Merge tag 'for-4.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / drivers / cpufreq / cppc_cpufreq.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) driver for
3  * interfacing with the CPUfreq layer and governors. See
4  * cppc_acpi.c for CPPC specific methods.
5  *
6  * (C) Copyright 2014, 2015 Linaro Ltd.
7  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/dmi.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25
26 #include <asm/unaligned.h>
27
28 #include <acpi/cppc_acpi.h>
29
30 /* Minimum struct length needed for the DMI processor entry we want */
31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
32
33 /* Offest in the DMI processor structure for the max frequency */
34 #define DMI_PROCESSOR_MAX_SPEED  0x14
35
36 /*
37  * These structs contain information parsed from per CPU
38  * ACPI _CPC structures.
39  * e.g. For each CPU the highest, lowest supported
40  * performance capabilities, desired performance level
41  * requested etc.
42  */
43 static struct cppc_cpudata **all_cpu_data;
44
45 /* Callback function used to retrieve the max frequency from DMI */
46 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
47 {
48         const u8 *dmi_data = (const u8 *)dm;
49         u16 *mhz = (u16 *)private;
50
51         if (dm->type == DMI_ENTRY_PROCESSOR &&
52             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
53                 u16 val = (u16)get_unaligned((const u16 *)
54                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
55                 *mhz = val > *mhz ? val : *mhz;
56         }
57 }
58
59 /* Look up the max frequency in DMI */
60 static u64 cppc_get_dmi_max_khz(void)
61 {
62         u16 mhz = 0;
63
64         dmi_walk(cppc_find_dmi_mhz, &mhz);
65
66         /*
67          * Real stupid fallback value, just in case there is no
68          * actual value set.
69          */
70         mhz = mhz ? mhz : 1;
71
72         return (1000 * mhz);
73 }
74
75 /*
76  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
77  * use them to convert perf to freq and vice versa
78  *
79  * If the perf/freq point lies between Nominal and Lowest, we can treat
80  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
81  * and extrapolate the rest
82  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
83  */
84 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
85                                         unsigned int perf)
86 {
87         static u64 max_khz;
88         struct cppc_perf_caps *caps = &cpu->perf_caps;
89         u64 mul, div;
90
91         if (caps->lowest_freq && caps->nominal_freq) {
92                 if (perf >= caps->nominal_perf) {
93                         mul = caps->nominal_freq;
94                         div = caps->nominal_perf;
95                 } else {
96                         mul = caps->nominal_freq - caps->lowest_freq;
97                         div = caps->nominal_perf - caps->lowest_perf;
98                 }
99         } else {
100                 if (!max_khz)
101                         max_khz = cppc_get_dmi_max_khz();
102                 mul = max_khz;
103                 div = cpu->perf_caps.highest_perf;
104         }
105         return (u64)perf * mul / div;
106 }
107
108 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
109                                         unsigned int freq)
110 {
111         static u64 max_khz;
112         struct cppc_perf_caps *caps = &cpu->perf_caps;
113         u64  mul, div;
114
115         if (caps->lowest_freq && caps->nominal_freq) {
116                 if (freq >= caps->nominal_freq) {
117                         mul = caps->nominal_perf;
118                         div = caps->nominal_freq;
119                 } else {
120                         mul = caps->lowest_perf;
121                         div = caps->lowest_freq;
122                 }
123         } else {
124                 if (!max_khz)
125                         max_khz = cppc_get_dmi_max_khz();
126                 mul = cpu->perf_caps.highest_perf;
127                 div = max_khz;
128         }
129
130         return (u64)freq * mul / div;
131 }
132
133 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
134                 unsigned int target_freq,
135                 unsigned int relation)
136 {
137         struct cppc_cpudata *cpu;
138         struct cpufreq_freqs freqs;
139         u32 desired_perf;
140         int ret = 0;
141
142         cpu = all_cpu_data[policy->cpu];
143
144         desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
145         /* Return if it is exactly the same perf */
146         if (desired_perf == cpu->perf_ctrls.desired_perf)
147                 return ret;
148
149         cpu->perf_ctrls.desired_perf = desired_perf;
150         freqs.old = policy->cur;
151         freqs.new = target_freq;
152
153         cpufreq_freq_transition_begin(policy, &freqs);
154         ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
155         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
156
157         if (ret)
158                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
159                                 cpu->cpu, ret);
160
161         return ret;
162 }
163
164 static int cppc_verify_policy(struct cpufreq_policy *policy)
165 {
166         cpufreq_verify_within_cpu_limits(policy);
167         return 0;
168 }
169
170 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
171 {
172         int cpu_num = policy->cpu;
173         struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
174         int ret;
175
176         cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
177
178         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
179         if (ret)
180                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
181                                 cpu->perf_caps.lowest_perf, cpu_num, ret);
182 }
183
184 /*
185  * The PCC subspace describes the rate at which platform can accept commands
186  * on the shared PCC channel (including READs which do not count towards freq
187  * trasition requests), so ideally we need to use the PCC values as a fallback
188  * if we don't have a platform specific transition_delay_us
189  */
190 #ifdef CONFIG_ARM64
191 #include <asm/cputype.h>
192
193 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
194 {
195         unsigned long implementor = read_cpuid_implementor();
196         unsigned long part_num = read_cpuid_part_number();
197         unsigned int delay_us = 0;
198
199         switch (implementor) {
200         case ARM_CPU_IMP_QCOM:
201                 switch (part_num) {
202                 case QCOM_CPU_PART_FALKOR_V1:
203                 case QCOM_CPU_PART_FALKOR:
204                         delay_us = 10000;
205                         break;
206                 default:
207                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
208                         break;
209                 }
210                 break;
211         default:
212                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
213                 break;
214         }
215
216         return delay_us;
217 }
218
219 #else
220
221 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
222 {
223         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
224 }
225 #endif
226
227 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
228 {
229         struct cppc_cpudata *cpu;
230         unsigned int cpu_num = policy->cpu;
231         int ret = 0;
232
233         cpu = all_cpu_data[policy->cpu];
234
235         cpu->cpu = cpu_num;
236         ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
237
238         if (ret) {
239                 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
240                                 cpu_num, ret);
241                 return ret;
242         }
243
244         /* Convert the lowest and nominal freq from MHz to KHz */
245         cpu->perf_caps.lowest_freq *= 1000;
246         cpu->perf_caps.nominal_freq *= 1000;
247
248         /*
249          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
250          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
251          */
252         policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
253         policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
254
255         /*
256          * Set cpuinfo.min_freq to Lowest to make the full range of performance
257          * available if userspace wants to use any perf between lowest & lowest
258          * nonlinear perf
259          */
260         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
261         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
262
263         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
264         policy->shared_type = cpu->shared_type;
265
266         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
267                 int i;
268
269                 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
270
271                 for_each_cpu(i, policy->cpus) {
272                         if (unlikely(i == policy->cpu))
273                                 continue;
274
275                         memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
276                                sizeof(cpu->perf_caps));
277                 }
278         } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
279                 /* Support only SW_ANY for now. */
280                 pr_debug("Unsupported CPU co-ord type\n");
281                 return -EFAULT;
282         }
283
284         cpu->cur_policy = policy;
285
286         /* Set policy->cur to max now. The governors will adjust later. */
287         policy->cur = cppc_cpufreq_perf_to_khz(cpu,
288                                         cpu->perf_caps.highest_perf);
289         cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
290
291         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
292         if (ret)
293                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
294                                 cpu->perf_caps.highest_perf, cpu_num, ret);
295
296         return ret;
297 }
298
299 static struct cpufreq_driver cppc_cpufreq_driver = {
300         .flags = CPUFREQ_CONST_LOOPS,
301         .verify = cppc_verify_policy,
302         .target = cppc_cpufreq_set_target,
303         .init = cppc_cpufreq_cpu_init,
304         .stop_cpu = cppc_cpufreq_stop_cpu,
305         .name = "cppc_cpufreq",
306 };
307
308 static int __init cppc_cpufreq_init(void)
309 {
310         int i, ret = 0;
311         struct cppc_cpudata *cpu;
312
313         if (acpi_disabled)
314                 return -ENODEV;
315
316         all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
317                                GFP_KERNEL);
318         if (!all_cpu_data)
319                 return -ENOMEM;
320
321         for_each_possible_cpu(i) {
322                 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
323                 if (!all_cpu_data[i])
324                         goto out;
325
326                 cpu = all_cpu_data[i];
327                 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
328                         goto out;
329         }
330
331         ret = acpi_get_psd_map(all_cpu_data);
332         if (ret) {
333                 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
334                 goto out;
335         }
336
337         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
338         if (ret)
339                 goto out;
340
341         return ret;
342
343 out:
344         for_each_possible_cpu(i) {
345                 cpu = all_cpu_data[i];
346                 if (!cpu)
347                         break;
348                 free_cpumask_var(cpu->shared_cpu_map);
349                 kfree(cpu);
350         }
351
352         kfree(all_cpu_data);
353         return -ENODEV;
354 }
355
356 static void __exit cppc_cpufreq_exit(void)
357 {
358         struct cppc_cpudata *cpu;
359         int i;
360
361         cpufreq_unregister_driver(&cppc_cpufreq_driver);
362
363         for_each_possible_cpu(i) {
364                 cpu = all_cpu_data[i];
365                 free_cpumask_var(cpu->shared_cpu_map);
366                 kfree(cpu);
367         }
368
369         kfree(all_cpu_data);
370 }
371
372 module_exit(cppc_cpufreq_exit);
373 MODULE_AUTHOR("Ashwin Chaugule");
374 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
375 MODULE_LICENSE("GPL");
376
377 late_initcall(cppc_cpufreq_init);
378
379 static const struct acpi_device_id cppc_acpi_ids[] = {
380         {ACPI_PROCESSOR_DEVICE_HID, },
381         {}
382 };
383
384 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);