Merge branch 'resizex' (patches from Maciej)
[sfrench/cifs-2.6.git] / drivers / crypto / amcc / crypto4xx_core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha1.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44
45 #define PPC4XX_SEC_VERSION_STR                  "0.5"
46
47 /*
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52         union ce_ring_size ring_size;
53         union ce_ring_control ring_ctrl;
54         union ce_part_ring_size part_ring_size;
55         union ce_io_threshold io_threshold;
56         u32 rand_num;
57         union ce_pe_dma_cfg pe_dma_cfg;
58         u32 device_ctrl;
59
60         writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61         /* setup pe dma, include reset sg, pdr and pe, then release reset */
62         pe_dma_cfg.w = 0;
63         pe_dma_cfg.bf.bo_sgpd_en = 1;
64         pe_dma_cfg.bf.bo_data_en = 0;
65         pe_dma_cfg.bf.bo_sa_en = 1;
66         pe_dma_cfg.bf.bo_pd_en = 1;
67         pe_dma_cfg.bf.dynamic_sa_en = 1;
68         pe_dma_cfg.bf.reset_sg = 1;
69         pe_dma_cfg.bf.reset_pdr = 1;
70         pe_dma_cfg.bf.reset_pe = 1;
71         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72         /* un reset pe,sg and pdr */
73         pe_dma_cfg.bf.pe_mode = 0;
74         pe_dma_cfg.bf.reset_sg = 0;
75         pe_dma_cfg.bf.reset_pdr = 0;
76         pe_dma_cfg.bf.reset_pe = 0;
77         pe_dma_cfg.bf.bo_td_en = 0;
78         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81         writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82         get_random_bytes(&rand_num, sizeof(rand_num));
83         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84         get_random_bytes(&rand_num, sizeof(rand_num));
85         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86         ring_size.w = 0;
87         ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88         ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89         writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90         ring_ctrl.w = 0;
91         writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92         device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93         device_ctrl |= PPC4XX_DC_3DES_EN;
94         writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95         writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96         writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97         part_ring_size.w = 0;
98         part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99         part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100         writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101         writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102         io_threshold.w = 0;
103         io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104         io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105         writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106         writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107         writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108         writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109         writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110         writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111         writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112         writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113         /* un reset pe,sg and pdr */
114         pe_dma_cfg.bf.pe_mode = 1;
115         pe_dma_cfg.bf.reset_sg = 0;
116         pe_dma_cfg.bf.reset_pdr = 0;
117         pe_dma_cfg.bf.reset_pe = 0;
118         pe_dma_cfg.bf.bo_td_en = 0;
119         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120         /*clear all pending interrupt*/
121         writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124         writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125         if (dev->is_revb) {
126                 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127                        dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128                 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129                        dev->ce_base + CRYPTO4XX_INT_EN);
130         } else {
131                 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132         }
133 }
134
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137         ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138         if (ctx->sa_in == NULL)
139                 return -ENOMEM;
140
141         ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142         if (ctx->sa_out == NULL) {
143                 kfree(ctx->sa_in);
144                 ctx->sa_in = NULL;
145                 return -ENOMEM;
146         }
147
148         ctx->sa_len = size;
149
150         return 0;
151 }
152
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155         kfree(ctx->sa_in);
156         ctx->sa_in = NULL;
157         kfree(ctx->sa_out);
158         ctx->sa_out = NULL;
159         ctx->sa_len = 0;
160 }
161
162 /*
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169         int i;
170         dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171                                       sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172                                       &dev->pdr_pa, GFP_KERNEL);
173         if (!dev->pdr)
174                 return -ENOMEM;
175
176         dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177                                  GFP_KERNEL);
178         if (!dev->pdr_uinfo) {
179                 dma_free_coherent(dev->core_dev->device,
180                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181                                   dev->pdr,
182                                   dev->pdr_pa);
183                 return -ENOMEM;
184         }
185         dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186                                    sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187                                    &dev->shadow_sa_pool_pa,
188                                    GFP_KERNEL);
189         if (!dev->shadow_sa_pool)
190                 return -ENOMEM;
191
192         dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193                          sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194                          &dev->shadow_sr_pool_pa, GFP_KERNEL);
195         if (!dev->shadow_sr_pool)
196                 return -ENOMEM;
197         for (i = 0; i < PPC4XX_NUM_PD; i++) {
198                 struct ce_pd *pd = &dev->pdr[i];
199                 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201                 pd->sa = dev->shadow_sa_pool_pa +
202                         sizeof(union shadow_sa_buf) * i;
203
204                 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205                 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207                 /* alloc state record */
208                 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209                 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210                     sizeof(struct sa_state_record) * i;
211         }
212
213         return 0;
214 }
215
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218         if (dev->pdr)
219                 dma_free_coherent(dev->core_dev->device,
220                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221                                   dev->pdr, dev->pdr_pa);
222
223         if (dev->shadow_sa_pool)
224                 dma_free_coherent(dev->core_dev->device,
225                         sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226                         dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228         if (dev->shadow_sr_pool)
229                 dma_free_coherent(dev->core_dev->device,
230                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231                         dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233         kfree(dev->pdr_uinfo);
234 }
235
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238         u32 retval;
239         u32 tmp;
240
241         retval = dev->pdr_head;
242         tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244         if (tmp == dev->pdr_tail)
245                 return ERING_WAS_FULL;
246
247         dev->pdr_head = tmp;
248
249         return retval;
250 }
251
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255         u32 tail;
256         unsigned long flags;
257
258         spin_lock_irqsave(&dev->core_dev->lock, flags);
259         pd_uinfo->state = PD_ENTRY_FREE;
260
261         if (dev->pdr_tail != PPC4XX_LAST_PD)
262                 dev->pdr_tail++;
263         else
264                 dev->pdr_tail = 0;
265         tail = dev->pdr_tail;
266         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268         return tail;
269 }
270
271 /*
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278         dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279                                       sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280                                       &dev->gdr_pa, GFP_KERNEL);
281         if (!dev->gdr)
282                 return -ENOMEM;
283
284         return 0;
285 }
286
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289         if (dev->gdr)
290                 dma_free_coherent(dev->core_dev->device,
291                           sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292                           dev->gdr, dev->gdr_pa);
293 }
294
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301         u32 retval;
302         u32 tmp;
303
304         if (n >= PPC4XX_NUM_GD)
305                 return ERING_WAS_FULL;
306
307         retval = dev->gdr_head;
308         tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309         if (dev->gdr_head > dev->gdr_tail) {
310                 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311                         return ERING_WAS_FULL;
312         } else if (dev->gdr_head < dev->gdr_tail) {
313                 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314                         return ERING_WAS_FULL;
315         }
316         dev->gdr_head = tmp;
317
318         return retval;
319 }
320
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323         unsigned long flags;
324
325         spin_lock_irqsave(&dev->core_dev->lock, flags);
326         if (dev->gdr_tail == dev->gdr_head) {
327                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328                 return 0;
329         }
330
331         if (dev->gdr_tail != PPC4XX_LAST_GD)
332                 dev->gdr_tail++;
333         else
334                 dev->gdr_tail = 0;
335
336         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337
338         return 0;
339 }
340
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342                                               dma_addr_t *gd_dma, u32 idx)
343 {
344         *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345
346         return &dev->gdr[idx];
347 }
348
349 /*
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356         int i;
357
358         dev->scatter_buffer_va =
359                 dma_alloc_coherent(dev->core_dev->device,
360                         PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361                         &dev->scatter_buffer_pa, GFP_KERNEL);
362         if (!dev->scatter_buffer_va)
363                 return -ENOMEM;
364
365         /* alloc memory for scatter descriptor ring */
366         dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367                                       sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368                                       &dev->sdr_pa, GFP_KERNEL);
369         if (!dev->sdr)
370                 return -ENOMEM;
371
372         for (i = 0; i < PPC4XX_NUM_SD; i++) {
373                 dev->sdr[i].ptr = dev->scatter_buffer_pa +
374                                   PPC4XX_SD_BUFFER_SIZE * i;
375         }
376
377         return 0;
378 }
379
380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382         if (dev->sdr)
383                 dma_free_coherent(dev->core_dev->device,
384                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385                                   dev->sdr, dev->sdr_pa);
386
387         if (dev->scatter_buffer_va)
388                 dma_free_coherent(dev->core_dev->device,
389                                   PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390                                   dev->scatter_buffer_va,
391                                   dev->scatter_buffer_pa);
392 }
393
394 /*
395  * when this function is called.
396  * preemption or interrupt must be disabled
397  */
398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400         u32 retval;
401         u32 tmp;
402
403         if (n >= PPC4XX_NUM_SD)
404                 return ERING_WAS_FULL;
405
406         retval = dev->sdr_head;
407         tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408         if (dev->sdr_head > dev->gdr_tail) {
409                 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410                         return ERING_WAS_FULL;
411         } else if (dev->sdr_head < dev->sdr_tail) {
412                 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413                         return ERING_WAS_FULL;
414         } /* the head = tail, or empty case is already take cared */
415         dev->sdr_head = tmp;
416
417         return retval;
418 }
419
420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422         unsigned long flags;
423
424         spin_lock_irqsave(&dev->core_dev->lock, flags);
425         if (dev->sdr_tail == dev->sdr_head) {
426                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427                 return 0;
428         }
429         if (dev->sdr_tail != PPC4XX_LAST_SD)
430                 dev->sdr_tail++;
431         else
432                 dev->sdr_tail = 0;
433         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434
435         return 0;
436 }
437
438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439                                               dma_addr_t *sd_dma, u32 idx)
440 {
441         *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442
443         return &dev->sdr[idx];
444 }
445
446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447                                       struct ce_pd *pd,
448                                       struct pd_uinfo *pd_uinfo,
449                                       u32 nbytes,
450                                       struct scatterlist *dst)
451 {
452         unsigned int first_sd = pd_uinfo->first_sd;
453         unsigned int last_sd;
454         unsigned int overflow = 0;
455         unsigned int to_copy;
456         unsigned int dst_start = 0;
457
458         /*
459          * Because the scatter buffers are all neatly organized in one
460          * big continuous ringbuffer; scatterwalk_map_and_copy() can
461          * be instructed to copy a range of buffers in one go.
462          */
463
464         last_sd = (first_sd + pd_uinfo->num_sd);
465         if (last_sd > PPC4XX_LAST_SD) {
466                 last_sd = PPC4XX_LAST_SD;
467                 overflow = last_sd % PPC4XX_NUM_SD;
468         }
469
470         while (nbytes) {
471                 void *buf = dev->scatter_buffer_va +
472                         first_sd * PPC4XX_SD_BUFFER_SIZE;
473
474                 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475                                       (1 + last_sd - first_sd));
476                 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477                 nbytes -= to_copy;
478
479                 if (overflow) {
480                         first_sd = 0;
481                         last_sd = overflow;
482                         dst_start += to_copy;
483                         overflow = 0;
484                 }
485         }
486 }
487
488 static void crypto4xx_copy_digest_to_dst(void *dst,
489                                         struct pd_uinfo *pd_uinfo,
490                                         struct crypto4xx_ctx *ctx)
491 {
492         struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493
494         if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495                 memcpy(dst, pd_uinfo->sr_va->save_digest,
496                        SA_HASH_ALG_SHA1_DIGEST_SIZE);
497         }
498 }
499
500 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501                                   struct pd_uinfo *pd_uinfo)
502 {
503         int i;
504         if (pd_uinfo->num_gd) {
505                 for (i = 0; i < pd_uinfo->num_gd; i++)
506                         crypto4xx_put_gd_to_gdr(dev);
507                 pd_uinfo->first_gd = 0xffffffff;
508                 pd_uinfo->num_gd = 0;
509         }
510         if (pd_uinfo->num_sd) {
511                 for (i = 0; i < pd_uinfo->num_sd; i++)
512                         crypto4xx_put_sd_to_sdr(dev);
513
514                 pd_uinfo->first_sd = 0xffffffff;
515                 pd_uinfo->num_sd = 0;
516         }
517 }
518
519 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520                                      struct pd_uinfo *pd_uinfo,
521                                      struct ce_pd *pd)
522 {
523         struct skcipher_request *req;
524         struct scatterlist *dst;
525         dma_addr_t addr;
526
527         req = skcipher_request_cast(pd_uinfo->async_req);
528
529         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
530                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
531                                           req->cryptlen, req->dst);
532         } else {
533                 dst = pd_uinfo->dest_va;
534                 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
535                                     dst->offset, dst->length, DMA_FROM_DEVICE);
536         }
537
538         if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
539                 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
540
541                 crypto4xx_memcpy_from_le32((u32 *)req->iv,
542                         pd_uinfo->sr_va->save_iv,
543                         crypto_skcipher_ivsize(skcipher));
544         }
545
546         crypto4xx_ret_sg_desc(dev, pd_uinfo);
547
548         if (pd_uinfo->state & PD_ENTRY_BUSY)
549                 skcipher_request_complete(req, -EINPROGRESS);
550         skcipher_request_complete(req, 0);
551 }
552
553 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
554                                 struct pd_uinfo *pd_uinfo)
555 {
556         struct crypto4xx_ctx *ctx;
557         struct ahash_request *ahash_req;
558
559         ahash_req = ahash_request_cast(pd_uinfo->async_req);
560         ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
561
562         crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
563                                      crypto_tfm_ctx(ahash_req->base.tfm));
564         crypto4xx_ret_sg_desc(dev, pd_uinfo);
565
566         if (pd_uinfo->state & PD_ENTRY_BUSY)
567                 ahash_request_complete(ahash_req, -EINPROGRESS);
568         ahash_request_complete(ahash_req, 0);
569 }
570
571 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
572                                 struct pd_uinfo *pd_uinfo,
573                                 struct ce_pd *pd)
574 {
575         struct aead_request *aead_req = container_of(pd_uinfo->async_req,
576                 struct aead_request, base);
577         struct scatterlist *dst = pd_uinfo->dest_va;
578         size_t cp_len = crypto_aead_authsize(
579                 crypto_aead_reqtfm(aead_req));
580         u32 icv[AES_BLOCK_SIZE];
581         int err = 0;
582
583         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
584                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
585                                           pd->pd_ctl_len.bf.pkt_len,
586                                           dst);
587         } else {
588                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
589                                 DMA_FROM_DEVICE);
590         }
591
592         if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
593                 /* append icv at the end */
594                 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
595                                            sizeof(icv));
596
597                 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
598                                          cp_len, 1);
599         } else {
600                 /* check icv at the end */
601                 scatterwalk_map_and_copy(icv, aead_req->src,
602                         aead_req->assoclen + aead_req->cryptlen -
603                         cp_len, cp_len, 0);
604
605                 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
606
607                 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
608                         err = -EBADMSG;
609         }
610
611         crypto4xx_ret_sg_desc(dev, pd_uinfo);
612
613         if (pd->pd_ctl.bf.status & 0xff) {
614                 if (!__ratelimit(&dev->aead_ratelimit)) {
615                         if (pd->pd_ctl.bf.status & 2)
616                                 pr_err("pad fail error\n");
617                         if (pd->pd_ctl.bf.status & 4)
618                                 pr_err("seqnum fail\n");
619                         if (pd->pd_ctl.bf.status & 8)
620                                 pr_err("error _notify\n");
621                         pr_err("aead return err status = 0x%02x\n",
622                                 pd->pd_ctl.bf.status & 0xff);
623                         pr_err("pd pad_ctl = 0x%08x\n",
624                                 pd->pd_ctl.bf.pd_pad_ctl);
625                 }
626                 err = -EINVAL;
627         }
628
629         if (pd_uinfo->state & PD_ENTRY_BUSY)
630                 aead_request_complete(aead_req, -EINPROGRESS);
631
632         aead_request_complete(aead_req, err);
633 }
634
635 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
636 {
637         struct ce_pd *pd = &dev->pdr[idx];
638         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
639
640         switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
641         case CRYPTO_ALG_TYPE_SKCIPHER:
642                 crypto4xx_cipher_done(dev, pd_uinfo, pd);
643                 break;
644         case CRYPTO_ALG_TYPE_AEAD:
645                 crypto4xx_aead_done(dev, pd_uinfo, pd);
646                 break;
647         case CRYPTO_ALG_TYPE_AHASH:
648                 crypto4xx_ahash_done(dev, pd_uinfo);
649                 break;
650         }
651 }
652
653 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
654 {
655         crypto4xx_destroy_pdr(core_dev->dev);
656         crypto4xx_destroy_gdr(core_dev->dev);
657         crypto4xx_destroy_sdr(core_dev->dev);
658         iounmap(core_dev->dev->ce_base);
659         kfree(core_dev->dev);
660         kfree(core_dev);
661 }
662
663 static u32 get_next_gd(u32 current)
664 {
665         if (current != PPC4XX_LAST_GD)
666                 return current + 1;
667         else
668                 return 0;
669 }
670
671 static u32 get_next_sd(u32 current)
672 {
673         if (current != PPC4XX_LAST_SD)
674                 return current + 1;
675         else
676                 return 0;
677 }
678
679 int crypto4xx_build_pd(struct crypto_async_request *req,
680                        struct crypto4xx_ctx *ctx,
681                        struct scatterlist *src,
682                        struct scatterlist *dst,
683                        const unsigned int datalen,
684                        const __le32 *iv, const u32 iv_len,
685                        const struct dynamic_sa_ctl *req_sa,
686                        const unsigned int sa_len,
687                        const unsigned int assoclen,
688                        struct scatterlist *_dst)
689 {
690         struct crypto4xx_device *dev = ctx->dev;
691         struct dynamic_sa_ctl *sa;
692         struct ce_gd *gd;
693         struct ce_pd *pd;
694         u32 num_gd, num_sd;
695         u32 fst_gd = 0xffffffff;
696         u32 fst_sd = 0xffffffff;
697         u32 pd_entry;
698         unsigned long flags;
699         struct pd_uinfo *pd_uinfo;
700         unsigned int nbytes = datalen;
701         size_t offset_to_sr_ptr;
702         u32 gd_idx = 0;
703         int tmp;
704         bool is_busy, force_sd;
705
706         /*
707          * There's a very subtile/disguised "bug" in the hardware that
708          * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
709          * of the hardware spec:
710          * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
711          * operation modes for >>> "Block ciphers" <<<.
712          *
713          * To workaround this issue and stop the hardware from causing
714          * "overran dst buffer" on crypttexts that are not a multiple
715          * of 16 (AES_BLOCK_SIZE), we force the driver to use the
716          * scatter buffers.
717          */
718         force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
719                 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
720                 && (datalen % AES_BLOCK_SIZE);
721
722         /* figure how many gd are needed */
723         tmp = sg_nents_for_len(src, assoclen + datalen);
724         if (tmp < 0) {
725                 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
726                 return tmp;
727         }
728         if (tmp == 1)
729                 tmp = 0;
730         num_gd = tmp;
731
732         if (assoclen) {
733                 nbytes += assoclen;
734                 dst = scatterwalk_ffwd(_dst, dst, assoclen);
735         }
736
737         /* figure how many sd are needed */
738         if (sg_is_last(dst) && force_sd == false) {
739                 num_sd = 0;
740         } else {
741                 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
742                         num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
743                         if (datalen % PPC4XX_SD_BUFFER_SIZE)
744                                 num_sd++;
745                 } else {
746                         num_sd = 1;
747                 }
748         }
749
750         /*
751          * The follow section of code needs to be protected
752          * The gather ring and scatter ring needs to be consecutive
753          * In case of run out of any kind of descriptor, the descriptor
754          * already got must be return the original place.
755          */
756         spin_lock_irqsave(&dev->core_dev->lock, flags);
757         /*
758          * Let the caller know to slow down, once more than 13/16ths = 81%
759          * of the available data contexts are being used simultaneously.
760          *
761          * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
762          * 31 more contexts. Before new requests have to be rejected.
763          */
764         if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
765                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
766                         ((PPC4XX_NUM_PD * 13) / 16);
767         } else {
768                 /*
769                  * To fix contention issues between ipsec (no blacklog) and
770                  * dm-crypto (backlog) reserve 32 entries for "no backlog"
771                  * data contexts.
772                  */
773                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
774                         ((PPC4XX_NUM_PD * 15) / 16);
775
776                 if (is_busy) {
777                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
778                         return -EBUSY;
779                 }
780         }
781
782         if (num_gd) {
783                 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
784                 if (fst_gd == ERING_WAS_FULL) {
785                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
786                         return -EAGAIN;
787                 }
788         }
789         if (num_sd) {
790                 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
791                 if (fst_sd == ERING_WAS_FULL) {
792                         if (num_gd)
793                                 dev->gdr_head = fst_gd;
794                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
795                         return -EAGAIN;
796                 }
797         }
798         pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
799         if (pd_entry == ERING_WAS_FULL) {
800                 if (num_gd)
801                         dev->gdr_head = fst_gd;
802                 if (num_sd)
803                         dev->sdr_head = fst_sd;
804                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
805                 return -EAGAIN;
806         }
807         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808
809         pd = &dev->pdr[pd_entry];
810         pd->sa_len = sa_len;
811
812         pd_uinfo = &dev->pdr_uinfo[pd_entry];
813         pd_uinfo->num_gd = num_gd;
814         pd_uinfo->num_sd = num_sd;
815         pd_uinfo->dest_va = dst;
816         pd_uinfo->async_req = req;
817
818         if (iv_len)
819                 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
820
821         sa = pd_uinfo->sa_va;
822         memcpy(sa, req_sa, sa_len * 4);
823
824         sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
825         offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
826         *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
827
828         if (num_gd) {
829                 dma_addr_t gd_dma;
830                 struct scatterlist *sg;
831
832                 /* get first gd we are going to use */
833                 gd_idx = fst_gd;
834                 pd_uinfo->first_gd = fst_gd;
835                 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
836                 pd->src = gd_dma;
837                 /* enable gather */
838                 sa->sa_command_0.bf.gather = 1;
839                 /* walk the sg, and setup gather array */
840
841                 sg = src;
842                 while (nbytes) {
843                         size_t len;
844
845                         len = min(sg->length, nbytes);
846                         gd->ptr = dma_map_page(dev->core_dev->device,
847                                 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
848                         gd->ctl_len.len = len;
849                         gd->ctl_len.done = 0;
850                         gd->ctl_len.ready = 1;
851                         if (len >= nbytes)
852                                 break;
853
854                         nbytes -= sg->length;
855                         gd_idx = get_next_gd(gd_idx);
856                         gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
857                         sg = sg_next(sg);
858                 }
859         } else {
860                 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
861                                 src->offset, min(nbytes, src->length),
862                                 DMA_TO_DEVICE);
863                 /*
864                  * Disable gather in sa command
865                  */
866                 sa->sa_command_0.bf.gather = 0;
867                 /*
868                  * Indicate gather array is not used
869                  */
870                 pd_uinfo->first_gd = 0xffffffff;
871         }
872         if (!num_sd) {
873                 /*
874                  * we know application give us dst a whole piece of memory
875                  * no need to use scatter ring.
876                  */
877                 pd_uinfo->first_sd = 0xffffffff;
878                 sa->sa_command_0.bf.scatter = 0;
879                 pd->dest = (u32)dma_map_page(dev->core_dev->device,
880                                              sg_page(dst), dst->offset,
881                                              min(datalen, dst->length),
882                                              DMA_TO_DEVICE);
883         } else {
884                 dma_addr_t sd_dma;
885                 struct ce_sd *sd = NULL;
886
887                 u32 sd_idx = fst_sd;
888                 nbytes = datalen;
889                 sa->sa_command_0.bf.scatter = 1;
890                 pd_uinfo->first_sd = fst_sd;
891                 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
892                 pd->dest = sd_dma;
893                 /* setup scatter descriptor */
894                 sd->ctl.done = 0;
895                 sd->ctl.rdy = 1;
896                 /* sd->ptr should be setup by sd_init routine*/
897                 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
898                         nbytes -= PPC4XX_SD_BUFFER_SIZE;
899                 else
900                         nbytes = 0;
901                 while (nbytes) {
902                         sd_idx = get_next_sd(sd_idx);
903                         sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
904                         /* setup scatter descriptor */
905                         sd->ctl.done = 0;
906                         sd->ctl.rdy = 1;
907                         if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
908                                 nbytes -= PPC4XX_SD_BUFFER_SIZE;
909                         } else {
910                                 /*
911                                  * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
912                                  * which is more than nbytes, so done.
913                                  */
914                                 nbytes = 0;
915                         }
916                 }
917         }
918
919         pd->pd_ctl.w = PD_CTL_HOST_READY |
920                 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
921                  (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
922                         PD_CTL_HASH_FINAL : 0);
923         pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
924         pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
925
926         wmb();
927         /* write any value to push engine to read a pd */
928         writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
929         writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
930         return is_busy ? -EBUSY : -EINPROGRESS;
931 }
932
933 /*
934  * Algorithm Registration Functions
935  */
936 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
937                                struct crypto4xx_ctx *ctx)
938 {
939         ctx->dev = amcc_alg->dev;
940         ctx->sa_in = NULL;
941         ctx->sa_out = NULL;
942         ctx->sa_len = 0;
943 }
944
945 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
946 {
947         struct skcipher_alg *alg = crypto_skcipher_alg(sk);
948         struct crypto4xx_alg *amcc_alg;
949         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
950
951         if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
952                 ctx->sw_cipher.cipher =
953                         crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
954                                               CRYPTO_ALG_NEED_FALLBACK);
955                 if (IS_ERR(ctx->sw_cipher.cipher))
956                         return PTR_ERR(ctx->sw_cipher.cipher);
957         }
958
959         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
960         crypto4xx_ctx_init(amcc_alg, ctx);
961         return 0;
962 }
963
964 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
965 {
966         crypto4xx_free_sa(ctx);
967 }
968
969 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
970 {
971         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
972
973         crypto4xx_common_exit(ctx);
974         if (ctx->sw_cipher.cipher)
975                 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
976 }
977
978 static int crypto4xx_aead_init(struct crypto_aead *tfm)
979 {
980         struct aead_alg *alg = crypto_aead_alg(tfm);
981         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
982         struct crypto4xx_alg *amcc_alg;
983
984         ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
985                                                 CRYPTO_ALG_NEED_FALLBACK |
986                                                 CRYPTO_ALG_ASYNC);
987         if (IS_ERR(ctx->sw_cipher.aead))
988                 return PTR_ERR(ctx->sw_cipher.aead);
989
990         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
991         crypto4xx_ctx_init(amcc_alg, ctx);
992         crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
993                                 crypto_aead_reqsize(ctx->sw_cipher.aead),
994                                 sizeof(struct crypto4xx_aead_reqctx)));
995         return 0;
996 }
997
998 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
999 {
1000         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1001
1002         crypto4xx_common_exit(ctx);
1003         crypto_free_aead(ctx->sw_cipher.aead);
1004 }
1005
1006 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1007                                   struct crypto4xx_alg_common *crypto_alg,
1008                                   int array_size)
1009 {
1010         struct crypto4xx_alg *alg;
1011         int i;
1012         int rc = 0;
1013
1014         for (i = 0; i < array_size; i++) {
1015                 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1016                 if (!alg)
1017                         return -ENOMEM;
1018
1019                 alg->alg = crypto_alg[i];
1020                 alg->dev = sec_dev;
1021
1022                 switch (alg->alg.type) {
1023                 case CRYPTO_ALG_TYPE_AEAD:
1024                         rc = crypto_register_aead(&alg->alg.u.aead);
1025                         break;
1026
1027                 case CRYPTO_ALG_TYPE_AHASH:
1028                         rc = crypto_register_ahash(&alg->alg.u.hash);
1029                         break;
1030
1031                 case CRYPTO_ALG_TYPE_RNG:
1032                         rc = crypto_register_rng(&alg->alg.u.rng);
1033                         break;
1034
1035                 default:
1036                         rc = crypto_register_skcipher(&alg->alg.u.cipher);
1037                         break;
1038                 }
1039
1040                 if (rc)
1041                         kfree(alg);
1042                 else
1043                         list_add_tail(&alg->entry, &sec_dev->alg_list);
1044         }
1045
1046         return 0;
1047 }
1048
1049 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1050 {
1051         struct crypto4xx_alg *alg, *tmp;
1052
1053         list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1054                 list_del(&alg->entry);
1055                 switch (alg->alg.type) {
1056                 case CRYPTO_ALG_TYPE_AHASH:
1057                         crypto_unregister_ahash(&alg->alg.u.hash);
1058                         break;
1059
1060                 case CRYPTO_ALG_TYPE_AEAD:
1061                         crypto_unregister_aead(&alg->alg.u.aead);
1062                         break;
1063
1064                 case CRYPTO_ALG_TYPE_RNG:
1065                         crypto_unregister_rng(&alg->alg.u.rng);
1066                         break;
1067
1068                 default:
1069                         crypto_unregister_skcipher(&alg->alg.u.cipher);
1070                 }
1071                 kfree(alg);
1072         }
1073 }
1074
1075 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1076 {
1077         struct device *dev = (struct device *)data;
1078         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1079         struct pd_uinfo *pd_uinfo;
1080         struct ce_pd *pd;
1081         u32 tail = core_dev->dev->pdr_tail;
1082         u32 head = core_dev->dev->pdr_head;
1083
1084         do {
1085                 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1086                 pd = &core_dev->dev->pdr[tail];
1087                 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1088                      ((READ_ONCE(pd->pd_ctl.w) &
1089                        (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1090                        PD_CTL_PE_DONE)) {
1091                         crypto4xx_pd_done(core_dev->dev, tail);
1092                         tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1093                 } else {
1094                         /* if tail not done, break */
1095                         break;
1096                 }
1097         } while (head != tail);
1098 }
1099
1100 /*
1101  * Top Half of isr.
1102  */
1103 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1104                                                       u32 clr_val)
1105 {
1106         struct device *dev = (struct device *)data;
1107         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1108
1109         writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1110         tasklet_schedule(&core_dev->tasklet);
1111
1112         return IRQ_HANDLED;
1113 }
1114
1115 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1116 {
1117         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1118 }
1119
1120 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1121 {
1122         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1123                 PPC4XX_TMO_ERR_INT);
1124 }
1125
1126 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1127                                  u8 *data, unsigned int max)
1128 {
1129         unsigned int i, curr = 0;
1130         u32 val[2];
1131
1132         do {
1133                 /* trigger PRN generation */
1134                 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1135                        dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1136
1137                 for (i = 0; i < 1024; i++) {
1138                         /* usually 19 iterations are enough */
1139                         if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1140                              CRYPTO4XX_PRNG_STAT_BUSY))
1141                                 continue;
1142
1143                         val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1144                         val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1145                         break;
1146                 }
1147                 if (i == 1024)
1148                         return -ETIMEDOUT;
1149
1150                 if ((max - curr) >= 8) {
1151                         memcpy(data, &val, 8);
1152                         data += 8;
1153                         curr += 8;
1154                 } else {
1155                         /* copy only remaining bytes */
1156                         memcpy(data, &val, max - curr);
1157                         break;
1158                 }
1159         } while (curr < max);
1160
1161         return curr;
1162 }
1163
1164 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1165                                    const u8 *src, unsigned int slen,
1166                                    u8 *dstn, unsigned int dlen)
1167 {
1168         struct rng_alg *alg = crypto_rng_alg(tfm);
1169         struct crypto4xx_alg *amcc_alg;
1170         struct crypto4xx_device *dev;
1171         int ret;
1172
1173         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1174         dev = amcc_alg->dev;
1175
1176         mutex_lock(&dev->core_dev->rng_lock);
1177         ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1178         mutex_unlock(&dev->core_dev->rng_lock);
1179         return ret;
1180 }
1181
1182
1183 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1184                         unsigned int slen)
1185 {
1186         return 0;
1187 }
1188
1189 /*
1190  * Supported Crypto Algorithms
1191  */
1192 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1193         /* Crypto AES modes */
1194         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1195                 .base = {
1196                         .cra_name = "cbc(aes)",
1197                         .cra_driver_name = "cbc-aes-ppc4xx",
1198                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1199                         .cra_flags = CRYPTO_ALG_ASYNC |
1200                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1201                         .cra_blocksize = AES_BLOCK_SIZE,
1202                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1203                         .cra_module = THIS_MODULE,
1204                 },
1205                 .min_keysize = AES_MIN_KEY_SIZE,
1206                 .max_keysize = AES_MAX_KEY_SIZE,
1207                 .ivsize = AES_IV_SIZE,
1208                 .setkey = crypto4xx_setkey_aes_cbc,
1209                 .encrypt = crypto4xx_encrypt_iv_block,
1210                 .decrypt = crypto4xx_decrypt_iv_block,
1211                 .init = crypto4xx_sk_init,
1212                 .exit = crypto4xx_sk_exit,
1213         } },
1214         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1215                 .base = {
1216                         .cra_name = "cfb(aes)",
1217                         .cra_driver_name = "cfb-aes-ppc4xx",
1218                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1219                         .cra_flags = CRYPTO_ALG_ASYNC |
1220                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1221                         .cra_blocksize = 1,
1222                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1223                         .cra_module = THIS_MODULE,
1224                 },
1225                 .min_keysize = AES_MIN_KEY_SIZE,
1226                 .max_keysize = AES_MAX_KEY_SIZE,
1227                 .ivsize = AES_IV_SIZE,
1228                 .setkey = crypto4xx_setkey_aes_cfb,
1229                 .encrypt = crypto4xx_encrypt_iv_stream,
1230                 .decrypt = crypto4xx_decrypt_iv_stream,
1231                 .init = crypto4xx_sk_init,
1232                 .exit = crypto4xx_sk_exit,
1233         } },
1234         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1235                 .base = {
1236                         .cra_name = "ctr(aes)",
1237                         .cra_driver_name = "ctr-aes-ppc4xx",
1238                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1239                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1240                                 CRYPTO_ALG_ASYNC |
1241                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1242                         .cra_blocksize = 1,
1243                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1244                         .cra_module = THIS_MODULE,
1245                 },
1246                 .min_keysize = AES_MIN_KEY_SIZE,
1247                 .max_keysize = AES_MAX_KEY_SIZE,
1248                 .ivsize = AES_IV_SIZE,
1249                 .setkey = crypto4xx_setkey_aes_ctr,
1250                 .encrypt = crypto4xx_encrypt_ctr,
1251                 .decrypt = crypto4xx_decrypt_ctr,
1252                 .init = crypto4xx_sk_init,
1253                 .exit = crypto4xx_sk_exit,
1254         } },
1255         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1256                 .base = {
1257                         .cra_name = "rfc3686(ctr(aes))",
1258                         .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1259                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1260                         .cra_flags = CRYPTO_ALG_ASYNC |
1261                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1262                         .cra_blocksize = 1,
1263                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1264                         .cra_module = THIS_MODULE,
1265                 },
1266                 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1267                 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1268                 .ivsize = CTR_RFC3686_IV_SIZE,
1269                 .setkey = crypto4xx_setkey_rfc3686,
1270                 .encrypt = crypto4xx_rfc3686_encrypt,
1271                 .decrypt = crypto4xx_rfc3686_decrypt,
1272                 .init = crypto4xx_sk_init,
1273                 .exit = crypto4xx_sk_exit,
1274         } },
1275         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1276                 .base = {
1277                         .cra_name = "ecb(aes)",
1278                         .cra_driver_name = "ecb-aes-ppc4xx",
1279                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1280                         .cra_flags = CRYPTO_ALG_ASYNC |
1281                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1282                         .cra_blocksize = AES_BLOCK_SIZE,
1283                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1284                         .cra_module = THIS_MODULE,
1285                 },
1286                 .min_keysize = AES_MIN_KEY_SIZE,
1287                 .max_keysize = AES_MAX_KEY_SIZE,
1288                 .setkey = crypto4xx_setkey_aes_ecb,
1289                 .encrypt = crypto4xx_encrypt_noiv_block,
1290                 .decrypt = crypto4xx_decrypt_noiv_block,
1291                 .init = crypto4xx_sk_init,
1292                 .exit = crypto4xx_sk_exit,
1293         } },
1294         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1295                 .base = {
1296                         .cra_name = "ofb(aes)",
1297                         .cra_driver_name = "ofb-aes-ppc4xx",
1298                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1299                         .cra_flags = CRYPTO_ALG_ASYNC |
1300                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1301                         .cra_blocksize = 1,
1302                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1303                         .cra_module = THIS_MODULE,
1304                 },
1305                 .min_keysize = AES_MIN_KEY_SIZE,
1306                 .max_keysize = AES_MAX_KEY_SIZE,
1307                 .ivsize = AES_IV_SIZE,
1308                 .setkey = crypto4xx_setkey_aes_ofb,
1309                 .encrypt = crypto4xx_encrypt_iv_stream,
1310                 .decrypt = crypto4xx_decrypt_iv_stream,
1311                 .init = crypto4xx_sk_init,
1312                 .exit = crypto4xx_sk_exit,
1313         } },
1314
1315         /* AEAD */
1316         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1317                 .setkey         = crypto4xx_setkey_aes_ccm,
1318                 .setauthsize    = crypto4xx_setauthsize_aead,
1319                 .encrypt        = crypto4xx_encrypt_aes_ccm,
1320                 .decrypt        = crypto4xx_decrypt_aes_ccm,
1321                 .init           = crypto4xx_aead_init,
1322                 .exit           = crypto4xx_aead_exit,
1323                 .ivsize         = AES_BLOCK_SIZE,
1324                 .maxauthsize    = 16,
1325                 .base = {
1326                         .cra_name       = "ccm(aes)",
1327                         .cra_driver_name = "ccm-aes-ppc4xx",
1328                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1329                         .cra_flags      = CRYPTO_ALG_ASYNC |
1330                                           CRYPTO_ALG_NEED_FALLBACK |
1331                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1332                         .cra_blocksize  = 1,
1333                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1334                         .cra_module     = THIS_MODULE,
1335                 },
1336         } },
1337         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1338                 .setkey         = crypto4xx_setkey_aes_gcm,
1339                 .setauthsize    = crypto4xx_setauthsize_aead,
1340                 .encrypt        = crypto4xx_encrypt_aes_gcm,
1341                 .decrypt        = crypto4xx_decrypt_aes_gcm,
1342                 .init           = crypto4xx_aead_init,
1343                 .exit           = crypto4xx_aead_exit,
1344                 .ivsize         = GCM_AES_IV_SIZE,
1345                 .maxauthsize    = 16,
1346                 .base = {
1347                         .cra_name       = "gcm(aes)",
1348                         .cra_driver_name = "gcm-aes-ppc4xx",
1349                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1350                         .cra_flags      = CRYPTO_ALG_ASYNC |
1351                                           CRYPTO_ALG_NEED_FALLBACK |
1352                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1353                         .cra_blocksize  = 1,
1354                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1355                         .cra_module     = THIS_MODULE,
1356                 },
1357         } },
1358         { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1359                 .base = {
1360                         .cra_name               = "stdrng",
1361                         .cra_driver_name        = "crypto4xx_rng",
1362                         .cra_priority           = 300,
1363                         .cra_ctxsize            = 0,
1364                         .cra_module             = THIS_MODULE,
1365                 },
1366                 .generate               = crypto4xx_prng_generate,
1367                 .seed                   = crypto4xx_prng_seed,
1368                 .seedsize               = 0,
1369         } },
1370 };
1371
1372 /*
1373  * Module Initialization Routine
1374  */
1375 static int crypto4xx_probe(struct platform_device *ofdev)
1376 {
1377         int rc;
1378         struct resource res;
1379         struct device *dev = &ofdev->dev;
1380         struct crypto4xx_core_device *core_dev;
1381         u32 pvr;
1382         bool is_revb = true;
1383
1384         rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1385         if (rc)
1386                 return -ENODEV;
1387
1388         if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1389                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1390                        mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1391                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1392                        mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1393         } else if (of_find_compatible_node(NULL, NULL,
1394                         "amcc,ppc405ex-crypto")) {
1395                 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1396                        mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1397                 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1398                        mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1399                 is_revb = false;
1400         } else if (of_find_compatible_node(NULL, NULL,
1401                         "amcc,ppc460sx-crypto")) {
1402                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1403                        mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1404                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1405                        mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1406         } else {
1407                 printk(KERN_ERR "Crypto Function Not supported!\n");
1408                 return -EINVAL;
1409         }
1410
1411         core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1412         if (!core_dev)
1413                 return -ENOMEM;
1414
1415         dev_set_drvdata(dev, core_dev);
1416         core_dev->ofdev = ofdev;
1417         core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1418         rc = -ENOMEM;
1419         if (!core_dev->dev)
1420                 goto err_alloc_dev;
1421
1422         /*
1423          * Older version of 460EX/GT have a hardware bug.
1424          * Hence they do not support H/W based security intr coalescing
1425          */
1426         pvr = mfspr(SPRN_PVR);
1427         if (is_revb && ((pvr >> 4) == 0x130218A)) {
1428                 u32 min = PVR_MIN(pvr);
1429
1430                 if (min < 4) {
1431                         dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1432                         is_revb = false;
1433                 }
1434         }
1435
1436         core_dev->dev->core_dev = core_dev;
1437         core_dev->dev->is_revb = is_revb;
1438         core_dev->device = dev;
1439         mutex_init(&core_dev->rng_lock);
1440         spin_lock_init(&core_dev->lock);
1441         INIT_LIST_HEAD(&core_dev->dev->alg_list);
1442         ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1443         rc = crypto4xx_build_sdr(core_dev->dev);
1444         if (rc)
1445                 goto err_build_sdr;
1446         rc = crypto4xx_build_pdr(core_dev->dev);
1447         if (rc)
1448                 goto err_build_sdr;
1449
1450         rc = crypto4xx_build_gdr(core_dev->dev);
1451         if (rc)
1452                 goto err_build_sdr;
1453
1454         /* Init tasklet for bottom half processing */
1455         tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1456                      (unsigned long) dev);
1457
1458         core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1459         if (!core_dev->dev->ce_base) {
1460                 dev_err(dev, "failed to of_iomap\n");
1461                 rc = -ENOMEM;
1462                 goto err_iomap;
1463         }
1464
1465         /* Register for Crypto isr, Crypto Engine IRQ */
1466         core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1467         rc = request_irq(core_dev->irq, is_revb ?
1468                          crypto4xx_ce_interrupt_handler_revb :
1469                          crypto4xx_ce_interrupt_handler, 0,
1470                          KBUILD_MODNAME, dev);
1471         if (rc)
1472                 goto err_request_irq;
1473
1474         /* need to setup pdr, rdr, gdr and sdr before this */
1475         crypto4xx_hw_init(core_dev->dev);
1476
1477         /* Register security algorithms with Linux CryptoAPI */
1478         rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1479                                ARRAY_SIZE(crypto4xx_alg));
1480         if (rc)
1481                 goto err_start_dev;
1482
1483         ppc4xx_trng_probe(core_dev);
1484         return 0;
1485
1486 err_start_dev:
1487         free_irq(core_dev->irq, dev);
1488 err_request_irq:
1489         irq_dispose_mapping(core_dev->irq);
1490         iounmap(core_dev->dev->ce_base);
1491 err_iomap:
1492         tasklet_kill(&core_dev->tasklet);
1493 err_build_sdr:
1494         crypto4xx_destroy_sdr(core_dev->dev);
1495         crypto4xx_destroy_gdr(core_dev->dev);
1496         crypto4xx_destroy_pdr(core_dev->dev);
1497         kfree(core_dev->dev);
1498 err_alloc_dev:
1499         kfree(core_dev);
1500
1501         return rc;
1502 }
1503
1504 static int crypto4xx_remove(struct platform_device *ofdev)
1505 {
1506         struct device *dev = &ofdev->dev;
1507         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1508
1509         ppc4xx_trng_remove(core_dev);
1510
1511         free_irq(core_dev->irq, dev);
1512         irq_dispose_mapping(core_dev->irq);
1513
1514         tasklet_kill(&core_dev->tasklet);
1515         /* Un-register with Linux CryptoAPI */
1516         crypto4xx_unregister_alg(core_dev->dev);
1517         mutex_destroy(&core_dev->rng_lock);
1518         /* Free all allocated memory */
1519         crypto4xx_stop_all(core_dev);
1520
1521         return 0;
1522 }
1523
1524 static const struct of_device_id crypto4xx_match[] = {
1525         { .compatible      = "amcc,ppc4xx-crypto",},
1526         { },
1527 };
1528 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1529
1530 static struct platform_driver crypto4xx_driver = {
1531         .driver = {
1532                 .name = KBUILD_MODNAME,
1533                 .of_match_table = crypto4xx_match,
1534         },
1535         .probe          = crypto4xx_probe,
1536         .remove         = crypto4xx_remove,
1537 };
1538
1539 module_platform_driver(crypto4xx_driver);
1540
1541 MODULE_LICENSE("GPL");
1542 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1543 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");