Merge branches 'clk-warn', 'clk-core', 'clk-spear' and 'clk-qcom-msm8998' into clk...
[sfrench/cifs-2.6.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19
20 #define PU_SOC_VOLTAGE_NORMAL   1250000
21 #define PU_SOC_VOLTAGE_HIGH     1275000
22 #define FREQ_1P2_GHZ            1200000000
23
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27
28 enum IMX6_CPUFREQ_CLKS {
29         ARM,
30         PLL1_SYS,
31         STEP,
32         PLL1_SW,
33         PLL2_PFD2_396M,
34         /* MX6UL requires two more clks */
35         PLL2_BUS,
36         SECONDARY_SEL,
37 };
38 #define IMX6Q_CPUFREQ_CLK_NUM           5
39 #define IMX6UL_CPUFREQ_CLK_NUM          7
40
41 static int num_clks;
42 static struct clk_bulk_data clks[] = {
43         { .id = "arm" },
44         { .id = "pll1_sys" },
45         { .id = "step" },
46         { .id = "pll1_sw" },
47         { .id = "pll2_pfd2_396m" },
48         { .id = "pll2_bus" },
49         { .id = "secondary_sel" },
50 };
51
52 static struct device *cpu_dev;
53 static bool free_opp;
54 static struct cpufreq_frequency_table *freq_table;
55 static unsigned int max_freq;
56 static unsigned int transition_latency;
57
58 static u32 *imx6_soc_volt;
59 static u32 soc_opp_count;
60
61 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
62 {
63         struct dev_pm_opp *opp;
64         unsigned long freq_hz, volt, volt_old;
65         unsigned int old_freq, new_freq;
66         bool pll1_sys_temp_enabled = false;
67         int ret;
68
69         new_freq = freq_table[index].frequency;
70         freq_hz = new_freq * 1000;
71         old_freq = clk_get_rate(clks[ARM].clk) / 1000;
72
73         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
74         if (IS_ERR(opp)) {
75                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76                 return PTR_ERR(opp);
77         }
78
79         volt = dev_pm_opp_get_voltage(opp);
80         dev_pm_opp_put(opp);
81
82         volt_old = regulator_get_voltage(arm_reg);
83
84         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
85                 old_freq / 1000, volt_old / 1000,
86                 new_freq / 1000, volt / 1000);
87
88         /* scaling up?  scale voltage before frequency */
89         if (new_freq > old_freq) {
90                 if (!IS_ERR(pu_reg)) {
91                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
92                         if (ret) {
93                                 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
94                                 return ret;
95                         }
96                 }
97                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
98                 if (ret) {
99                         dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
100                         return ret;
101                 }
102                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
103                 if (ret) {
104                         dev_err(cpu_dev,
105                                 "failed to scale vddarm up: %d\n", ret);
106                         return ret;
107                 }
108         }
109
110         /*
111          * The setpoints are selected per PLL/PDF frequencies, so we need to
112          * reprogram PLL for frequency scaling.  The procedure of reprogramming
113          * PLL1 is as below.
114          * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
115          * flow is slightly different from other i.MX6 OSC.
116          * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
117          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
118          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
119          *  - Disable pll2_pfd2_396m_clk
120          */
121         if (of_machine_is_compatible("fsl,imx6ul") ||
122             of_machine_is_compatible("fsl,imx6ull")) {
123                 /*
124                  * When changing pll1_sw_clk's parent to pll1_sys_clk,
125                  * CPU may run at higher than 528MHz, this will lead to
126                  * the system unstable if the voltage is lower than the
127                  * voltage of 528MHz, so lower the CPU frequency to one
128                  * half before changing CPU frequency.
129                  */
130                 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
131                 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
132                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
133                         clk_set_parent(clks[SECONDARY_SEL].clk,
134                                        clks[PLL2_BUS].clk);
135                 else
136                         clk_set_parent(clks[SECONDARY_SEL].clk,
137                                        clks[PLL2_PFD2_396M].clk);
138                 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
139                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
140                 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
141                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
142                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
143                 }
144         } else {
145                 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
146                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
147                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
148                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
149                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
150                 } else {
151                         /* pll1_sys needs to be enabled for divider rate change to work. */
152                         pll1_sys_temp_enabled = true;
153                         clk_prepare_enable(clks[PLL1_SYS].clk);
154                 }
155         }
156
157         /* Ensure the arm clock divider is what we expect */
158         ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
159         if (ret) {
160                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
161                 regulator_set_voltage_tol(arm_reg, volt_old, 0);
162                 return ret;
163         }
164
165         /* PLL1 is only needed until after ARM-PODF is set. */
166         if (pll1_sys_temp_enabled)
167                 clk_disable_unprepare(clks[PLL1_SYS].clk);
168
169         /* scaling down?  scale voltage after frequency */
170         if (new_freq < old_freq) {
171                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
172                 if (ret) {
173                         dev_warn(cpu_dev,
174                                  "failed to scale vddarm down: %d\n", ret);
175                         ret = 0;
176                 }
177                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
178                 if (ret) {
179                         dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
180                         ret = 0;
181                 }
182                 if (!IS_ERR(pu_reg)) {
183                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184                         if (ret) {
185                                 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
186                                 ret = 0;
187                         }
188                 }
189         }
190
191         return 0;
192 }
193
194 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
195 {
196         int ret;
197
198         policy->clk = clks[ARM].clk;
199         ret = cpufreq_generic_init(policy, freq_table, transition_latency);
200         policy->suspend_freq = max_freq;
201
202         return ret;
203 }
204
205 static struct cpufreq_driver imx6q_cpufreq_driver = {
206         .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
207         .verify = cpufreq_generic_frequency_table_verify,
208         .target_index = imx6q_set_target,
209         .get = cpufreq_generic_get,
210         .init = imx6q_cpufreq_init,
211         .name = "imx6q-cpufreq",
212         .attr = cpufreq_generic_attr,
213         .suspend = cpufreq_generic_suspend,
214 };
215
216 #define OCOTP_CFG3                      0x440
217 #define OCOTP_CFG3_SPEED_SHIFT          16
218 #define OCOTP_CFG3_SPEED_1P2GHZ         0x3
219 #define OCOTP_CFG3_SPEED_996MHZ         0x2
220 #define OCOTP_CFG3_SPEED_852MHZ         0x1
221
222 static void imx6q_opp_check_speed_grading(struct device *dev)
223 {
224         struct device_node *np;
225         void __iomem *base;
226         u32 val;
227
228         np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
229         if (!np)
230                 return;
231
232         base = of_iomap(np, 0);
233         if (!base) {
234                 dev_err(dev, "failed to map ocotp\n");
235                 goto put_node;
236         }
237
238         /*
239          * SPEED_GRADING[1:0] defines the max speed of ARM:
240          * 2b'11: 1200000000Hz;
241          * 2b'10: 996000000Hz;
242          * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
243          * 2b'00: 792000000Hz;
244          * We need to set the max speed of ARM according to fuse map.
245          */
246         val = readl_relaxed(base + OCOTP_CFG3);
247         val >>= OCOTP_CFG3_SPEED_SHIFT;
248         val &= 0x3;
249
250         if (val < OCOTP_CFG3_SPEED_996MHZ)
251                 if (dev_pm_opp_disable(dev, 996000000))
252                         dev_warn(dev, "failed to disable 996MHz OPP\n");
253
254         if (of_machine_is_compatible("fsl,imx6q") ||
255             of_machine_is_compatible("fsl,imx6qp")) {
256                 if (val != OCOTP_CFG3_SPEED_852MHZ)
257                         if (dev_pm_opp_disable(dev, 852000000))
258                                 dev_warn(dev, "failed to disable 852MHz OPP\n");
259                 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
260                         if (dev_pm_opp_disable(dev, 1200000000))
261                                 dev_warn(dev, "failed to disable 1.2GHz OPP\n");
262         }
263         iounmap(base);
264 put_node:
265         of_node_put(np);
266 }
267
268 #define OCOTP_CFG3_6UL_SPEED_696MHZ     0x2
269
270 static void imx6ul_opp_check_speed_grading(struct device *dev)
271 {
272         struct device_node *np;
273         void __iomem *base;
274         u32 val;
275
276         np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
277         if (!np)
278                 return;
279
280         base = of_iomap(np, 0);
281         if (!base) {
282                 dev_err(dev, "failed to map ocotp\n");
283                 goto put_node;
284         }
285
286         /*
287          * Speed GRADING[1:0] defines the max speed of ARM:
288          * 2b'00: Reserved;
289          * 2b'01: 528000000Hz;
290          * 2b'10: 696000000Hz;
291          * 2b'11: Reserved;
292          * We need to set the max speed of ARM according to fuse map.
293          */
294         val = readl_relaxed(base + OCOTP_CFG3);
295         val >>= OCOTP_CFG3_SPEED_SHIFT;
296         val &= 0x3;
297         if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
298                 if (dev_pm_opp_disable(dev, 696000000))
299                         dev_warn(dev, "failed to disable 696MHz OPP\n");
300         iounmap(base);
301 put_node:
302         of_node_put(np);
303 }
304
305 static int imx6q_cpufreq_probe(struct platform_device *pdev)
306 {
307         struct device_node *np;
308         struct dev_pm_opp *opp;
309         unsigned long min_volt, max_volt;
310         int num, ret;
311         const struct property *prop;
312         const __be32 *val;
313         u32 nr, i, j;
314
315         cpu_dev = get_cpu_device(0);
316         if (!cpu_dev) {
317                 pr_err("failed to get cpu0 device\n");
318                 return -ENODEV;
319         }
320
321         np = of_node_get(cpu_dev->of_node);
322         if (!np) {
323                 dev_err(cpu_dev, "failed to find cpu0 node\n");
324                 return -ENOENT;
325         }
326
327         if (of_machine_is_compatible("fsl,imx6ul") ||
328             of_machine_is_compatible("fsl,imx6ull"))
329                 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
330         else
331                 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
332
333         ret = clk_bulk_get(cpu_dev, num_clks, clks);
334         if (ret)
335                 goto put_node;
336
337         arm_reg = regulator_get(cpu_dev, "arm");
338         pu_reg = regulator_get_optional(cpu_dev, "pu");
339         soc_reg = regulator_get(cpu_dev, "soc");
340         if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
341                         PTR_ERR(soc_reg) == -EPROBE_DEFER ||
342                         PTR_ERR(pu_reg) == -EPROBE_DEFER) {
343                 ret = -EPROBE_DEFER;
344                 dev_dbg(cpu_dev, "regulators not ready, defer\n");
345                 goto put_reg;
346         }
347         if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
348                 dev_err(cpu_dev, "failed to get regulators\n");
349                 ret = -ENOENT;
350                 goto put_reg;
351         }
352
353         ret = dev_pm_opp_of_add_table(cpu_dev);
354         if (ret < 0) {
355                 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
356                 goto put_reg;
357         }
358
359         if (of_machine_is_compatible("fsl,imx6ul"))
360                 imx6ul_opp_check_speed_grading(cpu_dev);
361         else
362                 imx6q_opp_check_speed_grading(cpu_dev);
363
364         /* Because we have added the OPPs here, we must free them */
365         free_opp = true;
366         num = dev_pm_opp_get_opp_count(cpu_dev);
367         if (num < 0) {
368                 ret = num;
369                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
370                 goto out_free_opp;
371         }
372
373         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
374         if (ret) {
375                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
376                 goto out_free_opp;
377         }
378
379         /* Make imx6_soc_volt array's size same as arm opp number */
380         imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
381         if (imx6_soc_volt == NULL) {
382                 ret = -ENOMEM;
383                 goto free_freq_table;
384         }
385
386         prop = of_find_property(np, "fsl,soc-operating-points", NULL);
387         if (!prop || !prop->value)
388                 goto soc_opp_out;
389
390         /*
391          * Each OPP is a set of tuples consisting of frequency and
392          * voltage like <freq-kHz vol-uV>.
393          */
394         nr = prop->length / sizeof(u32);
395         if (nr % 2 || (nr / 2) < num)
396                 goto soc_opp_out;
397
398         for (j = 0; j < num; j++) {
399                 val = prop->value;
400                 for (i = 0; i < nr / 2; i++) {
401                         unsigned long freq = be32_to_cpup(val++);
402                         unsigned long volt = be32_to_cpup(val++);
403                         if (freq_table[j].frequency == freq) {
404                                 imx6_soc_volt[soc_opp_count++] = volt;
405                                 break;
406                         }
407                 }
408         }
409
410 soc_opp_out:
411         /* use fixed soc opp volt if no valid soc opp info found in dtb */
412         if (soc_opp_count != num) {
413                 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
414                 for (j = 0; j < num; j++)
415                         imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
416                 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
417                         imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
418         }
419
420         if (of_property_read_u32(np, "clock-latency", &transition_latency))
421                 transition_latency = CPUFREQ_ETERNAL;
422
423         /*
424          * Calculate the ramp time for max voltage change in the
425          * VDDSOC and VDDPU regulators.
426          */
427         ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
428         if (ret > 0)
429                 transition_latency += ret * 1000;
430         if (!IS_ERR(pu_reg)) {
431                 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
432                 if (ret > 0)
433                         transition_latency += ret * 1000;
434         }
435
436         /*
437          * OPP is maintained in order of increasing frequency, and
438          * freq_table initialised from OPP is therefore sorted in the
439          * same order.
440          */
441         max_freq = freq_table[--num].frequency;
442         opp = dev_pm_opp_find_freq_exact(cpu_dev,
443                                   freq_table[0].frequency * 1000, true);
444         min_volt = dev_pm_opp_get_voltage(opp);
445         dev_pm_opp_put(opp);
446         opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
447         max_volt = dev_pm_opp_get_voltage(opp);
448         dev_pm_opp_put(opp);
449
450         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
451         if (ret > 0)
452                 transition_latency += ret * 1000;
453
454         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
455         if (ret) {
456                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
457                 goto free_freq_table;
458         }
459
460         of_node_put(np);
461         return 0;
462
463 free_freq_table:
464         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
465 out_free_opp:
466         if (free_opp)
467                 dev_pm_opp_of_remove_table(cpu_dev);
468 put_reg:
469         if (!IS_ERR(arm_reg))
470                 regulator_put(arm_reg);
471         if (!IS_ERR(pu_reg))
472                 regulator_put(pu_reg);
473         if (!IS_ERR(soc_reg))
474                 regulator_put(soc_reg);
475
476         clk_bulk_put(num_clks, clks);
477 put_node:
478         of_node_put(np);
479
480         return ret;
481 }
482
483 static int imx6q_cpufreq_remove(struct platform_device *pdev)
484 {
485         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
486         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
487         if (free_opp)
488                 dev_pm_opp_of_remove_table(cpu_dev);
489         regulator_put(arm_reg);
490         if (!IS_ERR(pu_reg))
491                 regulator_put(pu_reg);
492         regulator_put(soc_reg);
493
494         clk_bulk_put(num_clks, clks);
495
496         return 0;
497 }
498
499 static struct platform_driver imx6q_cpufreq_platdrv = {
500         .driver = {
501                 .name   = "imx6q-cpufreq",
502         },
503         .probe          = imx6q_cpufreq_probe,
504         .remove         = imx6q_cpufreq_remove,
505 };
506 module_platform_driver(imx6q_cpufreq_platdrv);
507
508 MODULE_ALIAS("platform:imx6q-cpufreq");
509 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
510 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
511 MODULE_LICENSE("GPL");