Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[sfrench/cifs-2.6.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38         return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)                     \
43         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44                 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy)                \
47         for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)              \
49         for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy)                       \
52         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)                           \
57         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97         return off;
98 }
99 void disable_cpufreq(void)
100 {
101         off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
105 bool have_governor_per_policy(void)
106 {
107         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112 {
113         if (have_governor_per_policy())
114                 return &policy->kobj;
115         else
116                 return cpufreq_global_kobject;
117 }
118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119
120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121 {
122         u64 idle_time;
123         u64 cur_wall_time;
124         u64 busy_time;
125
126         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134
135         idle_time = cur_wall_time - busy_time;
136         if (wall)
137                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138
139         return div_u64(idle_time, NSEC_PER_USEC);
140 }
141
142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143 {
144         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145
146         if (idle_time == -1ULL)
147                 return get_cpu_idle_time_jiffy(cpu, wall);
148         else if (!io_busy)
149                 idle_time += get_cpu_iowait_time_us(cpu, wall);
150
151         return idle_time;
152 }
153 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154
155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156                 unsigned long max_freq)
157 {
158 }
159 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 int cpufreq_generic_init(struct cpufreq_policy *policy,
169                 struct cpufreq_frequency_table *table,
170                 unsigned int transition_latency)
171 {
172         policy->freq_table = table;
173         policy->cpuinfo.transition_latency = transition_latency;
174
175         /*
176          * The driver only supports the SMP configuration where all processors
177          * share the clock and voltage and clock.
178          */
179         cpumask_setall(policy->cpus);
180
181         return 0;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197         if (!policy || IS_ERR(policy->clk)) {
198                 pr_err("%s: No %s associated to cpu: %d\n",
199                        __func__, policy ? "clk" : "policy", cpu);
200                 return 0;
201         }
202
203         return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
209  *
210  * @cpu: cpu to find policy for.
211  *
212  * This returns policy for 'cpu', returns NULL if it doesn't exist.
213  * It also increments the kobject reference count to mark it busy and so would
214  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
215  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
216  * freed as that depends on the kobj count.
217  *
218  * Return: A valid policy on success, otherwise NULL on failure.
219  */
220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222         struct cpufreq_policy *policy = NULL;
223         unsigned long flags;
224
225         if (WARN_ON(cpu >= nr_cpu_ids))
226                 return NULL;
227
228         /* get the cpufreq driver */
229         read_lock_irqsave(&cpufreq_driver_lock, flags);
230
231         if (cpufreq_driver) {
232                 /* get the CPU */
233                 policy = cpufreq_cpu_get_raw(cpu);
234                 if (policy)
235                         kobject_get(&policy->kobj);
236         }
237
238         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239
240         return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243
244 /**
245  * cpufreq_cpu_put: Decrements the usage count of a policy
246  *
247  * @policy: policy earlier returned by cpufreq_cpu_get().
248  *
249  * This decrements the kobject reference count incremented earlier by calling
250  * cpufreq_cpu_get().
251  */
252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254         kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257
258 /*********************************************************************
259  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
260  *********************************************************************/
261
262 /**
263  * adjust_jiffies - adjust the system "loops_per_jiffy"
264  *
265  * This function alters the system "loops_per_jiffy" for the clock
266  * speed change. Note that loops_per_jiffy cannot be updated on SMP
267  * systems as each CPU might be scaled differently. So, use the arch
268  * per-CPU loops_per_jiffy value wherever possible.
269  */
270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
271 {
272 #ifndef CONFIG_SMP
273         static unsigned long l_p_j_ref;
274         static unsigned int l_p_j_ref_freq;
275
276         if (ci->flags & CPUFREQ_CONST_LOOPS)
277                 return;
278
279         if (!l_p_j_ref_freq) {
280                 l_p_j_ref = loops_per_jiffy;
281                 l_p_j_ref_freq = ci->old;
282                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
283                          l_p_j_ref, l_p_j_ref_freq);
284         }
285         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
286                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
287                                                                 ci->new);
288                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
289                          loops_per_jiffy, ci->new);
290         }
291 #endif
292 }
293
294 /**
295  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
296  * @policy: cpufreq policy to enable fast frequency switching for.
297  * @freqs: contain details of the frequency update.
298  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
299  *
300  * This function calls the transition notifiers and the "adjust_jiffies"
301  * function. It is called twice on all CPU frequency changes that have
302  * external effects.
303  */
304 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
305                                       struct cpufreq_freqs *freqs,
306                                       unsigned int state)
307 {
308         BUG_ON(irqs_disabled());
309
310         if (cpufreq_disabled())
311                 return;
312
313         freqs->flags = cpufreq_driver->flags;
314         pr_debug("notification %u of frequency transition to %u kHz\n",
315                  state, freqs->new);
316
317         switch (state) {
318         case CPUFREQ_PRECHANGE:
319                 /*
320                  * Detect if the driver reported a value as "old frequency"
321                  * which is not equal to what the cpufreq core thinks is
322                  * "old frequency".
323                  */
324                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325                         if (policy->cur && (policy->cur != freqs->old)) {
326                                 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327                                          freqs->old, policy->cur);
328                                 freqs->old = policy->cur;
329                         }
330                 }
331
332                 for_each_cpu(freqs->cpu, policy->cpus) {
333                         srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
334                                                  CPUFREQ_PRECHANGE, freqs);
335                 }
336
337                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
338                 break;
339
340         case CPUFREQ_POSTCHANGE:
341                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
342                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
343                          cpumask_pr_args(policy->cpus));
344
345                 for_each_cpu(freqs->cpu, policy->cpus) {
346                         trace_cpu_frequency(freqs->new, freqs->cpu);
347                         srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348                                                  CPUFREQ_POSTCHANGE, freqs);
349                 }
350
351                 cpufreq_stats_record_transition(policy, freqs->new);
352                 policy->cur = freqs->new;
353         }
354 }
355
356 /* Do post notifications when there are chances that transition has failed */
357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
358                 struct cpufreq_freqs *freqs, int transition_failed)
359 {
360         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
361         if (!transition_failed)
362                 return;
363
364         swap(freqs->old, freqs->new);
365         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
366         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
367 }
368
369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
370                 struct cpufreq_freqs *freqs)
371 {
372
373         /*
374          * Catch double invocations of _begin() which lead to self-deadlock.
375          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
376          * doesn't invoke _begin() on their behalf, and hence the chances of
377          * double invocations are very low. Moreover, there are scenarios
378          * where these checks can emit false-positive warnings in these
379          * drivers; so we avoid that by skipping them altogether.
380          */
381         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
382                                 && current == policy->transition_task);
383
384 wait:
385         wait_event(policy->transition_wait, !policy->transition_ongoing);
386
387         spin_lock(&policy->transition_lock);
388
389         if (unlikely(policy->transition_ongoing)) {
390                 spin_unlock(&policy->transition_lock);
391                 goto wait;
392         }
393
394         policy->transition_ongoing = true;
395         policy->transition_task = current;
396
397         spin_unlock(&policy->transition_lock);
398
399         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
402
403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
404                 struct cpufreq_freqs *freqs, int transition_failed)
405 {
406         if (unlikely(WARN_ON(!policy->transition_ongoing)))
407                 return;
408
409         cpufreq_notify_post_transition(policy, freqs, transition_failed);
410
411         policy->transition_ongoing = false;
412         policy->transition_task = NULL;
413
414         wake_up(&policy->transition_wait);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
417
418 /*
419  * Fast frequency switching status count.  Positive means "enabled", negative
420  * means "disabled" and 0 means "not decided yet".
421  */
422 static int cpufreq_fast_switch_count;
423 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
424
425 static void cpufreq_list_transition_notifiers(void)
426 {
427         struct notifier_block *nb;
428
429         pr_info("Registered transition notifiers:\n");
430
431         mutex_lock(&cpufreq_transition_notifier_list.mutex);
432
433         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
434                 pr_info("%pF\n", nb->notifier_call);
435
436         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
437 }
438
439 /**
440  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
441  * @policy: cpufreq policy to enable fast frequency switching for.
442  *
443  * Try to enable fast frequency switching for @policy.
444  *
445  * The attempt will fail if there is at least one transition notifier registered
446  * at this point, as fast frequency switching is quite fundamentally at odds
447  * with transition notifiers.  Thus if successful, it will make registration of
448  * transition notifiers fail going forward.
449  */
450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
451 {
452         lockdep_assert_held(&policy->rwsem);
453
454         if (!policy->fast_switch_possible)
455                 return;
456
457         mutex_lock(&cpufreq_fast_switch_lock);
458         if (cpufreq_fast_switch_count >= 0) {
459                 cpufreq_fast_switch_count++;
460                 policy->fast_switch_enabled = true;
461         } else {
462                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
463                         policy->cpu);
464                 cpufreq_list_transition_notifiers();
465         }
466         mutex_unlock(&cpufreq_fast_switch_lock);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
469
470 /**
471  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
472  * @policy: cpufreq policy to disable fast frequency switching for.
473  */
474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
475 {
476         mutex_lock(&cpufreq_fast_switch_lock);
477         if (policy->fast_switch_enabled) {
478                 policy->fast_switch_enabled = false;
479                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
480                         cpufreq_fast_switch_count--;
481         }
482         mutex_unlock(&cpufreq_fast_switch_lock);
483 }
484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
485
486 /**
487  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
488  * one.
489  * @target_freq: target frequency to resolve.
490  *
491  * The target to driver frequency mapping is cached in the policy.
492  *
493  * Return: Lowest driver-supported frequency greater than or equal to the
494  * given target_freq, subject to policy (min/max) and driver limitations.
495  */
496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
497                                          unsigned int target_freq)
498 {
499         target_freq = clamp_val(target_freq, policy->min, policy->max);
500         policy->cached_target_freq = target_freq;
501
502         if (cpufreq_driver->target_index) {
503                 int idx;
504
505                 idx = cpufreq_frequency_table_target(policy, target_freq,
506                                                      CPUFREQ_RELATION_L);
507                 policy->cached_resolved_idx = idx;
508                 return policy->freq_table[idx].frequency;
509         }
510
511         if (cpufreq_driver->resolve_freq)
512                 return cpufreq_driver->resolve_freq(policy, target_freq);
513
514         return target_freq;
515 }
516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
517
518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
519 {
520         unsigned int latency;
521
522         if (policy->transition_delay_us)
523                 return policy->transition_delay_us;
524
525         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
526         if (latency) {
527                 /*
528                  * For platforms that can change the frequency very fast (< 10
529                  * us), the above formula gives a decent transition delay. But
530                  * for platforms where transition_latency is in milliseconds, it
531                  * ends up giving unrealistic values.
532                  *
533                  * Cap the default transition delay to 10 ms, which seems to be
534                  * a reasonable amount of time after which we should reevaluate
535                  * the frequency.
536                  */
537                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
538         }
539
540         return LATENCY_MULTIPLIER;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
543
544 /*********************************************************************
545  *                          SYSFS INTERFACE                          *
546  *********************************************************************/
547 static ssize_t show_boost(struct kobject *kobj,
548                                  struct attribute *attr, char *buf)
549 {
550         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
551 }
552
553 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
554                                   const char *buf, size_t count)
555 {
556         int ret, enable;
557
558         ret = sscanf(buf, "%d", &enable);
559         if (ret != 1 || enable < 0 || enable > 1)
560                 return -EINVAL;
561
562         if (cpufreq_boost_trigger_state(enable)) {
563                 pr_err("%s: Cannot %s BOOST!\n",
564                        __func__, enable ? "enable" : "disable");
565                 return -EINVAL;
566         }
567
568         pr_debug("%s: cpufreq BOOST %s\n",
569                  __func__, enable ? "enabled" : "disabled");
570
571         return count;
572 }
573 define_one_global_rw(boost);
574
575 static struct cpufreq_governor *find_governor(const char *str_governor)
576 {
577         struct cpufreq_governor *t;
578
579         for_each_governor(t)
580                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
581                         return t;
582
583         return NULL;
584 }
585
586 /**
587  * cpufreq_parse_governor - parse a governor string
588  */
589 static int cpufreq_parse_governor(char *str_governor,
590                                   struct cpufreq_policy *policy)
591 {
592         if (cpufreq_driver->setpolicy) {
593                 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
594                         policy->policy = CPUFREQ_POLICY_PERFORMANCE;
595                         return 0;
596                 }
597
598                 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
599                         policy->policy = CPUFREQ_POLICY_POWERSAVE;
600                         return 0;
601                 }
602         } else {
603                 struct cpufreq_governor *t;
604
605                 mutex_lock(&cpufreq_governor_mutex);
606
607                 t = find_governor(str_governor);
608                 if (!t) {
609                         int ret;
610
611                         mutex_unlock(&cpufreq_governor_mutex);
612
613                         ret = request_module("cpufreq_%s", str_governor);
614                         if (ret)
615                                 return -EINVAL;
616
617                         mutex_lock(&cpufreq_governor_mutex);
618
619                         t = find_governor(str_governor);
620                 }
621                 if (t && !try_module_get(t->owner))
622                         t = NULL;
623
624                 mutex_unlock(&cpufreq_governor_mutex);
625
626                 if (t) {
627                         policy->governor = t;
628                         return 0;
629                 }
630         }
631
632         return -EINVAL;
633 }
634
635 /**
636  * cpufreq_per_cpu_attr_read() / show_##file_name() -
637  * print out cpufreq information
638  *
639  * Write out information from cpufreq_driver->policy[cpu]; object must be
640  * "unsigned int".
641  */
642
643 #define show_one(file_name, object)                     \
644 static ssize_t show_##file_name                         \
645 (struct cpufreq_policy *policy, char *buf)              \
646 {                                                       \
647         return sprintf(buf, "%u\n", policy->object);    \
648 }
649
650 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
651 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
653 show_one(scaling_min_freq, min);
654 show_one(scaling_max_freq, max);
655
656 __weak unsigned int arch_freq_get_on_cpu(int cpu)
657 {
658         return 0;
659 }
660
661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
662 {
663         ssize_t ret;
664         unsigned int freq;
665
666         freq = arch_freq_get_on_cpu(policy->cpu);
667         if (freq)
668                 ret = sprintf(buf, "%u\n", freq);
669         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
670                         cpufreq_driver->get)
671                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
672         else
673                 ret = sprintf(buf, "%u\n", policy->cur);
674         return ret;
675 }
676
677 static int cpufreq_set_policy(struct cpufreq_policy *policy,
678                                 struct cpufreq_policy *new_policy);
679
680 /**
681  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
682  */
683 #define store_one(file_name, object)                    \
684 static ssize_t store_##file_name                                        \
685 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
686 {                                                                       \
687         int ret, temp;                                                  \
688         struct cpufreq_policy new_policy;                               \
689                                                                         \
690         memcpy(&new_policy, policy, sizeof(*policy));                   \
691         new_policy.min = policy->user_policy.min;                       \
692         new_policy.max = policy->user_policy.max;                       \
693                                                                         \
694         ret = sscanf(buf, "%u", &new_policy.object);                    \
695         if (ret != 1)                                                   \
696                 return -EINVAL;                                         \
697                                                                         \
698         temp = new_policy.object;                                       \
699         ret = cpufreq_set_policy(policy, &new_policy);          \
700         if (!ret)                                                       \
701                 policy->user_policy.object = temp;                      \
702                                                                         \
703         return ret ? ret : count;                                       \
704 }
705
706 store_one(scaling_min_freq, min);
707 store_one(scaling_max_freq, max);
708
709 /**
710  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
711  */
712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
713                                         char *buf)
714 {
715         unsigned int cur_freq = __cpufreq_get(policy);
716
717         if (cur_freq)
718                 return sprintf(buf, "%u\n", cur_freq);
719
720         return sprintf(buf, "<unknown>\n");
721 }
722
723 /**
724  * show_scaling_governor - show the current policy for the specified CPU
725  */
726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
727 {
728         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
729                 return sprintf(buf, "powersave\n");
730         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
731                 return sprintf(buf, "performance\n");
732         else if (policy->governor)
733                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
734                                 policy->governor->name);
735         return -EINVAL;
736 }
737
738 /**
739  * store_scaling_governor - store policy for the specified CPU
740  */
741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
742                                         const char *buf, size_t count)
743 {
744         int ret;
745         char    str_governor[16];
746         struct cpufreq_policy new_policy;
747
748         memcpy(&new_policy, policy, sizeof(*policy));
749
750         ret = sscanf(buf, "%15s", str_governor);
751         if (ret != 1)
752                 return -EINVAL;
753
754         if (cpufreq_parse_governor(str_governor, &new_policy))
755                 return -EINVAL;
756
757         ret = cpufreq_set_policy(policy, &new_policy);
758
759         if (new_policy.governor)
760                 module_put(new_policy.governor->owner);
761
762         return ret ? ret : count;
763 }
764
765 /**
766  * show_scaling_driver - show the cpufreq driver currently loaded
767  */
768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772
773 /**
774  * show_scaling_available_governors - show the available CPUfreq governors
775  */
776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777                                                 char *buf)
778 {
779         ssize_t i = 0;
780         struct cpufreq_governor *t;
781
782         if (!has_target()) {
783                 i += sprintf(buf, "performance powersave");
784                 goto out;
785         }
786
787         for_each_governor(t) {
788                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789                     - (CPUFREQ_NAME_LEN + 2)))
790                         goto out;
791                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792         }
793 out:
794         i += sprintf(&buf[i], "\n");
795         return i;
796 }
797
798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800         ssize_t i = 0;
801         unsigned int cpu;
802
803         for_each_cpu(cpu, mask) {
804                 if (i)
805                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807                 if (i >= (PAGE_SIZE - 5))
808                         break;
809         }
810         i += sprintf(&buf[i], "\n");
811         return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814
815 /**
816  * show_related_cpus - show the CPUs affected by each transition even if
817  * hw coordination is in use
818  */
819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821         return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823
824 /**
825  * show_affected_cpus - show the CPUs affected by each transition
826  */
827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829         return cpufreq_show_cpus(policy->cpus, buf);
830 }
831
832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833                                         const char *buf, size_t count)
834 {
835         unsigned int freq = 0;
836         unsigned int ret;
837
838         if (!policy->governor || !policy->governor->store_setspeed)
839                 return -EINVAL;
840
841         ret = sscanf(buf, "%u", &freq);
842         if (ret != 1)
843                 return -EINVAL;
844
845         policy->governor->store_setspeed(policy, freq);
846
847         return count;
848 }
849
850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852         if (!policy->governor || !policy->governor->show_setspeed)
853                 return sprintf(buf, "<unsupported>\n");
854
855         return policy->governor->show_setspeed(policy, buf);
856 }
857
858 /**
859  * show_bios_limit - show the current cpufreq HW/BIOS limitation
860  */
861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863         unsigned int limit;
864         int ret;
865         if (cpufreq_driver->bios_limit) {
866                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867                 if (!ret)
868                         return sprintf(buf, "%u\n", limit);
869         }
870         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887
888 static struct attribute *default_attrs[] = {
889         &cpuinfo_min_freq.attr,
890         &cpuinfo_max_freq.attr,
891         &cpuinfo_transition_latency.attr,
892         &scaling_min_freq.attr,
893         &scaling_max_freq.attr,
894         &affected_cpus.attr,
895         &related_cpus.attr,
896         &scaling_governor.attr,
897         &scaling_driver.attr,
898         &scaling_available_governors.attr,
899         &scaling_setspeed.attr,
900         NULL
901 };
902
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905
906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908         struct cpufreq_policy *policy = to_policy(kobj);
909         struct freq_attr *fattr = to_attr(attr);
910         ssize_t ret;
911
912         down_read(&policy->rwsem);
913         ret = fattr->show(policy, buf);
914         up_read(&policy->rwsem);
915
916         return ret;
917 }
918
919 static ssize_t store(struct kobject *kobj, struct attribute *attr,
920                      const char *buf, size_t count)
921 {
922         struct cpufreq_policy *policy = to_policy(kobj);
923         struct freq_attr *fattr = to_attr(attr);
924         ssize_t ret = -EINVAL;
925
926         cpus_read_lock();
927
928         if (cpu_online(policy->cpu)) {
929                 down_write(&policy->rwsem);
930                 ret = fattr->store(policy, buf, count);
931                 up_write(&policy->rwsem);
932         }
933
934         cpus_read_unlock();
935
936         return ret;
937 }
938
939 static void cpufreq_sysfs_release(struct kobject *kobj)
940 {
941         struct cpufreq_policy *policy = to_policy(kobj);
942         pr_debug("last reference is dropped\n");
943         complete(&policy->kobj_unregister);
944 }
945
946 static const struct sysfs_ops sysfs_ops = {
947         .show   = show,
948         .store  = store,
949 };
950
951 static struct kobj_type ktype_cpufreq = {
952         .sysfs_ops      = &sysfs_ops,
953         .default_attrs  = default_attrs,
954         .release        = cpufreq_sysfs_release,
955 };
956
957 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
958 {
959         struct device *dev = get_cpu_device(cpu);
960
961         if (!dev)
962                 return;
963
964         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
965                 return;
966
967         dev_dbg(dev, "%s: Adding symlink\n", __func__);
968         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
969                 dev_err(dev, "cpufreq symlink creation failed\n");
970 }
971
972 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
973                                    struct device *dev)
974 {
975         dev_dbg(dev, "%s: Removing symlink\n", __func__);
976         sysfs_remove_link(&dev->kobj, "cpufreq");
977 }
978
979 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
980 {
981         struct freq_attr **drv_attr;
982         int ret = 0;
983
984         /* set up files for this cpu device */
985         drv_attr = cpufreq_driver->attr;
986         while (drv_attr && *drv_attr) {
987                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
988                 if (ret)
989                         return ret;
990                 drv_attr++;
991         }
992         if (cpufreq_driver->get) {
993                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
994                 if (ret)
995                         return ret;
996         }
997
998         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
999         if (ret)
1000                 return ret;
1001
1002         if (cpufreq_driver->bios_limit) {
1003                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1004                 if (ret)
1005                         return ret;
1006         }
1007
1008         return 0;
1009 }
1010
1011 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1012 {
1013         return NULL;
1014 }
1015
1016 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1017 {
1018         struct cpufreq_governor *gov = NULL;
1019         struct cpufreq_policy new_policy;
1020
1021         memcpy(&new_policy, policy, sizeof(*policy));
1022
1023         /* Update governor of new_policy to the governor used before hotplug */
1024         gov = find_governor(policy->last_governor);
1025         if (gov) {
1026                 pr_debug("Restoring governor %s for cpu %d\n",
1027                                 policy->governor->name, policy->cpu);
1028         } else {
1029                 gov = cpufreq_default_governor();
1030                 if (!gov)
1031                         return -ENODATA;
1032         }
1033
1034         new_policy.governor = gov;
1035
1036         /* Use the default policy if there is no last_policy. */
1037         if (cpufreq_driver->setpolicy) {
1038                 if (policy->last_policy)
1039                         new_policy.policy = policy->last_policy;
1040                 else
1041                         cpufreq_parse_governor(gov->name, &new_policy);
1042         }
1043         /* set default policy */
1044         return cpufreq_set_policy(policy, &new_policy);
1045 }
1046
1047 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1048 {
1049         int ret = 0;
1050
1051         /* Has this CPU been taken care of already? */
1052         if (cpumask_test_cpu(cpu, policy->cpus))
1053                 return 0;
1054
1055         down_write(&policy->rwsem);
1056         if (has_target())
1057                 cpufreq_stop_governor(policy);
1058
1059         cpumask_set_cpu(cpu, policy->cpus);
1060
1061         if (has_target()) {
1062                 ret = cpufreq_start_governor(policy);
1063                 if (ret)
1064                         pr_err("%s: Failed to start governor\n", __func__);
1065         }
1066         up_write(&policy->rwsem);
1067         return ret;
1068 }
1069
1070 static void handle_update(struct work_struct *work)
1071 {
1072         struct cpufreq_policy *policy =
1073                 container_of(work, struct cpufreq_policy, update);
1074         unsigned int cpu = policy->cpu;
1075         pr_debug("handle_update for cpu %u called\n", cpu);
1076         cpufreq_update_policy(cpu);
1077 }
1078
1079 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1080 {
1081         struct cpufreq_policy *policy;
1082         int ret;
1083
1084         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1085         if (!policy)
1086                 return NULL;
1087
1088         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1089                 goto err_free_policy;
1090
1091         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1092                 goto err_free_cpumask;
1093
1094         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1095                 goto err_free_rcpumask;
1096
1097         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1098                                    cpufreq_global_kobject, "policy%u", cpu);
1099         if (ret) {
1100                 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1101                 goto err_free_real_cpus;
1102         }
1103
1104         INIT_LIST_HEAD(&policy->policy_list);
1105         init_rwsem(&policy->rwsem);
1106         spin_lock_init(&policy->transition_lock);
1107         init_waitqueue_head(&policy->transition_wait);
1108         init_completion(&policy->kobj_unregister);
1109         INIT_WORK(&policy->update, handle_update);
1110
1111         policy->cpu = cpu;
1112         return policy;
1113
1114 err_free_real_cpus:
1115         free_cpumask_var(policy->real_cpus);
1116 err_free_rcpumask:
1117         free_cpumask_var(policy->related_cpus);
1118 err_free_cpumask:
1119         free_cpumask_var(policy->cpus);
1120 err_free_policy:
1121         kfree(policy);
1122
1123         return NULL;
1124 }
1125
1126 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1127 {
1128         struct kobject *kobj;
1129         struct completion *cmp;
1130
1131         down_write(&policy->rwsem);
1132         cpufreq_stats_free_table(policy);
1133         kobj = &policy->kobj;
1134         cmp = &policy->kobj_unregister;
1135         up_write(&policy->rwsem);
1136         kobject_put(kobj);
1137
1138         /*
1139          * We need to make sure that the underlying kobj is
1140          * actually not referenced anymore by anybody before we
1141          * proceed with unloading.
1142          */
1143         pr_debug("waiting for dropping of refcount\n");
1144         wait_for_completion(cmp);
1145         pr_debug("wait complete\n");
1146 }
1147
1148 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1149 {
1150         unsigned long flags;
1151         int cpu;
1152
1153         /* Remove policy from list */
1154         write_lock_irqsave(&cpufreq_driver_lock, flags);
1155         list_del(&policy->policy_list);
1156
1157         for_each_cpu(cpu, policy->related_cpus)
1158                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1159         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1160
1161         cpufreq_policy_put_kobj(policy);
1162         free_cpumask_var(policy->real_cpus);
1163         free_cpumask_var(policy->related_cpus);
1164         free_cpumask_var(policy->cpus);
1165         kfree(policy);
1166 }
1167
1168 static int cpufreq_online(unsigned int cpu)
1169 {
1170         struct cpufreq_policy *policy;
1171         bool new_policy;
1172         unsigned long flags;
1173         unsigned int j;
1174         int ret;
1175
1176         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1177
1178         /* Check if this CPU already has a policy to manage it */
1179         policy = per_cpu(cpufreq_cpu_data, cpu);
1180         if (policy) {
1181                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1182                 if (!policy_is_inactive(policy))
1183                         return cpufreq_add_policy_cpu(policy, cpu);
1184
1185                 /* This is the only online CPU for the policy.  Start over. */
1186                 new_policy = false;
1187                 down_write(&policy->rwsem);
1188                 policy->cpu = cpu;
1189                 policy->governor = NULL;
1190                 up_write(&policy->rwsem);
1191         } else {
1192                 new_policy = true;
1193                 policy = cpufreq_policy_alloc(cpu);
1194                 if (!policy)
1195                         return -ENOMEM;
1196         }
1197
1198         cpumask_copy(policy->cpus, cpumask_of(cpu));
1199
1200         /* call driver. From then on the cpufreq must be able
1201          * to accept all calls to ->verify and ->setpolicy for this CPU
1202          */
1203         ret = cpufreq_driver->init(policy);
1204         if (ret) {
1205                 pr_debug("initialization failed\n");
1206                 goto out_free_policy;
1207         }
1208
1209         ret = cpufreq_table_validate_and_sort(policy);
1210         if (ret)
1211                 goto out_exit_policy;
1212
1213         down_write(&policy->rwsem);
1214
1215         if (new_policy) {
1216                 /* related_cpus should at least include policy->cpus. */
1217                 cpumask_copy(policy->related_cpus, policy->cpus);
1218         }
1219
1220         /*
1221          * affected cpus must always be the one, which are online. We aren't
1222          * managing offline cpus here.
1223          */
1224         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1225
1226         if (new_policy) {
1227                 policy->user_policy.min = policy->min;
1228                 policy->user_policy.max = policy->max;
1229
1230                 for_each_cpu(j, policy->related_cpus) {
1231                         per_cpu(cpufreq_cpu_data, j) = policy;
1232                         add_cpu_dev_symlink(policy, j);
1233                 }
1234         } else {
1235                 policy->min = policy->user_policy.min;
1236                 policy->max = policy->user_policy.max;
1237         }
1238
1239         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1240                 policy->cur = cpufreq_driver->get(policy->cpu);
1241                 if (!policy->cur) {
1242                         pr_err("%s: ->get() failed\n", __func__);
1243                         goto out_destroy_policy;
1244                 }
1245         }
1246
1247         /*
1248          * Sometimes boot loaders set CPU frequency to a value outside of
1249          * frequency table present with cpufreq core. In such cases CPU might be
1250          * unstable if it has to run on that frequency for long duration of time
1251          * and so its better to set it to a frequency which is specified in
1252          * freq-table. This also makes cpufreq stats inconsistent as
1253          * cpufreq-stats would fail to register because current frequency of CPU
1254          * isn't found in freq-table.
1255          *
1256          * Because we don't want this change to effect boot process badly, we go
1257          * for the next freq which is >= policy->cur ('cur' must be set by now,
1258          * otherwise we will end up setting freq to lowest of the table as 'cur'
1259          * is initialized to zero).
1260          *
1261          * We are passing target-freq as "policy->cur - 1" otherwise
1262          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1263          * equal to target-freq.
1264          */
1265         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1266             && has_target()) {
1267                 /* Are we running at unknown frequency ? */
1268                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1269                 if (ret == -EINVAL) {
1270                         /* Warn user and fix it */
1271                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1272                                 __func__, policy->cpu, policy->cur);
1273                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1274                                 CPUFREQ_RELATION_L);
1275
1276                         /*
1277                          * Reaching here after boot in a few seconds may not
1278                          * mean that system will remain stable at "unknown"
1279                          * frequency for longer duration. Hence, a BUG_ON().
1280                          */
1281                         BUG_ON(ret);
1282                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1283                                 __func__, policy->cpu, policy->cur);
1284                 }
1285         }
1286
1287         if (new_policy) {
1288                 ret = cpufreq_add_dev_interface(policy);
1289                 if (ret)
1290                         goto out_destroy_policy;
1291
1292                 cpufreq_stats_create_table(policy);
1293
1294                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1295                 list_add(&policy->policy_list, &cpufreq_policy_list);
1296                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1297         }
1298
1299         ret = cpufreq_init_policy(policy);
1300         if (ret) {
1301                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1302                        __func__, cpu, ret);
1303                 /* cpufreq_policy_free() will notify based on this */
1304                 new_policy = false;
1305                 goto out_destroy_policy;
1306         }
1307
1308         up_write(&policy->rwsem);
1309
1310         kobject_uevent(&policy->kobj, KOBJ_ADD);
1311
1312         /* Callback for handling stuff after policy is ready */
1313         if (cpufreq_driver->ready)
1314                 cpufreq_driver->ready(policy);
1315
1316         pr_debug("initialization complete\n");
1317
1318         return 0;
1319
1320 out_destroy_policy:
1321         for_each_cpu(j, policy->real_cpus)
1322                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1323
1324         up_write(&policy->rwsem);
1325
1326 out_exit_policy:
1327         if (cpufreq_driver->exit)
1328                 cpufreq_driver->exit(policy);
1329
1330 out_free_policy:
1331         cpufreq_policy_free(policy);
1332         return ret;
1333 }
1334
1335 /**
1336  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1337  * @dev: CPU device.
1338  * @sif: Subsystem interface structure pointer (not used)
1339  */
1340 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1341 {
1342         struct cpufreq_policy *policy;
1343         unsigned cpu = dev->id;
1344         int ret;
1345
1346         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1347
1348         if (cpu_online(cpu)) {
1349                 ret = cpufreq_online(cpu);
1350                 if (ret)
1351                         return ret;
1352         }
1353
1354         /* Create sysfs link on CPU registration */
1355         policy = per_cpu(cpufreq_cpu_data, cpu);
1356         if (policy)
1357                 add_cpu_dev_symlink(policy, cpu);
1358
1359         return 0;
1360 }
1361
1362 static int cpufreq_offline(unsigned int cpu)
1363 {
1364         struct cpufreq_policy *policy;
1365         int ret;
1366
1367         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1368
1369         policy = cpufreq_cpu_get_raw(cpu);
1370         if (!policy) {
1371                 pr_debug("%s: No cpu_data found\n", __func__);
1372                 return 0;
1373         }
1374
1375         down_write(&policy->rwsem);
1376         if (has_target())
1377                 cpufreq_stop_governor(policy);
1378
1379         cpumask_clear_cpu(cpu, policy->cpus);
1380
1381         if (policy_is_inactive(policy)) {
1382                 if (has_target())
1383                         strncpy(policy->last_governor, policy->governor->name,
1384                                 CPUFREQ_NAME_LEN);
1385                 else
1386                         policy->last_policy = policy->policy;
1387         } else if (cpu == policy->cpu) {
1388                 /* Nominate new CPU */
1389                 policy->cpu = cpumask_any(policy->cpus);
1390         }
1391
1392         /* Start governor again for active policy */
1393         if (!policy_is_inactive(policy)) {
1394                 if (has_target()) {
1395                         ret = cpufreq_start_governor(policy);
1396                         if (ret)
1397                                 pr_err("%s: Failed to start governor\n", __func__);
1398                 }
1399
1400                 goto unlock;
1401         }
1402
1403         if (cpufreq_driver->stop_cpu)
1404                 cpufreq_driver->stop_cpu(policy);
1405
1406         if (has_target())
1407                 cpufreq_exit_governor(policy);
1408
1409         /*
1410          * Perform the ->exit() even during light-weight tear-down,
1411          * since this is a core component, and is essential for the
1412          * subsequent light-weight ->init() to succeed.
1413          */
1414         if (cpufreq_driver->exit) {
1415                 cpufreq_driver->exit(policy);
1416                 policy->freq_table = NULL;
1417         }
1418
1419 unlock:
1420         up_write(&policy->rwsem);
1421         return 0;
1422 }
1423
1424 /**
1425  * cpufreq_remove_dev - remove a CPU device
1426  *
1427  * Removes the cpufreq interface for a CPU device.
1428  */
1429 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1430 {
1431         unsigned int cpu = dev->id;
1432         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1433
1434         if (!policy)
1435                 return;
1436
1437         if (cpu_online(cpu))
1438                 cpufreq_offline(cpu);
1439
1440         cpumask_clear_cpu(cpu, policy->real_cpus);
1441         remove_cpu_dev_symlink(policy, dev);
1442
1443         if (cpumask_empty(policy->real_cpus))
1444                 cpufreq_policy_free(policy);
1445 }
1446
1447 /**
1448  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1449  *      in deep trouble.
1450  *      @policy: policy managing CPUs
1451  *      @new_freq: CPU frequency the CPU actually runs at
1452  *
1453  *      We adjust to current frequency first, and need to clean up later.
1454  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1455  */
1456 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1457                                 unsigned int new_freq)
1458 {
1459         struct cpufreq_freqs freqs;
1460
1461         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1462                  policy->cur, new_freq);
1463
1464         freqs.old = policy->cur;
1465         freqs.new = new_freq;
1466
1467         cpufreq_freq_transition_begin(policy, &freqs);
1468         cpufreq_freq_transition_end(policy, &freqs, 0);
1469 }
1470
1471 /**
1472  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1473  * @cpu: CPU number
1474  *
1475  * This is the last known freq, without actually getting it from the driver.
1476  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1477  */
1478 unsigned int cpufreq_quick_get(unsigned int cpu)
1479 {
1480         struct cpufreq_policy *policy;
1481         unsigned int ret_freq = 0;
1482         unsigned long flags;
1483
1484         read_lock_irqsave(&cpufreq_driver_lock, flags);
1485
1486         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1487                 ret_freq = cpufreq_driver->get(cpu);
1488                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1489                 return ret_freq;
1490         }
1491
1492         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1493
1494         policy = cpufreq_cpu_get(cpu);
1495         if (policy) {
1496                 ret_freq = policy->cur;
1497                 cpufreq_cpu_put(policy);
1498         }
1499
1500         return ret_freq;
1501 }
1502 EXPORT_SYMBOL(cpufreq_quick_get);
1503
1504 /**
1505  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1506  * @cpu: CPU number
1507  *
1508  * Just return the max possible frequency for a given CPU.
1509  */
1510 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1511 {
1512         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1513         unsigned int ret_freq = 0;
1514
1515         if (policy) {
1516                 ret_freq = policy->max;
1517                 cpufreq_cpu_put(policy);
1518         }
1519
1520         return ret_freq;
1521 }
1522 EXPORT_SYMBOL(cpufreq_quick_get_max);
1523
1524 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1525 {
1526         unsigned int ret_freq = 0;
1527
1528         if (!cpufreq_driver->get)
1529                 return ret_freq;
1530
1531         ret_freq = cpufreq_driver->get(policy->cpu);
1532
1533         /*
1534          * Updating inactive policies is invalid, so avoid doing that.  Also
1535          * if fast frequency switching is used with the given policy, the check
1536          * against policy->cur is pointless, so skip it in that case too.
1537          */
1538         if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1539                 return ret_freq;
1540
1541         if (ret_freq && policy->cur &&
1542                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1543                 /* verify no discrepancy between actual and
1544                                         saved value exists */
1545                 if (unlikely(ret_freq != policy->cur)) {
1546                         cpufreq_out_of_sync(policy, ret_freq);
1547                         schedule_work(&policy->update);
1548                 }
1549         }
1550
1551         return ret_freq;
1552 }
1553
1554 /**
1555  * cpufreq_get - get the current CPU frequency (in kHz)
1556  * @cpu: CPU number
1557  *
1558  * Get the CPU current (static) CPU frequency
1559  */
1560 unsigned int cpufreq_get(unsigned int cpu)
1561 {
1562         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1563         unsigned int ret_freq = 0;
1564
1565         if (policy) {
1566                 down_read(&policy->rwsem);
1567
1568                 if (!policy_is_inactive(policy))
1569                         ret_freq = __cpufreq_get(policy);
1570
1571                 up_read(&policy->rwsem);
1572
1573                 cpufreq_cpu_put(policy);
1574         }
1575
1576         return ret_freq;
1577 }
1578 EXPORT_SYMBOL(cpufreq_get);
1579
1580 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1581 {
1582         unsigned int new_freq;
1583
1584         new_freq = cpufreq_driver->get(policy->cpu);
1585         if (!new_freq)
1586                 return 0;
1587
1588         if (!policy->cur) {
1589                 pr_debug("cpufreq: Driver did not initialize current freq\n");
1590                 policy->cur = new_freq;
1591         } else if (policy->cur != new_freq && has_target()) {
1592                 cpufreq_out_of_sync(policy, new_freq);
1593         }
1594
1595         return new_freq;
1596 }
1597
1598 static struct subsys_interface cpufreq_interface = {
1599         .name           = "cpufreq",
1600         .subsys         = &cpu_subsys,
1601         .add_dev        = cpufreq_add_dev,
1602         .remove_dev     = cpufreq_remove_dev,
1603 };
1604
1605 /*
1606  * In case platform wants some specific frequency to be configured
1607  * during suspend..
1608  */
1609 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1610 {
1611         int ret;
1612
1613         if (!policy->suspend_freq) {
1614                 pr_debug("%s: suspend_freq not defined\n", __func__);
1615                 return 0;
1616         }
1617
1618         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1619                         policy->suspend_freq);
1620
1621         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1622                         CPUFREQ_RELATION_H);
1623         if (ret)
1624                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1625                                 __func__, policy->suspend_freq, ret);
1626
1627         return ret;
1628 }
1629 EXPORT_SYMBOL(cpufreq_generic_suspend);
1630
1631 /**
1632  * cpufreq_suspend() - Suspend CPUFreq governors
1633  *
1634  * Called during system wide Suspend/Hibernate cycles for suspending governors
1635  * as some platforms can't change frequency after this point in suspend cycle.
1636  * Because some of the devices (like: i2c, regulators, etc) they use for
1637  * changing frequency are suspended quickly after this point.
1638  */
1639 void cpufreq_suspend(void)
1640 {
1641         struct cpufreq_policy *policy;
1642
1643         if (!cpufreq_driver)
1644                 return;
1645
1646         if (!has_target() && !cpufreq_driver->suspend)
1647                 goto suspend;
1648
1649         pr_debug("%s: Suspending Governors\n", __func__);
1650
1651         for_each_active_policy(policy) {
1652                 if (has_target()) {
1653                         down_write(&policy->rwsem);
1654                         cpufreq_stop_governor(policy);
1655                         up_write(&policy->rwsem);
1656                 }
1657
1658                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1659                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1660                                 policy);
1661         }
1662
1663 suspend:
1664         cpufreq_suspended = true;
1665 }
1666
1667 /**
1668  * cpufreq_resume() - Resume CPUFreq governors
1669  *
1670  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1671  * are suspended with cpufreq_suspend().
1672  */
1673 void cpufreq_resume(void)
1674 {
1675         struct cpufreq_policy *policy;
1676         int ret;
1677
1678         if (!cpufreq_driver)
1679                 return;
1680
1681         if (unlikely(!cpufreq_suspended))
1682                 return;
1683
1684         cpufreq_suspended = false;
1685
1686         if (!has_target() && !cpufreq_driver->resume)
1687                 return;
1688
1689         pr_debug("%s: Resuming Governors\n", __func__);
1690
1691         for_each_active_policy(policy) {
1692                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1693                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1694                                 policy);
1695                 } else if (has_target()) {
1696                         down_write(&policy->rwsem);
1697                         ret = cpufreq_start_governor(policy);
1698                         up_write(&policy->rwsem);
1699
1700                         if (ret)
1701                                 pr_err("%s: Failed to start governor for policy: %p\n",
1702                                        __func__, policy);
1703                 }
1704         }
1705 }
1706
1707 /**
1708  *      cpufreq_get_current_driver - return current driver's name
1709  *
1710  *      Return the name string of the currently loaded cpufreq driver
1711  *      or NULL, if none.
1712  */
1713 const char *cpufreq_get_current_driver(void)
1714 {
1715         if (cpufreq_driver)
1716                 return cpufreq_driver->name;
1717
1718         return NULL;
1719 }
1720 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1721
1722 /**
1723  *      cpufreq_get_driver_data - return current driver data
1724  *
1725  *      Return the private data of the currently loaded cpufreq
1726  *      driver, or NULL if no cpufreq driver is loaded.
1727  */
1728 void *cpufreq_get_driver_data(void)
1729 {
1730         if (cpufreq_driver)
1731                 return cpufreq_driver->driver_data;
1732
1733         return NULL;
1734 }
1735 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1736
1737 /*********************************************************************
1738  *                     NOTIFIER LISTS INTERFACE                      *
1739  *********************************************************************/
1740
1741 /**
1742  *      cpufreq_register_notifier - register a driver with cpufreq
1743  *      @nb: notifier function to register
1744  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1745  *
1746  *      Add a driver to one of two lists: either a list of drivers that
1747  *      are notified about clock rate changes (once before and once after
1748  *      the transition), or a list of drivers that are notified about
1749  *      changes in cpufreq policy.
1750  *
1751  *      This function may sleep, and has the same return conditions as
1752  *      blocking_notifier_chain_register.
1753  */
1754 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1755 {
1756         int ret;
1757
1758         if (cpufreq_disabled())
1759                 return -EINVAL;
1760
1761         switch (list) {
1762         case CPUFREQ_TRANSITION_NOTIFIER:
1763                 mutex_lock(&cpufreq_fast_switch_lock);
1764
1765                 if (cpufreq_fast_switch_count > 0) {
1766                         mutex_unlock(&cpufreq_fast_switch_lock);
1767                         return -EBUSY;
1768                 }
1769                 ret = srcu_notifier_chain_register(
1770                                 &cpufreq_transition_notifier_list, nb);
1771                 if (!ret)
1772                         cpufreq_fast_switch_count--;
1773
1774                 mutex_unlock(&cpufreq_fast_switch_lock);
1775                 break;
1776         case CPUFREQ_POLICY_NOTIFIER:
1777                 ret = blocking_notifier_chain_register(
1778                                 &cpufreq_policy_notifier_list, nb);
1779                 break;
1780         default:
1781                 ret = -EINVAL;
1782         }
1783
1784         return ret;
1785 }
1786 EXPORT_SYMBOL(cpufreq_register_notifier);
1787
1788 /**
1789  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1790  *      @nb: notifier block to be unregistered
1791  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1792  *
1793  *      Remove a driver from the CPU frequency notifier list.
1794  *
1795  *      This function may sleep, and has the same return conditions as
1796  *      blocking_notifier_chain_unregister.
1797  */
1798 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1799 {
1800         int ret;
1801
1802         if (cpufreq_disabled())
1803                 return -EINVAL;
1804
1805         switch (list) {
1806         case CPUFREQ_TRANSITION_NOTIFIER:
1807                 mutex_lock(&cpufreq_fast_switch_lock);
1808
1809                 ret = srcu_notifier_chain_unregister(
1810                                 &cpufreq_transition_notifier_list, nb);
1811                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1812                         cpufreq_fast_switch_count++;
1813
1814                 mutex_unlock(&cpufreq_fast_switch_lock);
1815                 break;
1816         case CPUFREQ_POLICY_NOTIFIER:
1817                 ret = blocking_notifier_chain_unregister(
1818                                 &cpufreq_policy_notifier_list, nb);
1819                 break;
1820         default:
1821                 ret = -EINVAL;
1822         }
1823
1824         return ret;
1825 }
1826 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1827
1828
1829 /*********************************************************************
1830  *                              GOVERNORS                            *
1831  *********************************************************************/
1832
1833 /**
1834  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1835  * @policy: cpufreq policy to switch the frequency for.
1836  * @target_freq: New frequency to set (may be approximate).
1837  *
1838  * Carry out a fast frequency switch without sleeping.
1839  *
1840  * The driver's ->fast_switch() callback invoked by this function must be
1841  * suitable for being called from within RCU-sched read-side critical sections
1842  * and it is expected to select the minimum available frequency greater than or
1843  * equal to @target_freq (CPUFREQ_RELATION_L).
1844  *
1845  * This function must not be called if policy->fast_switch_enabled is unset.
1846  *
1847  * Governors calling this function must guarantee that it will never be invoked
1848  * twice in parallel for the same policy and that it will never be called in
1849  * parallel with either ->target() or ->target_index() for the same policy.
1850  *
1851  * Returns the actual frequency set for the CPU.
1852  *
1853  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1854  * error condition, the hardware configuration must be preserved.
1855  */
1856 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1857                                         unsigned int target_freq)
1858 {
1859         target_freq = clamp_val(target_freq, policy->min, policy->max);
1860
1861         return cpufreq_driver->fast_switch(policy, target_freq);
1862 }
1863 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1864
1865 /* Must set freqs->new to intermediate frequency */
1866 static int __target_intermediate(struct cpufreq_policy *policy,
1867                                  struct cpufreq_freqs *freqs, int index)
1868 {
1869         int ret;
1870
1871         freqs->new = cpufreq_driver->get_intermediate(policy, index);
1872
1873         /* We don't need to switch to intermediate freq */
1874         if (!freqs->new)
1875                 return 0;
1876
1877         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1878                  __func__, policy->cpu, freqs->old, freqs->new);
1879
1880         cpufreq_freq_transition_begin(policy, freqs);
1881         ret = cpufreq_driver->target_intermediate(policy, index);
1882         cpufreq_freq_transition_end(policy, freqs, ret);
1883
1884         if (ret)
1885                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1886                        __func__, ret);
1887
1888         return ret;
1889 }
1890
1891 static int __target_index(struct cpufreq_policy *policy, int index)
1892 {
1893         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1894         unsigned int intermediate_freq = 0;
1895         unsigned int newfreq = policy->freq_table[index].frequency;
1896         int retval = -EINVAL;
1897         bool notify;
1898
1899         if (newfreq == policy->cur)
1900                 return 0;
1901
1902         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1903         if (notify) {
1904                 /* Handle switching to intermediate frequency */
1905                 if (cpufreq_driver->get_intermediate) {
1906                         retval = __target_intermediate(policy, &freqs, index);
1907                         if (retval)
1908                                 return retval;
1909
1910                         intermediate_freq = freqs.new;
1911                         /* Set old freq to intermediate */
1912                         if (intermediate_freq)
1913                                 freqs.old = freqs.new;
1914                 }
1915
1916                 freqs.new = newfreq;
1917                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1918                          __func__, policy->cpu, freqs.old, freqs.new);
1919
1920                 cpufreq_freq_transition_begin(policy, &freqs);
1921         }
1922
1923         retval = cpufreq_driver->target_index(policy, index);
1924         if (retval)
1925                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1926                        retval);
1927
1928         if (notify) {
1929                 cpufreq_freq_transition_end(policy, &freqs, retval);
1930
1931                 /*
1932                  * Failed after setting to intermediate freq? Driver should have
1933                  * reverted back to initial frequency and so should we. Check
1934                  * here for intermediate_freq instead of get_intermediate, in
1935                  * case we haven't switched to intermediate freq at all.
1936                  */
1937                 if (unlikely(retval && intermediate_freq)) {
1938                         freqs.old = intermediate_freq;
1939                         freqs.new = policy->restore_freq;
1940                         cpufreq_freq_transition_begin(policy, &freqs);
1941                         cpufreq_freq_transition_end(policy, &freqs, 0);
1942                 }
1943         }
1944
1945         return retval;
1946 }
1947
1948 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1949                             unsigned int target_freq,
1950                             unsigned int relation)
1951 {
1952         unsigned int old_target_freq = target_freq;
1953         int index;
1954
1955         if (cpufreq_disabled())
1956                 return -ENODEV;
1957
1958         /* Make sure that target_freq is within supported range */
1959         target_freq = clamp_val(target_freq, policy->min, policy->max);
1960
1961         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1962                  policy->cpu, target_freq, relation, old_target_freq);
1963
1964         /*
1965          * This might look like a redundant call as we are checking it again
1966          * after finding index. But it is left intentionally for cases where
1967          * exactly same freq is called again and so we can save on few function
1968          * calls.
1969          */
1970         if (target_freq == policy->cur)
1971                 return 0;
1972
1973         /* Save last value to restore later on errors */
1974         policy->restore_freq = policy->cur;
1975
1976         if (cpufreq_driver->target)
1977                 return cpufreq_driver->target(policy, target_freq, relation);
1978
1979         if (!cpufreq_driver->target_index)
1980                 return -EINVAL;
1981
1982         index = cpufreq_frequency_table_target(policy, target_freq, relation);
1983
1984         return __target_index(policy, index);
1985 }
1986 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1987
1988 int cpufreq_driver_target(struct cpufreq_policy *policy,
1989                           unsigned int target_freq,
1990                           unsigned int relation)
1991 {
1992         int ret = -EINVAL;
1993
1994         down_write(&policy->rwsem);
1995
1996         ret = __cpufreq_driver_target(policy, target_freq, relation);
1997
1998         up_write(&policy->rwsem);
1999
2000         return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2003
2004 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2005 {
2006         return NULL;
2007 }
2008
2009 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2010 {
2011         int ret;
2012
2013         /* Don't start any governor operations if we are entering suspend */
2014         if (cpufreq_suspended)
2015                 return 0;
2016         /*
2017          * Governor might not be initiated here if ACPI _PPC changed
2018          * notification happened, so check it.
2019          */
2020         if (!policy->governor)
2021                 return -EINVAL;
2022
2023         /* Platform doesn't want dynamic frequency switching ? */
2024         if (policy->governor->dynamic_switching &&
2025             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2026                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2027
2028                 if (gov) {
2029                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2030                                 policy->governor->name, gov->name);
2031                         policy->governor = gov;
2032                 } else {
2033                         return -EINVAL;
2034                 }
2035         }
2036
2037         if (!try_module_get(policy->governor->owner))
2038                 return -EINVAL;
2039
2040         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2041
2042         if (policy->governor->init) {
2043                 ret = policy->governor->init(policy);
2044                 if (ret) {
2045                         module_put(policy->governor->owner);
2046                         return ret;
2047                 }
2048         }
2049
2050         return 0;
2051 }
2052
2053 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2054 {
2055         if (cpufreq_suspended || !policy->governor)
2056                 return;
2057
2058         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2059
2060         if (policy->governor->exit)
2061                 policy->governor->exit(policy);
2062
2063         module_put(policy->governor->owner);
2064 }
2065
2066 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2067 {
2068         int ret;
2069
2070         if (cpufreq_suspended)
2071                 return 0;
2072
2073         if (!policy->governor)
2074                 return -EINVAL;
2075
2076         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2077
2078         if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2079                 cpufreq_update_current_freq(policy);
2080
2081         if (policy->governor->start) {
2082                 ret = policy->governor->start(policy);
2083                 if (ret)
2084                         return ret;
2085         }
2086
2087         if (policy->governor->limits)
2088                 policy->governor->limits(policy);
2089
2090         return 0;
2091 }
2092
2093 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2094 {
2095         if (cpufreq_suspended || !policy->governor)
2096                 return;
2097
2098         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2099
2100         if (policy->governor->stop)
2101                 policy->governor->stop(policy);
2102 }
2103
2104 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2105 {
2106         if (cpufreq_suspended || !policy->governor)
2107                 return;
2108
2109         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2110
2111         if (policy->governor->limits)
2112                 policy->governor->limits(policy);
2113 }
2114
2115 int cpufreq_register_governor(struct cpufreq_governor *governor)
2116 {
2117         int err;
2118
2119         if (!governor)
2120                 return -EINVAL;
2121
2122         if (cpufreq_disabled())
2123                 return -ENODEV;
2124
2125         mutex_lock(&cpufreq_governor_mutex);
2126
2127         err = -EBUSY;
2128         if (!find_governor(governor->name)) {
2129                 err = 0;
2130                 list_add(&governor->governor_list, &cpufreq_governor_list);
2131         }
2132
2133         mutex_unlock(&cpufreq_governor_mutex);
2134         return err;
2135 }
2136 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2137
2138 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2139 {
2140         struct cpufreq_policy *policy;
2141         unsigned long flags;
2142
2143         if (!governor)
2144                 return;
2145
2146         if (cpufreq_disabled())
2147                 return;
2148
2149         /* clear last_governor for all inactive policies */
2150         read_lock_irqsave(&cpufreq_driver_lock, flags);
2151         for_each_inactive_policy(policy) {
2152                 if (!strcmp(policy->last_governor, governor->name)) {
2153                         policy->governor = NULL;
2154                         strcpy(policy->last_governor, "\0");
2155                 }
2156         }
2157         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2158
2159         mutex_lock(&cpufreq_governor_mutex);
2160         list_del(&governor->governor_list);
2161         mutex_unlock(&cpufreq_governor_mutex);
2162 }
2163 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2164
2165
2166 /*********************************************************************
2167  *                          POLICY INTERFACE                         *
2168  *********************************************************************/
2169
2170 /**
2171  * cpufreq_get_policy - get the current cpufreq_policy
2172  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2173  *      is written
2174  *
2175  * Reads the current cpufreq policy.
2176  */
2177 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2178 {
2179         struct cpufreq_policy *cpu_policy;
2180         if (!policy)
2181                 return -EINVAL;
2182
2183         cpu_policy = cpufreq_cpu_get(cpu);
2184         if (!cpu_policy)
2185                 return -EINVAL;
2186
2187         memcpy(policy, cpu_policy, sizeof(*policy));
2188
2189         cpufreq_cpu_put(cpu_policy);
2190         return 0;
2191 }
2192 EXPORT_SYMBOL(cpufreq_get_policy);
2193
2194 /*
2195  * policy : current policy.
2196  * new_policy: policy to be set.
2197  */
2198 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2199                                 struct cpufreq_policy *new_policy)
2200 {
2201         struct cpufreq_governor *old_gov;
2202         int ret;
2203
2204         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2205                  new_policy->cpu, new_policy->min, new_policy->max);
2206
2207         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2208
2209         /*
2210         * This check works well when we store new min/max freq attributes,
2211         * because new_policy is a copy of policy with one field updated.
2212         */
2213         if (new_policy->min > new_policy->max)
2214                 return -EINVAL;
2215
2216         /* verify the cpu speed can be set within this limit */
2217         ret = cpufreq_driver->verify(new_policy);
2218         if (ret)
2219                 return ret;
2220
2221         /* adjust if necessary - all reasons */
2222         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2223                         CPUFREQ_ADJUST, new_policy);
2224
2225         /*
2226          * verify the cpu speed can be set within this limit, which might be
2227          * different to the first one
2228          */
2229         ret = cpufreq_driver->verify(new_policy);
2230         if (ret)
2231                 return ret;
2232
2233         /* notification of the new policy */
2234         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2235                         CPUFREQ_NOTIFY, new_policy);
2236
2237         policy->min = new_policy->min;
2238         policy->max = new_policy->max;
2239
2240         policy->cached_target_freq = UINT_MAX;
2241
2242         pr_debug("new min and max freqs are %u - %u kHz\n",
2243                  policy->min, policy->max);
2244
2245         if (cpufreq_driver->setpolicy) {
2246                 policy->policy = new_policy->policy;
2247                 pr_debug("setting range\n");
2248                 return cpufreq_driver->setpolicy(new_policy);
2249         }
2250
2251         if (new_policy->governor == policy->governor) {
2252                 pr_debug("cpufreq: governor limits update\n");
2253                 cpufreq_governor_limits(policy);
2254                 return 0;
2255         }
2256
2257         pr_debug("governor switch\n");
2258
2259         /* save old, working values */
2260         old_gov = policy->governor;
2261         /* end old governor */
2262         if (old_gov) {
2263                 cpufreq_stop_governor(policy);
2264                 cpufreq_exit_governor(policy);
2265         }
2266
2267         /* start new governor */
2268         policy->governor = new_policy->governor;
2269         ret = cpufreq_init_governor(policy);
2270         if (!ret) {
2271                 ret = cpufreq_start_governor(policy);
2272                 if (!ret) {
2273                         pr_debug("cpufreq: governor change\n");
2274                         return 0;
2275                 }
2276                 cpufreq_exit_governor(policy);
2277         }
2278
2279         /* new governor failed, so re-start old one */
2280         pr_debug("starting governor %s failed\n", policy->governor->name);
2281         if (old_gov) {
2282                 policy->governor = old_gov;
2283                 if (cpufreq_init_governor(policy))
2284                         policy->governor = NULL;
2285                 else
2286                         cpufreq_start_governor(policy);
2287         }
2288
2289         return ret;
2290 }
2291
2292 /**
2293  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2294  *      @cpu: CPU which shall be re-evaluated
2295  *
2296  *      Useful for policy notifiers which have different necessities
2297  *      at different times.
2298  */
2299 void cpufreq_update_policy(unsigned int cpu)
2300 {
2301         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2302         struct cpufreq_policy new_policy;
2303
2304         if (!policy)
2305                 return;
2306
2307         down_write(&policy->rwsem);
2308
2309         if (policy_is_inactive(policy))
2310                 goto unlock;
2311
2312         pr_debug("updating policy for CPU %u\n", cpu);
2313         memcpy(&new_policy, policy, sizeof(*policy));
2314         new_policy.min = policy->user_policy.min;
2315         new_policy.max = policy->user_policy.max;
2316
2317         /*
2318          * BIOS might change freq behind our back
2319          * -> ask driver for current freq and notify governors about a change
2320          */
2321         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2322                 if (cpufreq_suspended)
2323                         goto unlock;
2324
2325                 new_policy.cur = cpufreq_update_current_freq(policy);
2326                 if (WARN_ON(!new_policy.cur))
2327                         goto unlock;
2328         }
2329
2330         cpufreq_set_policy(policy, &new_policy);
2331
2332 unlock:
2333         up_write(&policy->rwsem);
2334
2335         cpufreq_cpu_put(policy);
2336 }
2337 EXPORT_SYMBOL(cpufreq_update_policy);
2338
2339 /*********************************************************************
2340  *               BOOST                                               *
2341  *********************************************************************/
2342 static int cpufreq_boost_set_sw(int state)
2343 {
2344         struct cpufreq_policy *policy;
2345         int ret = -EINVAL;
2346
2347         for_each_active_policy(policy) {
2348                 if (!policy->freq_table)
2349                         continue;
2350
2351                 ret = cpufreq_frequency_table_cpuinfo(policy,
2352                                                       policy->freq_table);
2353                 if (ret) {
2354                         pr_err("%s: Policy frequency update failed\n",
2355                                __func__);
2356                         break;
2357                 }
2358
2359                 down_write(&policy->rwsem);
2360                 policy->user_policy.max = policy->max;
2361                 cpufreq_governor_limits(policy);
2362                 up_write(&policy->rwsem);
2363         }
2364
2365         return ret;
2366 }
2367
2368 int cpufreq_boost_trigger_state(int state)
2369 {
2370         unsigned long flags;
2371         int ret = 0;
2372
2373         if (cpufreq_driver->boost_enabled == state)
2374                 return 0;
2375
2376         write_lock_irqsave(&cpufreq_driver_lock, flags);
2377         cpufreq_driver->boost_enabled = state;
2378         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2379
2380         ret = cpufreq_driver->set_boost(state);
2381         if (ret) {
2382                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2383                 cpufreq_driver->boost_enabled = !state;
2384                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2385
2386                 pr_err("%s: Cannot %s BOOST\n",
2387                        __func__, state ? "enable" : "disable");
2388         }
2389
2390         return ret;
2391 }
2392
2393 static bool cpufreq_boost_supported(void)
2394 {
2395         return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2396 }
2397
2398 static int create_boost_sysfs_file(void)
2399 {
2400         int ret;
2401
2402         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2403         if (ret)
2404                 pr_err("%s: cannot register global BOOST sysfs file\n",
2405                        __func__);
2406
2407         return ret;
2408 }
2409
2410 static void remove_boost_sysfs_file(void)
2411 {
2412         if (cpufreq_boost_supported())
2413                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2414 }
2415
2416 int cpufreq_enable_boost_support(void)
2417 {
2418         if (!cpufreq_driver)
2419                 return -EINVAL;
2420
2421         if (cpufreq_boost_supported())
2422                 return 0;
2423
2424         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2425
2426         /* This will get removed on driver unregister */
2427         return create_boost_sysfs_file();
2428 }
2429 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2430
2431 int cpufreq_boost_enabled(void)
2432 {
2433         return cpufreq_driver->boost_enabled;
2434 }
2435 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2436
2437 /*********************************************************************
2438  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2439  *********************************************************************/
2440 static enum cpuhp_state hp_online;
2441
2442 static int cpuhp_cpufreq_online(unsigned int cpu)
2443 {
2444         cpufreq_online(cpu);
2445
2446         return 0;
2447 }
2448
2449 static int cpuhp_cpufreq_offline(unsigned int cpu)
2450 {
2451         cpufreq_offline(cpu);
2452
2453         return 0;
2454 }
2455
2456 /**
2457  * cpufreq_register_driver - register a CPU Frequency driver
2458  * @driver_data: A struct cpufreq_driver containing the values#
2459  * submitted by the CPU Frequency driver.
2460  *
2461  * Registers a CPU Frequency driver to this core code. This code
2462  * returns zero on success, -EEXIST when another driver got here first
2463  * (and isn't unregistered in the meantime).
2464  *
2465  */
2466 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2467 {
2468         unsigned long flags;
2469         int ret;
2470
2471         if (cpufreq_disabled())
2472                 return -ENODEV;
2473
2474         if (!driver_data || !driver_data->verify || !driver_data->init ||
2475             !(driver_data->setpolicy || driver_data->target_index ||
2476                     driver_data->target) ||
2477              (driver_data->setpolicy && (driver_data->target_index ||
2478                     driver_data->target)) ||
2479              (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2480                 return -EINVAL;
2481
2482         pr_debug("trying to register driver %s\n", driver_data->name);
2483
2484         /* Protect against concurrent CPU online/offline. */
2485         cpus_read_lock();
2486
2487         write_lock_irqsave(&cpufreq_driver_lock, flags);
2488         if (cpufreq_driver) {
2489                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2490                 ret = -EEXIST;
2491                 goto out;
2492         }
2493         cpufreq_driver = driver_data;
2494         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2495
2496         if (driver_data->setpolicy)
2497                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2498
2499         if (cpufreq_boost_supported()) {
2500                 ret = create_boost_sysfs_file();
2501                 if (ret)
2502                         goto err_null_driver;
2503         }
2504
2505         ret = subsys_interface_register(&cpufreq_interface);
2506         if (ret)
2507                 goto err_boost_unreg;
2508
2509         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2510             list_empty(&cpufreq_policy_list)) {
2511                 /* if all ->init() calls failed, unregister */
2512                 ret = -ENODEV;
2513                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2514                          driver_data->name);
2515                 goto err_if_unreg;
2516         }
2517
2518         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2519                                                    "cpufreq:online",
2520                                                    cpuhp_cpufreq_online,
2521                                                    cpuhp_cpufreq_offline);
2522         if (ret < 0)
2523                 goto err_if_unreg;
2524         hp_online = ret;
2525         ret = 0;
2526
2527         pr_debug("driver %s up and running\n", driver_data->name);
2528         goto out;
2529
2530 err_if_unreg:
2531         subsys_interface_unregister(&cpufreq_interface);
2532 err_boost_unreg:
2533         remove_boost_sysfs_file();
2534 err_null_driver:
2535         write_lock_irqsave(&cpufreq_driver_lock, flags);
2536         cpufreq_driver = NULL;
2537         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2538 out:
2539         cpus_read_unlock();
2540         return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2543
2544 /**
2545  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2546  *
2547  * Unregister the current CPUFreq driver. Only call this if you have
2548  * the right to do so, i.e. if you have succeeded in initialising before!
2549  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2550  * currently not initialised.
2551  */
2552 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2553 {
2554         unsigned long flags;
2555
2556         if (!cpufreq_driver || (driver != cpufreq_driver))
2557                 return -EINVAL;
2558
2559         pr_debug("unregistering driver %s\n", driver->name);
2560
2561         /* Protect against concurrent cpu hotplug */
2562         cpus_read_lock();
2563         subsys_interface_unregister(&cpufreq_interface);
2564         remove_boost_sysfs_file();
2565         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2566
2567         write_lock_irqsave(&cpufreq_driver_lock, flags);
2568
2569         cpufreq_driver = NULL;
2570
2571         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2572         cpus_read_unlock();
2573
2574         return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2577
2578 /*
2579  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2580  * or mutexes when secondary CPUs are halted.
2581  */
2582 static struct syscore_ops cpufreq_syscore_ops = {
2583         .shutdown = cpufreq_suspend,
2584 };
2585
2586 struct kobject *cpufreq_global_kobject;
2587 EXPORT_SYMBOL(cpufreq_global_kobject);
2588
2589 static int __init cpufreq_core_init(void)
2590 {
2591         if (cpufreq_disabled())
2592                 return -ENODEV;
2593
2594         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2595         BUG_ON(!cpufreq_global_kobject);
2596
2597         register_syscore_ops(&cpufreq_syscore_ops);
2598
2599         return 0;
2600 }
2601 module_param(off, int, 0444);
2602 core_initcall(cpufreq_core_init);