Linux 6.10-rc3
[sfrench/cifs-2.6.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cacheinfo.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/rcupdate.h>
21 #include <linux/sched.h>
22 #include <linux/units.h>
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/hw_pressure.h>
26
27 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
28 static struct cpumask scale_freq_counters_mask;
29 static bool scale_freq_invariant;
30 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
31 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
32
33 static bool supports_scale_freq_counters(const struct cpumask *cpus)
34 {
35         return cpumask_subset(cpus, &scale_freq_counters_mask);
36 }
37
38 bool topology_scale_freq_invariant(void)
39 {
40         return cpufreq_supports_freq_invariance() ||
41                supports_scale_freq_counters(cpu_online_mask);
42 }
43
44 static void update_scale_freq_invariant(bool status)
45 {
46         if (scale_freq_invariant == status)
47                 return;
48
49         /*
50          * Task scheduler behavior depends on frequency invariance support,
51          * either cpufreq or counter driven. If the support status changes as
52          * a result of counter initialisation and use, retrigger the build of
53          * scheduling domains to ensure the information is propagated properly.
54          */
55         if (topology_scale_freq_invariant() == status) {
56                 scale_freq_invariant = status;
57                 rebuild_sched_domains_energy();
58         }
59 }
60
61 void topology_set_scale_freq_source(struct scale_freq_data *data,
62                                     const struct cpumask *cpus)
63 {
64         struct scale_freq_data *sfd;
65         int cpu;
66
67         /*
68          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
69          * supported by cpufreq.
70          */
71         if (cpumask_empty(&scale_freq_counters_mask))
72                 scale_freq_invariant = topology_scale_freq_invariant();
73
74         rcu_read_lock();
75
76         for_each_cpu(cpu, cpus) {
77                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
78
79                 /* Use ARCH provided counters whenever possible */
80                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
81                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
82                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
83                 }
84         }
85
86         rcu_read_unlock();
87
88         update_scale_freq_invariant(true);
89 }
90 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
91
92 void topology_clear_scale_freq_source(enum scale_freq_source source,
93                                       const struct cpumask *cpus)
94 {
95         struct scale_freq_data *sfd;
96         int cpu;
97
98         rcu_read_lock();
99
100         for_each_cpu(cpu, cpus) {
101                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
102
103                 if (sfd && sfd->source == source) {
104                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
105                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
106                 }
107         }
108
109         rcu_read_unlock();
110
111         /*
112          * Make sure all references to previous sft_data are dropped to avoid
113          * use-after-free races.
114          */
115         synchronize_rcu();
116
117         update_scale_freq_invariant(false);
118 }
119 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
120
121 void topology_scale_freq_tick(void)
122 {
123         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
124
125         if (sfd)
126                 sfd->set_freq_scale();
127 }
128
129 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
130 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
131
132 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
133                              unsigned long max_freq)
134 {
135         unsigned long scale;
136         int i;
137
138         if (WARN_ON_ONCE(!cur_freq || !max_freq))
139                 return;
140
141         /*
142          * If the use of counters for FIE is enabled, just return as we don't
143          * want to update the scale factor with information from CPUFREQ.
144          * Instead the scale factor will be updated from arch_scale_freq_tick.
145          */
146         if (supports_scale_freq_counters(cpus))
147                 return;
148
149         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
150
151         for_each_cpu(i, cpus)
152                 per_cpu(arch_freq_scale, i) = scale;
153 }
154
155 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
156 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
157
158 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
159 {
160         per_cpu(cpu_scale, cpu) = capacity;
161 }
162
163 DEFINE_PER_CPU(unsigned long, hw_pressure);
164
165 /**
166  * topology_update_hw_pressure() - Update HW pressure for CPUs
167  * @cpus        : The related CPUs for which capacity has been reduced
168  * @capped_freq : The maximum allowed frequency that CPUs can run at
169  *
170  * Update the value of HW pressure for all @cpus in the mask. The
171  * cpumask should include all (online+offline) affected CPUs, to avoid
172  * operating on stale data when hot-plug is used for some CPUs. The
173  * @capped_freq reflects the currently allowed max CPUs frequency due to
174  * HW capping. It might be also a boost frequency value, which is bigger
175  * than the internal 'capacity_freq_ref' max frequency. In such case the
176  * pressure value should simply be removed, since this is an indication that
177  * there is no HW throttling. The @capped_freq must be provided in kHz.
178  */
179 void topology_update_hw_pressure(const struct cpumask *cpus,
180                                       unsigned long capped_freq)
181 {
182         unsigned long max_capacity, capacity, pressure;
183         u32 max_freq;
184         int cpu;
185
186         cpu = cpumask_first(cpus);
187         max_capacity = arch_scale_cpu_capacity(cpu);
188         max_freq = arch_scale_freq_ref(cpu);
189
190         /*
191          * Handle properly the boost frequencies, which should simply clean
192          * the HW pressure value.
193          */
194         if (max_freq <= capped_freq)
195                 capacity = max_capacity;
196         else
197                 capacity = mult_frac(max_capacity, capped_freq, max_freq);
198
199         pressure = max_capacity - capacity;
200
201         trace_hw_pressure_update(cpu, pressure);
202
203         for_each_cpu(cpu, cpus)
204                 WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
205 }
206 EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
207
208 static ssize_t cpu_capacity_show(struct device *dev,
209                                  struct device_attribute *attr,
210                                  char *buf)
211 {
212         struct cpu *cpu = container_of(dev, struct cpu, dev);
213
214         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
215 }
216
217 static void update_topology_flags_workfn(struct work_struct *work);
218 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
219
220 static DEVICE_ATTR_RO(cpu_capacity);
221
222 static int cpu_capacity_sysctl_add(unsigned int cpu)
223 {
224         struct device *cpu_dev = get_cpu_device(cpu);
225
226         if (!cpu_dev)
227                 return -ENOENT;
228
229         device_create_file(cpu_dev, &dev_attr_cpu_capacity);
230
231         return 0;
232 }
233
234 static int cpu_capacity_sysctl_remove(unsigned int cpu)
235 {
236         struct device *cpu_dev = get_cpu_device(cpu);
237
238         if (!cpu_dev)
239                 return -ENOENT;
240
241         device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
242
243         return 0;
244 }
245
246 static int register_cpu_capacity_sysctl(void)
247 {
248         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
249                           cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
250
251         return 0;
252 }
253 subsys_initcall(register_cpu_capacity_sysctl);
254
255 static int update_topology;
256
257 int topology_update_cpu_topology(void)
258 {
259         return update_topology;
260 }
261
262 /*
263  * Updating the sched_domains can't be done directly from cpufreq callbacks
264  * due to locking, so queue the work for later.
265  */
266 static void update_topology_flags_workfn(struct work_struct *work)
267 {
268         update_topology = 1;
269         rebuild_sched_domains();
270         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
271         update_topology = 0;
272 }
273
274 static u32 *raw_capacity;
275
276 static int free_raw_capacity(void)
277 {
278         kfree(raw_capacity);
279         raw_capacity = NULL;
280
281         return 0;
282 }
283
284 void topology_normalize_cpu_scale(void)
285 {
286         u64 capacity;
287         u64 capacity_scale;
288         int cpu;
289
290         if (!raw_capacity)
291                 return;
292
293         capacity_scale = 1;
294         for_each_possible_cpu(cpu) {
295                 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
296                 capacity_scale = max(capacity, capacity_scale);
297         }
298
299         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
300         for_each_possible_cpu(cpu) {
301                 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
302                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
303                         capacity_scale);
304                 topology_set_cpu_scale(cpu, capacity);
305                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
306                         cpu, topology_get_cpu_scale(cpu));
307         }
308 }
309
310 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
311 {
312         struct clk *cpu_clk;
313         static bool cap_parsing_failed;
314         int ret;
315         u32 cpu_capacity;
316
317         if (cap_parsing_failed)
318                 return false;
319
320         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
321                                    &cpu_capacity);
322         if (!ret) {
323                 if (!raw_capacity) {
324                         raw_capacity = kcalloc(num_possible_cpus(),
325                                                sizeof(*raw_capacity),
326                                                GFP_KERNEL);
327                         if (!raw_capacity) {
328                                 cap_parsing_failed = true;
329                                 return false;
330                         }
331                 }
332                 raw_capacity[cpu] = cpu_capacity;
333                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
334                         cpu_node, raw_capacity[cpu]);
335
336                 /*
337                  * Update capacity_freq_ref for calculating early boot CPU capacities.
338                  * For non-clk CPU DVFS mechanism, there's no way to get the
339                  * frequency value now, assuming they are running at the same
340                  * frequency (by keeping the initial capacity_freq_ref value).
341                  */
342                 cpu_clk = of_clk_get(cpu_node, 0);
343                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
344                         per_cpu(capacity_freq_ref, cpu) =
345                                 clk_get_rate(cpu_clk) / HZ_PER_KHZ;
346                         clk_put(cpu_clk);
347                 }
348         } else {
349                 if (raw_capacity) {
350                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
351                                 cpu_node);
352                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
353                 }
354                 cap_parsing_failed = true;
355                 free_raw_capacity();
356         }
357
358         return !ret;
359 }
360
361 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
362 {
363 }
364
365 #ifdef CONFIG_ACPI_CPPC_LIB
366 #include <acpi/cppc_acpi.h>
367
368 void topology_init_cpu_capacity_cppc(void)
369 {
370         u64 capacity, capacity_scale = 0;
371         struct cppc_perf_caps perf_caps;
372         int cpu;
373
374         if (likely(!acpi_cpc_valid()))
375                 return;
376
377         raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
378                                GFP_KERNEL);
379         if (!raw_capacity)
380                 return;
381
382         for_each_possible_cpu(cpu) {
383                 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
384                     (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
385                     (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
386                         raw_capacity[cpu] = perf_caps.highest_perf;
387                         capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
388
389                         per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
390
391                         pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
392                                  cpu, raw_capacity[cpu]);
393                         continue;
394                 }
395
396                 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
397                 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
398                 goto exit;
399         }
400
401         for_each_possible_cpu(cpu) {
402                 freq_inv_set_max_ratio(cpu,
403                                        per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
404
405                 capacity = raw_capacity[cpu];
406                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
407                                      capacity_scale);
408                 topology_set_cpu_scale(cpu, capacity);
409                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
410                         cpu, topology_get_cpu_scale(cpu));
411         }
412
413         schedule_work(&update_topology_flags_work);
414         pr_debug("cpu_capacity: cpu_capacity initialization done\n");
415
416 exit:
417         free_raw_capacity();
418 }
419 #endif
420
421 #ifdef CONFIG_CPU_FREQ
422 static cpumask_var_t cpus_to_visit;
423 static void parsing_done_workfn(struct work_struct *work);
424 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
425
426 static int
427 init_cpu_capacity_callback(struct notifier_block *nb,
428                            unsigned long val,
429                            void *data)
430 {
431         struct cpufreq_policy *policy = data;
432         int cpu;
433
434         if (val != CPUFREQ_CREATE_POLICY)
435                 return 0;
436
437         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
438                  cpumask_pr_args(policy->related_cpus),
439                  cpumask_pr_args(cpus_to_visit));
440
441         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
442
443         for_each_cpu(cpu, policy->related_cpus) {
444                 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
445                 freq_inv_set_max_ratio(cpu,
446                                        per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
447         }
448
449         if (cpumask_empty(cpus_to_visit)) {
450                 if (raw_capacity) {
451                         topology_normalize_cpu_scale();
452                         schedule_work(&update_topology_flags_work);
453                         free_raw_capacity();
454                 }
455                 pr_debug("cpu_capacity: parsing done\n");
456                 schedule_work(&parsing_done_work);
457         }
458
459         return 0;
460 }
461
462 static struct notifier_block init_cpu_capacity_notifier = {
463         .notifier_call = init_cpu_capacity_callback,
464 };
465
466 static int __init register_cpufreq_notifier(void)
467 {
468         int ret;
469
470         /*
471          * On ACPI-based systems skip registering cpufreq notifier as cpufreq
472          * information is not needed for cpu capacity initialization.
473          */
474         if (!acpi_disabled)
475                 return -EINVAL;
476
477         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
478                 return -ENOMEM;
479
480         cpumask_copy(cpus_to_visit, cpu_possible_mask);
481
482         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
483                                         CPUFREQ_POLICY_NOTIFIER);
484
485         if (ret)
486                 free_cpumask_var(cpus_to_visit);
487
488         return ret;
489 }
490 core_initcall(register_cpufreq_notifier);
491
492 static void parsing_done_workfn(struct work_struct *work)
493 {
494         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
495                                          CPUFREQ_POLICY_NOTIFIER);
496         free_cpumask_var(cpus_to_visit);
497 }
498
499 #else
500 core_initcall(free_raw_capacity);
501 #endif
502
503 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
504 /*
505  * This function returns the logic cpu number of the node.
506  * There are basically three kinds of return values:
507  * (1) logic cpu number which is > 0.
508  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
509  * there is no possible logical CPU in the kernel to match. This happens
510  * when CONFIG_NR_CPUS is configure to be smaller than the number of
511  * CPU nodes in DT. We need to just ignore this case.
512  * (3) -1 if the node does not exist in the device tree
513  */
514 static int __init get_cpu_for_node(struct device_node *node)
515 {
516         struct device_node *cpu_node;
517         int cpu;
518
519         cpu_node = of_parse_phandle(node, "cpu", 0);
520         if (!cpu_node)
521                 return -1;
522
523         cpu = of_cpu_node_to_id(cpu_node);
524         if (cpu >= 0)
525                 topology_parse_cpu_capacity(cpu_node, cpu);
526         else
527                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
528                         cpu_node, cpumask_pr_args(cpu_possible_mask));
529
530         of_node_put(cpu_node);
531         return cpu;
532 }
533
534 static int __init parse_core(struct device_node *core, int package_id,
535                              int cluster_id, int core_id)
536 {
537         char name[20];
538         bool leaf = true;
539         int i = 0;
540         int cpu;
541         struct device_node *t;
542
543         do {
544                 snprintf(name, sizeof(name), "thread%d", i);
545                 t = of_get_child_by_name(core, name);
546                 if (t) {
547                         leaf = false;
548                         cpu = get_cpu_for_node(t);
549                         if (cpu >= 0) {
550                                 cpu_topology[cpu].package_id = package_id;
551                                 cpu_topology[cpu].cluster_id = cluster_id;
552                                 cpu_topology[cpu].core_id = core_id;
553                                 cpu_topology[cpu].thread_id = i;
554                         } else if (cpu != -ENODEV) {
555                                 pr_err("%pOF: Can't get CPU for thread\n", t);
556                                 of_node_put(t);
557                                 return -EINVAL;
558                         }
559                         of_node_put(t);
560                 }
561                 i++;
562         } while (t);
563
564         cpu = get_cpu_for_node(core);
565         if (cpu >= 0) {
566                 if (!leaf) {
567                         pr_err("%pOF: Core has both threads and CPU\n",
568                                core);
569                         return -EINVAL;
570                 }
571
572                 cpu_topology[cpu].package_id = package_id;
573                 cpu_topology[cpu].cluster_id = cluster_id;
574                 cpu_topology[cpu].core_id = core_id;
575         } else if (leaf && cpu != -ENODEV) {
576                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
577                 return -EINVAL;
578         }
579
580         return 0;
581 }
582
583 static int __init parse_cluster(struct device_node *cluster, int package_id,
584                                 int cluster_id, int depth)
585 {
586         char name[20];
587         bool leaf = true;
588         bool has_cores = false;
589         struct device_node *c;
590         int core_id = 0;
591         int i, ret;
592
593         /*
594          * First check for child clusters; we currently ignore any
595          * information about the nesting of clusters and present the
596          * scheduler with a flat list of them.
597          */
598         i = 0;
599         do {
600                 snprintf(name, sizeof(name), "cluster%d", i);
601                 c = of_get_child_by_name(cluster, name);
602                 if (c) {
603                         leaf = false;
604                         ret = parse_cluster(c, package_id, i, depth + 1);
605                         if (depth > 0)
606                                 pr_warn("Topology for clusters of clusters not yet supported\n");
607                         of_node_put(c);
608                         if (ret != 0)
609                                 return ret;
610                 }
611                 i++;
612         } while (c);
613
614         /* Now check for cores */
615         i = 0;
616         do {
617                 snprintf(name, sizeof(name), "core%d", i);
618                 c = of_get_child_by_name(cluster, name);
619                 if (c) {
620                         has_cores = true;
621
622                         if (depth == 0) {
623                                 pr_err("%pOF: cpu-map children should be clusters\n",
624                                        c);
625                                 of_node_put(c);
626                                 return -EINVAL;
627                         }
628
629                         if (leaf) {
630                                 ret = parse_core(c, package_id, cluster_id,
631                                                  core_id++);
632                         } else {
633                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
634                                        cluster, name);
635                                 ret = -EINVAL;
636                         }
637
638                         of_node_put(c);
639                         if (ret != 0)
640                                 return ret;
641                 }
642                 i++;
643         } while (c);
644
645         if (leaf && !has_cores)
646                 pr_warn("%pOF: empty cluster\n", cluster);
647
648         return 0;
649 }
650
651 static int __init parse_socket(struct device_node *socket)
652 {
653         char name[20];
654         struct device_node *c;
655         bool has_socket = false;
656         int package_id = 0, ret;
657
658         do {
659                 snprintf(name, sizeof(name), "socket%d", package_id);
660                 c = of_get_child_by_name(socket, name);
661                 if (c) {
662                         has_socket = true;
663                         ret = parse_cluster(c, package_id, -1, 0);
664                         of_node_put(c);
665                         if (ret != 0)
666                                 return ret;
667                 }
668                 package_id++;
669         } while (c);
670
671         if (!has_socket)
672                 ret = parse_cluster(socket, 0, -1, 0);
673
674         return ret;
675 }
676
677 static int __init parse_dt_topology(void)
678 {
679         struct device_node *cn, *map;
680         int ret = 0;
681         int cpu;
682
683         cn = of_find_node_by_path("/cpus");
684         if (!cn) {
685                 pr_err("No CPU information found in DT\n");
686                 return 0;
687         }
688
689         /*
690          * When topology is provided cpu-map is essentially a root
691          * cluster with restricted subnodes.
692          */
693         map = of_get_child_by_name(cn, "cpu-map");
694         if (!map)
695                 goto out;
696
697         ret = parse_socket(map);
698         if (ret != 0)
699                 goto out_map;
700
701         topology_normalize_cpu_scale();
702
703         /*
704          * Check that all cores are in the topology; the SMP code will
705          * only mark cores described in the DT as possible.
706          */
707         for_each_possible_cpu(cpu)
708                 if (cpu_topology[cpu].package_id < 0) {
709                         ret = -EINVAL;
710                         break;
711                 }
712
713 out_map:
714         of_node_put(map);
715 out:
716         of_node_put(cn);
717         return ret;
718 }
719 #endif
720
721 /*
722  * cpu topology table
723  */
724 struct cpu_topology cpu_topology[NR_CPUS];
725 EXPORT_SYMBOL_GPL(cpu_topology);
726
727 const struct cpumask *cpu_coregroup_mask(int cpu)
728 {
729         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
730
731         /* Find the smaller of NUMA, core or LLC siblings */
732         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
733                 /* not numa in package, lets use the package siblings */
734                 core_mask = &cpu_topology[cpu].core_sibling;
735         }
736
737         if (last_level_cache_is_valid(cpu)) {
738                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
739                         core_mask = &cpu_topology[cpu].llc_sibling;
740         }
741
742         /*
743          * For systems with no shared cpu-side LLC but with clusters defined,
744          * extend core_mask to cluster_siblings. The sched domain builder will
745          * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
746          */
747         if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
748             cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
749                 core_mask = &cpu_topology[cpu].cluster_sibling;
750
751         return core_mask;
752 }
753
754 const struct cpumask *cpu_clustergroup_mask(int cpu)
755 {
756         /*
757          * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
758          * cpu_coregroup_mask().
759          */
760         if (cpumask_subset(cpu_coregroup_mask(cpu),
761                            &cpu_topology[cpu].cluster_sibling))
762                 return topology_sibling_cpumask(cpu);
763
764         return &cpu_topology[cpu].cluster_sibling;
765 }
766
767 void update_siblings_masks(unsigned int cpuid)
768 {
769         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
770         int cpu, ret;
771
772         ret = detect_cache_attributes(cpuid);
773         if (ret && ret != -ENOENT)
774                 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
775
776         /* update core and thread sibling masks */
777         for_each_online_cpu(cpu) {
778                 cpu_topo = &cpu_topology[cpu];
779
780                 if (last_level_cache_is_shared(cpu, cpuid)) {
781                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
782                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
783                 }
784
785                 if (cpuid_topo->package_id != cpu_topo->package_id)
786                         continue;
787
788                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
789                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
790
791                 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
792                         continue;
793
794                 if (cpuid_topo->cluster_id >= 0) {
795                         cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
796                         cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
797                 }
798
799                 if (cpuid_topo->core_id != cpu_topo->core_id)
800                         continue;
801
802                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
803                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
804         }
805 }
806
807 static void clear_cpu_topology(int cpu)
808 {
809         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
810
811         cpumask_clear(&cpu_topo->llc_sibling);
812         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
813
814         cpumask_clear(&cpu_topo->cluster_sibling);
815         cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
816
817         cpumask_clear(&cpu_topo->core_sibling);
818         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
819         cpumask_clear(&cpu_topo->thread_sibling);
820         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
821 }
822
823 void __init reset_cpu_topology(void)
824 {
825         unsigned int cpu;
826
827         for_each_possible_cpu(cpu) {
828                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
829
830                 cpu_topo->thread_id = -1;
831                 cpu_topo->core_id = -1;
832                 cpu_topo->cluster_id = -1;
833                 cpu_topo->package_id = -1;
834
835                 clear_cpu_topology(cpu);
836         }
837 }
838
839 void remove_cpu_topology(unsigned int cpu)
840 {
841         int sibling;
842
843         for_each_cpu(sibling, topology_core_cpumask(cpu))
844                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
845         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
846                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
847         for_each_cpu(sibling, topology_cluster_cpumask(cpu))
848                 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
849         for_each_cpu(sibling, topology_llc_cpumask(cpu))
850                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
851
852         clear_cpu_topology(cpu);
853 }
854
855 __weak int __init parse_acpi_topology(void)
856 {
857         return 0;
858 }
859
860 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
861 void __init init_cpu_topology(void)
862 {
863         int cpu, ret;
864
865         reset_cpu_topology();
866         ret = parse_acpi_topology();
867         if (!ret)
868                 ret = of_have_populated_dt() && parse_dt_topology();
869
870         if (ret) {
871                 /*
872                  * Discard anything that was parsed if we hit an error so we
873                  * don't use partial information. But do not return yet to give
874                  * arch-specific early cache level detection a chance to run.
875                  */
876                 reset_cpu_topology();
877         }
878
879         for_each_possible_cpu(cpu) {
880                 ret = fetch_cache_info(cpu);
881                 if (!ret)
882                         continue;
883                 else if (ret != -ENOENT)
884                         pr_err("Early cacheinfo failed, ret = %d\n", ret);
885                 return;
886         }
887 }
888
889 void store_cpu_topology(unsigned int cpuid)
890 {
891         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
892
893         if (cpuid_topo->package_id != -1)
894                 goto topology_populated;
895
896         cpuid_topo->thread_id = -1;
897         cpuid_topo->core_id = cpuid;
898         cpuid_topo->package_id = cpu_to_node(cpuid);
899
900         pr_debug("CPU%u: package %d core %d thread %d\n",
901                  cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
902                  cpuid_topo->thread_id);
903
904 topology_populated:
905         update_siblings_masks(cpuid);
906 }
907 #endif