6f450816c4fa67fea37753d50b80d2237d24bded
[sfrench/cifs-2.6.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59               "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;       /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125          member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 DEFINE_SPINLOCK(drbd_pp_lock);
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135         .owner          = THIS_MODULE,
136         .submit_bio     = drbd_submit_bio,
137         .open           = drbd_open,
138         .release        = drbd_release,
139 };
140
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147         int io_allowed;
148
149         atomic_inc(&device->local_cnt);
150         io_allowed = (device->state.disk >= mins);
151         if (!io_allowed) {
152                 if (atomic_dec_and_test(&device->local_cnt))
153                         wake_up(&device->misc_wait);
154         }
155         return io_allowed;
156 }
157
158 #endif
159
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection: DRBD connection.
163  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
164  * @set_size:   Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171                 unsigned int set_size)
172 {
173         struct drbd_request *r;
174         struct drbd_request *req = NULL;
175         int expect_epoch = 0;
176         int expect_size = 0;
177
178         spin_lock_irq(&connection->resource->req_lock);
179
180         /* find oldest not yet barrier-acked write request,
181          * count writes in its epoch. */
182         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183                 const unsigned s = r->rq_state;
184                 if (!req) {
185                         if (!(s & RQ_WRITE))
186                                 continue;
187                         if (!(s & RQ_NET_MASK))
188                                 continue;
189                         if (s & RQ_NET_DONE)
190                                 continue;
191                         req = r;
192                         expect_epoch = req->epoch;
193                         expect_size ++;
194                 } else {
195                         if (r->epoch != expect_epoch)
196                                 break;
197                         if (!(s & RQ_WRITE))
198                                 continue;
199                         /* if (s & RQ_DONE): not expected */
200                         /* if (!(s & RQ_NET_MASK)): not expected */
201                         expect_size++;
202                 }
203         }
204
205         /* first some paranoia code */
206         if (req == NULL) {
207                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208                          barrier_nr);
209                 goto bail;
210         }
211         if (expect_epoch != barrier_nr) {
212                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213                          barrier_nr, expect_epoch);
214                 goto bail;
215         }
216
217         if (expect_size != set_size) {
218                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219                          barrier_nr, set_size, expect_size);
220                 goto bail;
221         }
222
223         /* Clean up list of requests processed during current epoch. */
224         /* this extra list walk restart is paranoia,
225          * to catch requests being barrier-acked "unexpectedly".
226          * It usually should find the same req again, or some READ preceding it. */
227         list_for_each_entry(req, &connection->transfer_log, tl_requests)
228                 if (req->epoch == expect_epoch)
229                         break;
230         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
231                 if (req->epoch != expect_epoch)
232                         break;
233                 _req_mod(req, BARRIER_ACKED);
234         }
235         spin_unlock_irq(&connection->resource->req_lock);
236
237         return;
238
239 bail:
240         spin_unlock_irq(&connection->resource->req_lock);
241         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
242 }
243
244
245 /**
246  * _tl_restart() - Walks the transfer log, and applies an action to all requests
247  * @connection: DRBD connection to operate on.
248  * @what:       The action/event to perform with all request objects
249  *
250  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
251  * RESTART_FROZEN_DISK_IO.
252  */
253 /* must hold resource->req_lock */
254 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
255 {
256         struct drbd_request *req, *r;
257
258         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
259                 _req_mod(req, what);
260 }
261
262 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
263 {
264         spin_lock_irq(&connection->resource->req_lock);
265         _tl_restart(connection, what);
266         spin_unlock_irq(&connection->resource->req_lock);
267 }
268
269 /**
270  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
271  * @connection: DRBD connection.
272  *
273  * This is called after the connection to the peer was lost. The storage covered
274  * by the requests on the transfer gets marked as our of sync. Called from the
275  * receiver thread and the worker thread.
276  */
277 void tl_clear(struct drbd_connection *connection)
278 {
279         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
280 }
281
282 /**
283  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
284  * @device:     DRBD device.
285  */
286 void tl_abort_disk_io(struct drbd_device *device)
287 {
288         struct drbd_connection *connection = first_peer_device(device)->connection;
289         struct drbd_request *req, *r;
290
291         spin_lock_irq(&connection->resource->req_lock);
292         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
293                 if (!(req->rq_state & RQ_LOCAL_PENDING))
294                         continue;
295                 if (req->device != device)
296                         continue;
297                 _req_mod(req, ABORT_DISK_IO);
298         }
299         spin_unlock_irq(&connection->resource->req_lock);
300 }
301
302 static int drbd_thread_setup(void *arg)
303 {
304         struct drbd_thread *thi = (struct drbd_thread *) arg;
305         struct drbd_resource *resource = thi->resource;
306         unsigned long flags;
307         int retval;
308
309         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
310                  thi->name[0],
311                  resource->name);
312
313         allow_kernel_signal(DRBD_SIGKILL);
314         allow_kernel_signal(SIGXCPU);
315 restart:
316         retval = thi->function(thi);
317
318         spin_lock_irqsave(&thi->t_lock, flags);
319
320         /* if the receiver has been "EXITING", the last thing it did
321          * was set the conn state to "StandAlone",
322          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
323          * and receiver thread will be "started".
324          * drbd_thread_start needs to set "RESTARTING" in that case.
325          * t_state check and assignment needs to be within the same spinlock,
326          * so either thread_start sees EXITING, and can remap to RESTARTING,
327          * or thread_start see NONE, and can proceed as normal.
328          */
329
330         if (thi->t_state == RESTARTING) {
331                 drbd_info(resource, "Restarting %s thread\n", thi->name);
332                 thi->t_state = RUNNING;
333                 spin_unlock_irqrestore(&thi->t_lock, flags);
334                 goto restart;
335         }
336
337         thi->task = NULL;
338         thi->t_state = NONE;
339         smp_mb();
340         complete_all(&thi->stop);
341         spin_unlock_irqrestore(&thi->t_lock, flags);
342
343         drbd_info(resource, "Terminating %s\n", current->comm);
344
345         /* Release mod reference taken when thread was started */
346
347         if (thi->connection)
348                 kref_put(&thi->connection->kref, drbd_destroy_connection);
349         kref_put(&resource->kref, drbd_destroy_resource);
350         module_put(THIS_MODULE);
351         return retval;
352 }
353
354 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
355                              int (*func) (struct drbd_thread *), const char *name)
356 {
357         spin_lock_init(&thi->t_lock);
358         thi->task    = NULL;
359         thi->t_state = NONE;
360         thi->function = func;
361         thi->resource = resource;
362         thi->connection = NULL;
363         thi->name = name;
364 }
365
366 int drbd_thread_start(struct drbd_thread *thi)
367 {
368         struct drbd_resource *resource = thi->resource;
369         struct task_struct *nt;
370         unsigned long flags;
371
372         /* is used from state engine doing drbd_thread_stop_nowait,
373          * while holding the req lock irqsave */
374         spin_lock_irqsave(&thi->t_lock, flags);
375
376         switch (thi->t_state) {
377         case NONE:
378                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
379                          thi->name, current->comm, current->pid);
380
381                 /* Get ref on module for thread - this is released when thread exits */
382                 if (!try_module_get(THIS_MODULE)) {
383                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
384                         spin_unlock_irqrestore(&thi->t_lock, flags);
385                         return false;
386                 }
387
388                 kref_get(&resource->kref);
389                 if (thi->connection)
390                         kref_get(&thi->connection->kref);
391
392                 init_completion(&thi->stop);
393                 thi->reset_cpu_mask = 1;
394                 thi->t_state = RUNNING;
395                 spin_unlock_irqrestore(&thi->t_lock, flags);
396                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
397
398                 nt = kthread_create(drbd_thread_setup, (void *) thi,
399                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
400
401                 if (IS_ERR(nt)) {
402                         drbd_err(resource, "Couldn't start thread\n");
403
404                         if (thi->connection)
405                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
406                         kref_put(&resource->kref, drbd_destroy_resource);
407                         module_put(THIS_MODULE);
408                         return false;
409                 }
410                 spin_lock_irqsave(&thi->t_lock, flags);
411                 thi->task = nt;
412                 thi->t_state = RUNNING;
413                 spin_unlock_irqrestore(&thi->t_lock, flags);
414                 wake_up_process(nt);
415                 break;
416         case EXITING:
417                 thi->t_state = RESTARTING;
418                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
419                                 thi->name, current->comm, current->pid);
420                 fallthrough;
421         case RUNNING:
422         case RESTARTING:
423         default:
424                 spin_unlock_irqrestore(&thi->t_lock, flags);
425                 break;
426         }
427
428         return true;
429 }
430
431
432 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
433 {
434         unsigned long flags;
435
436         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
437
438         /* may be called from state engine, holding the req lock irqsave */
439         spin_lock_irqsave(&thi->t_lock, flags);
440
441         if (thi->t_state == NONE) {
442                 spin_unlock_irqrestore(&thi->t_lock, flags);
443                 if (restart)
444                         drbd_thread_start(thi);
445                 return;
446         }
447
448         if (thi->t_state != ns) {
449                 if (thi->task == NULL) {
450                         spin_unlock_irqrestore(&thi->t_lock, flags);
451                         return;
452                 }
453
454                 thi->t_state = ns;
455                 smp_mb();
456                 init_completion(&thi->stop);
457                 if (thi->task != current)
458                         send_sig(DRBD_SIGKILL, thi->task, 1);
459         }
460
461         spin_unlock_irqrestore(&thi->t_lock, flags);
462
463         if (wait)
464                 wait_for_completion(&thi->stop);
465 }
466
467 int conn_lowest_minor(struct drbd_connection *connection)
468 {
469         struct drbd_peer_device *peer_device;
470         int vnr = 0, minor = -1;
471
472         rcu_read_lock();
473         peer_device = idr_get_next(&connection->peer_devices, &vnr);
474         if (peer_device)
475                 minor = device_to_minor(peer_device->device);
476         rcu_read_unlock();
477
478         return minor;
479 }
480
481 #ifdef CONFIG_SMP
482 /*
483  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
484  *
485  * Forces all threads of a resource onto the same CPU. This is beneficial for
486  * DRBD's performance. May be overwritten by user's configuration.
487  */
488 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
489 {
490         unsigned int *resources_per_cpu, min_index = ~0;
491
492         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
493                                     GFP_KERNEL);
494         if (resources_per_cpu) {
495                 struct drbd_resource *resource;
496                 unsigned int cpu, min = ~0;
497
498                 rcu_read_lock();
499                 for_each_resource_rcu(resource, &drbd_resources) {
500                         for_each_cpu(cpu, resource->cpu_mask)
501                                 resources_per_cpu[cpu]++;
502                 }
503                 rcu_read_unlock();
504                 for_each_online_cpu(cpu) {
505                         if (resources_per_cpu[cpu] < min) {
506                                 min = resources_per_cpu[cpu];
507                                 min_index = cpu;
508                         }
509                 }
510                 kfree(resources_per_cpu);
511         }
512         if (min_index == ~0) {
513                 cpumask_setall(*cpu_mask);
514                 return;
515         }
516         cpumask_set_cpu(min_index, *cpu_mask);
517 }
518
519 /**
520  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
521  * @thi:        drbd_thread object
522  *
523  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
524  * prematurely.
525  */
526 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
527 {
528         struct drbd_resource *resource = thi->resource;
529         struct task_struct *p = current;
530
531         if (!thi->reset_cpu_mask)
532                 return;
533         thi->reset_cpu_mask = 0;
534         set_cpus_allowed_ptr(p, resource->cpu_mask);
535 }
536 #else
537 #define drbd_calc_cpu_mask(A) ({})
538 #endif
539
540 /*
541  * drbd_header_size  -  size of a packet header
542  *
543  * The header size is a multiple of 8, so any payload following the header is
544  * word aligned on 64-bit architectures.  (The bitmap send and receive code
545  * relies on this.)
546  */
547 unsigned int drbd_header_size(struct drbd_connection *connection)
548 {
549         if (connection->agreed_pro_version >= 100) {
550                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
551                 return sizeof(struct p_header100);
552         } else {
553                 BUILD_BUG_ON(sizeof(struct p_header80) !=
554                              sizeof(struct p_header95));
555                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
556                 return sizeof(struct p_header80);
557         }
558 }
559
560 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
561 {
562         h->magic   = cpu_to_be32(DRBD_MAGIC);
563         h->command = cpu_to_be16(cmd);
564         h->length  = cpu_to_be16(size);
565         return sizeof(struct p_header80);
566 }
567
568 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
569 {
570         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
571         h->command = cpu_to_be16(cmd);
572         h->length = cpu_to_be32(size);
573         return sizeof(struct p_header95);
574 }
575
576 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
577                                       int size, int vnr)
578 {
579         h->magic = cpu_to_be32(DRBD_MAGIC_100);
580         h->volume = cpu_to_be16(vnr);
581         h->command = cpu_to_be16(cmd);
582         h->length = cpu_to_be32(size);
583         h->pad = 0;
584         return sizeof(struct p_header100);
585 }
586
587 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
588                                    void *buffer, enum drbd_packet cmd, int size)
589 {
590         if (connection->agreed_pro_version >= 100)
591                 return prepare_header100(buffer, cmd, size, vnr);
592         else if (connection->agreed_pro_version >= 95 &&
593                  size > DRBD_MAX_SIZE_H80_PACKET)
594                 return prepare_header95(buffer, cmd, size);
595         else
596                 return prepare_header80(buffer, cmd, size);
597 }
598
599 static void *__conn_prepare_command(struct drbd_connection *connection,
600                                     struct drbd_socket *sock)
601 {
602         if (!sock->socket)
603                 return NULL;
604         return sock->sbuf + drbd_header_size(connection);
605 }
606
607 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
608 {
609         void *p;
610
611         mutex_lock(&sock->mutex);
612         p = __conn_prepare_command(connection, sock);
613         if (!p)
614                 mutex_unlock(&sock->mutex);
615
616         return p;
617 }
618
619 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
620 {
621         return conn_prepare_command(peer_device->connection, sock);
622 }
623
624 static int __send_command(struct drbd_connection *connection, int vnr,
625                           struct drbd_socket *sock, enum drbd_packet cmd,
626                           unsigned int header_size, void *data,
627                           unsigned int size)
628 {
629         int msg_flags;
630         int err;
631
632         /*
633          * Called with @data == NULL and the size of the data blocks in @size
634          * for commands that send data blocks.  For those commands, omit the
635          * MSG_MORE flag: this will increase the likelihood that data blocks
636          * which are page aligned on the sender will end up page aligned on the
637          * receiver.
638          */
639         msg_flags = data ? MSG_MORE : 0;
640
641         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
642                                       header_size + size);
643         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
644                             msg_flags);
645         if (data && !err)
646                 err = drbd_send_all(connection, sock->socket, data, size, 0);
647         /* DRBD protocol "pings" are latency critical.
648          * This is supposed to trigger tcp_push_pending_frames() */
649         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
650                 tcp_sock_set_nodelay(sock->socket->sk);
651
652         return err;
653 }
654
655 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
656                                enum drbd_packet cmd, unsigned int header_size,
657                                void *data, unsigned int size)
658 {
659         return __send_command(connection, 0, sock, cmd, header_size, data, size);
660 }
661
662 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
663                       enum drbd_packet cmd, unsigned int header_size,
664                       void *data, unsigned int size)
665 {
666         int err;
667
668         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
669         mutex_unlock(&sock->mutex);
670         return err;
671 }
672
673 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
674                       enum drbd_packet cmd, unsigned int header_size,
675                       void *data, unsigned int size)
676 {
677         int err;
678
679         err = __send_command(peer_device->connection, peer_device->device->vnr,
680                              sock, cmd, header_size, data, size);
681         mutex_unlock(&sock->mutex);
682         return err;
683 }
684
685 int drbd_send_ping(struct drbd_connection *connection)
686 {
687         struct drbd_socket *sock;
688
689         sock = &connection->meta;
690         if (!conn_prepare_command(connection, sock))
691                 return -EIO;
692         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
693 }
694
695 int drbd_send_ping_ack(struct drbd_connection *connection)
696 {
697         struct drbd_socket *sock;
698
699         sock = &connection->meta;
700         if (!conn_prepare_command(connection, sock))
701                 return -EIO;
702         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
703 }
704
705 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
706 {
707         struct drbd_socket *sock;
708         struct p_rs_param_95 *p;
709         int size;
710         const int apv = peer_device->connection->agreed_pro_version;
711         enum drbd_packet cmd;
712         struct net_conf *nc;
713         struct disk_conf *dc;
714
715         sock = &peer_device->connection->data;
716         p = drbd_prepare_command(peer_device, sock);
717         if (!p)
718                 return -EIO;
719
720         rcu_read_lock();
721         nc = rcu_dereference(peer_device->connection->net_conf);
722
723         size = apv <= 87 ? sizeof(struct p_rs_param)
724                 : apv == 88 ? sizeof(struct p_rs_param)
725                         + strlen(nc->verify_alg) + 1
726                 : apv <= 94 ? sizeof(struct p_rs_param_89)
727                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
728
729         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
730
731         /* initialize verify_alg and csums_alg */
732         BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
733         memset(&p->algs, 0, sizeof(p->algs));
734
735         if (get_ldev(peer_device->device)) {
736                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
737                 p->resync_rate = cpu_to_be32(dc->resync_rate);
738                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
739                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
740                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
741                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
742                 put_ldev(peer_device->device);
743         } else {
744                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
745                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
746                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
747                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
748                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
749         }
750
751         if (apv >= 88)
752                 strcpy(p->verify_alg, nc->verify_alg);
753         if (apv >= 89)
754                 strcpy(p->csums_alg, nc->csums_alg);
755         rcu_read_unlock();
756
757         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
758 }
759
760 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
761 {
762         struct drbd_socket *sock;
763         struct p_protocol *p;
764         struct net_conf *nc;
765         int size, cf;
766
767         sock = &connection->data;
768         p = __conn_prepare_command(connection, sock);
769         if (!p)
770                 return -EIO;
771
772         rcu_read_lock();
773         nc = rcu_dereference(connection->net_conf);
774
775         if (nc->tentative && connection->agreed_pro_version < 92) {
776                 rcu_read_unlock();
777                 drbd_err(connection, "--dry-run is not supported by peer");
778                 return -EOPNOTSUPP;
779         }
780
781         size = sizeof(*p);
782         if (connection->agreed_pro_version >= 87)
783                 size += strlen(nc->integrity_alg) + 1;
784
785         p->protocol      = cpu_to_be32(nc->wire_protocol);
786         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
787         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
788         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
789         p->two_primaries = cpu_to_be32(nc->two_primaries);
790         cf = 0;
791         if (nc->discard_my_data)
792                 cf |= CF_DISCARD_MY_DATA;
793         if (nc->tentative)
794                 cf |= CF_DRY_RUN;
795         p->conn_flags    = cpu_to_be32(cf);
796
797         if (connection->agreed_pro_version >= 87)
798                 strcpy(p->integrity_alg, nc->integrity_alg);
799         rcu_read_unlock();
800
801         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
802 }
803
804 int drbd_send_protocol(struct drbd_connection *connection)
805 {
806         int err;
807
808         mutex_lock(&connection->data.mutex);
809         err = __drbd_send_protocol(connection, P_PROTOCOL);
810         mutex_unlock(&connection->data.mutex);
811
812         return err;
813 }
814
815 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
816 {
817         struct drbd_device *device = peer_device->device;
818         struct drbd_socket *sock;
819         struct p_uuids *p;
820         int i;
821
822         if (!get_ldev_if_state(device, D_NEGOTIATING))
823                 return 0;
824
825         sock = &peer_device->connection->data;
826         p = drbd_prepare_command(peer_device, sock);
827         if (!p) {
828                 put_ldev(device);
829                 return -EIO;
830         }
831         spin_lock_irq(&device->ldev->md.uuid_lock);
832         for (i = UI_CURRENT; i < UI_SIZE; i++)
833                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
834         spin_unlock_irq(&device->ldev->md.uuid_lock);
835
836         device->comm_bm_set = drbd_bm_total_weight(device);
837         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
838         rcu_read_lock();
839         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
840         rcu_read_unlock();
841         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
842         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
843         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
844
845         put_ldev(device);
846         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
847 }
848
849 int drbd_send_uuids(struct drbd_peer_device *peer_device)
850 {
851         return _drbd_send_uuids(peer_device, 0);
852 }
853
854 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
855 {
856         return _drbd_send_uuids(peer_device, 8);
857 }
858
859 void drbd_print_uuids(struct drbd_device *device, const char *text)
860 {
861         if (get_ldev_if_state(device, D_NEGOTIATING)) {
862                 u64 *uuid = device->ldev->md.uuid;
863                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
864                      text,
865                      (unsigned long long)uuid[UI_CURRENT],
866                      (unsigned long long)uuid[UI_BITMAP],
867                      (unsigned long long)uuid[UI_HISTORY_START],
868                      (unsigned long long)uuid[UI_HISTORY_END]);
869                 put_ldev(device);
870         } else {
871                 drbd_info(device, "%s effective data uuid: %016llX\n",
872                                 text,
873                                 (unsigned long long)device->ed_uuid);
874         }
875 }
876
877 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
878 {
879         struct drbd_device *device = peer_device->device;
880         struct drbd_socket *sock;
881         struct p_rs_uuid *p;
882         u64 uuid;
883
884         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
885
886         uuid = device->ldev->md.uuid[UI_BITMAP];
887         if (uuid && uuid != UUID_JUST_CREATED)
888                 uuid = uuid + UUID_NEW_BM_OFFSET;
889         else
890                 get_random_bytes(&uuid, sizeof(u64));
891         drbd_uuid_set(device, UI_BITMAP, uuid);
892         drbd_print_uuids(device, "updated sync UUID");
893         drbd_md_sync(device);
894
895         sock = &peer_device->connection->data;
896         p = drbd_prepare_command(peer_device, sock);
897         if (p) {
898                 p->uuid = cpu_to_be64(uuid);
899                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
900         }
901 }
902
903 /* communicated if (agreed_features & DRBD_FF_WSAME) */
904 static void
905 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
906                                         struct request_queue *q)
907 {
908         if (q) {
909                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
910                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
911                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
912                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
913                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
914                 p->qlim->discard_enabled = blk_queue_discard(q);
915                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
916         } else {
917                 q = device->rq_queue;
918                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
919                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
920                 p->qlim->alignment_offset = 0;
921                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
922                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
923                 p->qlim->discard_enabled = 0;
924                 p->qlim->write_same_capable = 0;
925         }
926 }
927
928 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
929 {
930         struct drbd_device *device = peer_device->device;
931         struct drbd_socket *sock;
932         struct p_sizes *p;
933         sector_t d_size, u_size;
934         int q_order_type;
935         unsigned int max_bio_size;
936         unsigned int packet_size;
937
938         sock = &peer_device->connection->data;
939         p = drbd_prepare_command(peer_device, sock);
940         if (!p)
941                 return -EIO;
942
943         packet_size = sizeof(*p);
944         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
945                 packet_size += sizeof(p->qlim[0]);
946
947         memset(p, 0, packet_size);
948         if (get_ldev_if_state(device, D_NEGOTIATING)) {
949                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
950                 d_size = drbd_get_max_capacity(device->ldev);
951                 rcu_read_lock();
952                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
953                 rcu_read_unlock();
954                 q_order_type = drbd_queue_order_type(device);
955                 max_bio_size = queue_max_hw_sectors(q) << 9;
956                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
957                 assign_p_sizes_qlim(device, p, q);
958                 put_ldev(device);
959         } else {
960                 d_size = 0;
961                 u_size = 0;
962                 q_order_type = QUEUE_ORDERED_NONE;
963                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
964                 assign_p_sizes_qlim(device, p, NULL);
965         }
966
967         if (peer_device->connection->agreed_pro_version <= 94)
968                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
969         else if (peer_device->connection->agreed_pro_version < 100)
970                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
971
972         p->d_size = cpu_to_be64(d_size);
973         p->u_size = cpu_to_be64(u_size);
974         if (trigger_reply)
975                 p->c_size = 0;
976         else
977                 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
978         p->max_bio_size = cpu_to_be32(max_bio_size);
979         p->queue_order_type = cpu_to_be16(q_order_type);
980         p->dds_flags = cpu_to_be16(flags);
981
982         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
983 }
984
985 /**
986  * drbd_send_current_state() - Sends the drbd state to the peer
987  * @peer_device:        DRBD peer device.
988  */
989 int drbd_send_current_state(struct drbd_peer_device *peer_device)
990 {
991         struct drbd_socket *sock;
992         struct p_state *p;
993
994         sock = &peer_device->connection->data;
995         p = drbd_prepare_command(peer_device, sock);
996         if (!p)
997                 return -EIO;
998         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
999         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1000 }
1001
1002 /**
1003  * drbd_send_state() - After a state change, sends the new state to the peer
1004  * @peer_device:      DRBD peer device.
1005  * @state:     the state to send, not necessarily the current state.
1006  *
1007  * Each state change queues an "after_state_ch" work, which will eventually
1008  * send the resulting new state to the peer. If more state changes happen
1009  * between queuing and processing of the after_state_ch work, we still
1010  * want to send each intermediary state in the order it occurred.
1011  */
1012 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1013 {
1014         struct drbd_socket *sock;
1015         struct p_state *p;
1016
1017         sock = &peer_device->connection->data;
1018         p = drbd_prepare_command(peer_device, sock);
1019         if (!p)
1020                 return -EIO;
1021         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1022         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1023 }
1024
1025 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1026 {
1027         struct drbd_socket *sock;
1028         struct p_req_state *p;
1029
1030         sock = &peer_device->connection->data;
1031         p = drbd_prepare_command(peer_device, sock);
1032         if (!p)
1033                 return -EIO;
1034         p->mask = cpu_to_be32(mask.i);
1035         p->val = cpu_to_be32(val.i);
1036         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1037 }
1038
1039 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1040 {
1041         enum drbd_packet cmd;
1042         struct drbd_socket *sock;
1043         struct p_req_state *p;
1044
1045         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1046         sock = &connection->data;
1047         p = conn_prepare_command(connection, sock);
1048         if (!p)
1049                 return -EIO;
1050         p->mask = cpu_to_be32(mask.i);
1051         p->val = cpu_to_be32(val.i);
1052         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1053 }
1054
1055 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1056 {
1057         struct drbd_socket *sock;
1058         struct p_req_state_reply *p;
1059
1060         sock = &peer_device->connection->meta;
1061         p = drbd_prepare_command(peer_device, sock);
1062         if (p) {
1063                 p->retcode = cpu_to_be32(retcode);
1064                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1065         }
1066 }
1067
1068 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1069 {
1070         struct drbd_socket *sock;
1071         struct p_req_state_reply *p;
1072         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1073
1074         sock = &connection->meta;
1075         p = conn_prepare_command(connection, sock);
1076         if (p) {
1077                 p->retcode = cpu_to_be32(retcode);
1078                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1079         }
1080 }
1081
1082 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1083 {
1084         BUG_ON(code & ~0xf);
1085         p->encoding = (p->encoding & ~0xf) | code;
1086 }
1087
1088 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1089 {
1090         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1091 }
1092
1093 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1094 {
1095         BUG_ON(n & ~0x7);
1096         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1097 }
1098
1099 static int fill_bitmap_rle_bits(struct drbd_device *device,
1100                          struct p_compressed_bm *p,
1101                          unsigned int size,
1102                          struct bm_xfer_ctx *c)
1103 {
1104         struct bitstream bs;
1105         unsigned long plain_bits;
1106         unsigned long tmp;
1107         unsigned long rl;
1108         unsigned len;
1109         unsigned toggle;
1110         int bits, use_rle;
1111
1112         /* may we use this feature? */
1113         rcu_read_lock();
1114         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1115         rcu_read_unlock();
1116         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1117                 return 0;
1118
1119         if (c->bit_offset >= c->bm_bits)
1120                 return 0; /* nothing to do. */
1121
1122         /* use at most thus many bytes */
1123         bitstream_init(&bs, p->code, size, 0);
1124         memset(p->code, 0, size);
1125         /* plain bits covered in this code string */
1126         plain_bits = 0;
1127
1128         /* p->encoding & 0x80 stores whether the first run length is set.
1129          * bit offset is implicit.
1130          * start with toggle == 2 to be able to tell the first iteration */
1131         toggle = 2;
1132
1133         /* see how much plain bits we can stuff into one packet
1134          * using RLE and VLI. */
1135         do {
1136                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1137                                     : _drbd_bm_find_next(device, c->bit_offset);
1138                 if (tmp == -1UL)
1139                         tmp = c->bm_bits;
1140                 rl = tmp - c->bit_offset;
1141
1142                 if (toggle == 2) { /* first iteration */
1143                         if (rl == 0) {
1144                                 /* the first checked bit was set,
1145                                  * store start value, */
1146                                 dcbp_set_start(p, 1);
1147                                 /* but skip encoding of zero run length */
1148                                 toggle = !toggle;
1149                                 continue;
1150                         }
1151                         dcbp_set_start(p, 0);
1152                 }
1153
1154                 /* paranoia: catch zero runlength.
1155                  * can only happen if bitmap is modified while we scan it. */
1156                 if (rl == 0) {
1157                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1158                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1159                         return -1;
1160                 }
1161
1162                 bits = vli_encode_bits(&bs, rl);
1163                 if (bits == -ENOBUFS) /* buffer full */
1164                         break;
1165                 if (bits <= 0) {
1166                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1167                         return 0;
1168                 }
1169
1170                 toggle = !toggle;
1171                 plain_bits += rl;
1172                 c->bit_offset = tmp;
1173         } while (c->bit_offset < c->bm_bits);
1174
1175         len = bs.cur.b - p->code + !!bs.cur.bit;
1176
1177         if (plain_bits < (len << 3)) {
1178                 /* incompressible with this method.
1179                  * we need to rewind both word and bit position. */
1180                 c->bit_offset -= plain_bits;
1181                 bm_xfer_ctx_bit_to_word_offset(c);
1182                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1183                 return 0;
1184         }
1185
1186         /* RLE + VLI was able to compress it just fine.
1187          * update c->word_offset. */
1188         bm_xfer_ctx_bit_to_word_offset(c);
1189
1190         /* store pad_bits */
1191         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1192
1193         return len;
1194 }
1195
1196 /*
1197  * send_bitmap_rle_or_plain
1198  *
1199  * Return 0 when done, 1 when another iteration is needed, and a negative error
1200  * code upon failure.
1201  */
1202 static int
1203 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1204 {
1205         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1206         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1207         struct p_compressed_bm *p = sock->sbuf + header_size;
1208         int len, err;
1209
1210         len = fill_bitmap_rle_bits(device, p,
1211                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1212         if (len < 0)
1213                 return -EIO;
1214
1215         if (len) {
1216                 dcbp_set_code(p, RLE_VLI_Bits);
1217                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1218                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1219                                      NULL, 0);
1220                 c->packets[0]++;
1221                 c->bytes[0] += header_size + sizeof(*p) + len;
1222
1223                 if (c->bit_offset >= c->bm_bits)
1224                         len = 0; /* DONE */
1225         } else {
1226                 /* was not compressible.
1227                  * send a buffer full of plain text bits instead. */
1228                 unsigned int data_size;
1229                 unsigned long num_words;
1230                 unsigned long *p = sock->sbuf + header_size;
1231
1232                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1233                 num_words = min_t(size_t, data_size / sizeof(*p),
1234                                   c->bm_words - c->word_offset);
1235                 len = num_words * sizeof(*p);
1236                 if (len)
1237                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1238                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1239                 c->word_offset += num_words;
1240                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1241
1242                 c->packets[1]++;
1243                 c->bytes[1] += header_size + len;
1244
1245                 if (c->bit_offset > c->bm_bits)
1246                         c->bit_offset = c->bm_bits;
1247         }
1248         if (!err) {
1249                 if (len == 0) {
1250                         INFO_bm_xfer_stats(device, "send", c);
1251                         return 0;
1252                 } else
1253                         return 1;
1254         }
1255         return -EIO;
1256 }
1257
1258 /* See the comment at receive_bitmap() */
1259 static int _drbd_send_bitmap(struct drbd_device *device)
1260 {
1261         struct bm_xfer_ctx c;
1262         int err;
1263
1264         if (!expect(device->bitmap))
1265                 return false;
1266
1267         if (get_ldev(device)) {
1268                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1269                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1270                         drbd_bm_set_all(device);
1271                         if (drbd_bm_write(device)) {
1272                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1273                                  * but otherwise process as per normal - need to tell other
1274                                  * side that a full resync is required! */
1275                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1276                         } else {
1277                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1278                                 drbd_md_sync(device);
1279                         }
1280                 }
1281                 put_ldev(device);
1282         }
1283
1284         c = (struct bm_xfer_ctx) {
1285                 .bm_bits = drbd_bm_bits(device),
1286                 .bm_words = drbd_bm_words(device),
1287         };
1288
1289         do {
1290                 err = send_bitmap_rle_or_plain(device, &c);
1291         } while (err > 0);
1292
1293         return err == 0;
1294 }
1295
1296 int drbd_send_bitmap(struct drbd_device *device)
1297 {
1298         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1299         int err = -1;
1300
1301         mutex_lock(&sock->mutex);
1302         if (sock->socket)
1303                 err = !_drbd_send_bitmap(device);
1304         mutex_unlock(&sock->mutex);
1305         return err;
1306 }
1307
1308 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1309 {
1310         struct drbd_socket *sock;
1311         struct p_barrier_ack *p;
1312
1313         if (connection->cstate < C_WF_REPORT_PARAMS)
1314                 return;
1315
1316         sock = &connection->meta;
1317         p = conn_prepare_command(connection, sock);
1318         if (!p)
1319                 return;
1320         p->barrier = barrier_nr;
1321         p->set_size = cpu_to_be32(set_size);
1322         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1323 }
1324
1325 /**
1326  * _drbd_send_ack() - Sends an ack packet
1327  * @peer_device:        DRBD peer device.
1328  * @cmd:                Packet command code.
1329  * @sector:             sector, needs to be in big endian byte order
1330  * @blksize:            size in byte, needs to be in big endian byte order
1331  * @block_id:           Id, big endian byte order
1332  */
1333 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1334                           u64 sector, u32 blksize, u64 block_id)
1335 {
1336         struct drbd_socket *sock;
1337         struct p_block_ack *p;
1338
1339         if (peer_device->device->state.conn < C_CONNECTED)
1340                 return -EIO;
1341
1342         sock = &peer_device->connection->meta;
1343         p = drbd_prepare_command(peer_device, sock);
1344         if (!p)
1345                 return -EIO;
1346         p->sector = sector;
1347         p->block_id = block_id;
1348         p->blksize = blksize;
1349         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1350         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1351 }
1352
1353 /* dp->sector and dp->block_id already/still in network byte order,
1354  * data_size is payload size according to dp->head,
1355  * and may need to be corrected for digest size. */
1356 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1357                       struct p_data *dp, int data_size)
1358 {
1359         if (peer_device->connection->peer_integrity_tfm)
1360                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1361         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1362                        dp->block_id);
1363 }
1364
1365 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1366                       struct p_block_req *rp)
1367 {
1368         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1369 }
1370
1371 /**
1372  * drbd_send_ack() - Sends an ack packet
1373  * @peer_device:        DRBD peer device
1374  * @cmd:                packet command code
1375  * @peer_req:           peer request
1376  */
1377 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1378                   struct drbd_peer_request *peer_req)
1379 {
1380         return _drbd_send_ack(peer_device, cmd,
1381                               cpu_to_be64(peer_req->i.sector),
1382                               cpu_to_be32(peer_req->i.size),
1383                               peer_req->block_id);
1384 }
1385
1386 /* This function misuses the block_id field to signal if the blocks
1387  * are is sync or not. */
1388 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1389                      sector_t sector, int blksize, u64 block_id)
1390 {
1391         return _drbd_send_ack(peer_device, cmd,
1392                               cpu_to_be64(sector),
1393                               cpu_to_be32(blksize),
1394                               cpu_to_be64(block_id));
1395 }
1396
1397 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1398                              struct drbd_peer_request *peer_req)
1399 {
1400         struct drbd_socket *sock;
1401         struct p_block_desc *p;
1402
1403         sock = &peer_device->connection->data;
1404         p = drbd_prepare_command(peer_device, sock);
1405         if (!p)
1406                 return -EIO;
1407         p->sector = cpu_to_be64(peer_req->i.sector);
1408         p->blksize = cpu_to_be32(peer_req->i.size);
1409         p->pad = 0;
1410         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1411 }
1412
1413 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1414                        sector_t sector, int size, u64 block_id)
1415 {
1416         struct drbd_socket *sock;
1417         struct p_block_req *p;
1418
1419         sock = &peer_device->connection->data;
1420         p = drbd_prepare_command(peer_device, sock);
1421         if (!p)
1422                 return -EIO;
1423         p->sector = cpu_to_be64(sector);
1424         p->block_id = block_id;
1425         p->blksize = cpu_to_be32(size);
1426         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1427 }
1428
1429 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1430                             void *digest, int digest_size, enum drbd_packet cmd)
1431 {
1432         struct drbd_socket *sock;
1433         struct p_block_req *p;
1434
1435         /* FIXME: Put the digest into the preallocated socket buffer.  */
1436
1437         sock = &peer_device->connection->data;
1438         p = drbd_prepare_command(peer_device, sock);
1439         if (!p)
1440                 return -EIO;
1441         p->sector = cpu_to_be64(sector);
1442         p->block_id = ID_SYNCER /* unused */;
1443         p->blksize = cpu_to_be32(size);
1444         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1445 }
1446
1447 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1448 {
1449         struct drbd_socket *sock;
1450         struct p_block_req *p;
1451
1452         sock = &peer_device->connection->data;
1453         p = drbd_prepare_command(peer_device, sock);
1454         if (!p)
1455                 return -EIO;
1456         p->sector = cpu_to_be64(sector);
1457         p->block_id = ID_SYNCER /* unused */;
1458         p->blksize = cpu_to_be32(size);
1459         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1460 }
1461
1462 /* called on sndtimeo
1463  * returns false if we should retry,
1464  * true if we think connection is dead
1465  */
1466 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1467 {
1468         int drop_it;
1469         /* long elapsed = (long)(jiffies - device->last_received); */
1470
1471         drop_it =   connection->meta.socket == sock
1472                 || !connection->ack_receiver.task
1473                 || get_t_state(&connection->ack_receiver) != RUNNING
1474                 || connection->cstate < C_WF_REPORT_PARAMS;
1475
1476         if (drop_it)
1477                 return true;
1478
1479         drop_it = !--connection->ko_count;
1480         if (!drop_it) {
1481                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1482                          current->comm, current->pid, connection->ko_count);
1483                 request_ping(connection);
1484         }
1485
1486         return drop_it; /* && (device->state == R_PRIMARY) */;
1487 }
1488
1489 static void drbd_update_congested(struct drbd_connection *connection)
1490 {
1491         struct sock *sk = connection->data.socket->sk;
1492         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1493                 set_bit(NET_CONGESTED, &connection->flags);
1494 }
1495
1496 /* The idea of sendpage seems to be to put some kind of reference
1497  * to the page into the skb, and to hand it over to the NIC. In
1498  * this process get_page() gets called.
1499  *
1500  * As soon as the page was really sent over the network put_page()
1501  * gets called by some part of the network layer. [ NIC driver? ]
1502  *
1503  * [ get_page() / put_page() increment/decrement the count. If count
1504  *   reaches 0 the page will be freed. ]
1505  *
1506  * This works nicely with pages from FSs.
1507  * But this means that in protocol A we might signal IO completion too early!
1508  *
1509  * In order not to corrupt data during a resync we must make sure
1510  * that we do not reuse our own buffer pages (EEs) to early, therefore
1511  * we have the net_ee list.
1512  *
1513  * XFS seems to have problems, still, it submits pages with page_count == 0!
1514  * As a workaround, we disable sendpage on pages
1515  * with page_count == 0 or PageSlab.
1516  */
1517 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1518                               int offset, size_t size, unsigned msg_flags)
1519 {
1520         struct socket *socket;
1521         void *addr;
1522         int err;
1523
1524         socket = peer_device->connection->data.socket;
1525         addr = kmap(page) + offset;
1526         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1527         kunmap(page);
1528         if (!err)
1529                 peer_device->device->send_cnt += size >> 9;
1530         return err;
1531 }
1532
1533 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1534                     int offset, size_t size, unsigned msg_flags)
1535 {
1536         struct socket *socket = peer_device->connection->data.socket;
1537         int len = size;
1538         int err = -EIO;
1539
1540         /* e.g. XFS meta- & log-data is in slab pages, which have a
1541          * page_count of 0 and/or have PageSlab() set.
1542          * we cannot use send_page for those, as that does get_page();
1543          * put_page(); and would cause either a VM_BUG directly, or
1544          * __page_cache_release a page that would actually still be referenced
1545          * by someone, leading to some obscure delayed Oops somewhere else. */
1546         if (drbd_disable_sendpage || !sendpage_ok(page))
1547                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1548
1549         msg_flags |= MSG_NOSIGNAL;
1550         drbd_update_congested(peer_device->connection);
1551         do {
1552                 int sent;
1553
1554                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1555                 if (sent <= 0) {
1556                         if (sent == -EAGAIN) {
1557                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1558                                         break;
1559                                 continue;
1560                         }
1561                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1562                              __func__, (int)size, len, sent);
1563                         if (sent < 0)
1564                                 err = sent;
1565                         break;
1566                 }
1567                 len    -= sent;
1568                 offset += sent;
1569         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1570         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1571
1572         if (len == 0) {
1573                 err = 0;
1574                 peer_device->device->send_cnt += size >> 9;
1575         }
1576         return err;
1577 }
1578
1579 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1580 {
1581         struct bio_vec bvec;
1582         struct bvec_iter iter;
1583
1584         /* hint all but last page with MSG_MORE */
1585         bio_for_each_segment(bvec, bio, iter) {
1586                 int err;
1587
1588                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1589                                          bvec.bv_offset, bvec.bv_len,
1590                                          bio_iter_last(bvec, iter)
1591                                          ? 0 : MSG_MORE);
1592                 if (err)
1593                         return err;
1594                 /* REQ_OP_WRITE_SAME has only one segment */
1595                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1596                         break;
1597         }
1598         return 0;
1599 }
1600
1601 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1602 {
1603         struct bio_vec bvec;
1604         struct bvec_iter iter;
1605
1606         /* hint all but last page with MSG_MORE */
1607         bio_for_each_segment(bvec, bio, iter) {
1608                 int err;
1609
1610                 err = _drbd_send_page(peer_device, bvec.bv_page,
1611                                       bvec.bv_offset, bvec.bv_len,
1612                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1613                 if (err)
1614                         return err;
1615                 /* REQ_OP_WRITE_SAME has only one segment */
1616                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1617                         break;
1618         }
1619         return 0;
1620 }
1621
1622 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1623                             struct drbd_peer_request *peer_req)
1624 {
1625         struct page *page = peer_req->pages;
1626         unsigned len = peer_req->i.size;
1627         int err;
1628
1629         /* hint all but last page with MSG_MORE */
1630         page_chain_for_each(page) {
1631                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1632
1633                 err = _drbd_send_page(peer_device, page, 0, l,
1634                                       page_chain_next(page) ? MSG_MORE : 0);
1635                 if (err)
1636                         return err;
1637                 len -= l;
1638         }
1639         return 0;
1640 }
1641
1642 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1643                              struct bio *bio)
1644 {
1645         if (connection->agreed_pro_version >= 95)
1646                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1647                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1648                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1649                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1650                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1651                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1652                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1653                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1654                            : DP_DISCARD)
1655                         : 0);
1656         else
1657                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1658 }
1659
1660 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1661  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1662  */
1663 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1664 {
1665         struct drbd_device *device = peer_device->device;
1666         struct drbd_socket *sock;
1667         struct p_data *p;
1668         struct p_wsame *wsame = NULL;
1669         void *digest_out;
1670         unsigned int dp_flags = 0;
1671         int digest_size;
1672         int err;
1673
1674         sock = &peer_device->connection->data;
1675         p = drbd_prepare_command(peer_device, sock);
1676         digest_size = peer_device->connection->integrity_tfm ?
1677                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1678
1679         if (!p)
1680                 return -EIO;
1681         p->sector = cpu_to_be64(req->i.sector);
1682         p->block_id = (unsigned long)req;
1683         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1684         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1685         if (device->state.conn >= C_SYNC_SOURCE &&
1686             device->state.conn <= C_PAUSED_SYNC_T)
1687                 dp_flags |= DP_MAY_SET_IN_SYNC;
1688         if (peer_device->connection->agreed_pro_version >= 100) {
1689                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1690                         dp_flags |= DP_SEND_RECEIVE_ACK;
1691                 /* During resync, request an explicit write ack,
1692                  * even in protocol != C */
1693                 if (req->rq_state & RQ_EXP_WRITE_ACK
1694                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1695                         dp_flags |= DP_SEND_WRITE_ACK;
1696         }
1697         p->dp_flags = cpu_to_be32(dp_flags);
1698
1699         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1700                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1701                 struct p_trim *t = (struct p_trim*)p;
1702                 t->size = cpu_to_be32(req->i.size);
1703                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1704                 goto out;
1705         }
1706         if (dp_flags & DP_WSAME) {
1707                 /* this will only work if DRBD_FF_WSAME is set AND the
1708                  * handshake agreed that all nodes and backend devices are
1709                  * WRITE_SAME capable and agree on logical_block_size */
1710                 wsame = (struct p_wsame*)p;
1711                 digest_out = wsame + 1;
1712                 wsame->size = cpu_to_be32(req->i.size);
1713         } else
1714                 digest_out = p + 1;
1715
1716         /* our digest is still only over the payload.
1717          * TRIM does not carry any payload. */
1718         if (digest_size)
1719                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1720         if (wsame) {
1721                 err =
1722                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1723                                    sizeof(*wsame) + digest_size, NULL,
1724                                    bio_iovec(req->master_bio).bv_len);
1725         } else
1726                 err =
1727                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1728                                    sizeof(*p) + digest_size, NULL, req->i.size);
1729         if (!err) {
1730                 /* For protocol A, we have to memcpy the payload into
1731                  * socket buffers, as we may complete right away
1732                  * as soon as we handed it over to tcp, at which point the data
1733                  * pages may become invalid.
1734                  *
1735                  * For data-integrity enabled, we copy it as well, so we can be
1736                  * sure that even if the bio pages may still be modified, it
1737                  * won't change the data on the wire, thus if the digest checks
1738                  * out ok after sending on this side, but does not fit on the
1739                  * receiving side, we sure have detected corruption elsewhere.
1740                  */
1741                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1742                         err = _drbd_send_bio(peer_device, req->master_bio);
1743                 else
1744                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1745
1746                 /* double check digest, sometimes buffers have been modified in flight. */
1747                 if (digest_size > 0 && digest_size <= 64) {
1748                         /* 64 byte, 512 bit, is the largest digest size
1749                          * currently supported in kernel crypto. */
1750                         unsigned char digest[64];
1751                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1752                         if (memcmp(p + 1, digest, digest_size)) {
1753                                 drbd_warn(device,
1754                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1755                                         (unsigned long long)req->i.sector, req->i.size);
1756                         }
1757                 } /* else if (digest_size > 64) {
1758                      ... Be noisy about digest too large ...
1759                 } */
1760         }
1761 out:
1762         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1763
1764         return err;
1765 }
1766
1767 /* answer packet, used to send data back for read requests:
1768  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1769  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1770  */
1771 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1772                     struct drbd_peer_request *peer_req)
1773 {
1774         struct drbd_device *device = peer_device->device;
1775         struct drbd_socket *sock;
1776         struct p_data *p;
1777         int err;
1778         int digest_size;
1779
1780         sock = &peer_device->connection->data;
1781         p = drbd_prepare_command(peer_device, sock);
1782
1783         digest_size = peer_device->connection->integrity_tfm ?
1784                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1785
1786         if (!p)
1787                 return -EIO;
1788         p->sector = cpu_to_be64(peer_req->i.sector);
1789         p->block_id = peer_req->block_id;
1790         p->seq_num = 0;  /* unused */
1791         p->dp_flags = 0;
1792         if (digest_size)
1793                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1794         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1795         if (!err)
1796                 err = _drbd_send_zc_ee(peer_device, peer_req);
1797         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1798
1799         return err;
1800 }
1801
1802 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1803 {
1804         struct drbd_socket *sock;
1805         struct p_block_desc *p;
1806
1807         sock = &peer_device->connection->data;
1808         p = drbd_prepare_command(peer_device, sock);
1809         if (!p)
1810                 return -EIO;
1811         p->sector = cpu_to_be64(req->i.sector);
1812         p->blksize = cpu_to_be32(req->i.size);
1813         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1814 }
1815
1816 /*
1817   drbd_send distinguishes two cases:
1818
1819   Packets sent via the data socket "sock"
1820   and packets sent via the meta data socket "msock"
1821
1822                     sock                      msock
1823   -----------------+-------------------------+------------------------------
1824   timeout           conf.timeout / 2          conf.timeout / 2
1825   timeout action    send a ping via msock     Abort communication
1826                                               and close all sockets
1827 */
1828
1829 /*
1830  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1831  */
1832 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1833               void *buf, size_t size, unsigned msg_flags)
1834 {
1835         struct kvec iov = {.iov_base = buf, .iov_len = size};
1836         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1837         int rv, sent = 0;
1838
1839         if (!sock)
1840                 return -EBADR;
1841
1842         /* THINK  if (signal_pending) return ... ? */
1843
1844         iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1845
1846         if (sock == connection->data.socket) {
1847                 rcu_read_lock();
1848                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1849                 rcu_read_unlock();
1850                 drbd_update_congested(connection);
1851         }
1852         do {
1853                 rv = sock_sendmsg(sock, &msg);
1854                 if (rv == -EAGAIN) {
1855                         if (we_should_drop_the_connection(connection, sock))
1856                                 break;
1857                         else
1858                                 continue;
1859                 }
1860                 if (rv == -EINTR) {
1861                         flush_signals(current);
1862                         rv = 0;
1863                 }
1864                 if (rv < 0)
1865                         break;
1866                 sent += rv;
1867         } while (sent < size);
1868
1869         if (sock == connection->data.socket)
1870                 clear_bit(NET_CONGESTED, &connection->flags);
1871
1872         if (rv <= 0) {
1873                 if (rv != -EAGAIN) {
1874                         drbd_err(connection, "%s_sendmsg returned %d\n",
1875                                  sock == connection->meta.socket ? "msock" : "sock",
1876                                  rv);
1877                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1878                 } else
1879                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1880         }
1881
1882         return sent;
1883 }
1884
1885 /*
1886  * drbd_send_all  -  Send an entire buffer
1887  *
1888  * Returns 0 upon success and a negative error value otherwise.
1889  */
1890 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1891                   size_t size, unsigned msg_flags)
1892 {
1893         int err;
1894
1895         err = drbd_send(connection, sock, buffer, size, msg_flags);
1896         if (err < 0)
1897                 return err;
1898         if (err != size)
1899                 return -EIO;
1900         return 0;
1901 }
1902
1903 static int drbd_open(struct block_device *bdev, fmode_t mode)
1904 {
1905         struct drbd_device *device = bdev->bd_disk->private_data;
1906         unsigned long flags;
1907         int rv = 0;
1908
1909         mutex_lock(&drbd_main_mutex);
1910         spin_lock_irqsave(&device->resource->req_lock, flags);
1911         /* to have a stable device->state.role
1912          * and no race with updating open_cnt */
1913
1914         if (device->state.role != R_PRIMARY) {
1915                 if (mode & FMODE_WRITE)
1916                         rv = -EROFS;
1917                 else if (!drbd_allow_oos)
1918                         rv = -EMEDIUMTYPE;
1919         }
1920
1921         if (!rv)
1922                 device->open_cnt++;
1923         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1924         mutex_unlock(&drbd_main_mutex);
1925
1926         return rv;
1927 }
1928
1929 static void drbd_release(struct gendisk *gd, fmode_t mode)
1930 {
1931         struct drbd_device *device = gd->private_data;
1932         mutex_lock(&drbd_main_mutex);
1933         device->open_cnt--;
1934         mutex_unlock(&drbd_main_mutex);
1935 }
1936
1937 /* need to hold resource->req_lock */
1938 void drbd_queue_unplug(struct drbd_device *device)
1939 {
1940         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1941                 D_ASSERT(device, device->state.role == R_PRIMARY);
1942                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1943                         drbd_queue_work_if_unqueued(
1944                                 &first_peer_device(device)->connection->sender_work,
1945                                 &device->unplug_work);
1946                 }
1947         }
1948 }
1949
1950 static void drbd_set_defaults(struct drbd_device *device)
1951 {
1952         /* Beware! The actual layout differs
1953          * between big endian and little endian */
1954         device->state = (union drbd_dev_state) {
1955                 { .role = R_SECONDARY,
1956                   .peer = R_UNKNOWN,
1957                   .conn = C_STANDALONE,
1958                   .disk = D_DISKLESS,
1959                   .pdsk = D_UNKNOWN,
1960                 } };
1961 }
1962
1963 void drbd_init_set_defaults(struct drbd_device *device)
1964 {
1965         /* the memset(,0,) did most of this.
1966          * note: only assignments, no allocation in here */
1967
1968         drbd_set_defaults(device);
1969
1970         atomic_set(&device->ap_bio_cnt, 0);
1971         atomic_set(&device->ap_actlog_cnt, 0);
1972         atomic_set(&device->ap_pending_cnt, 0);
1973         atomic_set(&device->rs_pending_cnt, 0);
1974         atomic_set(&device->unacked_cnt, 0);
1975         atomic_set(&device->local_cnt, 0);
1976         atomic_set(&device->pp_in_use_by_net, 0);
1977         atomic_set(&device->rs_sect_in, 0);
1978         atomic_set(&device->rs_sect_ev, 0);
1979         atomic_set(&device->ap_in_flight, 0);
1980         atomic_set(&device->md_io.in_use, 0);
1981
1982         mutex_init(&device->own_state_mutex);
1983         device->state_mutex = &device->own_state_mutex;
1984
1985         spin_lock_init(&device->al_lock);
1986         spin_lock_init(&device->peer_seq_lock);
1987
1988         INIT_LIST_HEAD(&device->active_ee);
1989         INIT_LIST_HEAD(&device->sync_ee);
1990         INIT_LIST_HEAD(&device->done_ee);
1991         INIT_LIST_HEAD(&device->read_ee);
1992         INIT_LIST_HEAD(&device->net_ee);
1993         INIT_LIST_HEAD(&device->resync_reads);
1994         INIT_LIST_HEAD(&device->resync_work.list);
1995         INIT_LIST_HEAD(&device->unplug_work.list);
1996         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1997         INIT_LIST_HEAD(&device->pending_master_completion[0]);
1998         INIT_LIST_HEAD(&device->pending_master_completion[1]);
1999         INIT_LIST_HEAD(&device->pending_completion[0]);
2000         INIT_LIST_HEAD(&device->pending_completion[1]);
2001
2002         device->resync_work.cb  = w_resync_timer;
2003         device->unplug_work.cb  = w_send_write_hint;
2004         device->bm_io_work.w.cb = w_bitmap_io;
2005
2006         timer_setup(&device->resync_timer, resync_timer_fn, 0);
2007         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2008         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2009         timer_setup(&device->request_timer, request_timer_fn, 0);
2010
2011         init_waitqueue_head(&device->misc_wait);
2012         init_waitqueue_head(&device->state_wait);
2013         init_waitqueue_head(&device->ee_wait);
2014         init_waitqueue_head(&device->al_wait);
2015         init_waitqueue_head(&device->seq_wait);
2016
2017         device->resync_wenr = LC_FREE;
2018         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2019         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2020 }
2021
2022 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2023 {
2024         char ppb[10];
2025
2026         set_capacity_and_notify(device->vdisk, size);
2027
2028         drbd_info(device, "size = %s (%llu KB)\n",
2029                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2030 }
2031
2032 void drbd_device_cleanup(struct drbd_device *device)
2033 {
2034         int i;
2035         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2036                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2037                                 first_peer_device(device)->connection->receiver.t_state);
2038
2039         device->al_writ_cnt  =
2040         device->bm_writ_cnt  =
2041         device->read_cnt     =
2042         device->recv_cnt     =
2043         device->send_cnt     =
2044         device->writ_cnt     =
2045         device->p_size       =
2046         device->rs_start     =
2047         device->rs_total     =
2048         device->rs_failed    = 0;
2049         device->rs_last_events = 0;
2050         device->rs_last_sect_ev = 0;
2051         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2052                 device->rs_mark_left[i] = 0;
2053                 device->rs_mark_time[i] = 0;
2054         }
2055         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2056
2057         set_capacity_and_notify(device->vdisk, 0);
2058         if (device->bitmap) {
2059                 /* maybe never allocated. */
2060                 drbd_bm_resize(device, 0, 1);
2061                 drbd_bm_cleanup(device);
2062         }
2063
2064         drbd_backing_dev_free(device, device->ldev);
2065         device->ldev = NULL;
2066
2067         clear_bit(AL_SUSPENDED, &device->flags);
2068
2069         D_ASSERT(device, list_empty(&device->active_ee));
2070         D_ASSERT(device, list_empty(&device->sync_ee));
2071         D_ASSERT(device, list_empty(&device->done_ee));
2072         D_ASSERT(device, list_empty(&device->read_ee));
2073         D_ASSERT(device, list_empty(&device->net_ee));
2074         D_ASSERT(device, list_empty(&device->resync_reads));
2075         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2076         D_ASSERT(device, list_empty(&device->resync_work.list));
2077         D_ASSERT(device, list_empty(&device->unplug_work.list));
2078
2079         drbd_set_defaults(device);
2080 }
2081
2082
2083 static void drbd_destroy_mempools(void)
2084 {
2085         struct page *page;
2086
2087         while (drbd_pp_pool) {
2088                 page = drbd_pp_pool;
2089                 drbd_pp_pool = (struct page *)page_private(page);
2090                 __free_page(page);
2091                 drbd_pp_vacant--;
2092         }
2093
2094         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2095
2096         bioset_exit(&drbd_io_bio_set);
2097         bioset_exit(&drbd_md_io_bio_set);
2098         mempool_exit(&drbd_md_io_page_pool);
2099         mempool_exit(&drbd_ee_mempool);
2100         mempool_exit(&drbd_request_mempool);
2101         kmem_cache_destroy(drbd_ee_cache);
2102         kmem_cache_destroy(drbd_request_cache);
2103         kmem_cache_destroy(drbd_bm_ext_cache);
2104         kmem_cache_destroy(drbd_al_ext_cache);
2105
2106         drbd_ee_cache        = NULL;
2107         drbd_request_cache   = NULL;
2108         drbd_bm_ext_cache    = NULL;
2109         drbd_al_ext_cache    = NULL;
2110
2111         return;
2112 }
2113
2114 static int drbd_create_mempools(void)
2115 {
2116         struct page *page;
2117         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2118         int i, ret;
2119
2120         /* caches */
2121         drbd_request_cache = kmem_cache_create(
2122                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2123         if (drbd_request_cache == NULL)
2124                 goto Enomem;
2125
2126         drbd_ee_cache = kmem_cache_create(
2127                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2128         if (drbd_ee_cache == NULL)
2129                 goto Enomem;
2130
2131         drbd_bm_ext_cache = kmem_cache_create(
2132                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2133         if (drbd_bm_ext_cache == NULL)
2134                 goto Enomem;
2135
2136         drbd_al_ext_cache = kmem_cache_create(
2137                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2138         if (drbd_al_ext_cache == NULL)
2139                 goto Enomem;
2140
2141         /* mempools */
2142         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2143         if (ret)
2144                 goto Enomem;
2145
2146         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2147                           BIOSET_NEED_BVECS);
2148         if (ret)
2149                 goto Enomem;
2150
2151         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2152         if (ret)
2153                 goto Enomem;
2154
2155         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2156                                      drbd_request_cache);
2157         if (ret)
2158                 goto Enomem;
2159
2160         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2161         if (ret)
2162                 goto Enomem;
2163
2164         for (i = 0; i < number; i++) {
2165                 page = alloc_page(GFP_HIGHUSER);
2166                 if (!page)
2167                         goto Enomem;
2168                 set_page_private(page, (unsigned long)drbd_pp_pool);
2169                 drbd_pp_pool = page;
2170         }
2171         drbd_pp_vacant = number;
2172
2173         return 0;
2174
2175 Enomem:
2176         drbd_destroy_mempools(); /* in case we allocated some */
2177         return -ENOMEM;
2178 }
2179
2180 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2181 {
2182         int rr;
2183
2184         rr = drbd_free_peer_reqs(device, &device->active_ee);
2185         if (rr)
2186                 drbd_err(device, "%d EEs in active list found!\n", rr);
2187
2188         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2189         if (rr)
2190                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2191
2192         rr = drbd_free_peer_reqs(device, &device->read_ee);
2193         if (rr)
2194                 drbd_err(device, "%d EEs in read list found!\n", rr);
2195
2196         rr = drbd_free_peer_reqs(device, &device->done_ee);
2197         if (rr)
2198                 drbd_err(device, "%d EEs in done list found!\n", rr);
2199
2200         rr = drbd_free_peer_reqs(device, &device->net_ee);
2201         if (rr)
2202                 drbd_err(device, "%d EEs in net list found!\n", rr);
2203 }
2204
2205 /* caution. no locking. */
2206 void drbd_destroy_device(struct kref *kref)
2207 {
2208         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2209         struct drbd_resource *resource = device->resource;
2210         struct drbd_peer_device *peer_device, *tmp_peer_device;
2211
2212         del_timer_sync(&device->request_timer);
2213
2214         /* paranoia asserts */
2215         D_ASSERT(device, device->open_cnt == 0);
2216         /* end paranoia asserts */
2217
2218         /* cleanup stuff that may have been allocated during
2219          * device (re-)configuration or state changes */
2220
2221         drbd_backing_dev_free(device, device->ldev);
2222         device->ldev = NULL;
2223
2224         drbd_release_all_peer_reqs(device);
2225
2226         lc_destroy(device->act_log);
2227         lc_destroy(device->resync);
2228
2229         kfree(device->p_uuid);
2230         /* device->p_uuid = NULL; */
2231
2232         if (device->bitmap) /* should no longer be there. */
2233                 drbd_bm_cleanup(device);
2234         __free_page(device->md_io.page);
2235         blk_cleanup_disk(device->vdisk);
2236         kfree(device->rs_plan_s);
2237
2238         /* not for_each_connection(connection, resource):
2239          * those may have been cleaned up and disassociated already.
2240          */
2241         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2242                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2243                 kfree(peer_device);
2244         }
2245         memset(device, 0xfd, sizeof(*device));
2246         kfree(device);
2247         kref_put(&resource->kref, drbd_destroy_resource);
2248 }
2249
2250 /* One global retry thread, if we need to push back some bio and have it
2251  * reinserted through our make request function.
2252  */
2253 static struct retry_worker {
2254         struct workqueue_struct *wq;
2255         struct work_struct worker;
2256
2257         spinlock_t lock;
2258         struct list_head writes;
2259 } retry;
2260
2261 static void do_retry(struct work_struct *ws)
2262 {
2263         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2264         LIST_HEAD(writes);
2265         struct drbd_request *req, *tmp;
2266
2267         spin_lock_irq(&retry->lock);
2268         list_splice_init(&retry->writes, &writes);
2269         spin_unlock_irq(&retry->lock);
2270
2271         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2272                 struct drbd_device *device = req->device;
2273                 struct bio *bio = req->master_bio;
2274                 bool expected;
2275
2276                 expected =
2277                         expect(atomic_read(&req->completion_ref) == 0) &&
2278                         expect(req->rq_state & RQ_POSTPONED) &&
2279                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2280                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2281
2282                 if (!expected)
2283                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2284                                 req, atomic_read(&req->completion_ref),
2285                                 req->rq_state);
2286
2287                 /* We still need to put one kref associated with the
2288                  * "completion_ref" going zero in the code path that queued it
2289                  * here.  The request object may still be referenced by a
2290                  * frozen local req->private_bio, in case we force-detached.
2291                  */
2292                 kref_put(&req->kref, drbd_req_destroy);
2293
2294                 /* A single suspended or otherwise blocking device may stall
2295                  * all others as well.  Fortunately, this code path is to
2296                  * recover from a situation that "should not happen":
2297                  * concurrent writes in multi-primary setup.
2298                  * In a "normal" lifecycle, this workqueue is supposed to be
2299                  * destroyed without ever doing anything.
2300                  * If it turns out to be an issue anyways, we can do per
2301                  * resource (replication group) or per device (minor) retry
2302                  * workqueues instead.
2303                  */
2304
2305                 /* We are not just doing submit_bio_noacct(),
2306                  * as we want to keep the start_time information. */
2307                 inc_ap_bio(device);
2308                 __drbd_make_request(device, bio);
2309         }
2310 }
2311
2312 /* called via drbd_req_put_completion_ref(),
2313  * holds resource->req_lock */
2314 void drbd_restart_request(struct drbd_request *req)
2315 {
2316         unsigned long flags;
2317         spin_lock_irqsave(&retry.lock, flags);
2318         list_move_tail(&req->tl_requests, &retry.writes);
2319         spin_unlock_irqrestore(&retry.lock, flags);
2320
2321         /* Drop the extra reference that would otherwise
2322          * have been dropped by complete_master_bio.
2323          * do_retry() needs to grab a new one. */
2324         dec_ap_bio(req->device);
2325
2326         queue_work(retry.wq, &retry.worker);
2327 }
2328
2329 void drbd_destroy_resource(struct kref *kref)
2330 {
2331         struct drbd_resource *resource =
2332                 container_of(kref, struct drbd_resource, kref);
2333
2334         idr_destroy(&resource->devices);
2335         free_cpumask_var(resource->cpu_mask);
2336         kfree(resource->name);
2337         memset(resource, 0xf2, sizeof(*resource));
2338         kfree(resource);
2339 }
2340
2341 void drbd_free_resource(struct drbd_resource *resource)
2342 {
2343         struct drbd_connection *connection, *tmp;
2344
2345         for_each_connection_safe(connection, tmp, resource) {
2346                 list_del(&connection->connections);
2347                 drbd_debugfs_connection_cleanup(connection);
2348                 kref_put(&connection->kref, drbd_destroy_connection);
2349         }
2350         drbd_debugfs_resource_cleanup(resource);
2351         kref_put(&resource->kref, drbd_destroy_resource);
2352 }
2353
2354 static void drbd_cleanup(void)
2355 {
2356         unsigned int i;
2357         struct drbd_device *device;
2358         struct drbd_resource *resource, *tmp;
2359
2360         /* first remove proc,
2361          * drbdsetup uses it's presence to detect
2362          * whether DRBD is loaded.
2363          * If we would get stuck in proc removal,
2364          * but have netlink already deregistered,
2365          * some drbdsetup commands may wait forever
2366          * for an answer.
2367          */
2368         if (drbd_proc)
2369                 remove_proc_entry("drbd", NULL);
2370
2371         if (retry.wq)
2372                 destroy_workqueue(retry.wq);
2373
2374         drbd_genl_unregister();
2375
2376         idr_for_each_entry(&drbd_devices, device, i)
2377                 drbd_delete_device(device);
2378
2379         /* not _rcu since, no other updater anymore. Genl already unregistered */
2380         for_each_resource_safe(resource, tmp, &drbd_resources) {
2381                 list_del(&resource->resources);
2382                 drbd_free_resource(resource);
2383         }
2384
2385         drbd_debugfs_cleanup();
2386
2387         drbd_destroy_mempools();
2388         unregister_blkdev(DRBD_MAJOR, "drbd");
2389
2390         idr_destroy(&drbd_devices);
2391
2392         pr_info("module cleanup done.\n");
2393 }
2394
2395 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2396 {
2397         spin_lock_init(&wq->q_lock);
2398         INIT_LIST_HEAD(&wq->q);
2399         init_waitqueue_head(&wq->q_wait);
2400 }
2401
2402 struct completion_work {
2403         struct drbd_work w;
2404         struct completion done;
2405 };
2406
2407 static int w_complete(struct drbd_work *w, int cancel)
2408 {
2409         struct completion_work *completion_work =
2410                 container_of(w, struct completion_work, w);
2411
2412         complete(&completion_work->done);
2413         return 0;
2414 }
2415
2416 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2417 {
2418         struct completion_work completion_work;
2419
2420         completion_work.w.cb = w_complete;
2421         init_completion(&completion_work.done);
2422         drbd_queue_work(work_queue, &completion_work.w);
2423         wait_for_completion(&completion_work.done);
2424 }
2425
2426 struct drbd_resource *drbd_find_resource(const char *name)
2427 {
2428         struct drbd_resource *resource;
2429
2430         if (!name || !name[0])
2431                 return NULL;
2432
2433         rcu_read_lock();
2434         for_each_resource_rcu(resource, &drbd_resources) {
2435                 if (!strcmp(resource->name, name)) {
2436                         kref_get(&resource->kref);
2437                         goto found;
2438                 }
2439         }
2440         resource = NULL;
2441 found:
2442         rcu_read_unlock();
2443         return resource;
2444 }
2445
2446 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2447                                      void *peer_addr, int peer_addr_len)
2448 {
2449         struct drbd_resource *resource;
2450         struct drbd_connection *connection;
2451
2452         rcu_read_lock();
2453         for_each_resource_rcu(resource, &drbd_resources) {
2454                 for_each_connection_rcu(connection, resource) {
2455                         if (connection->my_addr_len == my_addr_len &&
2456                             connection->peer_addr_len == peer_addr_len &&
2457                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2458                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2459                                 kref_get(&connection->kref);
2460                                 goto found;
2461                         }
2462                 }
2463         }
2464         connection = NULL;
2465 found:
2466         rcu_read_unlock();
2467         return connection;
2468 }
2469
2470 static int drbd_alloc_socket(struct drbd_socket *socket)
2471 {
2472         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2473         if (!socket->rbuf)
2474                 return -ENOMEM;
2475         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2476         if (!socket->sbuf)
2477                 return -ENOMEM;
2478         return 0;
2479 }
2480
2481 static void drbd_free_socket(struct drbd_socket *socket)
2482 {
2483         free_page((unsigned long) socket->sbuf);
2484         free_page((unsigned long) socket->rbuf);
2485 }
2486
2487 void conn_free_crypto(struct drbd_connection *connection)
2488 {
2489         drbd_free_sock(connection);
2490
2491         crypto_free_shash(connection->csums_tfm);
2492         crypto_free_shash(connection->verify_tfm);
2493         crypto_free_shash(connection->cram_hmac_tfm);
2494         crypto_free_shash(connection->integrity_tfm);
2495         crypto_free_shash(connection->peer_integrity_tfm);
2496         kfree(connection->int_dig_in);
2497         kfree(connection->int_dig_vv);
2498
2499         connection->csums_tfm = NULL;
2500         connection->verify_tfm = NULL;
2501         connection->cram_hmac_tfm = NULL;
2502         connection->integrity_tfm = NULL;
2503         connection->peer_integrity_tfm = NULL;
2504         connection->int_dig_in = NULL;
2505         connection->int_dig_vv = NULL;
2506 }
2507
2508 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2509 {
2510         struct drbd_connection *connection;
2511         cpumask_var_t new_cpu_mask;
2512         int err;
2513
2514         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2515                 return -ENOMEM;
2516
2517         /* silently ignore cpu mask on UP kernel */
2518         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2519                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2520                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2521                 if (err == -EOVERFLOW) {
2522                         /* So what. mask it out. */
2523                         cpumask_var_t tmp_cpu_mask;
2524                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2525                                 cpumask_setall(tmp_cpu_mask);
2526                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2527                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2528                                         res_opts->cpu_mask,
2529                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2530                                         nr_cpu_ids);
2531                                 free_cpumask_var(tmp_cpu_mask);
2532                                 err = 0;
2533                         }
2534                 }
2535                 if (err) {
2536                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2537                         /* retcode = ERR_CPU_MASK_PARSE; */
2538                         goto fail;
2539                 }
2540         }
2541         resource->res_opts = *res_opts;
2542         if (cpumask_empty(new_cpu_mask))
2543                 drbd_calc_cpu_mask(&new_cpu_mask);
2544         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2545                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2546                 for_each_connection_rcu(connection, resource) {
2547                         connection->receiver.reset_cpu_mask = 1;
2548                         connection->ack_receiver.reset_cpu_mask = 1;
2549                         connection->worker.reset_cpu_mask = 1;
2550                 }
2551         }
2552         err = 0;
2553
2554 fail:
2555         free_cpumask_var(new_cpu_mask);
2556         return err;
2557
2558 }
2559
2560 struct drbd_resource *drbd_create_resource(const char *name)
2561 {
2562         struct drbd_resource *resource;
2563
2564         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2565         if (!resource)
2566                 goto fail;
2567         resource->name = kstrdup(name, GFP_KERNEL);
2568         if (!resource->name)
2569                 goto fail_free_resource;
2570         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2571                 goto fail_free_name;
2572         kref_init(&resource->kref);
2573         idr_init(&resource->devices);
2574         INIT_LIST_HEAD(&resource->connections);
2575         resource->write_ordering = WO_BDEV_FLUSH;
2576         list_add_tail_rcu(&resource->resources, &drbd_resources);
2577         mutex_init(&resource->conf_update);
2578         mutex_init(&resource->adm_mutex);
2579         spin_lock_init(&resource->req_lock);
2580         drbd_debugfs_resource_add(resource);
2581         return resource;
2582
2583 fail_free_name:
2584         kfree(resource->name);
2585 fail_free_resource:
2586         kfree(resource);
2587 fail:
2588         return NULL;
2589 }
2590
2591 /* caller must be under adm_mutex */
2592 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2593 {
2594         struct drbd_resource *resource;
2595         struct drbd_connection *connection;
2596
2597         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2598         if (!connection)
2599                 return NULL;
2600
2601         if (drbd_alloc_socket(&connection->data))
2602                 goto fail;
2603         if (drbd_alloc_socket(&connection->meta))
2604                 goto fail;
2605
2606         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2607         if (!connection->current_epoch)
2608                 goto fail;
2609
2610         INIT_LIST_HEAD(&connection->transfer_log);
2611
2612         INIT_LIST_HEAD(&connection->current_epoch->list);
2613         connection->epochs = 1;
2614         spin_lock_init(&connection->epoch_lock);
2615
2616         connection->send.seen_any_write_yet = false;
2617         connection->send.current_epoch_nr = 0;
2618         connection->send.current_epoch_writes = 0;
2619
2620         resource = drbd_create_resource(name);
2621         if (!resource)
2622                 goto fail;
2623
2624         connection->cstate = C_STANDALONE;
2625         mutex_init(&connection->cstate_mutex);
2626         init_waitqueue_head(&connection->ping_wait);
2627         idr_init(&connection->peer_devices);
2628
2629         drbd_init_workqueue(&connection->sender_work);
2630         mutex_init(&connection->data.mutex);
2631         mutex_init(&connection->meta.mutex);
2632
2633         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2634         connection->receiver.connection = connection;
2635         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2636         connection->worker.connection = connection;
2637         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2638         connection->ack_receiver.connection = connection;
2639
2640         kref_init(&connection->kref);
2641
2642         connection->resource = resource;
2643
2644         if (set_resource_options(resource, res_opts))
2645                 goto fail_resource;
2646
2647         kref_get(&resource->kref);
2648         list_add_tail_rcu(&connection->connections, &resource->connections);
2649         drbd_debugfs_connection_add(connection);
2650         return connection;
2651
2652 fail_resource:
2653         list_del(&resource->resources);
2654         drbd_free_resource(resource);
2655 fail:
2656         kfree(connection->current_epoch);
2657         drbd_free_socket(&connection->meta);
2658         drbd_free_socket(&connection->data);
2659         kfree(connection);
2660         return NULL;
2661 }
2662
2663 void drbd_destroy_connection(struct kref *kref)
2664 {
2665         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2666         struct drbd_resource *resource = connection->resource;
2667
2668         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2669                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2670         kfree(connection->current_epoch);
2671
2672         idr_destroy(&connection->peer_devices);
2673
2674         drbd_free_socket(&connection->meta);
2675         drbd_free_socket(&connection->data);
2676         kfree(connection->int_dig_in);
2677         kfree(connection->int_dig_vv);
2678         memset(connection, 0xfc, sizeof(*connection));
2679         kfree(connection);
2680         kref_put(&resource->kref, drbd_destroy_resource);
2681 }
2682
2683 static int init_submitter(struct drbd_device *device)
2684 {
2685         /* opencoded create_singlethread_workqueue(),
2686          * to be able to say "drbd%d", ..., minor */
2687         device->submit.wq =
2688                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2689         if (!device->submit.wq)
2690                 return -ENOMEM;
2691
2692         INIT_WORK(&device->submit.worker, do_submit);
2693         INIT_LIST_HEAD(&device->submit.writes);
2694         return 0;
2695 }
2696
2697 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2698 {
2699         struct drbd_resource *resource = adm_ctx->resource;
2700         struct drbd_connection *connection;
2701         struct drbd_device *device;
2702         struct drbd_peer_device *peer_device, *tmp_peer_device;
2703         struct gendisk *disk;
2704         int id;
2705         int vnr = adm_ctx->volume;
2706         enum drbd_ret_code err = ERR_NOMEM;
2707
2708         device = minor_to_device(minor);
2709         if (device)
2710                 return ERR_MINOR_OR_VOLUME_EXISTS;
2711
2712         /* GFP_KERNEL, we are outside of all write-out paths */
2713         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2714         if (!device)
2715                 return ERR_NOMEM;
2716         kref_init(&device->kref);
2717
2718         kref_get(&resource->kref);
2719         device->resource = resource;
2720         device->minor = minor;
2721         device->vnr = vnr;
2722
2723         drbd_init_set_defaults(device);
2724
2725         disk = blk_alloc_disk(NUMA_NO_NODE);
2726         if (!disk)
2727                 goto out_no_disk;
2728
2729         device->vdisk = disk;
2730         device->rq_queue = disk->queue;
2731
2732         set_disk_ro(disk, true);
2733
2734         disk->major = DRBD_MAJOR;
2735         disk->first_minor = minor;
2736         disk->minors = 1;
2737         disk->fops = &drbd_ops;
2738         disk->flags |= GENHD_FL_NO_PART;
2739         sprintf(disk->disk_name, "drbd%d", minor);
2740         disk->private_data = device;
2741
2742         blk_queue_write_cache(disk->queue, true, true);
2743         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2744            This triggers a max_bio_size message upon first attach or connect */
2745         blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2746
2747         device->md_io.page = alloc_page(GFP_KERNEL);
2748         if (!device->md_io.page)
2749                 goto out_no_io_page;
2750
2751         if (drbd_bm_init(device))
2752                 goto out_no_bitmap;
2753         device->read_requests = RB_ROOT;
2754         device->write_requests = RB_ROOT;
2755
2756         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2757         if (id < 0) {
2758                 if (id == -ENOSPC)
2759                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2760                 goto out_no_minor_idr;
2761         }
2762         kref_get(&device->kref);
2763
2764         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2765         if (id < 0) {
2766                 if (id == -ENOSPC)
2767                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2768                 goto out_idr_remove_minor;
2769         }
2770         kref_get(&device->kref);
2771
2772         INIT_LIST_HEAD(&device->peer_devices);
2773         INIT_LIST_HEAD(&device->pending_bitmap_io);
2774         for_each_connection(connection, resource) {
2775                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2776                 if (!peer_device)
2777                         goto out_idr_remove_from_resource;
2778                 peer_device->connection = connection;
2779                 peer_device->device = device;
2780
2781                 list_add(&peer_device->peer_devices, &device->peer_devices);
2782                 kref_get(&device->kref);
2783
2784                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2785                 if (id < 0) {
2786                         if (id == -ENOSPC)
2787                                 err = ERR_INVALID_REQUEST;
2788                         goto out_idr_remove_from_resource;
2789                 }
2790                 kref_get(&connection->kref);
2791                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2792         }
2793
2794         if (init_submitter(device)) {
2795                 err = ERR_NOMEM;
2796                 goto out_idr_remove_vol;
2797         }
2798
2799         err = add_disk(disk);
2800         if (err)
2801                 goto out_idr_remove_vol;
2802
2803         /* inherit the connection state */
2804         device->state.conn = first_connection(resource)->cstate;
2805         if (device->state.conn == C_WF_REPORT_PARAMS) {
2806                 for_each_peer_device(peer_device, device)
2807                         drbd_connected(peer_device);
2808         }
2809         /* move to create_peer_device() */
2810         for_each_peer_device(peer_device, device)
2811                 drbd_debugfs_peer_device_add(peer_device);
2812         drbd_debugfs_device_add(device);
2813         return NO_ERROR;
2814
2815 out_idr_remove_vol:
2816         idr_remove(&connection->peer_devices, vnr);
2817 out_idr_remove_from_resource:
2818         for_each_connection(connection, resource) {
2819                 peer_device = idr_remove(&connection->peer_devices, vnr);
2820                 if (peer_device)
2821                         kref_put(&connection->kref, drbd_destroy_connection);
2822         }
2823         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2824                 list_del(&peer_device->peer_devices);
2825                 kfree(peer_device);
2826         }
2827         idr_remove(&resource->devices, vnr);
2828 out_idr_remove_minor:
2829         idr_remove(&drbd_devices, minor);
2830         synchronize_rcu();
2831 out_no_minor_idr:
2832         drbd_bm_cleanup(device);
2833 out_no_bitmap:
2834         __free_page(device->md_io.page);
2835 out_no_io_page:
2836         blk_cleanup_disk(disk);
2837 out_no_disk:
2838         kref_put(&resource->kref, drbd_destroy_resource);
2839         kfree(device);
2840         return err;
2841 }
2842
2843 void drbd_delete_device(struct drbd_device *device)
2844 {
2845         struct drbd_resource *resource = device->resource;
2846         struct drbd_connection *connection;
2847         struct drbd_peer_device *peer_device;
2848
2849         /* move to free_peer_device() */
2850         for_each_peer_device(peer_device, device)
2851                 drbd_debugfs_peer_device_cleanup(peer_device);
2852         drbd_debugfs_device_cleanup(device);
2853         for_each_connection(connection, resource) {
2854                 idr_remove(&connection->peer_devices, device->vnr);
2855                 kref_put(&device->kref, drbd_destroy_device);
2856         }
2857         idr_remove(&resource->devices, device->vnr);
2858         kref_put(&device->kref, drbd_destroy_device);
2859         idr_remove(&drbd_devices, device_to_minor(device));
2860         kref_put(&device->kref, drbd_destroy_device);
2861         del_gendisk(device->vdisk);
2862         synchronize_rcu();
2863         kref_put(&device->kref, drbd_destroy_device);
2864 }
2865
2866 static int __init drbd_init(void)
2867 {
2868         int err;
2869
2870         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2871                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2872 #ifdef MODULE
2873                 return -EINVAL;
2874 #else
2875                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2876 #endif
2877         }
2878
2879         err = register_blkdev(DRBD_MAJOR, "drbd");
2880         if (err) {
2881                 pr_err("unable to register block device major %d\n",
2882                        DRBD_MAJOR);
2883                 return err;
2884         }
2885
2886         /*
2887          * allocate all necessary structs
2888          */
2889         init_waitqueue_head(&drbd_pp_wait);
2890
2891         drbd_proc = NULL; /* play safe for drbd_cleanup */
2892         idr_init(&drbd_devices);
2893
2894         mutex_init(&resources_mutex);
2895         INIT_LIST_HEAD(&drbd_resources);
2896
2897         err = drbd_genl_register();
2898         if (err) {
2899                 pr_err("unable to register generic netlink family\n");
2900                 goto fail;
2901         }
2902
2903         err = drbd_create_mempools();
2904         if (err)
2905                 goto fail;
2906
2907         err = -ENOMEM;
2908         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2909         if (!drbd_proc) {
2910                 pr_err("unable to register proc file\n");
2911                 goto fail;
2912         }
2913
2914         retry.wq = create_singlethread_workqueue("drbd-reissue");
2915         if (!retry.wq) {
2916                 pr_err("unable to create retry workqueue\n");
2917                 goto fail;
2918         }
2919         INIT_WORK(&retry.worker, do_retry);
2920         spin_lock_init(&retry.lock);
2921         INIT_LIST_HEAD(&retry.writes);
2922
2923         drbd_debugfs_init();
2924
2925         pr_info("initialized. "
2926                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2927                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2928         pr_info("%s\n", drbd_buildtag());
2929         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2930         return 0; /* Success! */
2931
2932 fail:
2933         drbd_cleanup();
2934         if (err == -ENOMEM)
2935                 pr_err("ran out of memory\n");
2936         else
2937                 pr_err("initialization failure\n");
2938         return err;
2939 }
2940
2941 static void drbd_free_one_sock(struct drbd_socket *ds)
2942 {
2943         struct socket *s;
2944         mutex_lock(&ds->mutex);
2945         s = ds->socket;
2946         ds->socket = NULL;
2947         mutex_unlock(&ds->mutex);
2948         if (s) {
2949                 /* so debugfs does not need to mutex_lock() */
2950                 synchronize_rcu();
2951                 kernel_sock_shutdown(s, SHUT_RDWR);
2952                 sock_release(s);
2953         }
2954 }
2955
2956 void drbd_free_sock(struct drbd_connection *connection)
2957 {
2958         if (connection->data.socket)
2959                 drbd_free_one_sock(&connection->data);
2960         if (connection->meta.socket)
2961                 drbd_free_one_sock(&connection->meta);
2962 }
2963
2964 /* meta data management */
2965
2966 void conn_md_sync(struct drbd_connection *connection)
2967 {
2968         struct drbd_peer_device *peer_device;
2969         int vnr;
2970
2971         rcu_read_lock();
2972         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2973                 struct drbd_device *device = peer_device->device;
2974
2975                 kref_get(&device->kref);
2976                 rcu_read_unlock();
2977                 drbd_md_sync(device);
2978                 kref_put(&device->kref, drbd_destroy_device);
2979                 rcu_read_lock();
2980         }
2981         rcu_read_unlock();
2982 }
2983
2984 /* aligned 4kByte */
2985 struct meta_data_on_disk {
2986         u64 la_size_sect;      /* last agreed size. */
2987         u64 uuid[UI_SIZE];   /* UUIDs. */
2988         u64 device_uuid;
2989         u64 reserved_u64_1;
2990         u32 flags;             /* MDF */
2991         u32 magic;
2992         u32 md_size_sect;
2993         u32 al_offset;         /* offset to this block */
2994         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2995               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2996         u32 bm_offset;         /* offset to the bitmap, from here */
2997         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2998         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2999
3000         /* see al_tr_number_to_on_disk_sector() */
3001         u32 al_stripes;
3002         u32 al_stripe_size_4k;
3003
3004         u8 reserved_u8[4096 - (7*8 + 10*4)];
3005 } __packed;
3006
3007
3008
3009 void drbd_md_write(struct drbd_device *device, void *b)
3010 {
3011         struct meta_data_on_disk *buffer = b;
3012         sector_t sector;
3013         int i;
3014
3015         memset(buffer, 0, sizeof(*buffer));
3016
3017         buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3018         for (i = UI_CURRENT; i < UI_SIZE; i++)
3019                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3020         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3021         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3022
3023         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3024         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3025         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3026         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3027         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3028
3029         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3030         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3031
3032         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3033         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3034
3035         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3036         sector = device->ldev->md.md_offset;
3037
3038         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3039                 /* this was a try anyways ... */
3040                 drbd_err(device, "meta data update failed!\n");
3041                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3042         }
3043 }
3044
3045 /**
3046  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3047  * @device:     DRBD device.
3048  */
3049 void drbd_md_sync(struct drbd_device *device)
3050 {
3051         struct meta_data_on_disk *buffer;
3052
3053         /* Don't accidentally change the DRBD meta data layout. */
3054         BUILD_BUG_ON(UI_SIZE != 4);
3055         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3056
3057         del_timer(&device->md_sync_timer);
3058         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3059         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3060                 return;
3061
3062         /* We use here D_FAILED and not D_ATTACHING because we try to write
3063          * metadata even if we detach due to a disk failure! */
3064         if (!get_ldev_if_state(device, D_FAILED))
3065                 return;
3066
3067         buffer = drbd_md_get_buffer(device, __func__);
3068         if (!buffer)
3069                 goto out;
3070
3071         drbd_md_write(device, buffer);
3072
3073         /* Update device->ldev->md.la_size_sect,
3074          * since we updated it on metadata. */
3075         device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3076
3077         drbd_md_put_buffer(device);
3078 out:
3079         put_ldev(device);
3080 }
3081
3082 static int check_activity_log_stripe_size(struct drbd_device *device,
3083                 struct meta_data_on_disk *on_disk,
3084                 struct drbd_md *in_core)
3085 {
3086         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3087         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3088         u64 al_size_4k;
3089
3090         /* both not set: default to old fixed size activity log */
3091         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3092                 al_stripes = 1;
3093                 al_stripe_size_4k = MD_32kB_SECT/8;
3094         }
3095
3096         /* some paranoia plausibility checks */
3097
3098         /* we need both values to be set */
3099         if (al_stripes == 0 || al_stripe_size_4k == 0)
3100                 goto err;
3101
3102         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3103
3104         /* Upper limit of activity log area, to avoid potential overflow
3105          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3106          * than 72 * 4k blocks total only increases the amount of history,
3107          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3108         if (al_size_4k > (16 * 1024 * 1024/4))
3109                 goto err;
3110
3111         /* Lower limit: we need at least 8 transaction slots (32kB)
3112          * to not break existing setups */
3113         if (al_size_4k < MD_32kB_SECT/8)
3114                 goto err;
3115
3116         in_core->al_stripe_size_4k = al_stripe_size_4k;
3117         in_core->al_stripes = al_stripes;
3118         in_core->al_size_4k = al_size_4k;
3119
3120         return 0;
3121 err:
3122         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3123                         al_stripes, al_stripe_size_4k);
3124         return -EINVAL;
3125 }
3126
3127 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3128 {
3129         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3130         struct drbd_md *in_core = &bdev->md;
3131         s32 on_disk_al_sect;
3132         s32 on_disk_bm_sect;
3133
3134         /* The on-disk size of the activity log, calculated from offsets, and
3135          * the size of the activity log calculated from the stripe settings,
3136          * should match.
3137          * Though we could relax this a bit: it is ok, if the striped activity log
3138          * fits in the available on-disk activity log size.
3139          * Right now, that would break how resize is implemented.
3140          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3141          * of possible unused padding space in the on disk layout. */
3142         if (in_core->al_offset < 0) {
3143                 if (in_core->bm_offset > in_core->al_offset)
3144                         goto err;
3145                 on_disk_al_sect = -in_core->al_offset;
3146                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3147         } else {
3148                 if (in_core->al_offset != MD_4kB_SECT)
3149                         goto err;
3150                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3151                         goto err;
3152
3153                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3154                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3155         }
3156
3157         /* old fixed size meta data is exactly that: fixed. */
3158         if (in_core->meta_dev_idx >= 0) {
3159                 if (in_core->md_size_sect != MD_128MB_SECT
3160                 ||  in_core->al_offset != MD_4kB_SECT
3161                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3162                 ||  in_core->al_stripes != 1
3163                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3164                         goto err;
3165         }
3166
3167         if (capacity < in_core->md_size_sect)
3168                 goto err;
3169         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3170                 goto err;
3171
3172         /* should be aligned, and at least 32k */
3173         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3174                 goto err;
3175
3176         /* should fit (for now: exactly) into the available on-disk space;
3177          * overflow prevention is in check_activity_log_stripe_size() above. */
3178         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3179                 goto err;
3180
3181         /* again, should be aligned */
3182         if (in_core->bm_offset & 7)
3183                 goto err;
3184
3185         /* FIXME check for device grow with flex external meta data? */
3186
3187         /* can the available bitmap space cover the last agreed device size? */
3188         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3189                 goto err;
3190
3191         return 0;
3192
3193 err:
3194         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3195                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3196                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3197                         in_core->meta_dev_idx,
3198                         in_core->al_stripes, in_core->al_stripe_size_4k,
3199                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3200                         (unsigned long long)in_core->la_size_sect,
3201                         (unsigned long long)capacity);
3202
3203         return -EINVAL;
3204 }
3205
3206
3207 /**
3208  * drbd_md_read() - Reads in the meta data super block
3209  * @device:     DRBD device.
3210  * @bdev:       Device from which the meta data should be read in.
3211  *
3212  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3213  * something goes wrong.
3214  *
3215  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3216  * even before @bdev is assigned to @device->ldev.
3217  */
3218 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3219 {
3220         struct meta_data_on_disk *buffer;
3221         u32 magic, flags;
3222         int i, rv = NO_ERROR;
3223
3224         if (device->state.disk != D_DISKLESS)
3225                 return ERR_DISK_CONFIGURED;
3226
3227         buffer = drbd_md_get_buffer(device, __func__);
3228         if (!buffer)
3229                 return ERR_NOMEM;
3230
3231         /* First, figure out where our meta data superblock is located,
3232          * and read it. */
3233         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3234         bdev->md.md_offset = drbd_md_ss(bdev);
3235         /* Even for (flexible or indexed) external meta data,
3236          * initially restrict us to the 4k superblock for now.
3237          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3238         bdev->md.md_size_sect = 8;
3239
3240         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3241                                  REQ_OP_READ)) {
3242                 /* NOTE: can't do normal error processing here as this is
3243                    called BEFORE disk is attached */
3244                 drbd_err(device, "Error while reading metadata.\n");
3245                 rv = ERR_IO_MD_DISK;
3246                 goto err;
3247         }
3248
3249         magic = be32_to_cpu(buffer->magic);
3250         flags = be32_to_cpu(buffer->flags);
3251         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3252             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3253                         /* btw: that's Activity Log clean, not "all" clean. */
3254                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3255                 rv = ERR_MD_UNCLEAN;
3256                 goto err;
3257         }
3258
3259         rv = ERR_MD_INVALID;
3260         if (magic != DRBD_MD_MAGIC_08) {
3261                 if (magic == DRBD_MD_MAGIC_07)
3262                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3263                 else
3264                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3265                 goto err;
3266         }
3267
3268         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3269                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3270                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3271                 goto err;
3272         }
3273
3274
3275         /* convert to in_core endian */
3276         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3277         for (i = UI_CURRENT; i < UI_SIZE; i++)
3278                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3279         bdev->md.flags = be32_to_cpu(buffer->flags);
3280         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3281
3282         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3283         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3284         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3285
3286         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3287                 goto err;
3288         if (check_offsets_and_sizes(device, bdev))
3289                 goto err;
3290
3291         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3292                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3293                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3294                 goto err;
3295         }
3296         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3297                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3298                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3299                 goto err;
3300         }
3301
3302         rv = NO_ERROR;
3303
3304         spin_lock_irq(&device->resource->req_lock);
3305         if (device->state.conn < C_CONNECTED) {
3306                 unsigned int peer;
3307                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3308                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3309                 device->peer_max_bio_size = peer;
3310         }
3311         spin_unlock_irq(&device->resource->req_lock);
3312
3313  err:
3314         drbd_md_put_buffer(device);
3315
3316         return rv;
3317 }
3318
3319 /**
3320  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3321  * @device:     DRBD device.
3322  *
3323  * Call this function if you change anything that should be written to
3324  * the meta-data super block. This function sets MD_DIRTY, and starts a
3325  * timer that ensures that within five seconds you have to call drbd_md_sync().
3326  */
3327 void drbd_md_mark_dirty(struct drbd_device *device)
3328 {
3329         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3330                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3331 }
3332
3333 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3334 {
3335         int i;
3336
3337         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3338                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3339 }
3340
3341 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3342 {
3343         if (idx == UI_CURRENT) {
3344                 if (device->state.role == R_PRIMARY)
3345                         val |= 1;
3346                 else
3347                         val &= ~((u64)1);
3348
3349                 drbd_set_ed_uuid(device, val);
3350         }
3351
3352         device->ldev->md.uuid[idx] = val;
3353         drbd_md_mark_dirty(device);
3354 }
3355
3356 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3357 {
3358         unsigned long flags;
3359         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3360         __drbd_uuid_set(device, idx, val);
3361         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3362 }
3363
3364 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3365 {
3366         unsigned long flags;
3367         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3368         if (device->ldev->md.uuid[idx]) {
3369                 drbd_uuid_move_history(device);
3370                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3371         }
3372         __drbd_uuid_set(device, idx, val);
3373         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3374 }
3375
3376 /**
3377  * drbd_uuid_new_current() - Creates a new current UUID
3378  * @device:     DRBD device.
3379  *
3380  * Creates a new current UUID, and rotates the old current UUID into
3381  * the bitmap slot. Causes an incremental resync upon next connect.
3382  */
3383 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3384 {
3385         u64 val;
3386         unsigned long long bm_uuid;
3387
3388         get_random_bytes(&val, sizeof(u64));
3389
3390         spin_lock_irq(&device->ldev->md.uuid_lock);
3391         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3392
3393         if (bm_uuid)
3394                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3395
3396         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3397         __drbd_uuid_set(device, UI_CURRENT, val);
3398         spin_unlock_irq(&device->ldev->md.uuid_lock);
3399
3400         drbd_print_uuids(device, "new current UUID");
3401         /* get it to stable storage _now_ */
3402         drbd_md_sync(device);
3403 }
3404
3405 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3406 {
3407         unsigned long flags;
3408         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3409                 return;
3410
3411         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3412         if (val == 0) {
3413                 drbd_uuid_move_history(device);
3414                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3415                 device->ldev->md.uuid[UI_BITMAP] = 0;
3416         } else {
3417                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3418                 if (bm_uuid)
3419                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3420
3421                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3422         }
3423         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3424
3425         drbd_md_mark_dirty(device);
3426 }
3427
3428 /**
3429  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3430  * @device:     DRBD device.
3431  *
3432  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3433  */
3434 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3435 {
3436         int rv = -EIO;
3437
3438         drbd_md_set_flag(device, MDF_FULL_SYNC);
3439         drbd_md_sync(device);
3440         drbd_bm_set_all(device);
3441
3442         rv = drbd_bm_write(device);
3443
3444         if (!rv) {
3445                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3446                 drbd_md_sync(device);
3447         }
3448
3449         return rv;
3450 }
3451
3452 /**
3453  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3454  * @device:     DRBD device.
3455  *
3456  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3457  */
3458 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3459 {
3460         drbd_resume_al(device);
3461         drbd_bm_clear_all(device);
3462         return drbd_bm_write(device);
3463 }
3464
3465 static int w_bitmap_io(struct drbd_work *w, int unused)
3466 {
3467         struct drbd_device *device =
3468                 container_of(w, struct drbd_device, bm_io_work.w);
3469         struct bm_io_work *work = &device->bm_io_work;
3470         int rv = -EIO;
3471
3472         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3473                 int cnt = atomic_read(&device->ap_bio_cnt);
3474                 if (cnt)
3475                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3476                                         cnt, work->why);
3477         }
3478
3479         if (get_ldev(device)) {
3480                 drbd_bm_lock(device, work->why, work->flags);
3481                 rv = work->io_fn(device);
3482                 drbd_bm_unlock(device);
3483                 put_ldev(device);
3484         }
3485
3486         clear_bit_unlock(BITMAP_IO, &device->flags);
3487         wake_up(&device->misc_wait);
3488
3489         if (work->done)
3490                 work->done(device, rv);
3491
3492         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3493         work->why = NULL;
3494         work->flags = 0;
3495
3496         return 0;
3497 }
3498
3499 /**
3500  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3501  * @device:     DRBD device.
3502  * @io_fn:      IO callback to be called when bitmap IO is possible
3503  * @done:       callback to be called after the bitmap IO was performed
3504  * @why:        Descriptive text of the reason for doing the IO
3505  * @flags:      Bitmap flags
3506  *
3507  * While IO on the bitmap happens we freeze application IO thus we ensure
3508  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3509  * called from worker context. It MUST NOT be used while a previous such
3510  * work is still pending!
3511  *
3512  * Its worker function encloses the call of io_fn() by get_ldev() and
3513  * put_ldev().
3514  */
3515 void drbd_queue_bitmap_io(struct drbd_device *device,
3516                           int (*io_fn)(struct drbd_device *),
3517                           void (*done)(struct drbd_device *, int),
3518                           char *why, enum bm_flag flags)
3519 {
3520         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3521
3522         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3523         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3524         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3525         if (device->bm_io_work.why)
3526                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3527                         why, device->bm_io_work.why);
3528
3529         device->bm_io_work.io_fn = io_fn;
3530         device->bm_io_work.done = done;
3531         device->bm_io_work.why = why;
3532         device->bm_io_work.flags = flags;
3533
3534         spin_lock_irq(&device->resource->req_lock);
3535         set_bit(BITMAP_IO, &device->flags);
3536         /* don't wait for pending application IO if the caller indicates that
3537          * application IO does not conflict anyways. */
3538         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3539                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3540                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3541                                         &device->bm_io_work.w);
3542         }
3543         spin_unlock_irq(&device->resource->req_lock);
3544 }
3545
3546 /**
3547  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3548  * @device:     DRBD device.
3549  * @io_fn:      IO callback to be called when bitmap IO is possible
3550  * @why:        Descriptive text of the reason for doing the IO
3551  * @flags:      Bitmap flags
3552  *
3553  * freezes application IO while that the actual IO operations runs. This
3554  * functions MAY NOT be called from worker context.
3555  */
3556 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3557                 char *why, enum bm_flag flags)
3558 {
3559         /* Only suspend io, if some operation is supposed to be locked out */
3560         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3561         int rv;
3562
3563         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3564
3565         if (do_suspend_io)
3566                 drbd_suspend_io(device);
3567
3568         drbd_bm_lock(device, why, flags);
3569         rv = io_fn(device);
3570         drbd_bm_unlock(device);
3571
3572         if (do_suspend_io)
3573                 drbd_resume_io(device);
3574
3575         return rv;
3576 }
3577
3578 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3579 {
3580         if ((device->ldev->md.flags & flag) != flag) {
3581                 drbd_md_mark_dirty(device);
3582                 device->ldev->md.flags |= flag;
3583         }
3584 }
3585
3586 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3587 {
3588         if ((device->ldev->md.flags & flag) != 0) {
3589                 drbd_md_mark_dirty(device);
3590                 device->ldev->md.flags &= ~flag;
3591         }
3592 }
3593 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3594 {
3595         return (bdev->md.flags & flag) != 0;
3596 }
3597
3598 static void md_sync_timer_fn(struct timer_list *t)
3599 {
3600         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3601         drbd_device_post_work(device, MD_SYNC);
3602 }
3603
3604 const char *cmdname(enum drbd_packet cmd)
3605 {
3606         /* THINK may need to become several global tables
3607          * when we want to support more than
3608          * one PRO_VERSION */
3609         static const char *cmdnames[] = {
3610                 [P_DATA]                = "Data",
3611                 [P_WSAME]               = "WriteSame",
3612                 [P_TRIM]                = "Trim",
3613                 [P_DATA_REPLY]          = "DataReply",
3614                 [P_RS_DATA_REPLY]       = "RSDataReply",
3615                 [P_BARRIER]             = "Barrier",
3616                 [P_BITMAP]              = "ReportBitMap",
3617                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3618                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3619                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3620                 [P_DATA_REQUEST]        = "DataRequest",
3621                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3622                 [P_SYNC_PARAM]          = "SyncParam",
3623                 [P_SYNC_PARAM89]        = "SyncParam89",
3624                 [P_PROTOCOL]            = "ReportProtocol",
3625                 [P_UUIDS]               = "ReportUUIDs",
3626                 [P_SIZES]               = "ReportSizes",
3627                 [P_STATE]               = "ReportState",
3628                 [P_SYNC_UUID]           = "ReportSyncUUID",
3629                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3630                 [P_AUTH_RESPONSE]       = "AuthResponse",
3631                 [P_PING]                = "Ping",
3632                 [P_PING_ACK]            = "PingAck",
3633                 [P_RECV_ACK]            = "RecvAck",
3634                 [P_WRITE_ACK]           = "WriteAck",
3635                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3636                 [P_SUPERSEDED]          = "Superseded",
3637                 [P_NEG_ACK]             = "NegAck",
3638                 [P_NEG_DREPLY]          = "NegDReply",
3639                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3640                 [P_BARRIER_ACK]         = "BarrierAck",
3641                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3642                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3643                 [P_OV_REQUEST]          = "OVRequest",
3644                 [P_OV_REPLY]            = "OVReply",
3645                 [P_OV_RESULT]           = "OVResult",
3646                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3647                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3648                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3649                 [P_DELAY_PROBE]         = "DelayProbe",
3650                 [P_OUT_OF_SYNC]         = "OutOfSync",
3651                 [P_RETRY_WRITE]         = "RetryWrite",
3652                 [P_RS_CANCEL]           = "RSCancel",
3653                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3654                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3655                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3656                 [P_RS_THIN_REQ]         = "rs_thin_req",
3657                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3658
3659                 /* enum drbd_packet, but not commands - obsoleted flags:
3660                  *      P_MAY_IGNORE
3661                  *      P_MAX_OPT_CMD
3662                  */
3663         };
3664
3665         /* too big for the array: 0xfffX */
3666         if (cmd == P_INITIAL_META)
3667                 return "InitialMeta";
3668         if (cmd == P_INITIAL_DATA)
3669                 return "InitialData";
3670         if (cmd == P_CONNECTION_FEATURES)
3671                 return "ConnectionFeatures";
3672         if (cmd >= ARRAY_SIZE(cmdnames))
3673                 return "Unknown";
3674         return cmdnames[cmd];
3675 }
3676
3677 /**
3678  * drbd_wait_misc  -  wait for a request to make progress
3679  * @device:     device associated with the request
3680  * @i:          the struct drbd_interval embedded in struct drbd_request or
3681  *              struct drbd_peer_request
3682  */
3683 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3684 {
3685         struct net_conf *nc;
3686         DEFINE_WAIT(wait);
3687         long timeout;
3688
3689         rcu_read_lock();
3690         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3691         if (!nc) {
3692                 rcu_read_unlock();
3693                 return -ETIMEDOUT;
3694         }
3695         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3696         rcu_read_unlock();
3697
3698         /* Indicate to wake up device->misc_wait on progress.  */
3699         i->waiting = true;
3700         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3701         spin_unlock_irq(&device->resource->req_lock);
3702         timeout = schedule_timeout(timeout);
3703         finish_wait(&device->misc_wait, &wait);
3704         spin_lock_irq(&device->resource->req_lock);
3705         if (!timeout || device->state.conn < C_CONNECTED)
3706                 return -ETIMEDOUT;
3707         if (signal_pending(current))
3708                 return -ERESTARTSYS;
3709         return 0;
3710 }
3711
3712 void lock_all_resources(void)
3713 {
3714         struct drbd_resource *resource;
3715         int __maybe_unused i = 0;
3716
3717         mutex_lock(&resources_mutex);
3718         local_irq_disable();
3719         for_each_resource(resource, &drbd_resources)
3720                 spin_lock_nested(&resource->req_lock, i++);
3721 }
3722
3723 void unlock_all_resources(void)
3724 {
3725         struct drbd_resource *resource;
3726
3727         for_each_resource(resource, &drbd_resources)
3728                 spin_unlock(&resource->req_lock);
3729         local_irq_enable();
3730         mutex_unlock(&resources_mutex);
3731 }
3732
3733 #ifdef CONFIG_DRBD_FAULT_INJECTION
3734 /* Fault insertion support including random number generator shamelessly
3735  * stolen from kernel/rcutorture.c */
3736 struct fault_random_state {
3737         unsigned long state;
3738         unsigned long count;
3739 };
3740
3741 #define FAULT_RANDOM_MULT 39916801  /* prime */
3742 #define FAULT_RANDOM_ADD        479001701 /* prime */
3743 #define FAULT_RANDOM_REFRESH 10000
3744
3745 /*
3746  * Crude but fast random-number generator.  Uses a linear congruential
3747  * generator, with occasional help from get_random_bytes().
3748  */
3749 static unsigned long
3750 _drbd_fault_random(struct fault_random_state *rsp)
3751 {
3752         long refresh;
3753
3754         if (!rsp->count--) {
3755                 get_random_bytes(&refresh, sizeof(refresh));
3756                 rsp->state += refresh;
3757                 rsp->count = FAULT_RANDOM_REFRESH;
3758         }
3759         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3760         return swahw32(rsp->state);
3761 }
3762
3763 static char *
3764 _drbd_fault_str(unsigned int type) {
3765         static char *_faults[] = {
3766                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3767                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3768                 [DRBD_FAULT_RS_WR] = "Resync write",
3769                 [DRBD_FAULT_RS_RD] = "Resync read",
3770                 [DRBD_FAULT_DT_WR] = "Data write",
3771                 [DRBD_FAULT_DT_RD] = "Data read",
3772                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3773                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3774                 [DRBD_FAULT_AL_EE] = "EE allocation",
3775                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3776         };
3777
3778         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3779 }
3780
3781 unsigned int
3782 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3783 {
3784         static struct fault_random_state rrs = {0, 0};
3785
3786         unsigned int ret = (
3787                 (drbd_fault_devs == 0 ||
3788                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3789                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3790
3791         if (ret) {
3792                 drbd_fault_count++;
3793
3794                 if (__ratelimit(&drbd_ratelimit_state))
3795                         drbd_warn(device, "***Simulating %s failure\n",
3796                                 _drbd_fault_str(type));
3797         }
3798
3799         return ret;
3800 }
3801 #endif
3802
3803 const char *drbd_buildtag(void)
3804 {
3805         /* DRBD built from external sources has here a reference to the
3806            git hash of the source code. */
3807
3808         static char buildtag[38] = "\0uilt-in";
3809
3810         if (buildtag[0] == 0) {
3811 #ifdef MODULE
3812                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3813 #else
3814                 buildtag[0] = 'b';
3815 #endif
3816         }
3817
3818         return buildtag;
3819 }
3820
3821 module_init(drbd_init)
3822 module_exit(drbd_cleanup)
3823
3824 EXPORT_SYMBOL(drbd_conn_str);
3825 EXPORT_SYMBOL(drbd_role_str);
3826 EXPORT_SYMBOL(drbd_disk_str);
3827 EXPORT_SYMBOL(drbd_set_st_err_str);