Merge branch 'next' into for-linus
[sfrench/cifs-2.6.git] / drivers / counter / stm32-timer-cnt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2018
6  *
7  * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8  *
9  */
10 #include <linux/counter.h>
11 #include <linux/iio/iio.h>
12 #include <linux/iio/types.h>
13 #include <linux/mfd/stm32-timers.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16
17 #define TIM_CCMR_CCXS   (BIT(8) | BIT(0))
18 #define TIM_CCMR_MASK   (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
19                          TIM_CCMR_IC1F | TIM_CCMR_IC2F)
20 #define TIM_CCER_MASK   (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
21                          TIM_CCER_CC2P | TIM_CCER_CC2NP)
22
23 struct stm32_timer_cnt {
24         struct counter_device counter;
25         struct regmap *regmap;
26         struct clk *clk;
27         u32 ceiling;
28 };
29
30 /**
31  * enum stm32_count_function - enumerates stm32 timer counter encoder modes
32  * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
33  * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
34  * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
35  * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
36  */
37 enum stm32_count_function {
38         STM32_COUNT_SLAVE_MODE_DISABLED = -1,
39         STM32_COUNT_ENCODER_MODE_1,
40         STM32_COUNT_ENCODER_MODE_2,
41         STM32_COUNT_ENCODER_MODE_3,
42 };
43
44 static enum counter_count_function stm32_count_functions[] = {
45         [STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
46         [STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
47         [STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
48 };
49
50 static int stm32_count_read(struct counter_device *counter,
51                             struct counter_count *count, unsigned long *val)
52 {
53         struct stm32_timer_cnt *const priv = counter->priv;
54         u32 cnt;
55
56         regmap_read(priv->regmap, TIM_CNT, &cnt);
57         *val = cnt;
58
59         return 0;
60 }
61
62 static int stm32_count_write(struct counter_device *counter,
63                              struct counter_count *count,
64                              const unsigned long val)
65 {
66         struct stm32_timer_cnt *const priv = counter->priv;
67
68         if (val > priv->ceiling)
69                 return -EINVAL;
70
71         return regmap_write(priv->regmap, TIM_CNT, val);
72 }
73
74 static int stm32_count_function_get(struct counter_device *counter,
75                                     struct counter_count *count,
76                                     size_t *function)
77 {
78         struct stm32_timer_cnt *const priv = counter->priv;
79         u32 smcr;
80
81         regmap_read(priv->regmap, TIM_SMCR, &smcr);
82
83         switch (smcr & TIM_SMCR_SMS) {
84         case 1:
85                 *function = STM32_COUNT_ENCODER_MODE_1;
86                 return 0;
87         case 2:
88                 *function = STM32_COUNT_ENCODER_MODE_2;
89                 return 0;
90         case 3:
91                 *function = STM32_COUNT_ENCODER_MODE_3;
92                 return 0;
93         }
94
95         return -EINVAL;
96 }
97
98 static int stm32_count_function_set(struct counter_device *counter,
99                                     struct counter_count *count,
100                                     size_t function)
101 {
102         struct stm32_timer_cnt *const priv = counter->priv;
103         u32 cr1, sms;
104
105         switch (function) {
106         case STM32_COUNT_ENCODER_MODE_1:
107                 sms = 1;
108                 break;
109         case STM32_COUNT_ENCODER_MODE_2:
110                 sms = 2;
111                 break;
112         case STM32_COUNT_ENCODER_MODE_3:
113                 sms = 3;
114                 break;
115         default:
116                 sms = 0;
117                 break;
118         }
119
120         /* Store enable status */
121         regmap_read(priv->regmap, TIM_CR1, &cr1);
122
123         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
124
125         /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
126         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
127         regmap_write(priv->regmap, TIM_ARR, priv->ceiling);
128
129         regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
130
131         /* Make sure that registers are updated */
132         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
133
134         /* Restore the enable status */
135         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
136
137         return 0;
138 }
139
140 static ssize_t stm32_count_direction_read(struct counter_device *counter,
141                                       struct counter_count *count,
142                                       void *private, char *buf)
143 {
144         struct stm32_timer_cnt *const priv = counter->priv;
145         const char *direction;
146         u32 cr1;
147
148         regmap_read(priv->regmap, TIM_CR1, &cr1);
149         direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
150
151         return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
152 }
153
154 static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
155                                         struct counter_count *count,
156                                         void *private, char *buf)
157 {
158         struct stm32_timer_cnt *const priv = counter->priv;
159         u32 arr;
160
161         regmap_read(priv->regmap, TIM_ARR, &arr);
162
163         return snprintf(buf, PAGE_SIZE, "%u\n", arr);
164 }
165
166 static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
167                                          struct counter_count *count,
168                                          void *private,
169                                          const char *buf, size_t len)
170 {
171         struct stm32_timer_cnt *const priv = counter->priv;
172         unsigned int ceiling;
173         int ret;
174
175         ret = kstrtouint(buf, 0, &ceiling);
176         if (ret)
177                 return ret;
178
179         /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
180         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
181         regmap_write(priv->regmap, TIM_ARR, ceiling);
182
183         priv->ceiling = ceiling;
184         return len;
185 }
186
187 static ssize_t stm32_count_enable_read(struct counter_device *counter,
188                                        struct counter_count *count,
189                                        void *private, char *buf)
190 {
191         struct stm32_timer_cnt *const priv = counter->priv;
192         u32 cr1;
193
194         regmap_read(priv->regmap, TIM_CR1, &cr1);
195
196         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
197 }
198
199 static ssize_t stm32_count_enable_write(struct counter_device *counter,
200                                         struct counter_count *count,
201                                         void *private,
202                                         const char *buf, size_t len)
203 {
204         struct stm32_timer_cnt *const priv = counter->priv;
205         int err;
206         u32 cr1;
207         bool enable;
208
209         err = kstrtobool(buf, &enable);
210         if (err)
211                 return err;
212
213         if (enable) {
214                 regmap_read(priv->regmap, TIM_CR1, &cr1);
215                 if (!(cr1 & TIM_CR1_CEN))
216                         clk_enable(priv->clk);
217
218                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
219                                    TIM_CR1_CEN);
220         } else {
221                 regmap_read(priv->regmap, TIM_CR1, &cr1);
222                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
223                 if (cr1 & TIM_CR1_CEN)
224                         clk_disable(priv->clk);
225         }
226
227         return len;
228 }
229
230 static const struct counter_count_ext stm32_count_ext[] = {
231         {
232                 .name = "direction",
233                 .read = stm32_count_direction_read,
234         },
235         {
236                 .name = "enable",
237                 .read = stm32_count_enable_read,
238                 .write = stm32_count_enable_write
239         },
240         {
241                 .name = "ceiling",
242                 .read = stm32_count_ceiling_read,
243                 .write = stm32_count_ceiling_write
244         },
245 };
246
247 enum stm32_synapse_action {
248         STM32_SYNAPSE_ACTION_NONE,
249         STM32_SYNAPSE_ACTION_BOTH_EDGES
250 };
251
252 static enum counter_synapse_action stm32_synapse_actions[] = {
253         [STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
254         [STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
255 };
256
257 static int stm32_action_get(struct counter_device *counter,
258                             struct counter_count *count,
259                             struct counter_synapse *synapse,
260                             size_t *action)
261 {
262         size_t function;
263         int err;
264
265         /* Default action mode (e.g. STM32_COUNT_SLAVE_MODE_DISABLED) */
266         *action = STM32_SYNAPSE_ACTION_NONE;
267
268         err = stm32_count_function_get(counter, count, &function);
269         if (err)
270                 return 0;
271
272         switch (function) {
273         case STM32_COUNT_ENCODER_MODE_1:
274                 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
275                 if (synapse->signal->id == count->synapses[0].signal->id)
276                         *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
277                 break;
278         case STM32_COUNT_ENCODER_MODE_2:
279                 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
280                 if (synapse->signal->id == count->synapses[1].signal->id)
281                         *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
282                 break;
283         case STM32_COUNT_ENCODER_MODE_3:
284                 /* counts up/down on both TI1FP1 and TI2FP2 edges */
285                 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
286                 break;
287         }
288
289         return 0;
290 }
291
292 static const struct counter_ops stm32_timer_cnt_ops = {
293         .count_read = stm32_count_read,
294         .count_write = stm32_count_write,
295         .function_get = stm32_count_function_get,
296         .function_set = stm32_count_function_set,
297         .action_get = stm32_action_get,
298 };
299
300 static struct counter_signal stm32_signals[] = {
301         {
302                 .id = 0,
303                 .name = "Channel 1 Quadrature A"
304         },
305         {
306                 .id = 1,
307                 .name = "Channel 1 Quadrature B"
308         }
309 };
310
311 static struct counter_synapse stm32_count_synapses[] = {
312         {
313                 .actions_list = stm32_synapse_actions,
314                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
315                 .signal = &stm32_signals[0]
316         },
317         {
318                 .actions_list = stm32_synapse_actions,
319                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
320                 .signal = &stm32_signals[1]
321         }
322 };
323
324 static struct counter_count stm32_counts = {
325         .id = 0,
326         .name = "Channel 1 Count",
327         .functions_list = stm32_count_functions,
328         .num_functions = ARRAY_SIZE(stm32_count_functions),
329         .synapses = stm32_count_synapses,
330         .num_synapses = ARRAY_SIZE(stm32_count_synapses),
331         .ext = stm32_count_ext,
332         .num_ext = ARRAY_SIZE(stm32_count_ext)
333 };
334
335 static int stm32_timer_cnt_probe(struct platform_device *pdev)
336 {
337         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
338         struct device *dev = &pdev->dev;
339         struct stm32_timer_cnt *priv;
340
341         if (IS_ERR_OR_NULL(ddata))
342                 return -EINVAL;
343
344         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
345         if (!priv)
346                 return -ENOMEM;
347
348         priv->regmap = ddata->regmap;
349         priv->clk = ddata->clk;
350         priv->ceiling = ddata->max_arr;
351
352         priv->counter.name = dev_name(dev);
353         priv->counter.parent = dev;
354         priv->counter.ops = &stm32_timer_cnt_ops;
355         priv->counter.counts = &stm32_counts;
356         priv->counter.num_counts = 1;
357         priv->counter.signals = stm32_signals;
358         priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
359         priv->counter.priv = priv;
360
361         /* Register Counter device */
362         return devm_counter_register(dev, &priv->counter);
363 }
364
365 static const struct of_device_id stm32_timer_cnt_of_match[] = {
366         { .compatible = "st,stm32-timer-counter", },
367         {},
368 };
369 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
370
371 static struct platform_driver stm32_timer_cnt_driver = {
372         .probe = stm32_timer_cnt_probe,
373         .driver = {
374                 .name = "stm32-timer-counter",
375                 .of_match_table = stm32_timer_cnt_of_match,
376         },
377 };
378 module_platform_driver(stm32_timer_cnt_driver);
379
380 MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
381 MODULE_ALIAS("platform:stm32-timer-counter");
382 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
383 MODULE_LICENSE("GPL v2");