Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[sfrench/cifs-2.6.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/hashtable.h>
33 #include <trace/events/power.h>
34
35 #include <asm/cputhreads.h>
36 #include <asm/firmware.h>
37 #include <asm/reg.h>
38 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <asm/opal.h>
40 #include <linux/timer.h>
41
42 #define POWERNV_MAX_PSTATES_ORDER  8
43 #define POWERNV_MAX_PSTATES     (1UL << (POWERNV_MAX_PSTATES_ORDER))
44 #define PMSR_PSAFE_ENABLE       (1UL << 30)
45 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
46 #define MAX_PSTATE_SHIFT        32
47 #define LPSTATE_SHIFT           48
48 #define GPSTATE_SHIFT           56
49
50 #define MAX_RAMP_DOWN_TIME                              5120
51 /*
52  * On an idle system we want the global pstate to ramp-down from max value to
53  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54  * then ramp-down rapidly later on.
55  *
56  * This gives a percentage rampdown for time elapsed in milliseconds.
57  * ramp_down_percentage = ((ms * ms) >> 18)
58  *                      ~= 3.8 * (sec * sec)
59  *
60  * At 0 ms      ramp_down_percent = 0
61  * At 5120 ms   ramp_down_percent = 100
62  */
63 #define ramp_down_percent(time)         ((time * time) >> 18)
64
65 /* Interval after which the timer is queued to bring down global pstate */
66 #define GPSTATE_TIMER_INTERVAL                          2000
67
68 /**
69  * struct global_pstate_info -  Per policy data structure to maintain history of
70  *                              global pstates
71  * @highest_lpstate_idx:        The local pstate index from which we are
72  *                              ramping down
73  * @elapsed_time:               Time in ms spent in ramping down from
74  *                              highest_lpstate_idx
75  * @last_sampled_time:          Time from boot in ms when global pstates were
76  *                              last set
77  * @last_lpstate_idx,           Last set value of local pstate and global
78  * last_gpstate_idx             pstate in terms of cpufreq table index
79  * @timer:                      Is used for ramping down if cpu goes idle for
80  *                              a long time with global pstate held high
81  * @gpstate_lock:               A spinlock to maintain synchronization between
82  *                              routines called by the timer handler and
83  *                              governer's target_index calls
84  */
85 struct global_pstate_info {
86         int highest_lpstate_idx;
87         unsigned int elapsed_time;
88         unsigned int last_sampled_time;
89         int last_lpstate_idx;
90         int last_gpstate_idx;
91         spinlock_t gpstate_lock;
92         struct timer_list timer;
93         struct cpufreq_policy *policy;
94 };
95
96 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
97
98 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
99 /**
100  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
101  *                                indexed by a function of pstate id.
102  *
103  * @pstate_id: pstate id for this entry.
104  *
105  * @cpufreq_table_idx: Index into the powernv_freqs
106  *                     cpufreq_frequency_table for frequency
107  *                     corresponding to pstate_id.
108  *
109  * @hentry: hlist_node that hooks this entry into the pstate_revmap
110  *          hashtable
111  */
112 struct pstate_idx_revmap_data {
113         u8 pstate_id;
114         unsigned int cpufreq_table_idx;
115         struct hlist_node hentry;
116 };
117
118 static bool rebooting, throttled, occ_reset;
119
120 static const char * const throttle_reason[] = {
121         "No throttling",
122         "Power Cap",
123         "Processor Over Temperature",
124         "Power Supply Failure",
125         "Over Current",
126         "OCC Reset"
127 };
128
129 enum throttle_reason_type {
130         NO_THROTTLE = 0,
131         POWERCAP,
132         CPU_OVERTEMP,
133         POWER_SUPPLY_FAILURE,
134         OVERCURRENT,
135         OCC_RESET_THROTTLE,
136         OCC_MAX_REASON
137 };
138
139 static struct chip {
140         unsigned int id;
141         bool throttled;
142         bool restore;
143         u8 throttle_reason;
144         cpumask_t mask;
145         struct work_struct throttle;
146         int throttle_turbo;
147         int throttle_sub_turbo;
148         int reason[OCC_MAX_REASON];
149 } *chips;
150
151 static int nr_chips;
152 static DEFINE_PER_CPU(struct chip *, chip_info);
153
154 /*
155  * Note:
156  * The set of pstates consists of contiguous integers.
157  * powernv_pstate_info stores the index of the frequency table for
158  * max, min and nominal frequencies. It also stores number of
159  * available frequencies.
160  *
161  * powernv_pstate_info.nominal indicates the index to the highest
162  * non-turbo frequency.
163  */
164 static struct powernv_pstate_info {
165         unsigned int min;
166         unsigned int max;
167         unsigned int nominal;
168         unsigned int nr_pstates;
169         bool wof_enabled;
170 } powernv_pstate_info;
171
172 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
173 {
174         return ((pmsr_val >> shift) & 0xFF);
175 }
176
177 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
178 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
179 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
180
181 /* Use following functions for conversions between pstate_id and index */
182
183 /**
184  * idx_to_pstate : Returns the pstate id corresponding to the
185  *                 frequency in the cpufreq frequency table
186  *                 powernv_freqs indexed by @i.
187  *
188  *                 If @i is out of bound, this will return the pstate
189  *                 corresponding to the nominal frequency.
190  */
191 static inline u8 idx_to_pstate(unsigned int i)
192 {
193         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
194                 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
195                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
196         }
197
198         return powernv_freqs[i].driver_data;
199 }
200
201 /**
202  * pstate_to_idx : Returns the index in the cpufreq frequencytable
203  *                 powernv_freqs for the frequency whose corresponding
204  *                 pstate id is @pstate.
205  *
206  *                 If no frequency corresponding to @pstate is found,
207  *                 this will return the index of the nominal
208  *                 frequency.
209  */
210 static unsigned int pstate_to_idx(u8 pstate)
211 {
212         unsigned int key = pstate % POWERNV_MAX_PSTATES;
213         struct pstate_idx_revmap_data *revmap_data;
214
215         hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
216                 if (revmap_data->pstate_id == pstate)
217                         return revmap_data->cpufreq_table_idx;
218         }
219
220         pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
221         return powernv_pstate_info.nominal;
222 }
223
224 static inline void reset_gpstates(struct cpufreq_policy *policy)
225 {
226         struct global_pstate_info *gpstates = policy->driver_data;
227
228         gpstates->highest_lpstate_idx = 0;
229         gpstates->elapsed_time = 0;
230         gpstates->last_sampled_time = 0;
231         gpstates->last_lpstate_idx = 0;
232         gpstates->last_gpstate_idx = 0;
233 }
234
235 /*
236  * Initialize the freq table based on data obtained
237  * from the firmware passed via device-tree
238  */
239 static int init_powernv_pstates(void)
240 {
241         struct device_node *power_mgt;
242         int i, nr_pstates = 0;
243         const __be32 *pstate_ids, *pstate_freqs;
244         u32 len_ids, len_freqs;
245         u32 pstate_min, pstate_max, pstate_nominal;
246         u32 pstate_turbo, pstate_ultra_turbo;
247
248         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
249         if (!power_mgt) {
250                 pr_warn("power-mgt node not found\n");
251                 return -ENODEV;
252         }
253
254         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
255                 pr_warn("ibm,pstate-min node not found\n");
256                 goto out;
257         }
258
259         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
260                 pr_warn("ibm,pstate-max node not found\n");
261                 goto out;
262         }
263
264         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
265                                  &pstate_nominal)) {
266                 pr_warn("ibm,pstate-nominal not found\n");
267                 goto out;
268         }
269
270         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
271                                  &pstate_ultra_turbo)) {
272                 powernv_pstate_info.wof_enabled = false;
273                 goto next;
274         }
275
276         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
277                                  &pstate_turbo)) {
278                 powernv_pstate_info.wof_enabled = false;
279                 goto next;
280         }
281
282         if (pstate_turbo == pstate_ultra_turbo)
283                 powernv_pstate_info.wof_enabled = false;
284         else
285                 powernv_pstate_info.wof_enabled = true;
286
287 next:
288         pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
289                 pstate_nominal, pstate_max);
290         pr_info("Workload Optimized Frequency is %s in the platform\n",
291                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
292
293         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
294         if (!pstate_ids) {
295                 pr_warn("ibm,pstate-ids not found\n");
296                 goto out;
297         }
298
299         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
300                                       &len_freqs);
301         if (!pstate_freqs) {
302                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
303                 goto out;
304         }
305
306         if (len_ids != len_freqs) {
307                 pr_warn("Entries in ibm,pstate-ids and "
308                         "ibm,pstate-frequencies-mhz does not match\n");
309         }
310
311         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
312         if (!nr_pstates) {
313                 pr_warn("No PStates found\n");
314                 goto out;
315         }
316
317         powernv_pstate_info.nr_pstates = nr_pstates;
318         pr_debug("NR PStates %d\n", nr_pstates);
319
320         for (i = 0; i < nr_pstates; i++) {
321                 u32 id = be32_to_cpu(pstate_ids[i]);
322                 u32 freq = be32_to_cpu(pstate_freqs[i]);
323                 struct pstate_idx_revmap_data *revmap_data;
324                 unsigned int key;
325
326                 pr_debug("PState id %d freq %d MHz\n", id, freq);
327                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
328                 powernv_freqs[i].driver_data = id & 0xFF;
329
330                 revmap_data = (struct pstate_idx_revmap_data *)
331                               kmalloc(sizeof(*revmap_data), GFP_KERNEL);
332
333                 revmap_data->pstate_id = id & 0xFF;
334                 revmap_data->cpufreq_table_idx = i;
335                 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
336                 hash_add(pstate_revmap, &revmap_data->hentry, key);
337
338                 if (id == pstate_max)
339                         powernv_pstate_info.max = i;
340                 if (id == pstate_nominal)
341                         powernv_pstate_info.nominal = i;
342                 if (id == pstate_min)
343                         powernv_pstate_info.min = i;
344
345                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
346                         int j;
347
348                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
349                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
350                 }
351         }
352
353         /* End of list marker entry */
354         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
355
356         of_node_put(power_mgt);
357         return 0;
358 out:
359         of_node_put(power_mgt);
360         return -ENODEV;
361 }
362
363 /* Returns the CPU frequency corresponding to the pstate_id. */
364 static unsigned int pstate_id_to_freq(u8 pstate_id)
365 {
366         int i;
367
368         i = pstate_to_idx(pstate_id);
369         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
370                 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
371                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
372                 i = powernv_pstate_info.nominal;
373         }
374
375         return powernv_freqs[i].frequency;
376 }
377
378 /*
379  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
380  * the firmware
381  */
382 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
383                                         char *buf)
384 {
385         return sprintf(buf, "%u\n",
386                 powernv_freqs[powernv_pstate_info.nominal].frequency);
387 }
388
389 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
390         __ATTR_RO(cpuinfo_nominal_freq);
391
392 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
393
394 static struct freq_attr *powernv_cpu_freq_attr[] = {
395         &cpufreq_freq_attr_scaling_available_freqs,
396         &cpufreq_freq_attr_cpuinfo_nominal_freq,
397         &cpufreq_freq_attr_scaling_boost_freqs,
398         NULL,
399 };
400
401 #define throttle_attr(name, member)                                     \
402 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
403 {                                                                       \
404         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
405                                                                         \
406         return sprintf(buf, "%u\n", chip->member);                      \
407 }                                                                       \
408                                                                         \
409 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
410
411 throttle_attr(unthrottle, reason[NO_THROTTLE]);
412 throttle_attr(powercap, reason[POWERCAP]);
413 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
414 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
415 throttle_attr(overcurrent, reason[OVERCURRENT]);
416 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
417 throttle_attr(turbo_stat, throttle_turbo);
418 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
419
420 static struct attribute *throttle_attrs[] = {
421         &throttle_attr_unthrottle.attr,
422         &throttle_attr_powercap.attr,
423         &throttle_attr_overtemp.attr,
424         &throttle_attr_supply_fault.attr,
425         &throttle_attr_overcurrent.attr,
426         &throttle_attr_occ_reset.attr,
427         &throttle_attr_turbo_stat.attr,
428         &throttle_attr_sub_turbo_stat.attr,
429         NULL,
430 };
431
432 static const struct attribute_group throttle_attr_grp = {
433         .name   = "throttle_stats",
434         .attrs  = throttle_attrs,
435 };
436
437 /* Helper routines */
438
439 /* Access helpers to power mgt SPR */
440
441 static inline unsigned long get_pmspr(unsigned long sprn)
442 {
443         switch (sprn) {
444         case SPRN_PMCR:
445                 return mfspr(SPRN_PMCR);
446
447         case SPRN_PMICR:
448                 return mfspr(SPRN_PMICR);
449
450         case SPRN_PMSR:
451                 return mfspr(SPRN_PMSR);
452         }
453         BUG();
454 }
455
456 static inline void set_pmspr(unsigned long sprn, unsigned long val)
457 {
458         switch (sprn) {
459         case SPRN_PMCR:
460                 mtspr(SPRN_PMCR, val);
461                 return;
462
463         case SPRN_PMICR:
464                 mtspr(SPRN_PMICR, val);
465                 return;
466         }
467         BUG();
468 }
469
470 /*
471  * Use objects of this type to query/update
472  * pstates on a remote CPU via smp_call_function.
473  */
474 struct powernv_smp_call_data {
475         unsigned int freq;
476         u8 pstate_id;
477         u8 gpstate_id;
478 };
479
480 /*
481  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
482  *
483  * Called via smp_call_function.
484  *
485  * Note: The caller of the smp_call_function should pass an argument of
486  * the type 'struct powernv_smp_call_data *' along with this function.
487  *
488  * The current frequency on this CPU will be returned via
489  * ((struct powernv_smp_call_data *)arg)->freq;
490  */
491 static void powernv_read_cpu_freq(void *arg)
492 {
493         unsigned long pmspr_val;
494         struct powernv_smp_call_data *freq_data = arg;
495
496         pmspr_val = get_pmspr(SPRN_PMSR);
497         freq_data->pstate_id = extract_local_pstate(pmspr_val);
498         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
499
500         pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
501                  raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
502                  freq_data->freq);
503 }
504
505 /*
506  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
507  * firmware for CPU 'cpu'. This value is reported through the sysfs
508  * file cpuinfo_cur_freq.
509  */
510 static unsigned int powernv_cpufreq_get(unsigned int cpu)
511 {
512         struct powernv_smp_call_data freq_data;
513
514         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
515                         &freq_data, 1);
516
517         return freq_data.freq;
518 }
519
520 /*
521  * set_pstate: Sets the pstate on this CPU.
522  *
523  * This is called via an smp_call_function.
524  *
525  * The caller must ensure that freq_data is of the type
526  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
527  * on this CPU should be present in freq_data->pstate_id.
528  */
529 static void set_pstate(void *data)
530 {
531         unsigned long val;
532         struct powernv_smp_call_data *freq_data = data;
533         unsigned long pstate_ul = freq_data->pstate_id;
534         unsigned long gpstate_ul = freq_data->gpstate_id;
535
536         val = get_pmspr(SPRN_PMCR);
537         val = val & 0x0000FFFFFFFFFFFFULL;
538
539         pstate_ul = pstate_ul & 0xFF;
540         gpstate_ul = gpstate_ul & 0xFF;
541
542         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
543         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
544
545         pr_debug("Setting cpu %d pmcr to %016lX\n",
546                         raw_smp_processor_id(), val);
547         set_pmspr(SPRN_PMCR, val);
548 }
549
550 /*
551  * get_nominal_index: Returns the index corresponding to the nominal
552  * pstate in the cpufreq table
553  */
554 static inline unsigned int get_nominal_index(void)
555 {
556         return powernv_pstate_info.nominal;
557 }
558
559 static void powernv_cpufreq_throttle_check(void *data)
560 {
561         struct chip *chip;
562         unsigned int cpu = smp_processor_id();
563         unsigned long pmsr;
564         u8 pmsr_pmax;
565         unsigned int pmsr_pmax_idx;
566
567         pmsr = get_pmspr(SPRN_PMSR);
568         chip = this_cpu_read(chip_info);
569
570         /* Check for Pmax Capping */
571         pmsr_pmax = extract_max_pstate(pmsr);
572         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
573         if (pmsr_pmax_idx != powernv_pstate_info.max) {
574                 if (chip->throttled)
575                         goto next;
576                 chip->throttled = true;
577                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
578                         pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
579                                      cpu, chip->id, pmsr_pmax,
580                                      idx_to_pstate(powernv_pstate_info.nominal));
581                         chip->throttle_sub_turbo++;
582                 } else {
583                         chip->throttle_turbo++;
584                 }
585                 trace_powernv_throttle(chip->id,
586                                       throttle_reason[chip->throttle_reason],
587                                       pmsr_pmax);
588         } else if (chip->throttled) {
589                 chip->throttled = false;
590                 trace_powernv_throttle(chip->id,
591                                       throttle_reason[chip->throttle_reason],
592                                       pmsr_pmax);
593         }
594
595         /* Check if Psafe_mode_active is set in PMSR. */
596 next:
597         if (pmsr & PMSR_PSAFE_ENABLE) {
598                 throttled = true;
599                 pr_info("Pstate set to safe frequency\n");
600         }
601
602         /* Check if SPR_EM_DISABLE is set in PMSR */
603         if (pmsr & PMSR_SPR_EM_DISABLE) {
604                 throttled = true;
605                 pr_info("Frequency Control disabled from OS\n");
606         }
607
608         if (throttled) {
609                 pr_info("PMSR = %16lx\n", pmsr);
610                 pr_warn("CPU Frequency could be throttled\n");
611         }
612 }
613
614 /**
615  * calc_global_pstate - Calculate global pstate
616  * @elapsed_time:               Elapsed time in milliseconds
617  * @local_pstate_idx:           New local pstate
618  * @highest_lpstate_idx:        pstate from which its ramping down
619  *
620  * Finds the appropriate global pstate based on the pstate from which its
621  * ramping down and the time elapsed in ramping down. It follows a quadratic
622  * equation which ensures that it reaches ramping down to pmin in 5sec.
623  */
624 static inline int calc_global_pstate(unsigned int elapsed_time,
625                                      int highest_lpstate_idx,
626                                      int local_pstate_idx)
627 {
628         int index_diff;
629
630         /*
631          * Using ramp_down_percent we get the percentage of rampdown
632          * that we are expecting to be dropping. Difference between
633          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
634          * number of how many pstates we will drop eventually by the end of
635          * 5 seconds, then just scale it get the number pstates to be dropped.
636          */
637         index_diff =  ((int)ramp_down_percent(elapsed_time) *
638                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
639
640         /* Ensure that global pstate is >= to local pstate */
641         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
642                 return local_pstate_idx;
643         else
644                 return highest_lpstate_idx + index_diff;
645 }
646
647 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
648 {
649         unsigned int timer_interval;
650
651         /*
652          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
653          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
654          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
655          * seconds of ramp down time.
656          */
657         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
658              > MAX_RAMP_DOWN_TIME)
659                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
660         else
661                 timer_interval = GPSTATE_TIMER_INTERVAL;
662
663         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
664 }
665
666 /**
667  * gpstate_timer_handler
668  *
669  * @data: pointer to cpufreq_policy on which timer was queued
670  *
671  * This handler brings down the global pstate closer to the local pstate
672  * according quadratic equation. Queues a new timer if it is still not equal
673  * to local pstate
674  */
675 void gpstate_timer_handler(struct timer_list *t)
676 {
677         struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
678         struct cpufreq_policy *policy = gpstates->policy;
679         int gpstate_idx, lpstate_idx;
680         unsigned long val;
681         unsigned int time_diff = jiffies_to_msecs(jiffies)
682                                         - gpstates->last_sampled_time;
683         struct powernv_smp_call_data freq_data;
684
685         if (!spin_trylock(&gpstates->gpstate_lock))
686                 return;
687         /*
688          * If the timer has migrated to the different cpu then bring
689          * it back to one of the policy->cpus
690          */
691         if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
692                 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
693                 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
694                 spin_unlock(&gpstates->gpstate_lock);
695                 return;
696         }
697
698         /*
699          * If PMCR was last updated was using fast_swtich then
700          * We may have wrong in gpstate->last_lpstate_idx
701          * value. Hence, read from PMCR to get correct data.
702          */
703         val = get_pmspr(SPRN_PMCR);
704         freq_data.gpstate_id = extract_global_pstate(val);
705         freq_data.pstate_id = extract_local_pstate(val);
706         if (freq_data.gpstate_id  == freq_data.pstate_id) {
707                 reset_gpstates(policy);
708                 spin_unlock(&gpstates->gpstate_lock);
709                 return;
710         }
711
712         gpstates->last_sampled_time += time_diff;
713         gpstates->elapsed_time += time_diff;
714
715         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
716                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
717                 lpstate_idx = gpstate_idx;
718                 reset_gpstates(policy);
719                 gpstates->highest_lpstate_idx = gpstate_idx;
720         } else {
721                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
722                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
723                                                  gpstates->highest_lpstate_idx,
724                                                  lpstate_idx);
725         }
726         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
727         gpstates->last_gpstate_idx = gpstate_idx;
728         gpstates->last_lpstate_idx = lpstate_idx;
729         /*
730          * If local pstate is equal to global pstate, rampdown is over
731          * So timer is not required to be queued.
732          */
733         if (gpstate_idx != gpstates->last_lpstate_idx)
734                 queue_gpstate_timer(gpstates);
735
736         set_pstate(&freq_data);
737         spin_unlock(&gpstates->gpstate_lock);
738 }
739
740 /*
741  * powernv_cpufreq_target_index: Sets the frequency corresponding to
742  * the cpufreq table entry indexed by new_index on the cpus in the
743  * mask policy->cpus
744  */
745 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
746                                         unsigned int new_index)
747 {
748         struct powernv_smp_call_data freq_data;
749         unsigned int cur_msec, gpstate_idx;
750         struct global_pstate_info *gpstates = policy->driver_data;
751
752         if (unlikely(rebooting) && new_index != get_nominal_index())
753                 return 0;
754
755         if (!throttled) {
756                 /* we don't want to be preempted while
757                  * checking if the CPU frequency has been throttled
758                  */
759                 preempt_disable();
760                 powernv_cpufreq_throttle_check(NULL);
761                 preempt_enable();
762         }
763
764         cur_msec = jiffies_to_msecs(get_jiffies_64());
765
766         freq_data.pstate_id = idx_to_pstate(new_index);
767         if (!gpstates) {
768                 freq_data.gpstate_id = freq_data.pstate_id;
769                 goto no_gpstate;
770         }
771
772         spin_lock(&gpstates->gpstate_lock);
773
774         if (!gpstates->last_sampled_time) {
775                 gpstate_idx = new_index;
776                 gpstates->highest_lpstate_idx = new_index;
777                 goto gpstates_done;
778         }
779
780         if (gpstates->last_gpstate_idx < new_index) {
781                 gpstates->elapsed_time += cur_msec -
782                                                  gpstates->last_sampled_time;
783
784                 /*
785                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
786                  * we should be resetting all global pstate related data. Set it
787                  * equal to local pstate to start fresh.
788                  */
789                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
790                         reset_gpstates(policy);
791                         gpstates->highest_lpstate_idx = new_index;
792                         gpstate_idx = new_index;
793                 } else {
794                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
795                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
796                                                          gpstates->highest_lpstate_idx,
797                                                          new_index);
798                 }
799         } else {
800                 reset_gpstates(policy);
801                 gpstates->highest_lpstate_idx = new_index;
802                 gpstate_idx = new_index;
803         }
804
805         /*
806          * If local pstate is equal to global pstate, rampdown is over
807          * So timer is not required to be queued.
808          */
809         if (gpstate_idx != new_index)
810                 queue_gpstate_timer(gpstates);
811         else
812                 del_timer_sync(&gpstates->timer);
813
814 gpstates_done:
815         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
816         gpstates->last_sampled_time = cur_msec;
817         gpstates->last_gpstate_idx = gpstate_idx;
818         gpstates->last_lpstate_idx = new_index;
819
820         spin_unlock(&gpstates->gpstate_lock);
821
822 no_gpstate:
823         /*
824          * Use smp_call_function to send IPI and execute the
825          * mtspr on target CPU.  We could do that without IPI
826          * if current CPU is within policy->cpus (core)
827          */
828         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
829         return 0;
830 }
831
832 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
833 {
834         int base, i;
835         struct kernfs_node *kn;
836         struct global_pstate_info *gpstates;
837
838         base = cpu_first_thread_sibling(policy->cpu);
839
840         for (i = 0; i < threads_per_core; i++)
841                 cpumask_set_cpu(base + i, policy->cpus);
842
843         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
844         if (!kn) {
845                 int ret;
846
847                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
848                 if (ret) {
849                         pr_info("Failed to create throttle stats directory for cpu %d\n",
850                                 policy->cpu);
851                         return ret;
852                 }
853         } else {
854                 kernfs_put(kn);
855         }
856
857         policy->freq_table = powernv_freqs;
858         policy->fast_switch_possible = true;
859
860         if (pvr_version_is(PVR_POWER9))
861                 return 0;
862
863         /* Initialise Gpstate ramp-down timer only on POWER8 */
864         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
865         if (!gpstates)
866                 return -ENOMEM;
867
868         policy->driver_data = gpstates;
869
870         /* initialize timer */
871         gpstates->policy = policy;
872         timer_setup(&gpstates->timer, gpstate_timer_handler,
873                     TIMER_PINNED | TIMER_DEFERRABLE);
874         gpstates->timer.expires = jiffies +
875                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
876         spin_lock_init(&gpstates->gpstate_lock);
877
878         return 0;
879 }
880
881 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
882 {
883         /* timer is deleted in cpufreq_cpu_stop() */
884         kfree(policy->driver_data);
885
886         return 0;
887 }
888
889 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
890                                 unsigned long action, void *unused)
891 {
892         int cpu;
893         struct cpufreq_policy cpu_policy;
894
895         rebooting = true;
896         for_each_online_cpu(cpu) {
897                 cpufreq_get_policy(&cpu_policy, cpu);
898                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
899         }
900
901         return NOTIFY_DONE;
902 }
903
904 static struct notifier_block powernv_cpufreq_reboot_nb = {
905         .notifier_call = powernv_cpufreq_reboot_notifier,
906 };
907
908 void powernv_cpufreq_work_fn(struct work_struct *work)
909 {
910         struct chip *chip = container_of(work, struct chip, throttle);
911         unsigned int cpu;
912         cpumask_t mask;
913
914         get_online_cpus();
915         cpumask_and(&mask, &chip->mask, cpu_online_mask);
916         smp_call_function_any(&mask,
917                               powernv_cpufreq_throttle_check, NULL, 0);
918
919         if (!chip->restore)
920                 goto out;
921
922         chip->restore = false;
923         for_each_cpu(cpu, &mask) {
924                 int index;
925                 struct cpufreq_policy policy;
926
927                 cpufreq_get_policy(&policy, cpu);
928                 index = cpufreq_table_find_index_c(&policy, policy.cur);
929                 powernv_cpufreq_target_index(&policy, index);
930                 cpumask_andnot(&mask, &mask, policy.cpus);
931         }
932 out:
933         put_online_cpus();
934 }
935
936 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
937                                    unsigned long msg_type, void *_msg)
938 {
939         struct opal_msg *msg = _msg;
940         struct opal_occ_msg omsg;
941         int i;
942
943         if (msg_type != OPAL_MSG_OCC)
944                 return 0;
945
946         omsg.type = be64_to_cpu(msg->params[0]);
947
948         switch (omsg.type) {
949         case OCC_RESET:
950                 occ_reset = true;
951                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
952                 /*
953                  * powernv_cpufreq_throttle_check() is called in
954                  * target() callback which can detect the throttle state
955                  * for governors like ondemand.
956                  * But static governors will not call target() often thus
957                  * report throttling here.
958                  */
959                 if (!throttled) {
960                         throttled = true;
961                         pr_warn("CPU frequency is throttled for duration\n");
962                 }
963
964                 break;
965         case OCC_LOAD:
966                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
967                 break;
968         case OCC_THROTTLE:
969                 omsg.chip = be64_to_cpu(msg->params[1]);
970                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
971
972                 if (occ_reset) {
973                         occ_reset = false;
974                         throttled = false;
975                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
976
977                         for (i = 0; i < nr_chips; i++) {
978                                 chips[i].restore = true;
979                                 schedule_work(&chips[i].throttle);
980                         }
981
982                         return 0;
983                 }
984
985                 for (i = 0; i < nr_chips; i++)
986                         if (chips[i].id == omsg.chip)
987                                 break;
988
989                 if (omsg.throttle_status >= 0 &&
990                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
991                         chips[i].throttle_reason = omsg.throttle_status;
992                         chips[i].reason[omsg.throttle_status]++;
993                 }
994
995                 if (!omsg.throttle_status)
996                         chips[i].restore = true;
997
998                 schedule_work(&chips[i].throttle);
999         }
1000         return 0;
1001 }
1002
1003 static struct notifier_block powernv_cpufreq_opal_nb = {
1004         .notifier_call  = powernv_cpufreq_occ_msg,
1005         .next           = NULL,
1006         .priority       = 0,
1007 };
1008
1009 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1010 {
1011         struct powernv_smp_call_data freq_data;
1012         struct global_pstate_info *gpstates = policy->driver_data;
1013
1014         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1015         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1016         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1017         if (gpstates)
1018                 del_timer_sync(&gpstates->timer);
1019 }
1020
1021 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1022                                         unsigned int target_freq)
1023 {
1024         int index;
1025         struct powernv_smp_call_data freq_data;
1026
1027         index = cpufreq_table_find_index_dl(policy, target_freq);
1028         freq_data.pstate_id = powernv_freqs[index].driver_data;
1029         freq_data.gpstate_id = powernv_freqs[index].driver_data;
1030         set_pstate(&freq_data);
1031
1032         return powernv_freqs[index].frequency;
1033 }
1034
1035 static struct cpufreq_driver powernv_cpufreq_driver = {
1036         .name           = "powernv-cpufreq",
1037         .flags          = CPUFREQ_CONST_LOOPS,
1038         .init           = powernv_cpufreq_cpu_init,
1039         .exit           = powernv_cpufreq_cpu_exit,
1040         .verify         = cpufreq_generic_frequency_table_verify,
1041         .target_index   = powernv_cpufreq_target_index,
1042         .fast_switch    = powernv_fast_switch,
1043         .get            = powernv_cpufreq_get,
1044         .stop_cpu       = powernv_cpufreq_stop_cpu,
1045         .attr           = powernv_cpu_freq_attr,
1046 };
1047
1048 static int init_chip_info(void)
1049 {
1050         unsigned int chip[256];
1051         unsigned int cpu, i;
1052         unsigned int prev_chip_id = UINT_MAX;
1053
1054         for_each_possible_cpu(cpu) {
1055                 unsigned int id = cpu_to_chip_id(cpu);
1056
1057                 if (prev_chip_id != id) {
1058                         prev_chip_id = id;
1059                         chip[nr_chips++] = id;
1060                 }
1061         }
1062
1063         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1064         if (!chips)
1065                 return -ENOMEM;
1066
1067         for (i = 0; i < nr_chips; i++) {
1068                 chips[i].id = chip[i];
1069                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1070                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1071                 for_each_cpu(cpu, &chips[i].mask)
1072                         per_cpu(chip_info, cpu) =  &chips[i];
1073         }
1074
1075         return 0;
1076 }
1077
1078 static inline void clean_chip_info(void)
1079 {
1080         kfree(chips);
1081 }
1082
1083 static inline void unregister_all_notifiers(void)
1084 {
1085         opal_message_notifier_unregister(OPAL_MSG_OCC,
1086                                          &powernv_cpufreq_opal_nb);
1087         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1088 }
1089
1090 static int __init powernv_cpufreq_init(void)
1091 {
1092         int rc = 0;
1093
1094         /* Don't probe on pseries (guest) platforms */
1095         if (!firmware_has_feature(FW_FEATURE_OPAL))
1096                 return -ENODEV;
1097
1098         /* Discover pstates from device tree and init */
1099         rc = init_powernv_pstates();
1100         if (rc)
1101                 goto out;
1102
1103         /* Populate chip info */
1104         rc = init_chip_info();
1105         if (rc)
1106                 goto out;
1107
1108         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1109         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1110
1111         if (powernv_pstate_info.wof_enabled)
1112                 powernv_cpufreq_driver.boost_enabled = true;
1113         else
1114                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1115
1116         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1117         if (rc) {
1118                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1119                 goto cleanup_notifiers;
1120         }
1121
1122         if (powernv_pstate_info.wof_enabled)
1123                 cpufreq_enable_boost_support();
1124
1125         return 0;
1126 cleanup_notifiers:
1127         unregister_all_notifiers();
1128         clean_chip_info();
1129 out:
1130         pr_info("Platform driver disabled. System does not support PState control\n");
1131         return rc;
1132 }
1133 module_init(powernv_cpufreq_init);
1134
1135 static void __exit powernv_cpufreq_exit(void)
1136 {
1137         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1138         unregister_all_notifiers();
1139         clean_chip_info();
1140 }
1141 module_exit(powernv_cpufreq_exit);
1142
1143 MODULE_LICENSE("GPL");
1144 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");