Merge tag 'nfs-for-4.20-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[sfrench/cifs-2.6.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31         return ci_cacheinfo(cpu);
32 }
33
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36                                            struct cacheinfo *sib_leaf)
37 {
38         return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43         const char *size_prop;
44         const char *line_size_props[2];
45         const char *nr_sets_prop;
46 };
47
48 static const struct cache_type_info cache_type_info[] = {
49         {
50                 .size_prop       = "cache-size",
51                 .line_size_props = { "cache-line-size",
52                                      "cache-block-size", },
53                 .nr_sets_prop    = "cache-sets",
54         }, {
55                 .size_prop       = "i-cache-size",
56                 .line_size_props = { "i-cache-line-size",
57                                      "i-cache-block-size", },
58                 .nr_sets_prop    = "i-cache-sets",
59         }, {
60                 .size_prop       = "d-cache-size",
61                 .line_size_props = { "d-cache-line-size",
62                                      "d-cache-block-size", },
63                 .nr_sets_prop    = "d-cache-sets",
64         },
65 };
66
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69         if (type == CACHE_TYPE_UNIFIED)
70                 return 0;
71         return type;
72 }
73
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76         const char *propname;
77         int ct_idx;
78
79         ct_idx = get_cacheinfo_idx(this_leaf->type);
80         propname = cache_type_info[ct_idx].size_prop;
81
82         if (of_property_read_u32(np, propname, &this_leaf->size))
83                 this_leaf->size = 0;
84 }
85
86 /* not cache_line_size() because that's a macro in include/linux/cache.h */
87 static void cache_get_line_size(struct cacheinfo *this_leaf,
88                                 struct device_node *np)
89 {
90         int i, lim, ct_idx;
91
92         ct_idx = get_cacheinfo_idx(this_leaf->type);
93         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
94
95         for (i = 0; i < lim; i++) {
96                 int ret;
97                 u32 line_size;
98                 const char *propname;
99
100                 propname = cache_type_info[ct_idx].line_size_props[i];
101                 ret = of_property_read_u32(np, propname, &line_size);
102                 if (!ret) {
103                         this_leaf->coherency_line_size = line_size;
104                         break;
105                 }
106         }
107 }
108
109 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
110 {
111         const char *propname;
112         int ct_idx;
113
114         ct_idx = get_cacheinfo_idx(this_leaf->type);
115         propname = cache_type_info[ct_idx].nr_sets_prop;
116
117         if (of_property_read_u32(np, propname, &this_leaf->number_of_sets))
118                 this_leaf->number_of_sets = 0;
119 }
120
121 static void cache_associativity(struct cacheinfo *this_leaf)
122 {
123         unsigned int line_size = this_leaf->coherency_line_size;
124         unsigned int nr_sets = this_leaf->number_of_sets;
125         unsigned int size = this_leaf->size;
126
127         /*
128          * If the cache is fully associative, there is no need to
129          * check the other properties.
130          */
131         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
132                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
133 }
134
135 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
136                                   struct device_node *np)
137 {
138         return of_property_read_bool(np, "cache-unified");
139 }
140
141 static void cache_of_set_props(struct cacheinfo *this_leaf,
142                                struct device_node *np)
143 {
144         /*
145          * init_cache_level must setup the cache level correctly
146          * overriding the architecturally specified levels, so
147          * if type is NONE at this stage, it should be unified
148          */
149         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
150             cache_node_is_unified(this_leaf, np))
151                 this_leaf->type = CACHE_TYPE_UNIFIED;
152         cache_size(this_leaf, np);
153         cache_get_line_size(this_leaf, np);
154         cache_nr_sets(this_leaf, np);
155         cache_associativity(this_leaf);
156 }
157
158 static int cache_setup_of_node(unsigned int cpu)
159 {
160         struct device_node *np;
161         struct cacheinfo *this_leaf;
162         struct device *cpu_dev = get_cpu_device(cpu);
163         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
164         unsigned int index = 0;
165
166         /* skip if fw_token is already populated */
167         if (this_cpu_ci->info_list->fw_token) {
168                 return 0;
169         }
170
171         if (!cpu_dev) {
172                 pr_err("No cpu device for CPU %d\n", cpu);
173                 return -ENODEV;
174         }
175         np = cpu_dev->of_node;
176         if (!np) {
177                 pr_err("Failed to find cpu%d device node\n", cpu);
178                 return -ENOENT;
179         }
180
181         while (index < cache_leaves(cpu)) {
182                 this_leaf = this_cpu_ci->info_list + index;
183                 if (this_leaf->level != 1)
184                         np = of_find_next_cache_node(np);
185                 else
186                         np = of_node_get(np);/* cpu node itself */
187                 if (!np)
188                         break;
189                 cache_of_set_props(this_leaf, np);
190                 this_leaf->fw_token = np;
191                 index++;
192         }
193
194         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
195                 return -ENOENT;
196
197         return 0;
198 }
199 #else
200 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
201 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
202                                            struct cacheinfo *sib_leaf)
203 {
204         /*
205          * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
206          * shared caches for all other levels. This will be used only if
207          * arch specific code has not populated shared_cpu_map
208          */
209         return !(this_leaf->level == 1);
210 }
211 #endif
212
213 int __weak cache_setup_acpi(unsigned int cpu)
214 {
215         return -ENOTSUPP;
216 }
217
218 static int cache_shared_cpu_map_setup(unsigned int cpu)
219 {
220         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221         struct cacheinfo *this_leaf, *sib_leaf;
222         unsigned int index;
223         int ret = 0;
224
225         if (this_cpu_ci->cpu_map_populated)
226                 return 0;
227
228         if (of_have_populated_dt())
229                 ret = cache_setup_of_node(cpu);
230         else if (!acpi_disabled)
231                 ret = cache_setup_acpi(cpu);
232
233         if (ret)
234                 return ret;
235
236         for (index = 0; index < cache_leaves(cpu); index++) {
237                 unsigned int i;
238
239                 this_leaf = this_cpu_ci->info_list + index;
240                 /* skip if shared_cpu_map is already populated */
241                 if (!cpumask_empty(&this_leaf->shared_cpu_map))
242                         continue;
243
244                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245                 for_each_online_cpu(i) {
246                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247
248                         if (i == cpu || !sib_cpu_ci->info_list)
249                                 continue;/* skip if itself or no cacheinfo */
250                         sib_leaf = sib_cpu_ci->info_list + index;
251                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254                         }
255                 }
256         }
257
258         return 0;
259 }
260
261 static void cache_shared_cpu_map_remove(unsigned int cpu)
262 {
263         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
264         struct cacheinfo *this_leaf, *sib_leaf;
265         unsigned int sibling, index;
266
267         for (index = 0; index < cache_leaves(cpu); index++) {
268                 this_leaf = this_cpu_ci->info_list + index;
269                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
270                         struct cpu_cacheinfo *sib_cpu_ci;
271
272                         if (sibling == cpu) /* skip itself */
273                                 continue;
274
275                         sib_cpu_ci = get_cpu_cacheinfo(sibling);
276                         if (!sib_cpu_ci->info_list)
277                                 continue;
278
279                         sib_leaf = sib_cpu_ci->info_list + index;
280                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
281                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
282                 }
283                 if (of_have_populated_dt())
284                         of_node_put(this_leaf->fw_token);
285         }
286 }
287
288 static void free_cache_attributes(unsigned int cpu)
289 {
290         if (!per_cpu_cacheinfo(cpu))
291                 return;
292
293         cache_shared_cpu_map_remove(cpu);
294
295         kfree(per_cpu_cacheinfo(cpu));
296         per_cpu_cacheinfo(cpu) = NULL;
297 }
298
299 int __weak init_cache_level(unsigned int cpu)
300 {
301         return -ENOENT;
302 }
303
304 int __weak populate_cache_leaves(unsigned int cpu)
305 {
306         return -ENOENT;
307 }
308
309 static int detect_cache_attributes(unsigned int cpu)
310 {
311         int ret;
312
313         if (init_cache_level(cpu) || !cache_leaves(cpu))
314                 return -ENOENT;
315
316         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
317                                          sizeof(struct cacheinfo), GFP_KERNEL);
318         if (per_cpu_cacheinfo(cpu) == NULL)
319                 return -ENOMEM;
320
321         /*
322          * populate_cache_leaves() may completely setup the cache leaves and
323          * shared_cpu_map or it may leave it partially setup.
324          */
325         ret = populate_cache_leaves(cpu);
326         if (ret)
327                 goto free_ci;
328         /*
329          * For systems using DT for cache hierarchy, fw_token
330          * and shared_cpu_map will be set up here only if they are
331          * not populated already
332          */
333         ret = cache_shared_cpu_map_setup(cpu);
334         if (ret) {
335                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
336                 goto free_ci;
337         }
338
339         return 0;
340
341 free_ci:
342         free_cache_attributes(cpu);
343         return ret;
344 }
345
346 /* pointer to cpuX/cache device */
347 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
348 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
349
350 static cpumask_t cache_dev_map;
351
352 /* pointer to array of devices for cpuX/cache/indexY */
353 static DEFINE_PER_CPU(struct device **, ci_index_dev);
354 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
355 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
356
357 #define show_one(file_name, object)                             \
358 static ssize_t file_name##_show(struct device *dev,             \
359                 struct device_attribute *attr, char *buf)       \
360 {                                                               \
361         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
362         return sprintf(buf, "%u\n", this_leaf->object);         \
363 }
364
365 show_one(id, id);
366 show_one(level, level);
367 show_one(coherency_line_size, coherency_line_size);
368 show_one(number_of_sets, number_of_sets);
369 show_one(physical_line_partition, physical_line_partition);
370 show_one(ways_of_associativity, ways_of_associativity);
371
372 static ssize_t size_show(struct device *dev,
373                          struct device_attribute *attr, char *buf)
374 {
375         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
376
377         return sprintf(buf, "%uK\n", this_leaf->size >> 10);
378 }
379
380 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
381 {
382         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
383         const struct cpumask *mask = &this_leaf->shared_cpu_map;
384
385         return cpumap_print_to_pagebuf(list, buf, mask);
386 }
387
388 static ssize_t shared_cpu_map_show(struct device *dev,
389                                    struct device_attribute *attr, char *buf)
390 {
391         return shared_cpumap_show_func(dev, false, buf);
392 }
393
394 static ssize_t shared_cpu_list_show(struct device *dev,
395                                     struct device_attribute *attr, char *buf)
396 {
397         return shared_cpumap_show_func(dev, true, buf);
398 }
399
400 static ssize_t type_show(struct device *dev,
401                          struct device_attribute *attr, char *buf)
402 {
403         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
404
405         switch (this_leaf->type) {
406         case CACHE_TYPE_DATA:
407                 return sprintf(buf, "Data\n");
408         case CACHE_TYPE_INST:
409                 return sprintf(buf, "Instruction\n");
410         case CACHE_TYPE_UNIFIED:
411                 return sprintf(buf, "Unified\n");
412         default:
413                 return -EINVAL;
414         }
415 }
416
417 static ssize_t allocation_policy_show(struct device *dev,
418                                       struct device_attribute *attr, char *buf)
419 {
420         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
421         unsigned int ci_attr = this_leaf->attributes;
422         int n = 0;
423
424         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
425                 n = sprintf(buf, "ReadWriteAllocate\n");
426         else if (ci_attr & CACHE_READ_ALLOCATE)
427                 n = sprintf(buf, "ReadAllocate\n");
428         else if (ci_attr & CACHE_WRITE_ALLOCATE)
429                 n = sprintf(buf, "WriteAllocate\n");
430         return n;
431 }
432
433 static ssize_t write_policy_show(struct device *dev,
434                                  struct device_attribute *attr, char *buf)
435 {
436         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
437         unsigned int ci_attr = this_leaf->attributes;
438         int n = 0;
439
440         if (ci_attr & CACHE_WRITE_THROUGH)
441                 n = sprintf(buf, "WriteThrough\n");
442         else if (ci_attr & CACHE_WRITE_BACK)
443                 n = sprintf(buf, "WriteBack\n");
444         return n;
445 }
446
447 static DEVICE_ATTR_RO(id);
448 static DEVICE_ATTR_RO(level);
449 static DEVICE_ATTR_RO(type);
450 static DEVICE_ATTR_RO(coherency_line_size);
451 static DEVICE_ATTR_RO(ways_of_associativity);
452 static DEVICE_ATTR_RO(number_of_sets);
453 static DEVICE_ATTR_RO(size);
454 static DEVICE_ATTR_RO(allocation_policy);
455 static DEVICE_ATTR_RO(write_policy);
456 static DEVICE_ATTR_RO(shared_cpu_map);
457 static DEVICE_ATTR_RO(shared_cpu_list);
458 static DEVICE_ATTR_RO(physical_line_partition);
459
460 static struct attribute *cache_default_attrs[] = {
461         &dev_attr_id.attr,
462         &dev_attr_type.attr,
463         &dev_attr_level.attr,
464         &dev_attr_shared_cpu_map.attr,
465         &dev_attr_shared_cpu_list.attr,
466         &dev_attr_coherency_line_size.attr,
467         &dev_attr_ways_of_associativity.attr,
468         &dev_attr_number_of_sets.attr,
469         &dev_attr_size.attr,
470         &dev_attr_allocation_policy.attr,
471         &dev_attr_write_policy.attr,
472         &dev_attr_physical_line_partition.attr,
473         NULL
474 };
475
476 static umode_t
477 cache_default_attrs_is_visible(struct kobject *kobj,
478                                struct attribute *attr, int unused)
479 {
480         struct device *dev = kobj_to_dev(kobj);
481         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
482         const struct cpumask *mask = &this_leaf->shared_cpu_map;
483         umode_t mode = attr->mode;
484
485         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
486                 return mode;
487         if ((attr == &dev_attr_type.attr) && this_leaf->type)
488                 return mode;
489         if ((attr == &dev_attr_level.attr) && this_leaf->level)
490                 return mode;
491         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
492                 return mode;
493         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
494                 return mode;
495         if ((attr == &dev_attr_coherency_line_size.attr) &&
496             this_leaf->coherency_line_size)
497                 return mode;
498         if ((attr == &dev_attr_ways_of_associativity.attr) &&
499             this_leaf->size) /* allow 0 = full associativity */
500                 return mode;
501         if ((attr == &dev_attr_number_of_sets.attr) &&
502             this_leaf->number_of_sets)
503                 return mode;
504         if ((attr == &dev_attr_size.attr) && this_leaf->size)
505                 return mode;
506         if ((attr == &dev_attr_write_policy.attr) &&
507             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
508                 return mode;
509         if ((attr == &dev_attr_allocation_policy.attr) &&
510             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
511                 return mode;
512         if ((attr == &dev_attr_physical_line_partition.attr) &&
513             this_leaf->physical_line_partition)
514                 return mode;
515
516         return 0;
517 }
518
519 static const struct attribute_group cache_default_group = {
520         .attrs = cache_default_attrs,
521         .is_visible = cache_default_attrs_is_visible,
522 };
523
524 static const struct attribute_group *cache_default_groups[] = {
525         &cache_default_group,
526         NULL,
527 };
528
529 static const struct attribute_group *cache_private_groups[] = {
530         &cache_default_group,
531         NULL, /* Place holder for private group */
532         NULL,
533 };
534
535 const struct attribute_group *
536 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
537 {
538         return NULL;
539 }
540
541 static const struct attribute_group **
542 cache_get_attribute_groups(struct cacheinfo *this_leaf)
543 {
544         const struct attribute_group *priv_group =
545                         cache_get_priv_group(this_leaf);
546
547         if (!priv_group)
548                 return cache_default_groups;
549
550         if (!cache_private_groups[1])
551                 cache_private_groups[1] = priv_group;
552
553         return cache_private_groups;
554 }
555
556 /* Add/Remove cache interface for CPU device */
557 static void cpu_cache_sysfs_exit(unsigned int cpu)
558 {
559         int i;
560         struct device *ci_dev;
561
562         if (per_cpu_index_dev(cpu)) {
563                 for (i = 0; i < cache_leaves(cpu); i++) {
564                         ci_dev = per_cache_index_dev(cpu, i);
565                         if (!ci_dev)
566                                 continue;
567                         device_unregister(ci_dev);
568                 }
569                 kfree(per_cpu_index_dev(cpu));
570                 per_cpu_index_dev(cpu) = NULL;
571         }
572         device_unregister(per_cpu_cache_dev(cpu));
573         per_cpu_cache_dev(cpu) = NULL;
574 }
575
576 static int cpu_cache_sysfs_init(unsigned int cpu)
577 {
578         struct device *dev = get_cpu_device(cpu);
579
580         if (per_cpu_cacheinfo(cpu) == NULL)
581                 return -ENOENT;
582
583         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
584         if (IS_ERR(per_cpu_cache_dev(cpu)))
585                 return PTR_ERR(per_cpu_cache_dev(cpu));
586
587         /* Allocate all required memory */
588         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
589                                          sizeof(struct device *), GFP_KERNEL);
590         if (unlikely(per_cpu_index_dev(cpu) == NULL))
591                 goto err_out;
592
593         return 0;
594
595 err_out:
596         cpu_cache_sysfs_exit(cpu);
597         return -ENOMEM;
598 }
599
600 static int cache_add_dev(unsigned int cpu)
601 {
602         unsigned int i;
603         int rc;
604         struct device *ci_dev, *parent;
605         struct cacheinfo *this_leaf;
606         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
607         const struct attribute_group **cache_groups;
608
609         rc = cpu_cache_sysfs_init(cpu);
610         if (unlikely(rc < 0))
611                 return rc;
612
613         parent = per_cpu_cache_dev(cpu);
614         for (i = 0; i < cache_leaves(cpu); i++) {
615                 this_leaf = this_cpu_ci->info_list + i;
616                 if (this_leaf->disable_sysfs)
617                         continue;
618                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
619                         break;
620                 cache_groups = cache_get_attribute_groups(this_leaf);
621                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
622                                            "index%1u", i);
623                 if (IS_ERR(ci_dev)) {
624                         rc = PTR_ERR(ci_dev);
625                         goto err;
626                 }
627                 per_cache_index_dev(cpu, i) = ci_dev;
628         }
629         cpumask_set_cpu(cpu, &cache_dev_map);
630
631         return 0;
632 err:
633         cpu_cache_sysfs_exit(cpu);
634         return rc;
635 }
636
637 static int cacheinfo_cpu_online(unsigned int cpu)
638 {
639         int rc = detect_cache_attributes(cpu);
640
641         if (rc)
642                 return rc;
643         rc = cache_add_dev(cpu);
644         if (rc)
645                 free_cache_attributes(cpu);
646         return rc;
647 }
648
649 static int cacheinfo_cpu_pre_down(unsigned int cpu)
650 {
651         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
652                 cpu_cache_sysfs_exit(cpu);
653
654         free_cache_attributes(cpu);
655         return 0;
656 }
657
658 static int __init cacheinfo_sysfs_init(void)
659 {
660         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
661                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
662 }
663 device_initcall(cacheinfo_sysfs_init);