Merge remote-tracking branches 'asoc/topic/rl6231', 'asoc/topic/rt5514' and 'asoc...
[sfrench/cifs-2.6.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #define pr_fmt(fmt)     "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR         0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n)       (0x40 + ((n) * 4))
43 #define CNTACR_RPCT     BIT(0)
44 #define CNTACR_RVCT     BIT(1)
45 #define CNTACR_RFRQ     BIT(2)
46 #define CNTACR_RVOFF    BIT(3)
47 #define CNTACR_RWVT     BIT(4)
48 #define CNTACR_RWPT     BIT(5)
49
50 #define CNTVCT_LO       0x08
51 #define CNTVCT_HI       0x0c
52 #define CNTFRQ          0x10
53 #define CNTP_TVAL       0x28
54 #define CNTP_CTL        0x2c
55 #define CNTV_TVAL       0x38
56 #define CNTV_CTL        0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63         void __iomem *base;
64         struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
83 static int __init early_evtstrm_cfg(char *buf)
84 {
85         return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89 /*
90  * Architected system timer support.
91  */
92
93 static __always_inline
94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95                           struct clock_event_device *clk)
96 {
97         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98                 struct arch_timer *timer = to_arch_timer(clk);
99                 switch (reg) {
100                 case ARCH_TIMER_REG_CTRL:
101                         writel_relaxed(val, timer->base + CNTP_CTL);
102                         break;
103                 case ARCH_TIMER_REG_TVAL:
104                         writel_relaxed(val, timer->base + CNTP_TVAL);
105                         break;
106                 }
107         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108                 struct arch_timer *timer = to_arch_timer(clk);
109                 switch (reg) {
110                 case ARCH_TIMER_REG_CTRL:
111                         writel_relaxed(val, timer->base + CNTV_CTL);
112                         break;
113                 case ARCH_TIMER_REG_TVAL:
114                         writel_relaxed(val, timer->base + CNTV_TVAL);
115                         break;
116                 }
117         } else {
118                 arch_timer_reg_write_cp15(access, reg, val);
119         }
120 }
121
122 static __always_inline
123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124                         struct clock_event_device *clk)
125 {
126         u32 val;
127
128         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129                 struct arch_timer *timer = to_arch_timer(clk);
130                 switch (reg) {
131                 case ARCH_TIMER_REG_CTRL:
132                         val = readl_relaxed(timer->base + CNTP_CTL);
133                         break;
134                 case ARCH_TIMER_REG_TVAL:
135                         val = readl_relaxed(timer->base + CNTP_TVAL);
136                         break;
137                 }
138         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139                 struct arch_timer *timer = to_arch_timer(clk);
140                 switch (reg) {
141                 case ARCH_TIMER_REG_CTRL:
142                         val = readl_relaxed(timer->base + CNTV_CTL);
143                         break;
144                 case ARCH_TIMER_REG_TVAL:
145                         val = readl_relaxed(timer->base + CNTV_TVAL);
146                         break;
147                 }
148         } else {
149                 val = arch_timer_reg_read_cp15(access, reg);
150         }
151
152         return val;
153 }
154
155 /*
156  * Default to cp15 based access because arm64 uses this function for
157  * sched_clock() before DT is probed and the cp15 method is guaranteed
158  * to exist on arm64. arm doesn't use this before DT is probed so even
159  * if we don't have the cp15 accessors we won't have a problem.
160  */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166         return arch_timer_read_counter();
167 }
168
169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171         return arch_timer_read_counter();
172 }
173
174 static struct clocksource clocksource_counter = {
175         .name   = "arch_sys_counter",
176         .rating = 400,
177         .read   = arch_counter_read,
178         .mask   = CLOCKSOURCE_MASK(56),
179         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181
182 static struct cyclecounter cyclecounter __ro_after_init = {
183         .read   = arch_counter_read_cc,
184         .mask   = CLOCKSOURCE_MASK(56),
185 };
186
187 struct ate_acpi_oem_info {
188         char oem_id[ACPI_OEM_ID_SIZE + 1];
189         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190         u32 oem_revision;
191 };
192
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195  * The number of retries is an arbitrary value well beyond the highest number
196  * of iterations the loop has been observed to take.
197  */
198 #define __fsl_a008585_read_reg(reg) ({                  \
199         u64 _old, _new;                                 \
200         int _retries = 200;                             \
201                                                         \
202         do {                                            \
203                 _old = read_sysreg(reg);                \
204                 _new = read_sysreg(reg);                \
205                 _retries--;                             \
206         } while (unlikely(_old != _new) && _retries);   \
207                                                         \
208         WARN_ON_ONCE(!_retries);                        \
209         _new;                                           \
210 })
211
212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214         return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216
217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219         return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221
222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224         return __fsl_a008585_read_reg(cntpct_el0);
225 }
226
227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229         return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235  * Verify whether the value of the second read is larger than the first by
236  * less than 32 is the only way to confirm the value is correct, so clear the
237  * lower 5 bits to check whether the difference is greater than 32 or not.
238  * Theoretically the erratum should not occur more than twice in succession
239  * when reading the system counter, but it is possible that some interrupts
240  * may lead to more than twice read errors, triggering the warning, so setting
241  * the number of retries far beyond the number of iterations the loop has been
242  * observed to take.
243  */
244 #define __hisi_161010101_read_reg(reg) ({                               \
245         u64 _old, _new;                                         \
246         int _retries = 50;                                      \
247                                                                 \
248         do {                                                    \
249                 _old = read_sysreg(reg);                        \
250                 _new = read_sysreg(reg);                        \
251                 _retries--;                                     \
252         } while (unlikely((_new - _old) >> 5) && _retries);     \
253                                                                 \
254         WARN_ON_ONCE(!_retries);                                \
255         _new;                                                   \
256 })
257
258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260         return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262
263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265         return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267
268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270         return __hisi_161010101_read_reg(cntpct_el0);
271 }
272
273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275         return __hisi_161010101_read_reg(cntvct_el0);
276 }
277
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279         /*
280          * Note that trailing spaces are required to properly match
281          * the OEM table information.
282          */
283         {
284                 .oem_id         = "HISI  ",
285                 .oem_table_id   = "HIP05   ",
286                 .oem_revision   = 0,
287         },
288         {
289                 .oem_id         = "HISI  ",
290                 .oem_table_id   = "HIP06   ",
291                 .oem_revision   = 0,
292         },
293         {
294                 .oem_id         = "HISI  ",
295                 .oem_table_id   = "HIP07   ",
296                 .oem_revision   = 0,
297         },
298         { /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301
302 #ifdef CONFIG_ARM64_ERRATUM_858921
303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305         u64 old, new;
306
307         old = read_sysreg(cntpct_el0);
308         new = read_sysreg(cntpct_el0);
309         return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311
312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314         u64 old, new;
315
316         old = read_sysreg(cntvct_el0);
317         new = read_sysreg(cntvct_el0);
318         return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321
322 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
323 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
324 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
325
326 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
327 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
328
329 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
330                                                 struct clock_event_device *clk)
331 {
332         unsigned long ctrl;
333         u64 cval;
334
335         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
336         ctrl |= ARCH_TIMER_CTRL_ENABLE;
337         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
338
339         if (access == ARCH_TIMER_PHYS_ACCESS) {
340                 cval = evt + arch_counter_get_cntpct();
341                 write_sysreg(cval, cntp_cval_el0);
342         } else {
343                 cval = evt + arch_counter_get_cntvct();
344                 write_sysreg(cval, cntv_cval_el0);
345         }
346
347         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348 }
349
350 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
351                                             struct clock_event_device *clk)
352 {
353         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
354         return 0;
355 }
356
357 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
358                                             struct clock_event_device *clk)
359 {
360         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
361         return 0;
362 }
363
364 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
365 #ifdef CONFIG_FSL_ERRATUM_A008585
366         {
367                 .match_type = ate_match_dt,
368                 .id = "fsl,erratum-a008585",
369                 .desc = "Freescale erratum a005858",
370                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
371                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
372                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
373                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
374                 .set_next_event_phys = erratum_set_next_event_tval_phys,
375                 .set_next_event_virt = erratum_set_next_event_tval_virt,
376         },
377 #endif
378 #ifdef CONFIG_HISILICON_ERRATUM_161010101
379         {
380                 .match_type = ate_match_dt,
381                 .id = "hisilicon,erratum-161010101",
382                 .desc = "HiSilicon erratum 161010101",
383                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
384                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
385                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
386                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
387                 .set_next_event_phys = erratum_set_next_event_tval_phys,
388                 .set_next_event_virt = erratum_set_next_event_tval_virt,
389         },
390         {
391                 .match_type = ate_match_acpi_oem_info,
392                 .id = hisi_161010101_oem_info,
393                 .desc = "HiSilicon erratum 161010101",
394                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
395                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
396                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
397                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
398                 .set_next_event_phys = erratum_set_next_event_tval_phys,
399                 .set_next_event_virt = erratum_set_next_event_tval_virt,
400         },
401 #endif
402 #ifdef CONFIG_ARM64_ERRATUM_858921
403         {
404                 .match_type = ate_match_local_cap_id,
405                 .id = (void *)ARM64_WORKAROUND_858921,
406                 .desc = "ARM erratum 858921",
407                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
408                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
409         },
410 #endif
411 };
412
413 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
414                                const void *);
415
416 static
417 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
418                                  const void *arg)
419 {
420         const struct device_node *np = arg;
421
422         return of_property_read_bool(np, wa->id);
423 }
424
425 static
426 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
427                                         const void *arg)
428 {
429         return this_cpu_has_cap((uintptr_t)wa->id);
430 }
431
432
433 static
434 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
435                                        const void *arg)
436 {
437         static const struct ate_acpi_oem_info empty_oem_info = {};
438         const struct ate_acpi_oem_info *info = wa->id;
439         const struct acpi_table_header *table = arg;
440
441         /* Iterate over the ACPI OEM info array, looking for a match */
442         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
443                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
444                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
445                     info->oem_revision == table->oem_revision)
446                         return true;
447
448                 info++;
449         }
450
451         return false;
452 }
453
454 static const struct arch_timer_erratum_workaround *
455 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
456                           ate_match_fn_t match_fn,
457                           void *arg)
458 {
459         int i;
460
461         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
462                 if (ool_workarounds[i].match_type != type)
463                         continue;
464
465                 if (match_fn(&ool_workarounds[i], arg))
466                         return &ool_workarounds[i];
467         }
468
469         return NULL;
470 }
471
472 static
473 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
474                                   bool local)
475 {
476         int i;
477
478         if (local) {
479                 __this_cpu_write(timer_unstable_counter_workaround, wa);
480         } else {
481                 for_each_possible_cpu(i)
482                         per_cpu(timer_unstable_counter_workaround, i) = wa;
483         }
484
485         /*
486          * Use the locked version, as we're called from the CPU
487          * hotplug framework. Otherwise, we end-up in deadlock-land.
488          */
489         static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
490
491         /*
492          * Don't use the vdso fastpath if errata require using the
493          * out-of-line counter accessor. We may change our mind pretty
494          * late in the game (with a per-CPU erratum, for example), so
495          * change both the default value and the vdso itself.
496          */
497         if (wa->read_cntvct_el0) {
498                 clocksource_counter.archdata.vdso_direct = false;
499                 vdso_default = false;
500         }
501 }
502
503 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
504                                             void *arg)
505 {
506         const struct arch_timer_erratum_workaround *wa;
507         ate_match_fn_t match_fn = NULL;
508         bool local = false;
509
510         switch (type) {
511         case ate_match_dt:
512                 match_fn = arch_timer_check_dt_erratum;
513                 break;
514         case ate_match_local_cap_id:
515                 match_fn = arch_timer_check_local_cap_erratum;
516                 local = true;
517                 break;
518         case ate_match_acpi_oem_info:
519                 match_fn = arch_timer_check_acpi_oem_erratum;
520                 break;
521         default:
522                 WARN_ON(1);
523                 return;
524         }
525
526         wa = arch_timer_iterate_errata(type, match_fn, arg);
527         if (!wa)
528                 return;
529
530         if (needs_unstable_timer_counter_workaround()) {
531                 const struct arch_timer_erratum_workaround *__wa;
532                 __wa = __this_cpu_read(timer_unstable_counter_workaround);
533                 if (__wa && wa != __wa)
534                         pr_warn("Can't enable workaround for %s (clashes with %s\n)",
535                                 wa->desc, __wa->desc);
536
537                 if (__wa)
538                         return;
539         }
540
541         arch_timer_enable_workaround(wa, local);
542         pr_info("Enabling %s workaround for %s\n",
543                 local ? "local" : "global", wa->desc);
544 }
545
546 #define erratum_handler(fn, r, ...)                                     \
547 ({                                                                      \
548         bool __val;                                                     \
549         if (needs_unstable_timer_counter_workaround()) {                \
550                 const struct arch_timer_erratum_workaround *__wa;       \
551                 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
552                 if (__wa && __wa->fn) {                                 \
553                         r = __wa->fn(__VA_ARGS__);                      \
554                         __val = true;                                   \
555                 } else {                                                \
556                         __val = false;                                  \
557                 }                                                       \
558         } else {                                                        \
559                 __val = false;                                          \
560         }                                                               \
561         __val;                                                          \
562 })
563
564 static bool arch_timer_this_cpu_has_cntvct_wa(void)
565 {
566         const struct arch_timer_erratum_workaround *wa;
567
568         wa = __this_cpu_read(timer_unstable_counter_workaround);
569         return wa && wa->read_cntvct_el0;
570 }
571 #else
572 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
573 #define erratum_set_next_event_tval_virt(...)           ({BUG(); 0;})
574 #define erratum_set_next_event_tval_phys(...)           ({BUG(); 0;})
575 #define erratum_handler(fn, r, ...)                     ({false;})
576 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
577 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
578
579 static __always_inline irqreturn_t timer_handler(const int access,
580                                         struct clock_event_device *evt)
581 {
582         unsigned long ctrl;
583
584         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
585         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
586                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
587                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
588                 evt->event_handler(evt);
589                 return IRQ_HANDLED;
590         }
591
592         return IRQ_NONE;
593 }
594
595 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
596 {
597         struct clock_event_device *evt = dev_id;
598
599         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
600 }
601
602 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
603 {
604         struct clock_event_device *evt = dev_id;
605
606         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
607 }
608
609 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
610 {
611         struct clock_event_device *evt = dev_id;
612
613         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
614 }
615
616 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
617 {
618         struct clock_event_device *evt = dev_id;
619
620         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
621 }
622
623 static __always_inline int timer_shutdown(const int access,
624                                           struct clock_event_device *clk)
625 {
626         unsigned long ctrl;
627
628         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
630         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
631
632         return 0;
633 }
634
635 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
636 {
637         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
638 }
639
640 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
641 {
642         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
643 }
644
645 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
646 {
647         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
648 }
649
650 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
651 {
652         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
653 }
654
655 static __always_inline void set_next_event(const int access, unsigned long evt,
656                                            struct clock_event_device *clk)
657 {
658         unsigned long ctrl;
659         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
660         ctrl |= ARCH_TIMER_CTRL_ENABLE;
661         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
662         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
663         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
664 }
665
666 static int arch_timer_set_next_event_virt(unsigned long evt,
667                                           struct clock_event_device *clk)
668 {
669         int ret;
670
671         if (erratum_handler(set_next_event_virt, ret, evt, clk))
672                 return ret;
673
674         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
675         return 0;
676 }
677
678 static int arch_timer_set_next_event_phys(unsigned long evt,
679                                           struct clock_event_device *clk)
680 {
681         int ret;
682
683         if (erratum_handler(set_next_event_phys, ret, evt, clk))
684                 return ret;
685
686         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
687         return 0;
688 }
689
690 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
691                                               struct clock_event_device *clk)
692 {
693         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
694         return 0;
695 }
696
697 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
698                                               struct clock_event_device *clk)
699 {
700         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
701         return 0;
702 }
703
704 static void __arch_timer_setup(unsigned type,
705                                struct clock_event_device *clk)
706 {
707         clk->features = CLOCK_EVT_FEAT_ONESHOT;
708
709         if (type == ARCH_TIMER_TYPE_CP15) {
710                 if (arch_timer_c3stop)
711                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
712                 clk->name = "arch_sys_timer";
713                 clk->rating = 450;
714                 clk->cpumask = cpumask_of(smp_processor_id());
715                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
716                 switch (arch_timer_uses_ppi) {
717                 case ARCH_TIMER_VIRT_PPI:
718                         clk->set_state_shutdown = arch_timer_shutdown_virt;
719                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
720                         clk->set_next_event = arch_timer_set_next_event_virt;
721                         break;
722                 case ARCH_TIMER_PHYS_SECURE_PPI:
723                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
724                 case ARCH_TIMER_HYP_PPI:
725                         clk->set_state_shutdown = arch_timer_shutdown_phys;
726                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
727                         clk->set_next_event = arch_timer_set_next_event_phys;
728                         break;
729                 default:
730                         BUG();
731                 }
732
733                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
734         } else {
735                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
736                 clk->name = "arch_mem_timer";
737                 clk->rating = 400;
738                 clk->cpumask = cpu_all_mask;
739                 if (arch_timer_mem_use_virtual) {
740                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
741                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
742                         clk->set_next_event =
743                                 arch_timer_set_next_event_virt_mem;
744                 } else {
745                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
746                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
747                         clk->set_next_event =
748                                 arch_timer_set_next_event_phys_mem;
749                 }
750         }
751
752         clk->set_state_shutdown(clk);
753
754         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
755 }
756
757 static void arch_timer_evtstrm_enable(int divider)
758 {
759         u32 cntkctl = arch_timer_get_cntkctl();
760
761         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
762         /* Set the divider and enable virtual event stream */
763         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
764                         | ARCH_TIMER_VIRT_EVT_EN;
765         arch_timer_set_cntkctl(cntkctl);
766         elf_hwcap |= HWCAP_EVTSTRM;
767 #ifdef CONFIG_COMPAT
768         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
769 #endif
770         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
771 }
772
773 static void arch_timer_configure_evtstream(void)
774 {
775         int evt_stream_div, pos;
776
777         /* Find the closest power of two to the divisor */
778         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
779         pos = fls(evt_stream_div);
780         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
781                 pos--;
782         /* enable event stream */
783         arch_timer_evtstrm_enable(min(pos, 15));
784 }
785
786 static void arch_counter_set_user_access(void)
787 {
788         u32 cntkctl = arch_timer_get_cntkctl();
789
790         /* Disable user access to the timers and both counters */
791         /* Also disable virtual event stream */
792         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
793                         | ARCH_TIMER_USR_VT_ACCESS_EN
794                         | ARCH_TIMER_USR_VCT_ACCESS_EN
795                         | ARCH_TIMER_VIRT_EVT_EN
796                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
797
798         /*
799          * Enable user access to the virtual counter if it doesn't
800          * need to be workaround. The vdso may have been already
801          * disabled though.
802          */
803         if (arch_timer_this_cpu_has_cntvct_wa())
804                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
805         else
806                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
807
808         arch_timer_set_cntkctl(cntkctl);
809 }
810
811 static bool arch_timer_has_nonsecure_ppi(void)
812 {
813         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
814                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
815 }
816
817 static u32 check_ppi_trigger(int irq)
818 {
819         u32 flags = irq_get_trigger_type(irq);
820
821         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
822                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
823                 pr_warn("WARNING: Please fix your firmware\n");
824                 flags = IRQF_TRIGGER_LOW;
825         }
826
827         return flags;
828 }
829
830 static int arch_timer_starting_cpu(unsigned int cpu)
831 {
832         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
833         u32 flags;
834
835         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
836
837         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
838         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
839
840         if (arch_timer_has_nonsecure_ppi()) {
841                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
842                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
843                                   flags);
844         }
845
846         arch_counter_set_user_access();
847         if (evtstrm_enable)
848                 arch_timer_configure_evtstream();
849
850         return 0;
851 }
852
853 /*
854  * For historical reasons, when probing with DT we use whichever (non-zero)
855  * rate was probed first, and don't verify that others match. If the first node
856  * probed has a clock-frequency property, this overrides the HW register.
857  */
858 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
859 {
860         /* Who has more than one independent system counter? */
861         if (arch_timer_rate)
862                 return;
863
864         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
865                 arch_timer_rate = rate;
866
867         /* Check the timer frequency. */
868         if (arch_timer_rate == 0)
869                 pr_warn("frequency not available\n");
870 }
871
872 static void arch_timer_banner(unsigned type)
873 {
874         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
875                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
876                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
877                         " and " : "",
878                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
879                 (unsigned long)arch_timer_rate / 1000000,
880                 (unsigned long)(arch_timer_rate / 10000) % 100,
881                 type & ARCH_TIMER_TYPE_CP15 ?
882                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
883                         "",
884                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
885                 type & ARCH_TIMER_TYPE_MEM ?
886                         arch_timer_mem_use_virtual ? "virt" : "phys" :
887                         "");
888 }
889
890 u32 arch_timer_get_rate(void)
891 {
892         return arch_timer_rate;
893 }
894
895 bool arch_timer_evtstrm_available(void)
896 {
897         /*
898          * We might get called from a preemptible context. This is fine
899          * because availability of the event stream should be always the same
900          * for a preemptible context and context where we might resume a task.
901          */
902         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
903 }
904
905 static u64 arch_counter_get_cntvct_mem(void)
906 {
907         u32 vct_lo, vct_hi, tmp_hi;
908
909         do {
910                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
911                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
912                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
913         } while (vct_hi != tmp_hi);
914
915         return ((u64) vct_hi << 32) | vct_lo;
916 }
917
918 static struct arch_timer_kvm_info arch_timer_kvm_info;
919
920 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
921 {
922         return &arch_timer_kvm_info;
923 }
924
925 static void __init arch_counter_register(unsigned type)
926 {
927         u64 start_count;
928
929         /* Register the CP15 based counter if we have one */
930         if (type & ARCH_TIMER_TYPE_CP15) {
931                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
932                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
933                         arch_timer_read_counter = arch_counter_get_cntvct;
934                 else
935                         arch_timer_read_counter = arch_counter_get_cntpct;
936
937                 clocksource_counter.archdata.vdso_direct = vdso_default;
938         } else {
939                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
940         }
941
942         if (!arch_counter_suspend_stop)
943                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
944         start_count = arch_timer_read_counter();
945         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
946         cyclecounter.mult = clocksource_counter.mult;
947         cyclecounter.shift = clocksource_counter.shift;
948         timecounter_init(&arch_timer_kvm_info.timecounter,
949                          &cyclecounter, start_count);
950
951         /* 56 bits minimum, so we assume worst case rollover */
952         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
953 }
954
955 static void arch_timer_stop(struct clock_event_device *clk)
956 {
957         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
958
959         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
960         if (arch_timer_has_nonsecure_ppi())
961                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962
963         clk->set_state_shutdown(clk);
964 }
965
966 static int arch_timer_dying_cpu(unsigned int cpu)
967 {
968         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
969
970         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
971
972         arch_timer_stop(clk);
973         return 0;
974 }
975
976 #ifdef CONFIG_CPU_PM
977 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
978 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
979                                     unsigned long action, void *hcpu)
980 {
981         if (action == CPU_PM_ENTER) {
982                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
983
984                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
985         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
986                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
987
988                 if (elf_hwcap & HWCAP_EVTSTRM)
989                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
990         }
991         return NOTIFY_OK;
992 }
993
994 static struct notifier_block arch_timer_cpu_pm_notifier = {
995         .notifier_call = arch_timer_cpu_pm_notify,
996 };
997
998 static int __init arch_timer_cpu_pm_init(void)
999 {
1000         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001 }
1002
1003 static void __init arch_timer_cpu_pm_deinit(void)
1004 {
1005         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006 }
1007
1008 #else
1009 static int __init arch_timer_cpu_pm_init(void)
1010 {
1011         return 0;
1012 }
1013
1014 static void __init arch_timer_cpu_pm_deinit(void)
1015 {
1016 }
1017 #endif
1018
1019 static int __init arch_timer_register(void)
1020 {
1021         int err;
1022         int ppi;
1023
1024         arch_timer_evt = alloc_percpu(struct clock_event_device);
1025         if (!arch_timer_evt) {
1026                 err = -ENOMEM;
1027                 goto out;
1028         }
1029
1030         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031         switch (arch_timer_uses_ppi) {
1032         case ARCH_TIMER_VIRT_PPI:
1033                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034                                          "arch_timer", arch_timer_evt);
1035                 break;
1036         case ARCH_TIMER_PHYS_SECURE_PPI:
1037         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039                                          "arch_timer", arch_timer_evt);
1040                 if (!err && arch_timer_has_nonsecure_ppi()) {
1041                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043                                                  "arch_timer", arch_timer_evt);
1044                         if (err)
1045                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046                                                 arch_timer_evt);
1047                 }
1048                 break;
1049         case ARCH_TIMER_HYP_PPI:
1050                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051                                          "arch_timer", arch_timer_evt);
1052                 break;
1053         default:
1054                 BUG();
1055         }
1056
1057         if (err) {
1058                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059                 goto out_free;
1060         }
1061
1062         err = arch_timer_cpu_pm_init();
1063         if (err)
1064                 goto out_unreg_notify;
1065
1066         /* Register and immediately configure the timer on the boot CPU */
1067         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068                                 "clockevents/arm/arch_timer:starting",
1069                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1070         if (err)
1071                 goto out_unreg_cpupm;
1072         return 0;
1073
1074 out_unreg_cpupm:
1075         arch_timer_cpu_pm_deinit();
1076
1077 out_unreg_notify:
1078         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079         if (arch_timer_has_nonsecure_ppi())
1080                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081                                 arch_timer_evt);
1082
1083 out_free:
1084         free_percpu(arch_timer_evt);
1085 out:
1086         return err;
1087 }
1088
1089 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090 {
1091         int ret;
1092         irq_handler_t func;
1093         struct arch_timer *t;
1094
1095         t = kzalloc(sizeof(*t), GFP_KERNEL);
1096         if (!t)
1097                 return -ENOMEM;
1098
1099         t->base = base;
1100         t->evt.irq = irq;
1101         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103         if (arch_timer_mem_use_virtual)
1104                 func = arch_timer_handler_virt_mem;
1105         else
1106                 func = arch_timer_handler_phys_mem;
1107
1108         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109         if (ret) {
1110                 pr_err("Failed to request mem timer irq\n");
1111                 kfree(t);
1112         }
1113
1114         return ret;
1115 }
1116
1117 static const struct of_device_id arch_timer_of_match[] __initconst = {
1118         { .compatible   = "arm,armv7-timer",    },
1119         { .compatible   = "arm,armv8-timer",    },
1120         {},
1121 };
1122
1123 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124         { .compatible   = "arm,armv7-timer-mem", },
1125         {},
1126 };
1127
1128 static bool __init arch_timer_needs_of_probing(void)
1129 {
1130         struct device_node *dn;
1131         bool needs_probing = false;
1132         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134         /* We have two timers, and both device-tree nodes are probed. */
1135         if ((arch_timers_present & mask) == mask)
1136                 return false;
1137
1138         /*
1139          * Only one type of timer is probed,
1140          * check if we have another type of timer node in device-tree.
1141          */
1142         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144         else
1145                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147         if (dn && of_device_is_available(dn))
1148                 needs_probing = true;
1149
1150         of_node_put(dn);
1151
1152         return needs_probing;
1153 }
1154
1155 static int __init arch_timer_common_init(void)
1156 {
1157         arch_timer_banner(arch_timers_present);
1158         arch_counter_register(arch_timers_present);
1159         return arch_timer_arch_init();
1160 }
1161
1162 /**
1163  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164  *
1165  * If HYP mode is available, we know that the physical timer
1166  * has been configured to be accessible from PL1. Use it, so
1167  * that a guest can use the virtual timer instead.
1168  *
1169  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170  * accesses to CNTP_*_EL1 registers are silently redirected to
1171  * their CNTHP_*_EL2 counterparts, and use a different PPI
1172  * number.
1173  *
1174  * If no interrupt provided for virtual timer, we'll have to
1175  * stick to the physical timer. It'd better be accessible...
1176  * For arm64 we never use the secure interrupt.
1177  *
1178  * Return: a suitable PPI type for the current system.
1179  */
1180 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181 {
1182         if (is_kernel_in_hyp_mode())
1183                 return ARCH_TIMER_HYP_PPI;
1184
1185         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186                 return ARCH_TIMER_VIRT_PPI;
1187
1188         if (IS_ENABLED(CONFIG_ARM64))
1189                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191         return ARCH_TIMER_PHYS_SECURE_PPI;
1192 }
1193
1194 static int __init arch_timer_of_init(struct device_node *np)
1195 {
1196         int i, ret;
1197         u32 rate;
1198
1199         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200                 pr_warn("multiple nodes in dt, skipping\n");
1201                 return 0;
1202         }
1203
1204         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1209
1210         rate = arch_timer_get_cntfrq();
1211         arch_timer_of_configure_rate(rate, np);
1212
1213         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215         /* Check for globally applicable workarounds */
1216         arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218         /*
1219          * If we cannot rely on firmware initializing the timer registers then
1220          * we should use the physical timers instead.
1221          */
1222         if (IS_ENABLED(CONFIG_ARM) &&
1223             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225         else
1226                 arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229                 pr_err("No interrupt available, giving up\n");
1230                 return -EINVAL;
1231         }
1232
1233         /* On some systems, the counter stops ticking when in suspend. */
1234         arch_counter_suspend_stop = of_property_read_bool(np,
1235                                                          "arm,no-tick-in-suspend");
1236
1237         ret = arch_timer_register();
1238         if (ret)
1239                 return ret;
1240
1241         if (arch_timer_needs_of_probing())
1242                 return 0;
1243
1244         return arch_timer_common_init();
1245 }
1246 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249 static u32 __init
1250 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251 {
1252         void __iomem *base;
1253         u32 rate;
1254
1255         base = ioremap(frame->cntbase, frame->size);
1256         if (!base) {
1257                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258                 return 0;
1259         }
1260
1261         rate = readl_relaxed(base + CNTFRQ);
1262
1263         iounmap(base);
1264
1265         return rate;
1266 }
1267
1268 static struct arch_timer_mem_frame * __init
1269 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270 {
1271         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272         void __iomem *cntctlbase;
1273         u32 cnttidr;
1274         int i;
1275
1276         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277         if (!cntctlbase) {
1278                 pr_err("Can't map CNTCTLBase @ %pa\n",
1279                         &timer_mem->cntctlbase);
1280                 return NULL;
1281         }
1282
1283         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285         /*
1286          * Try to find a virtual capable frame. Otherwise fall back to a
1287          * physical capable frame.
1288          */
1289         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293                 frame = &timer_mem->frame[i];
1294                 if (!frame->valid)
1295                         continue;
1296
1297                 /* Try enabling everything, and see what sticks */
1298                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303                         best_frame = frame;
1304                         arch_timer_mem_use_virtual = true;
1305                         break;
1306                 }
1307
1308                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309                         continue;
1310
1311                 best_frame = frame;
1312         }
1313
1314         iounmap(cntctlbase);
1315
1316         return best_frame;
1317 }
1318
1319 static int __init
1320 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321 {
1322         void __iomem *base;
1323         int ret, irq = 0;
1324
1325         if (arch_timer_mem_use_virtual)
1326                 irq = frame->virt_irq;
1327         else
1328                 irq = frame->phys_irq;
1329
1330         if (!irq) {
1331                 pr_err("Frame missing %s irq.\n",
1332                        arch_timer_mem_use_virtual ? "virt" : "phys");
1333                 return -EINVAL;
1334         }
1335
1336         if (!request_mem_region(frame->cntbase, frame->size,
1337                                 "arch_mem_timer"))
1338                 return -EBUSY;
1339
1340         base = ioremap(frame->cntbase, frame->size);
1341         if (!base) {
1342                 pr_err("Can't map frame's registers\n");
1343                 return -ENXIO;
1344         }
1345
1346         ret = arch_timer_mem_register(base, irq);
1347         if (ret) {
1348                 iounmap(base);
1349                 return ret;
1350         }
1351
1352         arch_counter_base = base;
1353         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355         return 0;
1356 }
1357
1358 static int __init arch_timer_mem_of_init(struct device_node *np)
1359 {
1360         struct arch_timer_mem *timer_mem;
1361         struct arch_timer_mem_frame *frame;
1362         struct device_node *frame_node;
1363         struct resource res;
1364         int ret = -EINVAL;
1365         u32 rate;
1366
1367         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368         if (!timer_mem)
1369                 return -ENOMEM;
1370
1371         if (of_address_to_resource(np, 0, &res))
1372                 goto out;
1373         timer_mem->cntctlbase = res.start;
1374         timer_mem->size = resource_size(&res);
1375
1376         for_each_available_child_of_node(np, frame_node) {
1377                 u32 n;
1378                 struct arch_timer_mem_frame *frame;
1379
1380                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381                         pr_err(FW_BUG "Missing frame-number.\n");
1382                         of_node_put(frame_node);
1383                         goto out;
1384                 }
1385                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388                         of_node_put(frame_node);
1389                         goto out;
1390                 }
1391                 frame = &timer_mem->frame[n];
1392
1393                 if (frame->valid) {
1394                         pr_err(FW_BUG "Duplicated frame-number.\n");
1395                         of_node_put(frame_node);
1396                         goto out;
1397                 }
1398
1399                 if (of_address_to_resource(frame_node, 0, &res)) {
1400                         of_node_put(frame_node);
1401                         goto out;
1402                 }
1403                 frame->cntbase = res.start;
1404                 frame->size = resource_size(&res);
1405
1406                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1407                                                        ARCH_TIMER_VIRT_SPI);
1408                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1409                                                        ARCH_TIMER_PHYS_SPI);
1410
1411                 frame->valid = true;
1412         }
1413
1414         frame = arch_timer_mem_find_best_frame(timer_mem);
1415         if (!frame) {
1416                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417                         &timer_mem->cntctlbase);
1418                 ret = -EINVAL;
1419                 goto out;
1420         }
1421
1422         rate = arch_timer_mem_frame_get_cntfrq(frame);
1423         arch_timer_of_configure_rate(rate, np);
1424
1425         ret = arch_timer_mem_frame_register(frame);
1426         if (!ret && !arch_timer_needs_of_probing())
1427                 ret = arch_timer_common_init();
1428 out:
1429         kfree(timer_mem);
1430         return ret;
1431 }
1432 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433                        arch_timer_mem_of_init);
1434
1435 #ifdef CONFIG_ACPI_GTDT
1436 static int __init
1437 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438 {
1439         struct arch_timer_mem_frame *frame;
1440         u32 rate;
1441         int i;
1442
1443         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444                 frame = &timer_mem->frame[i];
1445
1446                 if (!frame->valid)
1447                         continue;
1448
1449                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1450                 if (rate == arch_timer_rate)
1451                         continue;
1452
1453                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454                         &frame->cntbase,
1455                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457                 return -EINVAL;
1458         }
1459
1460         return 0;
1461 }
1462
1463 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464 {
1465         struct arch_timer_mem *timers, *timer;
1466         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467         int timer_count, i, ret = 0;
1468
1469         timers = kcalloc(platform_timer_count, sizeof(*timers),
1470                             GFP_KERNEL);
1471         if (!timers)
1472                 return -ENOMEM;
1473
1474         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475         if (ret || !timer_count)
1476                 goto out;
1477
1478         /*
1479          * While unlikely, it's theoretically possible that none of the frames
1480          * in a timer expose the combination of feature we want.
1481          */
1482         for (i = 0; i < timer_count; i++) {
1483                 timer = &timers[i];
1484
1485                 frame = arch_timer_mem_find_best_frame(timer);
1486                 if (!best_frame)
1487                         best_frame = frame;
1488
1489                 ret = arch_timer_mem_verify_cntfrq(timer);
1490                 if (ret) {
1491                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492                         goto out;
1493                 }
1494
1495                 if (!best_frame) /* implies !frame */
1496                         /*
1497                          * Only complain about missing suitable frames if we
1498                          * haven't already found one in a previous iteration.
1499                          */
1500                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501                                 &timer->cntctlbase);
1502         }
1503
1504         if (best_frame)
1505                 ret = arch_timer_mem_frame_register(best_frame);
1506 out:
1507         kfree(timers);
1508         return ret;
1509 }
1510
1511 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513 {
1514         int ret, platform_timer_count;
1515
1516         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517                 pr_warn("already initialized, skipping\n");
1518                 return -EINVAL;
1519         }
1520
1521         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523         ret = acpi_gtdt_init(table, &platform_timer_count);
1524         if (ret) {
1525                 pr_err("Failed to init GTDT table.\n");
1526                 return ret;
1527         }
1528
1529         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540         /*
1541          * When probing via ACPI, we have no mechanism to override the sysreg
1542          * CNTFRQ value. This *must* be correct.
1543          */
1544         arch_timer_rate = arch_timer_get_cntfrq();
1545         if (!arch_timer_rate) {
1546                 pr_err(FW_BUG "frequency not available.\n");
1547                 return -EINVAL;
1548         }
1549
1550         arch_timer_uses_ppi = arch_timer_select_ppi();
1551         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552                 pr_err("No interrupt available, giving up\n");
1553                 return -EINVAL;
1554         }
1555
1556         /* Always-on capability */
1557         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559         /* Check for globally applicable workarounds */
1560         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562         ret = arch_timer_register();
1563         if (ret)
1564                 return ret;
1565
1566         if (platform_timer_count &&
1567             arch_timer_mem_acpi_init(platform_timer_count))
1568                 pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570         return arch_timer_common_init();
1571 }
1572 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573 #endif