Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[sfrench/cifs-2.6.git] / drivers / base / dma-coherent.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11
12 struct dma_coherent_mem {
13         void            *virt_base;
14         dma_addr_t      device_base;
15         unsigned long   pfn_base;
16         int             size;
17         int             flags;
18         unsigned long   *bitmap;
19         spinlock_t      spinlock;
20         bool            use_dev_dma_pfn_offset;
21 };
22
23 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24
25 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 {
27         if (dev && dev->dma_mem)
28                 return dev->dma_mem;
29         return NULL;
30 }
31
32 static inline dma_addr_t dma_get_device_base(struct device *dev,
33                                              struct dma_coherent_mem * mem)
34 {
35         if (mem->use_dev_dma_pfn_offset)
36                 return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
37         else
38                 return mem->device_base;
39 }
40
41 static int dma_init_coherent_memory(
42         phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
43         struct dma_coherent_mem **mem)
44 {
45         struct dma_coherent_mem *dma_mem = NULL;
46         void __iomem *mem_base = NULL;
47         int pages = size >> PAGE_SHIFT;
48         int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
49         int ret;
50
51         if (!size) {
52                 ret = -EINVAL;
53                 goto out;
54         }
55
56         mem_base = memremap(phys_addr, size, MEMREMAP_WC);
57         if (!mem_base) {
58                 ret = -EINVAL;
59                 goto out;
60         }
61         dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
62         if (!dma_mem) {
63                 ret = -ENOMEM;
64                 goto out;
65         }
66         dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
67         if (!dma_mem->bitmap) {
68                 ret = -ENOMEM;
69                 goto out;
70         }
71
72         dma_mem->virt_base = mem_base;
73         dma_mem->device_base = device_addr;
74         dma_mem->pfn_base = PFN_DOWN(phys_addr);
75         dma_mem->size = pages;
76         dma_mem->flags = flags;
77         spin_lock_init(&dma_mem->spinlock);
78
79         *mem = dma_mem;
80         return 0;
81
82 out:
83         kfree(dma_mem);
84         if (mem_base)
85                 memunmap(mem_base);
86         return ret;
87 }
88
89 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
90 {
91         if (!mem)
92                 return;
93
94         memunmap(mem->virt_base);
95         kfree(mem->bitmap);
96         kfree(mem);
97 }
98
99 static int dma_assign_coherent_memory(struct device *dev,
100                                       struct dma_coherent_mem *mem)
101 {
102         if (!dev)
103                 return -ENODEV;
104
105         if (dev->dma_mem)
106                 return -EBUSY;
107
108         dev->dma_mem = mem;
109         return 0;
110 }
111
112 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
113                                 dma_addr_t device_addr, size_t size, int flags)
114 {
115         struct dma_coherent_mem *mem;
116         int ret;
117
118         ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem);
119         if (ret)
120                 return ret;
121
122         ret = dma_assign_coherent_memory(dev, mem);
123         if (ret)
124                 dma_release_coherent_memory(mem);
125         return ret;
126 }
127 EXPORT_SYMBOL(dma_declare_coherent_memory);
128
129 void dma_release_declared_memory(struct device *dev)
130 {
131         struct dma_coherent_mem *mem = dev->dma_mem;
132
133         if (!mem)
134                 return;
135         dma_release_coherent_memory(mem);
136         dev->dma_mem = NULL;
137 }
138 EXPORT_SYMBOL(dma_release_declared_memory);
139
140 void *dma_mark_declared_memory_occupied(struct device *dev,
141                                         dma_addr_t device_addr, size_t size)
142 {
143         struct dma_coherent_mem *mem = dev->dma_mem;
144         unsigned long flags;
145         int pos, err;
146
147         size += device_addr & ~PAGE_MASK;
148
149         if (!mem)
150                 return ERR_PTR(-EINVAL);
151
152         spin_lock_irqsave(&mem->spinlock, flags);
153         pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
154         err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
155         spin_unlock_irqrestore(&mem->spinlock, flags);
156
157         if (err != 0)
158                 return ERR_PTR(err);
159         return mem->virt_base + (pos << PAGE_SHIFT);
160 }
161 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
162
163 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
164                 ssize_t size, dma_addr_t *dma_handle)
165 {
166         int order = get_order(size);
167         unsigned long flags;
168         int pageno;
169         void *ret;
170
171         spin_lock_irqsave(&mem->spinlock, flags);
172
173         if (unlikely(size > (mem->size << PAGE_SHIFT)))
174                 goto err;
175
176         pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
177         if (unlikely(pageno < 0))
178                 goto err;
179
180         /*
181          * Memory was found in the coherent area.
182          */
183         *dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
184         ret = mem->virt_base + (pageno << PAGE_SHIFT);
185         spin_unlock_irqrestore(&mem->spinlock, flags);
186         memset(ret, 0, size);
187         return ret;
188 err:
189         spin_unlock_irqrestore(&mem->spinlock, flags);
190         return NULL;
191 }
192
193 /**
194  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
195  * @dev:        device from which we allocate memory
196  * @size:       size of requested memory area
197  * @dma_handle: This will be filled with the correct dma handle
198  * @ret:        This pointer will be filled with the virtual address
199  *              to allocated area.
200  *
201  * This function should be only called from per-arch dma_alloc_coherent()
202  * to support allocation from per-device coherent memory pools.
203  *
204  * Returns 0 if dma_alloc_coherent should continue with allocating from
205  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
206  */
207 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
208                 dma_addr_t *dma_handle, void **ret)
209 {
210         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
211
212         if (!mem)
213                 return 0;
214
215         *ret = __dma_alloc_from_coherent(mem, size, dma_handle);
216         if (*ret)
217                 return 1;
218
219         /*
220          * In the case where the allocation can not be satisfied from the
221          * per-device area, try to fall back to generic memory if the
222          * constraints allow it.
223          */
224         return mem->flags & DMA_MEMORY_EXCLUSIVE;
225 }
226 EXPORT_SYMBOL(dma_alloc_from_dev_coherent);
227
228 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
229 {
230         if (!dma_coherent_default_memory)
231                 return NULL;
232
233         return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
234                         dma_handle);
235 }
236
237 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
238                                        int order, void *vaddr)
239 {
240         if (mem && vaddr >= mem->virt_base && vaddr <
241                    (mem->virt_base + (mem->size << PAGE_SHIFT))) {
242                 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
243                 unsigned long flags;
244
245                 spin_lock_irqsave(&mem->spinlock, flags);
246                 bitmap_release_region(mem->bitmap, page, order);
247                 spin_unlock_irqrestore(&mem->spinlock, flags);
248                 return 1;
249         }
250         return 0;
251 }
252
253 /**
254  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
255  * @dev:        device from which the memory was allocated
256  * @order:      the order of pages allocated
257  * @vaddr:      virtual address of allocated pages
258  *
259  * This checks whether the memory was allocated from the per-device
260  * coherent memory pool and if so, releases that memory.
261  *
262  * Returns 1 if we correctly released the memory, or 0 if the caller should
263  * proceed with releasing memory from generic pools.
264  */
265 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
266 {
267         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
268
269         return __dma_release_from_coherent(mem, order, vaddr);
270 }
271 EXPORT_SYMBOL(dma_release_from_dev_coherent);
272
273 int dma_release_from_global_coherent(int order, void *vaddr)
274 {
275         if (!dma_coherent_default_memory)
276                 return 0;
277
278         return __dma_release_from_coherent(dma_coherent_default_memory, order,
279                         vaddr);
280 }
281
282 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
283                 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
284 {
285         if (mem && vaddr >= mem->virt_base && vaddr + size <=
286                    (mem->virt_base + (mem->size << PAGE_SHIFT))) {
287                 unsigned long off = vma->vm_pgoff;
288                 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
289                 int user_count = vma_pages(vma);
290                 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
291
292                 *ret = -ENXIO;
293                 if (off < count && user_count <= count - off) {
294                         unsigned long pfn = mem->pfn_base + start + off;
295                         *ret = remap_pfn_range(vma, vma->vm_start, pfn,
296                                                user_count << PAGE_SHIFT,
297                                                vma->vm_page_prot);
298                 }
299                 return 1;
300         }
301         return 0;
302 }
303
304 /**
305  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
306  * @dev:        device from which the memory was allocated
307  * @vma:        vm_area for the userspace memory
308  * @vaddr:      cpu address returned by dma_alloc_from_dev_coherent
309  * @size:       size of the memory buffer allocated
310  * @ret:        result from remap_pfn_range()
311  *
312  * This checks whether the memory was allocated from the per-device
313  * coherent memory pool and if so, maps that memory to the provided vma.
314  *
315  * Returns 1 if we correctly mapped the memory, or 0 if the caller should
316  * proceed with mapping memory from generic pools.
317  */
318 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
319                            void *vaddr, size_t size, int *ret)
320 {
321         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
322
323         return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
324 }
325 EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
326
327 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
328                                    size_t size, int *ret)
329 {
330         if (!dma_coherent_default_memory)
331                 return 0;
332
333         return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
334                                         vaddr, size, ret);
335 }
336
337 /*
338  * Support for reserved memory regions defined in device tree
339  */
340 #ifdef CONFIG_OF_RESERVED_MEM
341 #include <linux/of.h>
342 #include <linux/of_fdt.h>
343 #include <linux/of_reserved_mem.h>
344
345 static struct reserved_mem *dma_reserved_default_memory __initdata;
346
347 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
348 {
349         struct dma_coherent_mem *mem = rmem->priv;
350         int ret;
351
352         if (!mem) {
353                 ret = dma_init_coherent_memory(rmem->base, rmem->base,
354                                                rmem->size,
355                                                DMA_MEMORY_EXCLUSIVE, &mem);
356                 if (ret) {
357                         pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
358                                 &rmem->base, (unsigned long)rmem->size / SZ_1M);
359                         return ret;
360                 }
361         }
362         mem->use_dev_dma_pfn_offset = true;
363         rmem->priv = mem;
364         dma_assign_coherent_memory(dev, mem);
365         return 0;
366 }
367
368 static void rmem_dma_device_release(struct reserved_mem *rmem,
369                                     struct device *dev)
370 {
371         if (dev)
372                 dev->dma_mem = NULL;
373 }
374
375 static const struct reserved_mem_ops rmem_dma_ops = {
376         .device_init    = rmem_dma_device_init,
377         .device_release = rmem_dma_device_release,
378 };
379
380 static int __init rmem_dma_setup(struct reserved_mem *rmem)
381 {
382         unsigned long node = rmem->fdt_node;
383
384         if (of_get_flat_dt_prop(node, "reusable", NULL))
385                 return -EINVAL;
386
387 #ifdef CONFIG_ARM
388         if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
389                 pr_err("Reserved memory: regions without no-map are not yet supported\n");
390                 return -EINVAL;
391         }
392
393         if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
394                 WARN(dma_reserved_default_memory,
395                      "Reserved memory: region for default DMA coherent area is redefined\n");
396                 dma_reserved_default_memory = rmem;
397         }
398 #endif
399
400         rmem->ops = &rmem_dma_ops;
401         pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
402                 &rmem->base, (unsigned long)rmem->size / SZ_1M);
403         return 0;
404 }
405
406 static int __init dma_init_reserved_memory(void)
407 {
408         const struct reserved_mem_ops *ops;
409         int ret;
410
411         if (!dma_reserved_default_memory)
412                 return -ENOMEM;
413
414         ops = dma_reserved_default_memory->ops;
415
416         /*
417          * We rely on rmem_dma_device_init() does not propagate error of
418          * dma_assign_coherent_memory() for "NULL" device.
419          */
420         ret = ops->device_init(dma_reserved_default_memory, NULL);
421
422         if (!ret) {
423                 dma_coherent_default_memory = dma_reserved_default_memory->priv;
424                 pr_info("DMA: default coherent area is set\n");
425         }
426
427         return ret;
428 }
429
430 core_initcall(dma_init_reserved_memory);
431
432 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
433 #endif