1783         case SHA_FLAGS_SHA512:
1784                 ctx->block_size = SHA512_BLOCK_SIZE;
1785                 ctx->hash_size = SHA512_DIGEST_SIZE;
1786                 break;
1787
1788         default:
1789                 return atmel_sha_complete(dd, -EINVAL);
1790         }
1791         bs = ctx->block_size;
1792
1793         if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1794                 return resume(dd);
1795
1796         /* Compute K' from K. */
1797         if (unlikely(keylen > bs))
1798                 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1799
1800         /* Prepare ipad. */
1801         memcpy((u8 *)hmac->ipad, key, keylen);
1802         memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1803         return atmel_sha_hmac_compute_ipad_hash(dd);
1804 }
1805
1806 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1807                                       const u8 *key, unsigned int keylen)
1808 {
1809         return atmel_sha_cpu_hash(dd, key, keylen, true,
1810                                   atmel_sha_hmac_prehash_key_done);
1811 }
1812
1813 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1814 {
1815         struct ahash_request *req = dd->req;
1816         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1817         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1818         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819         size_t ds = crypto_ahash_digestsize(tfm);
1820         size_t bs = ctx->block_size;
1821         size_t i, num_words = ds / sizeof(u32);
1822
1823         /* Prepare ipad. */
1824         for (i = 0; i < num_words; ++i)
1825                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1826         memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1827         return atmel_sha_hmac_compute_ipad_hash(dd);
1828 }
1829
1830 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1831 {
1832         struct ahash_request *req = dd->req;
1833         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1834         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1835         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1836         size_t bs = ctx->block_size;
1837         size_t i, num_words = bs / sizeof(u32);
1838
1839         memcpy(hmac->opad, hmac->ipad, bs);
1840         for (i = 0; i < num_words; ++i) {
1841                 hmac->ipad[i] ^= 0x36363636;
1842                 hmac->opad[i] ^= 0x5c5c5c5c;
1843         }
1844
1845         return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1846                                   atmel_sha_hmac_compute_opad_hash);
1847 }
1848
1849 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1850 {
1851         struct ahash_request *req = dd->req;
1852         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1853         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1855         size_t bs = ctx->block_size;
1856         size_t hs = ctx->hash_size;
1857         size_t i, num_words = hs / sizeof(u32);
1858
1859         for (i = 0; i < num_words; ++i)
1860                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1861         return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1862                                   atmel_sha_hmac_setup_done);
1863 }
1864
1865 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1866 {
1867         struct ahash_request *req = dd->req;
1868         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1869         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1870         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1871         size_t hs = ctx->hash_size;
1872         size_t i, num_words = hs / sizeof(u32);
1873
1874         for (i = 0; i < num_words; ++i)
1875                 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1876         atmel_sha_hmac_key_release(&hmac->hkey);
1877         return hmac->resume(dd);
1878 }
1879
1880 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1881 {
1882         struct ahash_request *req = dd->req;
1883         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1884         int err;
1885
1886         err = atmel_sha_hw_init(dd);
1887         if (err)
1888                 return atmel_sha_complete(dd, err);
1889
1890         switch (ctx->op) {
1891         case SHA_OP_INIT:
1892                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1893                 break;
1894
1895         case SHA_OP_UPDATE:
1896                 dd->resume = atmel_sha_done;
1897                 err = atmel_sha_update_req(dd);
1898                 break;
1899
1900         case SHA_OP_FINAL:
1901                 dd->resume = atmel_sha_hmac_final;
1902                 err = atmel_sha_final_req(dd);
1903                 break;
1904
1905         case SHA_OP_DIGEST:
1906                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1907                 break;
1908
1909         default:
1910                 return atmel_sha_complete(dd, -EINVAL);
1911         }
1912
1913         return err;
1914 }
1915
1916 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1917                                  unsigned int keylen)
1918 {
1919         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1920
1921         if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1922                 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1923                 return -EINVAL;
1924         }
1925
1926         return 0;
1927 }
1928
1929 static int atmel_sha_hmac_init(struct ahash_request *req)
1930 {
1931         int err;
1932
1933         err = atmel_sha_init(req);
1934         if (err)
1935                 return err;
1936
1937         return atmel_sha_enqueue(req, SHA_OP_INIT);
1938 }
1939
1940 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1941 {
1942         struct ahash_request *req = dd->req;
1943         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1944         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1945         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1946         size_t bs = ctx->block_size;
1947         size_t hs = ctx->hash_size;
1948
1949         ctx->bufcnt = 0;
1950         ctx->digcnt[0] = bs;
1951         ctx->digcnt[1] = 0;
1952         ctx->flags |= SHA_FLAGS_RESTORE;
1953         memcpy(ctx->digest, hmac->ipad, hs);
1954         return atmel_sha_complete(dd, 0);
1955 }
1956
1957 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1958 {
1959         struct ahash_request *req = dd->req;
1960         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1961         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1962         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1963         u32 *digest = (u32 *)ctx->digest;
1964         size_t ds = crypto_ahash_digestsize(tfm);
1965         size_t bs = ctx->block_size;
1966         size_t hs = ctx->hash_size;
1967         size_t i, num_words;
1968         u32 mr;
1969
1970         /* Save d = SHA((K' + ipad) | msg). */
1971         num_words = ds / sizeof(u32);
1972         for (i = 0; i < num_words; ++i)
1973                 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1974
1975         /* Restore context to finish computing SHA((K' + opad) | d). */
1976         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1977         num_words = hs / sizeof(u32);
1978         for (i = 0; i < num_words; ++i)
1979                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1980
1981         mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1982         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1983         atmel_sha_write(dd, SHA_MR, mr);
1984         atmel_sha_write(dd, SHA_MSR, bs + ds);
1985         atmel_sha_write(dd, SHA_BCR, ds);
1986         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987
1988         sg_init_one(&dd->tmp, digest, ds);
1989         return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1990                                    atmel_sha_hmac_final_done);
1991 }
1992
1993 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1994 {
1995         /*
1996          * req->result might not be sizeof(u32) aligned, so copy the
1997          * digest into ctx->digest[] before memcpy() the data into
1998          * req->result.
1999          */
2000         atmel_sha_copy_hash(dd->req);
2001         atmel_sha_copy_ready_hash(dd->req);
2002         return atmel_sha_complete(dd, 0);
2003 }
2004
2005 static int atmel_sha_hmac_digest(struct ahash_request *req)
2006 {
2007         int err;
2008
2009         err = atmel_sha_init(req);
2010         if (err)
2011                 return err;
2012
2013         return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2014 }
2015
2016 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2017 {
2018         struct ahash_request *req = dd->req;
2019         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2020         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2021         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2022         size_t hs = ctx->hash_size;
2023         size_t i, num_words = hs / sizeof(u32);
2024         bool use_dma = false;
2025         u32 mr;
2026
2027         /* Special case for empty message. */
2028         if (!req->nbytes)
2029                 return atmel_sha_complete(dd, -EINVAL); // TODO:
2030
2031         /* Check DMA threshold and alignment. */
2032         if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2033             atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2034                 use_dma = true;
2035
2036         /* Write both initial hash values to compute a HMAC. */
2037         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2038         for (i = 0; i < num_words; ++i)
2039                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2040
2041         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2042         for (i = 0; i < num_words; ++i)
2043                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2044
2045         /* Write the Mode, Message Size, Bytes Count then Control Registers. */
2046         mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2047         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2048         if (use_dma)
2049                 mr |= SHA_MR_MODE_IDATAR0;
2050         else
2051                 mr |= SHA_MR_MODE_AUTO;
2052         atmel_sha_write(dd, SHA_MR, mr);
2053
2054         atmel_sha_write(dd, SHA_MSR, req->nbytes);
2055         atmel_sha_write(dd, SHA_BCR, req->nbytes);
2056
2057         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2058
2059         /* Process data. */
2060         if (use_dma)
2061                 return atmel_sha_dma_start(dd, req->src, req->nbytes,
2062                                            atmel_sha_hmac_final_done);
2063
2064         return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2065                                    atmel_sha_hmac_final_done);
2066 }
2067
2068 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2069 {
2070         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2071
2072         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2073                                  sizeof(struct atmel_sha_reqctx));
2074         hmac->base.start = atmel_sha_hmac_start;
2075         atmel_sha_hmac_key_init(&hmac->hkey);
2076
2077         return 0;
2078 }
2079
2080 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2081 {
2082         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2083
2084         atmel_sha_hmac_key_release(&hmac->hkey);
2085 }
2086
2087 static struct ahash_alg sha_hmac_algs[] = {
2088 {
2089         .init           = atmel_sha_hmac_init,
2090         .update         = atmel_sha_update,
2091         .final          = atmel_sha_final,
2092         .digest         = atmel_sha_hmac_digest,
2093         .setkey         = atmel_sha_hmac_setkey,
2094         .export         = atmel_sha_export,
2095         .import         = atmel_sha_import,
2096         .halg = {
2097                 .digestsize     = SHA1_DIGEST_SIZE,
2098                 .statesize      = sizeof(struct atmel_sha_reqctx),
2099                 .base   = {
2100                         .cra_name               = "hmac(sha1)",
2101                         .cra_driver_name        = "atmel-hmac-sha1",
2102                         .cra_priority           = 100,
2103                         .cra_flags              = CRYPTO_ALG_ASYNC,
2104                         .cra_blocksize          = SHA1_BLOCK_SIZE,
2105                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2106                         .cra_alignmask          = 0,
2107                         .cra_module             = THIS_MODULE,
2108                         .cra_init               = atmel_sha_hmac_cra_init,
2109                         .cra_exit               = atmel_sha_hmac_cra_exit,
2110                 }
2111         }
2112 },
2113 {
2114         .init           = atmel_sha_hmac_init,
2115         .update         = atmel_sha_update,
2116         .final          = atmel_sha_final,
2117         .digest         = atmel_sha_hmac_digest,
2118         .setkey         = atmel_sha_hmac_setkey,
2119         .export         = atmel_sha_export,
2120         .import         = atmel_sha_import,
2121         .halg = {
2122                 .digestsize     = SHA224_DIGEST_SIZE,
2123                 .statesize      = sizeof(struct atmel_sha_reqctx),
2124                 .base   = {
2125                         .cra_name               = "hmac(sha224)",
2126                         .cra_driver_name        = "atmel-hmac-sha224",
2127                         .cra_priority           = 100,
2128                         .cra_flags              = CRYPTO_ALG_ASYNC,
2129                         .cra_blocksize          = SHA224_BLOCK_SIZE,
2130                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2131                         .cra_alignmask          = 0,
2132                         .cra_module             = THIS_MODULE,
2133                         .cra_init               = atmel_sha_hmac_cra_init,
2134                         .cra_exit               = atmel_sha_hmac_cra_exit,
2135                 }
2136         }
2137 },
2138 {
2139         .init           = atmel_sha_hmac_init,
2140         .update         = atmel_sha_update,
2141         .final          = atmel_sha_final,
2142         .digest         = atmel_sha_hmac_digest,
2143         .setkey         = atmel_sha_hmac_setkey,
2144         .export         = atmel_sha_export,
2145         .import         = atmel_sha_import,
2146         .halg = {
2147                 .digestsize     = SHA256_DIGEST_SIZE,
2148                 .statesize      = sizeof(struct atmel_sha_reqctx),
2149                 .base   = {
2150                         .cra_name               = "hmac(sha256)",
2151                         .cra_driver_name        = "atmel-hmac-sha256",
2152                         .cra_priority           = 100,
2153                         .cra_flags              = CRYPTO_ALG_ASYNC,
2154                         .cra_blocksize          = SHA256_BLOCK_SIZE,
2155                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2156                         .cra_alignmask          = 0,
2157                         .cra_module             = THIS_MODULE,
2158                         .cra_init               = atmel_sha_hmac_cra_init,
2159                         .cra_exit               = atmel_sha_hmac_cra_exit,
2160                 }
2161         }
2162 },
2163 {
2164         .init           = atmel_sha_hmac_init,
2165         .update         = atmel_sha_update,
2166         .final          = atmel_sha_final,
2167         .digest         = atmel_sha_hmac_digest,
2168         .setkey         = atmel_sha_hmac_setkey,
2169         .export         = atmel_sha_export,
2170         .import         = atmel_sha_import,
2171         .halg = {
2172                 .digestsize     = SHA384_DIGEST_SIZE,
2173                 .statesize      = sizeof(struct atmel_sha_reqctx),
2174                 .base   = {
2175                         .cra_name               = "hmac(sha384)",
2176                         .cra_driver_name        = "atmel-hmac-sha384",
2177                         .cra_priority           = 100,
2178                         .cra_flags              = CRYPTO_ALG_ASYNC,
2179                         .cra_blocksize          = SHA384_BLOCK_SIZE,
2180                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2181                         .cra_alignmask          = 0,
2182                         .cra_module             = THIS_MODULE,
2183                         .cra_init               = atmel_sha_hmac_cra_init,
2184                         .cra_exit               = atmel_sha_hmac_cra_exit,
2185                 }
2186         }
2187 },
2188 {
2189         .init           = atmel_sha_hmac_init,
2190         .update         = atmel_sha_update,
2191         .final          = atmel_sha_final,
2192         .digest         = atmel_sha_hmac_digest,
2193         .setkey         = atmel_sha_hmac_setkey,
2194         .export         = atmel_sha_export,
2195         .import         = atmel_sha_import,
2196         .halg = {
2197                 .digestsize     = SHA512_DIGEST_SIZE,
2198                 .statesize      = sizeof(struct atmel_sha_reqctx),
2199                 .base   = {
2200                         .cra_name               = "hmac(sha512)",
2201                         .cra_driver_name        = "atmel-hmac-sha512",
2202                         .cra_priority           = 100,
2203                         .cra_flags              = CRYPTO_ALG_ASYNC,
2204                         .cra_blocksize          = SHA512_BLOCK_SIZE,
2205                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2206                         .cra_alignmask          = 0,
2207                         .cra_module             = THIS_MODULE,
2208                         .cra_init               = atmel_sha_hmac_cra_init,
2209                         .cra_exit               = atmel_sha_hmac_cra_exit,
2210                 }
2211         }
2212 },
2213 };
2214
2215 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2216 /* authenc functions */
2217
2218 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2219 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2220 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2221
2222
2223 struct atmel_sha_authenc_ctx {
2224         struct crypto_ahash     *tfm;
2225 };
2226
2227 struct atmel_sha_authenc_reqctx {
2228         struct atmel_sha_reqctx base;
2229
2230         atmel_aes_authenc_fn_t  cb;
2231         struct atmel_aes_dev    *aes_dev;
2232
2233         /* _init() parameters. */
2234         struct scatterlist      *assoc;
2235         u32                     assoclen;
2236         u32                     textlen;
2237
2238         /* _final() parameters. */
2239         u32                     *digest;
2240         unsigned int            digestlen;
2241 };
2242
2243 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2244                                        int err)
2245 {
2246         struct ahash_request *req = areq->data;
2247         struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2248
2249         authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2250 }
2251
2252 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2253 {
2254         struct ahash_request *req = dd->req;
2255         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2256         int err;
2257
2258         /*
2259          * Force atmel_sha_complete() to call req->base.complete(), ie
2260          * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2261          */
2262         dd->force_complete = true;
2263
2264         err = atmel_sha_hw_init(dd);
2265         return authctx->cb(authctx->aes_dev, err, dd->is_async);
2266 }
2267
2268 bool atmel_sha_authenc_is_ready(void)
2269 {
2270         struct atmel_sha_ctx dummy;
2271
2272         dummy.dd = NULL;
2273         return (atmel_sha_find_dev(&dummy) != NULL);
2274 }
2275 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2276
2277 unsigned int atmel_sha_authenc_get_reqsize(void)
2278 {
2279         return sizeof(struct atmel_sha_authenc_reqctx);
2280 }
2281 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2282
2283 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2284 {
2285         struct atmel_sha_authenc_ctx *auth;
2286         struct crypto_ahash *tfm;
2287         struct atmel_sha_ctx *tctx;
2288         const char *name;
2289         int err = -EINVAL;
2290
2291         switch (mode & SHA_FLAGS_MODE_MASK) {
2292         case SHA_FLAGS_HMAC_SHA1:
2293                 name = "atmel-hmac-sha1";
2294                 break;
2295
2296         case SHA_FLAGS_HMAC_SHA224:
2297                 name = "atmel-hmac-sha224";
2298                 break;
2299
2300         case SHA_FLAGS_HMAC_SHA256:
2301                 name = "atmel-hmac-sha256";
2302                 break;
2303
2304         case SHA_FLAGS_HMAC_SHA384:
2305                 name = "atmel-hmac-sha384";
2306                 break;
2307
2308         case SHA_FLAGS_HMAC_SHA512:
2309                 name = "atmel-hmac-sha512";
2310                 break;
2311
2312         default:
2313                 goto error;
2314         }
2315
2316         tfm = crypto_alloc_ahash(name, 0, 0);
2317         if (IS_ERR(tfm)) {
2318                 err = PTR_ERR(tfm);
2319                 goto error;
2320         }
2321         tctx = crypto_ahash_ctx(tfm);
2322         tctx->start = atmel_sha_authenc_start;
2323         tctx->flags = mode;
2324
2325         auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2326         if (!auth) {
2327                 err = -ENOMEM;
2328                 goto err_free_ahash;
2329         }
2330         auth->tfm = tfm;
2331
2332         return auth;
2333
2334 err_free_ahash:
2335         crypto_free_ahash(tfm);
2336 error:
2337         return ERR_PTR(err);
2338 }
2339 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2340
2341 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2342 {
2343         if (auth)
2344                 crypto_free_ahash(auth->tfm);
2345         kfree(auth);
2346 }
2347 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2348
2349 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2350                              const u8 *key, unsigned int keylen,
2351                              u32 *flags)
2352 {
2353         struct crypto_ahash *tfm = auth->tfm;
2354         int err;
2355
2356         crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2357         crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2358         err = crypto_ahash_setkey(tfm, key, keylen);
2359         *flags = crypto_ahash_get_flags(tfm);
2360
2361         return err;
2362 }
2363 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2364
2365 int atmel_sha_authenc_schedule(struct ahash_request *req,
2366                                struct atmel_sha_authenc_ctx *auth,
2367                                atmel_aes_authenc_fn_t cb,
2368                                struct atmel_aes_dev *aes_dev)
2369 {
2370         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2371         struct atmel_sha_reqctx *ctx = &authctx->base;
2372         struct crypto_ahash *tfm = auth->tfm;
2373         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2374         struct atmel_sha_dev *dd;
2375
2376         /* Reset request context (MUST be done first). */
2377         memset(authctx, 0, sizeof(*authctx));
2378
2379         /* Get SHA device. */
2380         dd = atmel_sha_find_dev(tctx);
2381         if (!dd)
2382                 return cb(aes_dev, -ENODEV, false);
2383
2384         /* Init request context. */
2385         ctx->dd = dd;
2386         ctx->buflen = SHA_BUFFER_LEN;
2387         authctx->cb = cb;
2388         authctx->aes_dev = aes_dev;
2389         ahash_request_set_tfm(req, tfm);
2390         ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2391
2392         return atmel_sha_handle_queue(dd, req);
2393 }
2394 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2395
2396 int atmel_sha_authenc_init(struct ahash_request *req,
2397                            struct scatterlist *assoc, unsigned int assoclen,
2398                            unsigned int textlen,
2399                            atmel_aes_authenc_fn_t cb,
2400                            struct atmel_aes_dev *aes_dev)
2401 {
2402         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2403         struct atmel_sha_reqctx *ctx = &authctx->base;
2404         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2405         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2406         struct atmel_sha_dev *dd = ctx->dd;
2407
2408         if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2409                 return atmel_sha_complete(dd, -EINVAL);
2410
2411         authctx->cb = cb;
2412         authctx->aes_dev = aes_dev;
2413         authctx->assoc = assoc;
2414         authctx->assoclen = assoclen;
2415         authctx->textlen = textlen;
2416
2417         ctx->flags = hmac->base.flags;
2418         return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2419 }
2420 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2421
2422 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2423 {
2424         struct ahash_request *req = dd->req;
2425         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2426         struct atmel_sha_reqctx *ctx = &authctx->base;
2427         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2428         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2429         size_t hs = ctx->hash_size;
2430         size_t i, num_words = hs / sizeof(u32);
2431         u32 mr, msg_size;
2432
2433         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2434         for (i = 0; i < num_words; ++i)
2435                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2436
2437         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2438         for (i = 0; i < num_words; ++i)
2439                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2440
2441         mr = (SHA_MR_MODE_IDATAR0 |
2442               SHA_MR_HMAC |
2443               SHA_MR_DUALBUFF);
2444         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2445         atmel_sha_write(dd, SHA_MR, mr);
2446
2447         msg_size = authctx->assoclen + authctx->textlen;
2448         atmel_sha_write(dd, SHA_MSR, msg_size);
2449         atmel_sha_write(dd, SHA_BCR, msg_size);
2450
2451         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2452
2453         /* Process assoc data. */
2454         return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2455                                    true, false,
2456                                    atmel_sha_authenc_init_done);
2457 }
2458
2459 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2460 {
2461         struct ahash_request *req = dd->req;
2462         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2463
2464         return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2465 }
2466
2467 int atmel_sha_authenc_final(struct ahash_request *req,
2468                             u32 *digest, unsigned int digestlen,
2469                             atmel_aes_authenc_fn_t cb,
2470                             struct atmel_aes_dev *aes_dev)
2471 {
2472         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2473         struct atmel_sha_reqctx *ctx = &authctx->base;
2474         struct atmel_sha_dev *dd = ctx->dd;
2475
2476         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2477         case SHA_FLAGS_SHA1:
2478                 authctx->digestlen = SHA1_DIGEST_SIZE;
2479                 break;
2480
2481         case SHA_FLAGS_SHA224:
2482                 authctx->digestlen = SHA224_DIGEST_SIZE;
2483                 break;
2484
2485         case SHA_FLAGS_SHA256:
2486                 authctx->digestlen = SHA256_DIGEST_SIZE;
2487                 break;
2488
2489         case SHA_FLAGS_SHA384:
2490                 authctx->digestlen = SHA384_DIGEST_SIZE;
2491                 break;
2492
2493         case SHA_FLAGS_SHA512:
2494                 authctx->digestlen = SHA512_DIGEST_SIZE;
2495                 break;
2496
2497         default:
2498                 return atmel_sha_complete(dd, -EINVAL);
2499         }
2500         if (authctx->digestlen > digestlen)
2501                 authctx->digestlen = digestlen;
2502
2503         authctx->cb = cb;
2504         authctx->aes_dev = aes_dev;
2505         authctx->digest = digest;
2506         return atmel_sha_wait_for_data_ready(dd,
2507                                              atmel_sha_authenc_final_done);
2508 }
2509 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2510
2511 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2512 {
2513         struct ahash_request *req = dd->req;
2514         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2515         size_t i, num_words = authctx->digestlen / sizeof(u32);
2516
2517         for (i = 0; i < num_words; ++i)
2518                 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2519
2520         return atmel_sha_complete(dd, 0);
2521 }
2522
2523 void atmel_sha_authenc_abort(struct ahash_request *req)
2524 {
2525         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2526         struct atmel_sha_reqctx *ctx = &authctx->base;
2527         struct atmel_sha_dev *dd = ctx->dd;
2528
2529         /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2530         dd->is_async = false;
2531         dd->force_complete = false;
2532         (void)atmel_sha_complete(dd, 0);
2533 }
2534 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2535
2536 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2537
2538
2539 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2540 {
2541         int i;
2542
2543         if (dd->caps.has_hmac)
2544                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2545                         crypto_unregister_ahash(&sha_hmac_algs[i]);
2546
2547         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2548                 crypto_unregister_ahash(&sha_1_256_algs[i]);
2549
2550         if (dd->caps.has_sha224)
2551                 crypto_unregister_ahash(&sha_224_alg);
2552
2553         if (dd->caps.has_sha_384_512) {
2554                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2555                         crypto_unregister_ahash(&sha_384_512_algs[i]);
2556         }
2557 }
2558
2559 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2560 {
2561         int err, i, j;
2562
2563         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2564                 err = crypto_register_ahash(&sha_1_256_algs[i]);
2565                 if (err)
2566                         goto err_sha_1_256_algs;
2567         }
2568
2569         if (dd->caps.has_sha224) {
2570                 err = crypto_register_ahash(&sha_224_alg);
2571                 if (err)
2572                         goto err_sha_224_algs;
2573         }
2574
2575         if (dd->caps.has_sha_384_512) {
2576                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2577                         err = crypto_register_ahash(&sha_384_512_algs[i]);
2578                         if (err)
2579                                 goto err_sha_384_512_algs;
2580                 }
2581         }
2582
2583         if (dd->caps.has_hmac) {
2584                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2585                         err = crypto_register_ahash(&sha_hmac_algs[i]);
2586                         if (err)
2587                                 goto err_sha_hmac_algs;
2588                 }
2589         }
2590
2591         return 0;
2592
2593         /*i = ARRAY_SIZE(sha_hmac_algs);*/
2594 err_sha_hmac_algs:
2595         for (j = 0; j < i; j++)
2596                 crypto_unregister_ahash(&sha_hmac_algs[j]);
2597         i = ARRAY_SIZE(sha_384_512_algs);
2598 err_sha_384_512_algs:
2599         for (j = 0; j < i; j++)
2600                 crypto_unregister_ahash(&sha_384_512_algs[j]);
2601         crypto_unregister_ahash(&sha_224_alg);
2602 err_sha_224_algs:
2603         i = ARRAY_SIZE(sha_1_256_algs);
2604 err_sha_1_256_algs:
2605         for (j = 0; j < i; j++)
2606                 crypto_unregister_ahash(&sha_1_256_algs[j]);
2607
2608         return err;
2609 }
2610
2611 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2612 {
2613         struct at_dma_slave     *sl = slave;
2614
2615         if (sl && sl->dma_dev == chan->device->dev) {
2616                 chan->private = sl;
2617                 return true;
2618         } else {
2619                 return false;
2620         }
2621 }
2622
2623 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2624                                 struct crypto_platform_data *pdata)
2625 {
2626         dma_cap_mask_t mask_in;
2627
2628         /* Try to grab DMA channel */
2629         dma_cap_zero(mask_in);
2630         dma_cap_set(DMA_SLAVE, mask_in);
2631
2632         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2633                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2634         if (!dd->dma_lch_in.chan) {
2635                 dev_warn(dd->dev, "no DMA channel available\n");
2636                 return -ENODEV;
2637         }
2638
2639         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2640         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2641                 SHA_REG_DIN(0);
2642         dd->dma_lch_in.dma_conf.src_maxburst = 1;
2643         dd->dma_lch_in.dma_conf.src_addr_width =
2644                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2645         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2646         dd->dma_lch_in.dma_conf.dst_addr_width =
2647                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2648         dd->dma_lch_in.dma_conf.device_fc = false;
2649
2650         return 0;
2651 }
2652
2653 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2654 {
2655         dma_release_channel(dd->dma_lch_in.chan);
2656 }
2657
2658 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2659 {
2660
2661         dd->caps.has_dma = 0;
2662         dd->caps.has_dualbuff = 0;
2663         dd->caps.has_sha224 = 0;
2664         dd->caps.has_sha_384_512 = 0;
2665         dd->caps.has_uihv = 0;
2666         dd->caps.has_hmac = 0;
2667
2668         /* keep only major version number */
2669         switch (dd->hw_version & 0xff0) {
2670         case 0x510:
2671                 dd->caps.has_dma = 1;
2672                 dd->caps.has_dualbuff = 1;
2673                 dd->caps.has_sha224 = 1;
2674                 dd->caps.has_sha_384_512 = 1;
2675                 dd->caps.has_uihv = 1;
2676                 dd->caps.has_hmac = 1;
2677                 break;
2678         case 0x420:
2679                 dd->caps.has_dma = 1;
2680                 dd->caps.has_dualbuff = 1;
2681                 dd->caps.has_sha224 = 1;
2682                 dd->caps.has_sha_384_512 = 1;
2683                 dd->caps.has_uihv = 1;
2684                 break;
2685         case 0x410:
2686                 dd->caps.has_dma = 1;
2687                 dd->caps.has_dualbuff = 1;
2688                 dd->caps.has_sha224 = 1;
2689                 dd->caps.has_sha_384_512 = 1;
2690                 break;
2691         case 0x400:
2692                 dd->caps.has_dma = 1;
2693                 dd->caps.has_dualbuff = 1;
2694                 dd->caps.has_sha224 = 1;
2695                 break;
2696         case 0x320:
2697                 break;
2698         default:
2699                 dev_warn(dd->dev,
2700                                 "Unmanaged sha version, set minimum capabilities\n");
2701                 break;
2702         }
2703 }
2704
2705 #if defined(CONFIG_OF)
2706 static const struct of_device_id atmel_sha_dt_ids[] = {
2707         { .compatible = "atmel,at91sam9g46-sha" },
2708         { /* sentinel */ }
2709 };
2710
2711 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2712
2713 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2714 {
2715         struct device_node *np = pdev->dev.of_node;
2716         struct crypto_platform_data *pdata;
2717
2718         if (!np) {
2719                 dev_err(&pdev->dev, "device node not found\n");
2720                 return ERR_PTR(-EINVAL);
2721         }
2722
2723         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2724         if (!pdata)
2725                 return ERR_PTR(-ENOMEM);
2726
2727         pdata->dma_slave = devm_kzalloc(&pdev->dev,
2728                                         sizeof(*(pdata->dma_slave)),
2729                                         GFP_KERNEL);
2730         if (!pdata->dma_slave)
2731                 return ERR_PTR(-ENOMEM);
2732
2733         return pdata;
2734 }
2735 #else /* CONFIG_OF */
2736 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2737 {
2738         return ERR_PTR(-EINVAL);
2739 }
2740 #endif
2741
2742 static int atmel_sha_probe(struct platform_device *pdev)
2743 {
2744         struct atmel_sha_dev *sha_dd;
2745         struct crypto_platform_data     *pdata;
2746         struct device *dev = &pdev->dev;
2747         struct resource *sha_res;
2748         int err;
2749
2750         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2751         if (sha_dd == NULL) {
2752                 err = -ENOMEM;
2753                 goto sha_dd_err;
2754         }
2755
2756         sha_dd->dev = dev;
2757
2758         platform_set_drvdata(pdev, sha_dd);
2759
2760         INIT_LIST_HEAD(&sha_dd->list);
2761         spin_lock_init(&sha_dd->lock);
2762
2763         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2764                                         (unsigned long)sha_dd);
2765         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2766                                         (unsigned long)sha_dd);
2767
2768         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2769
2770         /* Get the base address */
2771         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772         if (!sha_res) {
2773                 dev_err(dev, "no MEM resource info\n");
2774                 err = -ENODEV;
2775                 goto res_err;
2776         }
2777         sha_dd->phys_base = sha_res->start;
2778
2779         /* Get the IRQ */
2780         sha_dd->irq = platform_get_irq(pdev,  0);
2781         if (sha_dd->irq < 0) {
2782                 dev_err(dev, "no IRQ resource info\n");
2783                 err = sha_dd->irq;
2784                 goto res_err;
2785         }
2786
2787         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2788                                IRQF_SHARED, "atmel-sha", sha_dd);
2789         if (err) {
2790                 dev_err(dev, "unable to request sha irq.\n");
2791                 goto res_err;
2792         }
2793
2794         /* Initializing the clock */
2795         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2796         if (IS_ERR(sha_dd->iclk)) {
2797                 dev_err(dev, "clock initialization failed.\n");
2798                 err = PTR_ERR(sha_dd->iclk);
2799                 goto res_err;
2800         }
2801
2802         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2803         if (IS_ERR(sha_dd->io_base)) {
2804                 dev_err(dev, "can't ioremap\n");
2805                 err = PTR_ERR(sha_dd->io_base);
2806                 goto res_err;
2807         }
2808
2809         err = clk_prepare(sha_dd->iclk);
2810         if (err)
2811                 goto res_err;
2812
2813         atmel_sha_hw_version_init(sha_dd);
2814
2815         atmel_sha_get_cap(sha_dd);
2816
2817         if (sha_dd->caps.has_dma) {
2818                 pdata = pdev->dev.platform_data;
2819                 if (!pdata) {
2820                         pdata = atmel_sha_of_init(pdev);
2821                         if (IS_ERR(pdata)) {
2822                                 dev_err(&pdev->dev, "platform data not available\n");
2823                                 err = PTR_ERR(pdata);
2824                                 goto iclk_unprepare;
2825                         }
2826                 }
2827                 if (!pdata->dma_slave) {
2828                         err = -ENXIO;
2829                         goto iclk_unprepare;
2830                 }
2831                 err = atmel_sha_dma_init(sha_dd, pdata);
2832                 if (err)
2833                         goto err_sha_dma;
2834
2835                 dev_info(dev, "using %s for DMA transfers\n",
2836                                 dma_chan_name(sha_dd->dma_lch_in.chan));
2837         }
2838
2839         spin_lock(&atmel_sha.lock);
2840         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2841         spin_unlock(&atmel_sha.lock);
2842
2843         err = atmel_sha_register_algs(sha_dd);
2844         if (err)
2845                 goto err_algs;
2846
2847         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2848                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
2849                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2850
2851         return 0;
2852
2853 err_algs:
2854         spin_lock(&atmel_sha.lock);
2855         list_del(&sha_dd->list);
2856         spin_unlock(&atmel_sha.lock);
2857         if (sha_dd->caps.has_dma)
2858                 atmel_sha_dma_cleanup(sha_dd);
2859 err_sha_dma:
2860 iclk_unprepare:
2861         clk_unprepare(sha_dd->iclk);
2862 res_err:
2863         tasklet_kill(&sha_dd->queue_task);
2864         tasklet_kill(&sha_dd->done_task);
2865 sha_dd_err:
2866         dev_err(dev, "initialization failed.\n");
2867
2868         return err;
2869 }
2870
2871 static int atmel_sha_remove(struct platform_device *pdev)
2872 {
2873         struct atmel_sha_dev *sha_dd;
2874
2875         sha_dd = platform_get_drvdata(pdev);
2876         if (!sha_dd)
2877                 return -ENODEV;
2878         spin_lock(&atmel_sha.lock);
2879         list_del(&sha_dd->list);
2880         spin_unlock(&atmel_sha.lock);
2881
2882         atmel_sha_unregister_algs(sha_dd);
2883
2884         tasklet_kill(&sha_dd->queue_task);
2885         tasklet_kill(&sha_dd->done_task);
2886
2887         if (sha_dd->caps.has_dma)
2888                 atmel_sha_dma_cleanup(sha_dd);
2889
2890         clk_unprepare(sha_dd->iclk);
2891
2892         return 0;
2893 }
2894
2895 static struct platform_driver atmel_sha_driver = {
2896         .probe          = atmel_sha_probe,
2897         .remove         = atmel_sha_remove,
2898         .driver         = {
2899                 .name   = "atmel_sha",
2900                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2901         },
2902 };
2903
2904 module_platform_driver(atmel_sha_driver);
2905
2906 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2907 MODULE_LICENSE("GPL v2");
2908 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");