Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / atm / fore200e.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   A FORE Systems 200E-series driver for ATM on Linux.
4   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8   This driver simultaneously supports PCA-200E and SBA-200E adapters
9   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/string.h>
30 #include <asm/page.h>
31 #include <asm/irq.h>
32 #include <asm/dma.h>
33 #include <asm/byteorder.h>
34 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36
37 #ifdef CONFIG_SBUS
38 #include <linux/of.h>
39 #include <linux/platform_device.h>
40 #include <asm/idprom.h>
41 #include <asm/openprom.h>
42 #include <asm/oplib.h>
43 #endif
44
45 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
46 #define FORE200E_USE_TASKLET
47 #endif
48
49 #if 0 /* enable the debugging code of the buffer supply queues */
50 #define FORE200E_BSQ_DEBUG
51 #endif
52
53 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
54 #define FORE200E_52BYTE_AAL0_SDU
55 #endif
56
57 #include "fore200e.h"
58 #include "suni.h"
59
60 #define FORE200E_VERSION "0.3e"
61
62 #define FORE200E         "fore200e: "
63
64 #if 0 /* override .config */
65 #define CONFIG_ATM_FORE200E_DEBUG 1
66 #endif
67 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
68 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
69                                                   printk(FORE200E format, ##args); } while (0)
70 #else
71 #define DPRINTK(level, format, args...)  do {} while (0)
72 #endif
73
74
75 #define FORE200E_ALIGN(addr, alignment) \
76         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
77
78 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
79
80 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
81
82 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
83
84 #if 1
85 #define ASSERT(expr)     if (!(expr)) { \
86                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
87                                     __func__, __LINE__, #expr); \
88                              panic(FORE200E "%s", __func__); \
89                          }
90 #else
91 #define ASSERT(expr)     do {} while (0)
92 #endif
93
94
95 static const struct atmdev_ops   fore200e_ops;
96
97 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
98 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
99
100 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
101     { BUFFER_S1_NBR, BUFFER_L1_NBR },
102     { BUFFER_S2_NBR, BUFFER_L2_NBR }
103 };
104
105 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
106     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
107     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
108 };
109
110
111 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
112 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
113 #endif
114
115
116 #if 0 /* currently unused */
117 static int 
118 fore200e_fore2atm_aal(enum fore200e_aal aal)
119 {
120     switch(aal) {
121     case FORE200E_AAL0:  return ATM_AAL0;
122     case FORE200E_AAL34: return ATM_AAL34;
123     case FORE200E_AAL5:  return ATM_AAL5;
124     }
125
126     return -EINVAL;
127 }
128 #endif
129
130
131 static enum fore200e_aal
132 fore200e_atm2fore_aal(int aal)
133 {
134     switch(aal) {
135     case ATM_AAL0:  return FORE200E_AAL0;
136     case ATM_AAL34: return FORE200E_AAL34;
137     case ATM_AAL1:
138     case ATM_AAL2:
139     case ATM_AAL5:  return FORE200E_AAL5;
140     }
141
142     return -EINVAL;
143 }
144
145
146 static char*
147 fore200e_irq_itoa(int irq)
148 {
149     static char str[8];
150     sprintf(str, "%d", irq);
151     return str;
152 }
153
154
155 /* allocate and align a chunk of memory intended to hold the data behing exchanged
156    between the driver and the adapter (using streaming DVMA) */
157
158 static int
159 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
160 {
161     unsigned long offset = 0;
162
163     if (alignment <= sizeof(int))
164         alignment = 0;
165
166     chunk->alloc_size = size + alignment;
167     chunk->direction  = direction;
168
169     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
170     if (chunk->alloc_addr == NULL)
171         return -ENOMEM;
172
173     if (alignment > 0)
174         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
175     
176     chunk->align_addr = chunk->alloc_addr + offset;
177
178     chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
179                                      size, direction);
180     if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
181         kfree(chunk->alloc_addr);
182         return -ENOMEM;
183     }
184     return 0;
185 }
186
187
188 /* free a chunk of memory */
189
190 static void
191 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
192 {
193     dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
194                      chunk->direction);
195     kfree(chunk->alloc_addr);
196 }
197
198 /*
199  * Allocate a DMA consistent chunk of memory intended to act as a communication
200  * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
201  * and the adapter.
202  */
203 static int
204 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
205                 int size, int nbr, int alignment)
206 {
207         /* returned chunks are page-aligned */
208         chunk->alloc_size = size * nbr;
209         chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
210                                                &chunk->dma_addr, GFP_KERNEL);
211         if (!chunk->alloc_addr)
212                 return -ENOMEM;
213         chunk->align_addr = chunk->alloc_addr;
214         return 0;
215 }
216
217 /*
218  * Free a DMA consistent chunk of memory.
219  */
220 static void
221 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
222 {
223         dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
224                           chunk->dma_addr);
225 }
226
227 static void
228 fore200e_spin(int msecs)
229 {
230     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
231     while (time_before(jiffies, timeout));
232 }
233
234
235 static int
236 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
237 {
238     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
239     int           ok;
240
241     mb();
242     do {
243         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
244             break;
245
246     } while (time_before(jiffies, timeout));
247
248 #if 1
249     if (!ok) {
250         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
251                *addr, val);
252     }
253 #endif
254
255     return ok;
256 }
257
258
259 static int
260 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
261 {
262     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
263     int           ok;
264
265     do {
266         if ((ok = (fore200e->bus->read(addr) == val)))
267             break;
268
269     } while (time_before(jiffies, timeout));
270
271 #if 1
272     if (!ok) {
273         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
274                fore200e->bus->read(addr), val);
275     }
276 #endif
277
278     return ok;
279 }
280
281
282 static void
283 fore200e_free_rx_buf(struct fore200e* fore200e)
284 {
285     int scheme, magn, nbr;
286     struct buffer* buffer;
287
288     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
289         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
290
291             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
292
293                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
294
295                     struct chunk* data = &buffer[ nbr ].data;
296
297                     if (data->alloc_addr != NULL)
298                         fore200e_chunk_free(fore200e, data);
299                 }
300             }
301         }
302     }
303 }
304
305
306 static void
307 fore200e_uninit_bs_queue(struct fore200e* fore200e)
308 {
309     int scheme, magn;
310     
311     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
312         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
313
314             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
315             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
316             
317             if (status->alloc_addr)
318                 fore200e_dma_chunk_free(fore200e, status);
319             
320             if (rbd_block->alloc_addr)
321                 fore200e_dma_chunk_free(fore200e, rbd_block);
322         }
323     }
324 }
325
326
327 static int
328 fore200e_reset(struct fore200e* fore200e, int diag)
329 {
330     int ok;
331
332     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
333     
334     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
335
336     fore200e->bus->reset(fore200e);
337
338     if (diag) {
339         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
340         if (ok == 0) {
341             
342             printk(FORE200E "device %s self-test failed\n", fore200e->name);
343             return -ENODEV;
344         }
345
346         printk(FORE200E "device %s self-test passed\n", fore200e->name);
347         
348         fore200e->state = FORE200E_STATE_RESET;
349     }
350
351     return 0;
352 }
353
354
355 static void
356 fore200e_shutdown(struct fore200e* fore200e)
357 {
358     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
359            fore200e->name, fore200e->phys_base, 
360            fore200e_irq_itoa(fore200e->irq));
361     
362     if (fore200e->state > FORE200E_STATE_RESET) {
363         /* first, reset the board to prevent further interrupts or data transfers */
364         fore200e_reset(fore200e, 0);
365     }
366     
367     /* then, release all allocated resources */
368     switch(fore200e->state) {
369
370     case FORE200E_STATE_COMPLETE:
371         kfree(fore200e->stats);
372
373         fallthrough;
374     case FORE200E_STATE_IRQ:
375         free_irq(fore200e->irq, fore200e->atm_dev);
376
377         fallthrough;
378     case FORE200E_STATE_ALLOC_BUF:
379         fore200e_free_rx_buf(fore200e);
380
381         fallthrough;
382     case FORE200E_STATE_INIT_BSQ:
383         fore200e_uninit_bs_queue(fore200e);
384
385         fallthrough;
386     case FORE200E_STATE_INIT_RXQ:
387         fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
388         fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
389
390         fallthrough;
391     case FORE200E_STATE_INIT_TXQ:
392         fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
393         fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
394
395         fallthrough;
396     case FORE200E_STATE_INIT_CMDQ:
397         fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
398
399         fallthrough;
400     case FORE200E_STATE_INITIALIZE:
401         /* nothing to do for that state */
402
403     case FORE200E_STATE_START_FW:
404         /* nothing to do for that state */
405
406     case FORE200E_STATE_RESET:
407         /* nothing to do for that state */
408
409     case FORE200E_STATE_MAP:
410         fore200e->bus->unmap(fore200e);
411
412         fallthrough;
413     case FORE200E_STATE_CONFIGURE:
414         /* nothing to do for that state */
415
416     case FORE200E_STATE_REGISTER:
417         /* XXX shouldn't we *start* by deregistering the device? */
418         atm_dev_deregister(fore200e->atm_dev);
419
420         fallthrough;
421     case FORE200E_STATE_BLANK:
422         /* nothing to do for that state */
423         break;
424     }
425 }
426
427
428 #ifdef CONFIG_PCI
429
430 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
431 {
432     /* on big-endian hosts, the board is configured to convert
433        the endianess of slave RAM accesses  */
434     return le32_to_cpu(readl(addr));
435 }
436
437
438 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
439 {
440     /* on big-endian hosts, the board is configured to convert
441        the endianess of slave RAM accesses  */
442     writel(cpu_to_le32(val), addr);
443 }
444
445 static int
446 fore200e_pca_irq_check(struct fore200e* fore200e)
447 {
448     /* this is a 1 bit register */
449     int irq_posted = readl(fore200e->regs.pca.psr);
450
451 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
452     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
453         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
454     }
455 #endif
456
457     return irq_posted;
458 }
459
460
461 static void
462 fore200e_pca_irq_ack(struct fore200e* fore200e)
463 {
464     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
465 }
466
467
468 static void
469 fore200e_pca_reset(struct fore200e* fore200e)
470 {
471     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
472     fore200e_spin(10);
473     writel(0, fore200e->regs.pca.hcr);
474 }
475
476
477 static int fore200e_pca_map(struct fore200e* fore200e)
478 {
479     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
480
481     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
482     
483     if (fore200e->virt_base == NULL) {
484         printk(FORE200E "can't map device %s\n", fore200e->name);
485         return -EFAULT;
486     }
487
488     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
489
490     /* gain access to the PCA specific registers  */
491     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
492     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
493     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
494
495     fore200e->state = FORE200E_STATE_MAP;
496     return 0;
497 }
498
499
500 static void
501 fore200e_pca_unmap(struct fore200e* fore200e)
502 {
503     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
504
505     if (fore200e->virt_base != NULL)
506         iounmap(fore200e->virt_base);
507 }
508
509
510 static int fore200e_pca_configure(struct fore200e *fore200e)
511 {
512     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
513     u8              master_ctrl, latency;
514
515     DPRINTK(2, "device %s being configured\n", fore200e->name);
516
517     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
518         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
519         return -EIO;
520     }
521
522     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
523
524     master_ctrl = master_ctrl
525 #if defined(__BIG_ENDIAN)
526         /* request the PCA board to convert the endianess of slave RAM accesses */
527         | PCA200E_CTRL_CONVERT_ENDIAN
528 #endif
529 #if 0
530         | PCA200E_CTRL_DIS_CACHE_RD
531         | PCA200E_CTRL_DIS_WRT_INVAL
532         | PCA200E_CTRL_ENA_CONT_REQ_MODE
533         | PCA200E_CTRL_2_CACHE_WRT_INVAL
534 #endif
535         | PCA200E_CTRL_LARGE_PCI_BURSTS;
536     
537     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
538
539     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
540        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
541        this may impact the performances of other PCI devices on the same bus, though */
542     latency = 192;
543     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
544
545     fore200e->state = FORE200E_STATE_CONFIGURE;
546     return 0;
547 }
548
549
550 static int __init
551 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
552 {
553     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
554     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
555     struct prom_opcode      opcode;
556     int                     ok;
557     u32                     prom_dma;
558
559     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
560
561     opcode.opcode = OPCODE_GET_PROM;
562     opcode.pad    = 0;
563
564     prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
565                               DMA_FROM_DEVICE);
566     if (dma_mapping_error(fore200e->dev, prom_dma))
567         return -ENOMEM;
568
569     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
570     
571     *entry->status = STATUS_PENDING;
572
573     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
574
575     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
576
577     *entry->status = STATUS_FREE;
578
579     dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
580
581     if (ok == 0) {
582         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
583         return -EIO;
584     }
585
586 #if defined(__BIG_ENDIAN)
587     
588 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
589
590     /* MAC address is stored as little-endian */
591     swap_here(&prom->mac_addr[0]);
592     swap_here(&prom->mac_addr[4]);
593 #endif
594     
595     return 0;
596 }
597
598
599 static int
600 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
601 {
602     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
603
604     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
605                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
606 }
607
608 static const struct fore200e_bus fore200e_pci_ops = {
609         .model_name             = "PCA-200E",
610         .proc_name              = "pca200e",
611         .descr_alignment        = 32,
612         .buffer_alignment       = 4,
613         .status_alignment       = 32,
614         .read                   = fore200e_pca_read,
615         .write                  = fore200e_pca_write,
616         .configure              = fore200e_pca_configure,
617         .map                    = fore200e_pca_map,
618         .reset                  = fore200e_pca_reset,
619         .prom_read              = fore200e_pca_prom_read,
620         .unmap                  = fore200e_pca_unmap,
621         .irq_check              = fore200e_pca_irq_check,
622         .irq_ack                = fore200e_pca_irq_ack,
623         .proc_read              = fore200e_pca_proc_read,
624 };
625 #endif /* CONFIG_PCI */
626
627 #ifdef CONFIG_SBUS
628
629 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
630 {
631     return sbus_readl(addr);
632 }
633
634 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
635 {
636     sbus_writel(val, addr);
637 }
638
639 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
640 {
641         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
642         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
643 }
644
645 static int fore200e_sba_irq_check(struct fore200e *fore200e)
646 {
647         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
648 }
649
650 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
651 {
652         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
653         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
654 }
655
656 static void fore200e_sba_reset(struct fore200e *fore200e)
657 {
658         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
659         fore200e_spin(10);
660         fore200e->bus->write(0, fore200e->regs.sba.hcr);
661 }
662
663 static int __init fore200e_sba_map(struct fore200e *fore200e)
664 {
665         struct platform_device *op = to_platform_device(fore200e->dev);
666         unsigned int bursts;
667
668         /* gain access to the SBA specific registers  */
669         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
670         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
671         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
672         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
673
674         if (!fore200e->virt_base) {
675                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
676                 return -EFAULT;
677         }
678
679         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
680     
681         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
682
683         /* get the supported DVMA burst sizes */
684         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
685
686         if (sbus_can_dma_64bit())
687                 sbus_set_sbus64(&op->dev, bursts);
688
689         fore200e->state = FORE200E_STATE_MAP;
690         return 0;
691 }
692
693 static void fore200e_sba_unmap(struct fore200e *fore200e)
694 {
695         struct platform_device *op = to_platform_device(fore200e->dev);
696
697         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
698         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
699         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
700         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
701 }
702
703 static int __init fore200e_sba_configure(struct fore200e *fore200e)
704 {
705         fore200e->state = FORE200E_STATE_CONFIGURE;
706         return 0;
707 }
708
709 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
710 {
711         struct platform_device *op = to_platform_device(fore200e->dev);
712         const u8 *prop;
713         int len;
714
715         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
716         if (!prop)
717                 return -ENODEV;
718         memcpy(&prom->mac_addr[4], prop, 4);
719
720         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
721         if (!prop)
722                 return -ENODEV;
723         memcpy(&prom->mac_addr[2], prop, 4);
724
725         prom->serial_number = of_getintprop_default(op->dev.of_node,
726                                                     "serialnumber", 0);
727         prom->hw_revision = of_getintprop_default(op->dev.of_node,
728                                                   "promversion", 0);
729     
730         return 0;
731 }
732
733 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
734 {
735         struct platform_device *op = to_platform_device(fore200e->dev);
736         const struct linux_prom_registers *regs;
737
738         regs = of_get_property(op->dev.of_node, "reg", NULL);
739
740         return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
741                        (regs ? regs->which_io : 0), op->dev.of_node);
742 }
743
744 static const struct fore200e_bus fore200e_sbus_ops = {
745         .model_name             = "SBA-200E",
746         .proc_name              = "sba200e",
747         .descr_alignment        = 32,
748         .buffer_alignment       = 64,
749         .status_alignment       = 32,
750         .read                   = fore200e_sba_read,
751         .write                  = fore200e_sba_write,
752         .configure              = fore200e_sba_configure,
753         .map                    = fore200e_sba_map,
754         .reset                  = fore200e_sba_reset,
755         .prom_read              = fore200e_sba_prom_read,
756         .unmap                  = fore200e_sba_unmap,
757         .irq_enable             = fore200e_sba_irq_enable,
758         .irq_check              = fore200e_sba_irq_check,
759         .irq_ack                = fore200e_sba_irq_ack,
760         .proc_read              = fore200e_sba_proc_read,
761 };
762 #endif /* CONFIG_SBUS */
763
764 static void
765 fore200e_tx_irq(struct fore200e* fore200e)
766 {
767     struct host_txq*        txq = &fore200e->host_txq;
768     struct host_txq_entry*  entry;
769     struct atm_vcc*         vcc;
770     struct fore200e_vc_map* vc_map;
771
772     if (fore200e->host_txq.txing == 0)
773         return;
774
775     for (;;) {
776         
777         entry = &txq->host_entry[ txq->tail ];
778
779         if ((*entry->status & STATUS_COMPLETE) == 0) {
780             break;
781         }
782
783         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
784                 entry, txq->tail, entry->vc_map, entry->skb);
785
786         /* free copy of misaligned data */
787         kfree(entry->data);
788         
789         /* remove DMA mapping */
790         dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
791                                  DMA_TO_DEVICE);
792
793         vc_map = entry->vc_map;
794
795         /* vcc closed since the time the entry was submitted for tx? */
796         if ((vc_map->vcc == NULL) ||
797             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
798
799             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
800                     fore200e->atm_dev->number);
801
802             dev_kfree_skb_any(entry->skb);
803         }
804         else {
805             ASSERT(vc_map->vcc);
806
807             /* vcc closed then immediately re-opened? */
808             if (vc_map->incarn != entry->incarn) {
809
810                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
811                    if the same vcc is immediately re-opened, those pending PDUs must
812                    not be popped after the completion of their emission, as they refer
813                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
814                    would be decremented by the size of the (unrelated) skb, possibly
815                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
816                    we thus bind the tx entry to the current incarnation of the vcc
817                    when the entry is submitted for tx. When the tx later completes,
818                    if the incarnation number of the tx entry does not match the one
819                    of the vcc, then this implies that the vcc has been closed then re-opened.
820                    we thus just drop the skb here. */
821
822                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
823                         fore200e->atm_dev->number);
824
825                 dev_kfree_skb_any(entry->skb);
826             }
827             else {
828                 vcc = vc_map->vcc;
829                 ASSERT(vcc);
830
831                 /* notify tx completion */
832                 if (vcc->pop) {
833                     vcc->pop(vcc, entry->skb);
834                 }
835                 else {
836                     dev_kfree_skb_any(entry->skb);
837                 }
838
839                 /* check error condition */
840                 if (*entry->status & STATUS_ERROR)
841                     atomic_inc(&vcc->stats->tx_err);
842                 else
843                     atomic_inc(&vcc->stats->tx);
844             }
845         }
846
847         *entry->status = STATUS_FREE;
848
849         fore200e->host_txq.txing--;
850
851         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
852     }
853 }
854
855
856 #ifdef FORE200E_BSQ_DEBUG
857 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
858 {
859     struct buffer* buffer;
860     int count = 0;
861
862     buffer = bsq->freebuf;
863     while (buffer) {
864
865         if (buffer->supplied) {
866             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
867                    where, scheme, magn, buffer->index);
868         }
869
870         if (buffer->magn != magn) {
871             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
872                    where, scheme, magn, buffer->index, buffer->magn);
873         }
874
875         if (buffer->scheme != scheme) {
876             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
877                    where, scheme, magn, buffer->index, buffer->scheme);
878         }
879
880         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
881             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
882                    where, scheme, magn, buffer->index);
883         }
884
885         count++;
886         buffer = buffer->next;
887     }
888
889     if (count != bsq->freebuf_count) {
890         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
891                where, scheme, magn, count, bsq->freebuf_count);
892     }
893     return 0;
894 }
895 #endif
896
897
898 static void
899 fore200e_supply(struct fore200e* fore200e)
900 {
901     int  scheme, magn, i;
902
903     struct host_bsq*       bsq;
904     struct host_bsq_entry* entry;
905     struct buffer*         buffer;
906
907     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
908         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
909
910             bsq = &fore200e->host_bsq[ scheme ][ magn ];
911
912 #ifdef FORE200E_BSQ_DEBUG
913             bsq_audit(1, bsq, scheme, magn);
914 #endif
915             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
916
917                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
918                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
919
920                 entry = &bsq->host_entry[ bsq->head ];
921
922                 for (i = 0; i < RBD_BLK_SIZE; i++) {
923
924                     /* take the first buffer in the free buffer list */
925                     buffer = bsq->freebuf;
926                     if (!buffer) {
927                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
928                                scheme, magn, bsq->freebuf_count);
929                         return;
930                     }
931                     bsq->freebuf = buffer->next;
932                     
933 #ifdef FORE200E_BSQ_DEBUG
934                     if (buffer->supplied)
935                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
936                                scheme, magn, buffer->index);
937                     buffer->supplied = 1;
938 #endif
939                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
940                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
941                 }
942
943                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
944
945                 /* decrease accordingly the number of free rx buffers */
946                 bsq->freebuf_count -= RBD_BLK_SIZE;
947
948                 *entry->status = STATUS_PENDING;
949                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
950             }
951         }
952     }
953 }
954
955
956 static int
957 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
958 {
959     struct sk_buff*      skb;
960     struct buffer*       buffer;
961     struct fore200e_vcc* fore200e_vcc;
962     int                  i, pdu_len = 0;
963 #ifdef FORE200E_52BYTE_AAL0_SDU
964     u32                  cell_header = 0;
965 #endif
966
967     ASSERT(vcc);
968     
969     fore200e_vcc = FORE200E_VCC(vcc);
970     ASSERT(fore200e_vcc);
971
972 #ifdef FORE200E_52BYTE_AAL0_SDU
973     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
974
975         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
976                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
977                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
978                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
979                        rpd->atm_header.clp;
980         pdu_len = 4;
981     }
982 #endif
983     
984     /* compute total PDU length */
985     for (i = 0; i < rpd->nseg; i++)
986         pdu_len += rpd->rsd[ i ].length;
987     
988     skb = alloc_skb(pdu_len, GFP_ATOMIC);
989     if (skb == NULL) {
990         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
991
992         atomic_inc(&vcc->stats->rx_drop);
993         return -ENOMEM;
994     } 
995
996     __net_timestamp(skb);
997     
998 #ifdef FORE200E_52BYTE_AAL0_SDU
999     if (cell_header) {
1000         *((u32*)skb_put(skb, 4)) = cell_header;
1001     }
1002 #endif
1003
1004     /* reassemble segments */
1005     for (i = 0; i < rpd->nseg; i++) {
1006         
1007         /* rebuild rx buffer address from rsd handle */
1008         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009         
1010         /* Make device DMA transfer visible to CPU.  */
1011         dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012                                 rpd->rsd[i].length, DMA_FROM_DEVICE);
1013         
1014         skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015
1016         /* Now let the device get at it again.  */
1017         dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018                                    rpd->rsd[i].length, DMA_FROM_DEVICE);
1019     }
1020
1021     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022     
1023     if (pdu_len < fore200e_vcc->rx_min_pdu)
1024         fore200e_vcc->rx_min_pdu = pdu_len;
1025     if (pdu_len > fore200e_vcc->rx_max_pdu)
1026         fore200e_vcc->rx_max_pdu = pdu_len;
1027     fore200e_vcc->rx_pdu++;
1028
1029     /* push PDU */
1030     if (atm_charge(vcc, skb->truesize) == 0) {
1031
1032         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033                 vcc->itf, vcc->vpi, vcc->vci);
1034
1035         dev_kfree_skb_any(skb);
1036
1037         atomic_inc(&vcc->stats->rx_drop);
1038         return -ENOMEM;
1039     }
1040
1041     vcc->push(vcc, skb);
1042     atomic_inc(&vcc->stats->rx);
1043
1044     return 0;
1045 }
1046
1047
1048 static void
1049 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050 {
1051     struct host_bsq* bsq;
1052     struct buffer*   buffer;
1053     int              i;
1054     
1055     for (i = 0; i < rpd->nseg; i++) {
1056
1057         /* rebuild rx buffer address from rsd handle */
1058         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059
1060         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061
1062 #ifdef FORE200E_BSQ_DEBUG
1063         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064
1065         if (buffer->supplied == 0)
1066             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067                    buffer->scheme, buffer->magn, buffer->index);
1068         buffer->supplied = 0;
1069 #endif
1070
1071         /* re-insert the buffer into the free buffer list */
1072         buffer->next = bsq->freebuf;
1073         bsq->freebuf = buffer;
1074
1075         /* then increment the number of free rx buffers */
1076         bsq->freebuf_count++;
1077     }
1078 }
1079
1080
1081 static void
1082 fore200e_rx_irq(struct fore200e* fore200e)
1083 {
1084     struct host_rxq*        rxq = &fore200e->host_rxq;
1085     struct host_rxq_entry*  entry;
1086     struct atm_vcc*         vcc;
1087     struct fore200e_vc_map* vc_map;
1088
1089     for (;;) {
1090         
1091         entry = &rxq->host_entry[ rxq->head ];
1092
1093         /* no more received PDUs */
1094         if ((*entry->status & STATUS_COMPLETE) == 0)
1095             break;
1096
1097         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098
1099         if ((vc_map->vcc == NULL) ||
1100             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101
1102             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103                     fore200e->atm_dev->number,
1104                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105         }
1106         else {
1107             vcc = vc_map->vcc;
1108             ASSERT(vcc);
1109
1110             if ((*entry->status & STATUS_ERROR) == 0) {
1111
1112                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113             }
1114             else {
1115                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116                         fore200e->atm_dev->number,
1117                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118                 atomic_inc(&vcc->stats->rx_err);
1119             }
1120         }
1121
1122         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123
1124         fore200e_collect_rpd(fore200e, entry->rpd);
1125
1126         /* rewrite the rpd address to ack the received PDU */
1127         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128         *entry->status = STATUS_FREE;
1129
1130         fore200e_supply(fore200e);
1131     }
1132 }
1133
1134
1135 #ifndef FORE200E_USE_TASKLET
1136 static void
1137 fore200e_irq(struct fore200e* fore200e)
1138 {
1139     unsigned long flags;
1140
1141     spin_lock_irqsave(&fore200e->q_lock, flags);
1142     fore200e_rx_irq(fore200e);
1143     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144
1145     spin_lock_irqsave(&fore200e->q_lock, flags);
1146     fore200e_tx_irq(fore200e);
1147     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148 }
1149 #endif
1150
1151
1152 static irqreturn_t
1153 fore200e_interrupt(int irq, void* dev)
1154 {
1155     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156
1157     if (fore200e->bus->irq_check(fore200e) == 0) {
1158         
1159         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160         return IRQ_NONE;
1161     }
1162     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163
1164 #ifdef FORE200E_USE_TASKLET
1165     tasklet_schedule(&fore200e->tx_tasklet);
1166     tasklet_schedule(&fore200e->rx_tasklet);
1167 #else
1168     fore200e_irq(fore200e);
1169 #endif
1170     
1171     fore200e->bus->irq_ack(fore200e);
1172     return IRQ_HANDLED;
1173 }
1174
1175
1176 #ifdef FORE200E_USE_TASKLET
1177 static void
1178 fore200e_tx_tasklet(unsigned long data)
1179 {
1180     struct fore200e* fore200e = (struct fore200e*) data;
1181     unsigned long flags;
1182
1183     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184
1185     spin_lock_irqsave(&fore200e->q_lock, flags);
1186     fore200e_tx_irq(fore200e);
1187     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188 }
1189
1190
1191 static void
1192 fore200e_rx_tasklet(unsigned long data)
1193 {
1194     struct fore200e* fore200e = (struct fore200e*) data;
1195     unsigned long    flags;
1196
1197     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198
1199     spin_lock_irqsave(&fore200e->q_lock, flags);
1200     fore200e_rx_irq((struct fore200e*) data);
1201     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202 }
1203 #endif
1204
1205
1206 static int
1207 fore200e_select_scheme(struct atm_vcc* vcc)
1208 {
1209     /* fairly balance the VCs over (identical) buffer schemes */
1210     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211
1212     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213             vcc->itf, vcc->vpi, vcc->vci, scheme);
1214
1215     return scheme;
1216 }
1217
1218
1219 static int 
1220 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221 {
1222     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224     struct activate_opcode   activ_opcode;
1225     struct deactivate_opcode deactiv_opcode;
1226     struct vpvc              vpvc;
1227     int                      ok;
1228     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229
1230     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231     
1232     if (activate) {
1233         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234         
1235         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236         activ_opcode.aal    = aal;
1237         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238         activ_opcode.pad    = 0;
1239     }
1240     else {
1241         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242         deactiv_opcode.pad    = 0;
1243     }
1244
1245     vpvc.vci = vcc->vci;
1246     vpvc.vpi = vcc->vpi;
1247
1248     *entry->status = STATUS_PENDING;
1249
1250     if (activate) {
1251
1252 #ifdef FORE200E_52BYTE_AAL0_SDU
1253         mtu = 48;
1254 #endif
1255         /* the MTU is not used by the cp, except in the case of AAL0 */
1256         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259     }
1260     else {
1261         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263     }
1264
1265     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266
1267     *entry->status = STATUS_FREE;
1268
1269     if (ok == 0) {
1270         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272         return -EIO;
1273     }
1274
1275     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1276             activate ? "open" : "clos");
1277
1278     return 0;
1279 }
1280
1281
1282 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283
1284 static void
1285 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286 {
1287     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288     
1289         /* compute the data cells to idle cells ratio from the tx PCR */
1290         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292     }
1293     else {
1294         /* disable rate control */
1295         rate->data_cells = rate->idle_cells = 0;
1296     }
1297 }
1298
1299
1300 static int
1301 fore200e_open(struct atm_vcc *vcc)
1302 {
1303     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304     struct fore200e_vcc*    fore200e_vcc;
1305     struct fore200e_vc_map* vc_map;
1306     unsigned long           flags;
1307     int                     vci = vcc->vci;
1308     short                   vpi = vcc->vpi;
1309
1310     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312
1313     spin_lock_irqsave(&fore200e->q_lock, flags);
1314
1315     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316     if (vc_map->vcc) {
1317
1318         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319
1320         printk(FORE200E "VC %d.%d.%d already in use\n",
1321                fore200e->atm_dev->number, vpi, vci);
1322
1323         return -EINVAL;
1324     }
1325
1326     vc_map->vcc = vcc;
1327
1328     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329
1330     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331     if (fore200e_vcc == NULL) {
1332         vc_map->vcc = NULL;
1333         return -ENOMEM;
1334     }
1335
1336     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343     
1344     /* pseudo-CBR bandwidth requested? */
1345     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346         
1347         mutex_lock(&fore200e->rate_mtx);
1348         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349             mutex_unlock(&fore200e->rate_mtx);
1350
1351             kfree(fore200e_vcc);
1352             vc_map->vcc = NULL;
1353             return -EAGAIN;
1354         }
1355
1356         /* reserve bandwidth */
1357         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358         mutex_unlock(&fore200e->rate_mtx);
1359     }
1360     
1361     vcc->itf = vcc->dev->number;
1362
1363     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364     set_bit(ATM_VF_ADDR, &vcc->flags);
1365
1366     vcc->dev_data = fore200e_vcc;
1367     
1368     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369
1370         vc_map->vcc = NULL;
1371
1372         clear_bit(ATM_VF_ADDR, &vcc->flags);
1373         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374
1375         vcc->dev_data = NULL;
1376
1377         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378
1379         kfree(fore200e_vcc);
1380         return -EINVAL;
1381     }
1382     
1383     /* compute rate control parameters */
1384     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385         
1386         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387         set_bit(ATM_VF_HASQOS, &vcc->flags);
1388
1389         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1392                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393     }
1394     
1395     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1398
1399     /* new incarnation of the vcc */
1400     vc_map->incarn = ++fore200e->incarn_count;
1401
1402     /* VC unusable before this flag is set */
1403     set_bit(ATM_VF_READY, &vcc->flags);
1404
1405     return 0;
1406 }
1407
1408
1409 static void
1410 fore200e_close(struct atm_vcc* vcc)
1411 {
1412     struct fore200e_vcc*    fore200e_vcc;
1413     struct fore200e*        fore200e;
1414     struct fore200e_vc_map* vc_map;
1415     unsigned long           flags;
1416
1417     ASSERT(vcc);
1418     fore200e = FORE200E_DEV(vcc->dev);
1419
1420     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422
1423     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424
1425     clear_bit(ATM_VF_READY, &vcc->flags);
1426
1427     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428
1429     spin_lock_irqsave(&fore200e->q_lock, flags);
1430
1431     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432
1433     /* the vc is no longer considered as "in use" by fore200e_open() */
1434     vc_map->vcc = NULL;
1435
1436     vcc->itf = vcc->vci = vcc->vpi = 0;
1437
1438     fore200e_vcc = FORE200E_VCC(vcc);
1439     vcc->dev_data = NULL;
1440
1441     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442
1443     /* release reserved bandwidth, if any */
1444     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445
1446         mutex_lock(&fore200e->rate_mtx);
1447         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448         mutex_unlock(&fore200e->rate_mtx);
1449
1450         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451     }
1452
1453     clear_bit(ATM_VF_ADDR, &vcc->flags);
1454     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455
1456     ASSERT(fore200e_vcc);
1457     kfree(fore200e_vcc);
1458 }
1459
1460
1461 static int
1462 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463 {
1464     struct fore200e*        fore200e;
1465     struct fore200e_vcc*    fore200e_vcc;
1466     struct fore200e_vc_map* vc_map;
1467     struct host_txq*        txq;
1468     struct host_txq_entry*  entry;
1469     struct tpd*             tpd;
1470     struct tpd_haddr        tpd_haddr;
1471     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1472     int                     tx_copy      = 0;
1473     int                     tx_len       = skb->len;
1474     u32*                    cell_header  = NULL;
1475     unsigned char*          skb_data;
1476     int                     skb_len;
1477     unsigned char*          data;
1478     unsigned long           flags;
1479
1480     if (!vcc)
1481         return -EINVAL;
1482
1483     fore200e = FORE200E_DEV(vcc->dev);
1484     fore200e_vcc = FORE200E_VCC(vcc);
1485
1486     if (!fore200e)
1487         return -EINVAL;
1488
1489     txq = &fore200e->host_txq;
1490     if (!fore200e_vcc)
1491         return -EINVAL;
1492
1493     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495         dev_kfree_skb_any(skb);
1496         return -EINVAL;
1497     }
1498
1499 #ifdef FORE200E_52BYTE_AAL0_SDU
1500     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501         cell_header = (u32*) skb->data;
1502         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1503         skb_len     = tx_len = skb->len  - 4;
1504
1505         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506     }
1507     else 
1508 #endif
1509     {
1510         skb_data = skb->data;
1511         skb_len  = skb->len;
1512     }
1513     
1514     if (((unsigned long)skb_data) & 0x3) {
1515
1516         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517         tx_copy = 1;
1518         tx_len  = skb_len;
1519     }
1520
1521     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522
1523         /* this simply NUKES the PCA board */
1524         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525         tx_copy = 1;
1526         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527     }
1528     
1529     if (tx_copy) {
1530         data = kmalloc(tx_len, GFP_ATOMIC);
1531         if (data == NULL) {
1532             if (vcc->pop) {
1533                 vcc->pop(vcc, skb);
1534             }
1535             else {
1536                 dev_kfree_skb_any(skb);
1537             }
1538             return -ENOMEM;
1539         }
1540
1541         memcpy(data, skb_data, skb_len);
1542         if (skb_len < tx_len)
1543             memset(data + skb_len, 0x00, tx_len - skb_len);
1544     }
1545     else {
1546         data = skb_data;
1547     }
1548
1549     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550     ASSERT(vc_map->vcc == vcc);
1551
1552   retry_here:
1553
1554     spin_lock_irqsave(&fore200e->q_lock, flags);
1555
1556     entry = &txq->host_entry[ txq->head ];
1557
1558     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559
1560         /* try to free completed tx queue entries */
1561         fore200e_tx_irq(fore200e);
1562
1563         if (*entry->status != STATUS_FREE) {
1564
1565             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566
1567             /* retry once again? */
1568             if (--retry > 0) {
1569                 udelay(50);
1570                 goto retry_here;
1571             }
1572
1573             atomic_inc(&vcc->stats->tx_err);
1574
1575             fore200e->tx_sat++;
1576             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577                     fore200e->name, fore200e->cp_queues->heartbeat);
1578             if (vcc->pop) {
1579                 vcc->pop(vcc, skb);
1580             }
1581             else {
1582                 dev_kfree_skb_any(skb);
1583             }
1584
1585             if (tx_copy)
1586                 kfree(data);
1587
1588             return -ENOBUFS;
1589         }
1590     }
1591
1592     entry->incarn = vc_map->incarn;
1593     entry->vc_map = vc_map;
1594     entry->skb    = skb;
1595     entry->data   = tx_copy ? data : NULL;
1596
1597     tpd = entry->tpd;
1598     tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599                                           DMA_TO_DEVICE);
1600     if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601         if (tx_copy)
1602             kfree(data);
1603         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604         return -ENOMEM;
1605     }
1606     tpd->tsd[ 0 ].length = tx_len;
1607
1608     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609     txq->txing++;
1610
1611     /* The dma_map call above implies a dma_sync so the device can use it,
1612      * thus no explicit dma_sync call is necessary here.
1613      */
1614     
1615     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1616             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617             tpd->tsd[0].length, skb_len);
1618
1619     if (skb_len < fore200e_vcc->tx_min_pdu)
1620         fore200e_vcc->tx_min_pdu = skb_len;
1621     if (skb_len > fore200e_vcc->tx_max_pdu)
1622         fore200e_vcc->tx_max_pdu = skb_len;
1623     fore200e_vcc->tx_pdu++;
1624
1625     /* set tx rate control information */
1626     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628
1629     if (cell_header) {
1630         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635     }
1636     else {
1637         /* set the ATM header, common to all cells conveying the PDU */
1638         tpd->atm_header.clp = 0;
1639         tpd->atm_header.plt = 0;
1640         tpd->atm_header.vci = vcc->vci;
1641         tpd->atm_header.vpi = vcc->vpi;
1642         tpd->atm_header.gfc = 0;
1643     }
1644
1645     tpd->spec.length = tx_len;
1646     tpd->spec.nseg   = 1;
1647     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1648     tpd->spec.intr   = 1;
1649
1650     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1651     tpd_haddr.pad   = 0;
1652     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1653
1654     *entry->status = STATUS_PENDING;
1655     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656
1657     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658
1659     return 0;
1660 }
1661
1662
1663 static int
1664 fore200e_getstats(struct fore200e* fore200e)
1665 {
1666     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1667     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668     struct stats_opcode     opcode;
1669     int                     ok;
1670     u32                     stats_dma_addr;
1671
1672     if (fore200e->stats == NULL) {
1673         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674         if (fore200e->stats == NULL)
1675             return -ENOMEM;
1676     }
1677     
1678     stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679                                     sizeof(struct stats), DMA_FROM_DEVICE);
1680     if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681         return -ENOMEM;
1682     
1683     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684
1685     opcode.opcode = OPCODE_GET_STATS;
1686     opcode.pad    = 0;
1687
1688     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689     
1690     *entry->status = STATUS_PENDING;
1691
1692     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693
1694     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695
1696     *entry->status = STATUS_FREE;
1697
1698     dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699     
1700     if (ok == 0) {
1701         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702         return -EIO;
1703     }
1704
1705     return 0;
1706 }
1707
1708 #if 0 /* currently unused */
1709 static int
1710 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711 {
1712     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1713     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714     struct oc3_opcode       opcode;
1715     int                     ok;
1716     u32                     oc3_regs_dma_addr;
1717
1718     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719
1720     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721
1722     opcode.opcode = OPCODE_GET_OC3;
1723     opcode.reg    = 0;
1724     opcode.value  = 0;
1725     opcode.mask   = 0;
1726
1727     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728     
1729     *entry->status = STATUS_PENDING;
1730
1731     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732
1733     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734
1735     *entry->status = STATUS_FREE;
1736
1737     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738     
1739     if (ok == 0) {
1740         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741         return -EIO;
1742     }
1743
1744     return 0;
1745 }
1746 #endif
1747
1748
1749 static int
1750 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751 {
1752     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1753     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754     struct oc3_opcode       opcode;
1755     int                     ok;
1756
1757     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758
1759     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761     opcode.opcode = OPCODE_SET_OC3;
1762     opcode.reg    = reg;
1763     opcode.value  = value;
1764     opcode.mask   = mask;
1765
1766     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767     
1768     *entry->status = STATUS_PENDING;
1769
1770     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771
1772     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774     *entry->status = STATUS_FREE;
1775
1776     if (ok == 0) {
1777         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778         return -EIO;
1779     }
1780
1781     return 0;
1782 }
1783
1784
1785 static int
1786 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787 {
1788     u32 mct_value, mct_mask;
1789     int error;
1790
1791     if (!capable(CAP_NET_ADMIN))
1792         return -EPERM;
1793     
1794     switch (loop_mode) {
1795
1796     case ATM_LM_NONE:
1797         mct_value = 0; 
1798         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799         break;
1800         
1801     case ATM_LM_LOC_PHY:
1802         mct_value = mct_mask = SUNI_MCT_DLE;
1803         break;
1804
1805     case ATM_LM_RMT_PHY:
1806         mct_value = mct_mask = SUNI_MCT_LLE;
1807         break;
1808
1809     default:
1810         return -EINVAL;
1811     }
1812
1813     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814     if (error == 0)
1815         fore200e->loop_mode = loop_mode;
1816
1817     return error;
1818 }
1819
1820
1821 static int
1822 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823 {
1824     struct sonet_stats tmp;
1825
1826     if (fore200e_getstats(fore200e) < 0)
1827         return -EIO;
1828
1829     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1837                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1840                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1841                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1842
1843     if (arg)
1844         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1845     
1846     return 0;
1847 }
1848
1849
1850 static int
1851 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852 {
1853     struct fore200e* fore200e = FORE200E_DEV(dev);
1854     
1855     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856
1857     switch (cmd) {
1858
1859     case SONET_GETSTAT:
1860         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861
1862     case SONET_GETDIAG:
1863         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864
1865     case ATM_SETLOOP:
1866         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867
1868     case ATM_GETLOOP:
1869         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870
1871     case ATM_QUERYLOOP:
1872         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873     }
1874
1875     return -ENOSYS; /* not implemented */
1876 }
1877
1878
1879 static int
1880 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881 {
1882     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1884
1885     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887         return -EINVAL;
1888     }
1889
1890     DPRINTK(2, "change_qos %d.%d.%d, "
1891             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893             "available_cell_rate = %u",
1894             vcc->itf, vcc->vpi, vcc->vci,
1895             fore200e_traffic_class[ qos->txtp.traffic_class ],
1896             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897             fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899             flags, fore200e->available_cell_rate);
1900
1901     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902
1903         mutex_lock(&fore200e->rate_mtx);
1904         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905             mutex_unlock(&fore200e->rate_mtx);
1906             return -EAGAIN;
1907         }
1908
1909         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910         fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911
1912         mutex_unlock(&fore200e->rate_mtx);
1913         
1914         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915         
1916         /* update rate control parameters */
1917         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918
1919         set_bit(ATM_VF_HASQOS, &vcc->flags);
1920
1921         return 0;
1922     }
1923     
1924     return -EINVAL;
1925 }
1926     
1927
1928 static int fore200e_irq_request(struct fore200e *fore200e)
1929 {
1930     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931
1932         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933                fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934         return -EBUSY;
1935     }
1936
1937     printk(FORE200E "IRQ %s reserved for device %s\n",
1938            fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939
1940 #ifdef FORE200E_USE_TASKLET
1941     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943 #endif
1944
1945     fore200e->state = FORE200E_STATE_IRQ;
1946     return 0;
1947 }
1948
1949
1950 static int fore200e_get_esi(struct fore200e *fore200e)
1951 {
1952     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953     int ok, i;
1954
1955     if (!prom)
1956         return -ENOMEM;
1957
1958     ok = fore200e->bus->prom_read(fore200e, prom);
1959     if (ok < 0) {
1960         kfree(prom);
1961         return -EBUSY;
1962     }
1963         
1964     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965            fore200e->name, 
1966            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1967            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968         
1969     for (i = 0; i < ESI_LEN; i++) {
1970         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971     }
1972     
1973     kfree(prom);
1974
1975     return 0;
1976 }
1977
1978
1979 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1980 {
1981     int scheme, magn, nbr, size, i;
1982
1983     struct host_bsq* bsq;
1984     struct buffer*   buffer;
1985
1986     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988
1989             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990
1991             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992             size = fore200e_rx_buf_size[ scheme ][ magn ];
1993
1994             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995
1996             /* allocate the array of receive buffers */
1997             buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998                                            GFP_KERNEL);
1999
2000             if (buffer == NULL)
2001                 return -ENOMEM;
2002
2003             bsq->freebuf = NULL;
2004
2005             for (i = 0; i < nbr; i++) {
2006
2007                 buffer[ i ].scheme = scheme;
2008                 buffer[ i ].magn   = magn;
2009 #ifdef FORE200E_BSQ_DEBUG
2010                 buffer[ i ].index  = i;
2011                 buffer[ i ].supplied = 0;
2012 #endif
2013
2014                 /* allocate the receive buffer body */
2015                 if (fore200e_chunk_alloc(fore200e,
2016                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017                                          DMA_FROM_DEVICE) < 0) {
2018                     
2019                     while (i > 0)
2020                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021                     kfree(buffer);
2022                     
2023                     return -ENOMEM;
2024                 }
2025
2026                 /* insert the buffer into the free buffer list */
2027                 buffer[ i ].next = bsq->freebuf;
2028                 bsq->freebuf = &buffer[ i ];
2029             }
2030             /* all the buffers are free, initially */
2031             bsq->freebuf_count = nbr;
2032
2033 #ifdef FORE200E_BSQ_DEBUG
2034             bsq_audit(3, bsq, scheme, magn);
2035 #endif
2036         }
2037     }
2038
2039     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040     return 0;
2041 }
2042
2043
2044 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2045 {
2046     int scheme, magn, i;
2047
2048     struct host_bsq*     bsq;
2049     struct cp_bsq_entry __iomem * cp_entry;
2050
2051     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053
2054             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055
2056             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057
2058             /* allocate and align the array of status words */
2059             if (fore200e_dma_chunk_alloc(fore200e,
2060                                                &bsq->status,
2061                                                sizeof(enum status), 
2062                                                QUEUE_SIZE_BS,
2063                                                fore200e->bus->status_alignment) < 0) {
2064                 return -ENOMEM;
2065             }
2066
2067             /* allocate and align the array of receive buffer descriptors */
2068             if (fore200e_dma_chunk_alloc(fore200e,
2069                                                &bsq->rbd_block,
2070                                                sizeof(struct rbd_block),
2071                                                QUEUE_SIZE_BS,
2072                                                fore200e->bus->descr_alignment) < 0) {
2073                 
2074                 fore200e_dma_chunk_free(fore200e, &bsq->status);
2075                 return -ENOMEM;
2076             }
2077             
2078             /* get the base address of the cp resident buffer supply queue entries */
2079             cp_entry = fore200e->virt_base + 
2080                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081             
2082             /* fill the host resident and cp resident buffer supply queue entries */
2083             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084                 
2085                 bsq->host_entry[ i ].status = 
2086                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087                 bsq->host_entry[ i ].rbd_block =
2088                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089                 bsq->host_entry[ i ].rbd_block_dma =
2090                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092                 
2093                 *bsq->host_entry[ i ].status = STATUS_FREE;
2094                 
2095                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2096                                      &cp_entry[ i ].status_haddr);
2097             }
2098         }
2099     }
2100
2101     fore200e->state = FORE200E_STATE_INIT_BSQ;
2102     return 0;
2103 }
2104
2105
2106 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2107 {
2108     struct host_rxq*     rxq =  &fore200e->host_rxq;
2109     struct cp_rxq_entry __iomem * cp_entry;
2110     int i;
2111
2112     DPRINTK(2, "receive queue is being initialized\n");
2113
2114     /* allocate and align the array of status words */
2115     if (fore200e_dma_chunk_alloc(fore200e,
2116                                        &rxq->status,
2117                                        sizeof(enum status), 
2118                                        QUEUE_SIZE_RX,
2119                                        fore200e->bus->status_alignment) < 0) {
2120         return -ENOMEM;
2121     }
2122
2123     /* allocate and align the array of receive PDU descriptors */
2124     if (fore200e_dma_chunk_alloc(fore200e,
2125                                        &rxq->rpd,
2126                                        sizeof(struct rpd), 
2127                                        QUEUE_SIZE_RX,
2128                                        fore200e->bus->descr_alignment) < 0) {
2129         
2130         fore200e_dma_chunk_free(fore200e, &rxq->status);
2131         return -ENOMEM;
2132     }
2133
2134     /* get the base address of the cp resident rx queue entries */
2135     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136
2137     /* fill the host resident and cp resident rx entries */
2138     for (i=0; i < QUEUE_SIZE_RX; i++) {
2139         
2140         rxq->host_entry[ i ].status = 
2141                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142         rxq->host_entry[ i ].rpd = 
2143                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144         rxq->host_entry[ i ].rpd_dma = 
2145                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147
2148         *rxq->host_entry[ i ].status = STATUS_FREE;
2149
2150         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2151                              &cp_entry[ i ].status_haddr);
2152
2153         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154                              &cp_entry[ i ].rpd_haddr);
2155     }
2156
2157     /* set the head entry of the queue */
2158     rxq->head = 0;
2159
2160     fore200e->state = FORE200E_STATE_INIT_RXQ;
2161     return 0;
2162 }
2163
2164
2165 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2166 {
2167     struct host_txq*     txq =  &fore200e->host_txq;
2168     struct cp_txq_entry __iomem * cp_entry;
2169     int i;
2170
2171     DPRINTK(2, "transmit queue is being initialized\n");
2172
2173     /* allocate and align the array of status words */
2174     if (fore200e_dma_chunk_alloc(fore200e,
2175                                        &txq->status,
2176                                        sizeof(enum status), 
2177                                        QUEUE_SIZE_TX,
2178                                        fore200e->bus->status_alignment) < 0) {
2179         return -ENOMEM;
2180     }
2181
2182     /* allocate and align the array of transmit PDU descriptors */
2183     if (fore200e_dma_chunk_alloc(fore200e,
2184                                        &txq->tpd,
2185                                        sizeof(struct tpd), 
2186                                        QUEUE_SIZE_TX,
2187                                        fore200e->bus->descr_alignment) < 0) {
2188         
2189         fore200e_dma_chunk_free(fore200e, &txq->status);
2190         return -ENOMEM;
2191     }
2192
2193     /* get the base address of the cp resident tx queue entries */
2194     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195
2196     /* fill the host resident and cp resident tx entries */
2197     for (i=0; i < QUEUE_SIZE_TX; i++) {
2198         
2199         txq->host_entry[ i ].status = 
2200                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201         txq->host_entry[ i ].tpd = 
2202                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203         txq->host_entry[ i ].tpd_dma  = 
2204                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206
2207         *txq->host_entry[ i ].status = STATUS_FREE;
2208         
2209         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2210                              &cp_entry[ i ].status_haddr);
2211         
2212         /* although there is a one-to-one mapping of tx queue entries and tpds,
2213            we do not write here the DMA (physical) base address of each tpd into
2214            the related cp resident entry, because the cp relies on this write
2215            operation to detect that a new pdu has been submitted for tx */
2216     }
2217
2218     /* set the head and tail entries of the queue */
2219     txq->head = 0;
2220     txq->tail = 0;
2221
2222     fore200e->state = FORE200E_STATE_INIT_TXQ;
2223     return 0;
2224 }
2225
2226
2227 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2228 {
2229     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2230     struct cp_cmdq_entry __iomem * cp_entry;
2231     int i;
2232
2233     DPRINTK(2, "command queue is being initialized\n");
2234
2235     /* allocate and align the array of status words */
2236     if (fore200e_dma_chunk_alloc(fore200e,
2237                                        &cmdq->status,
2238                                        sizeof(enum status), 
2239                                        QUEUE_SIZE_CMD,
2240                                        fore200e->bus->status_alignment) < 0) {
2241         return -ENOMEM;
2242     }
2243     
2244     /* get the base address of the cp resident cmd queue entries */
2245     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246
2247     /* fill the host resident and cp resident cmd entries */
2248     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249         
2250         cmdq->host_entry[ i ].status   = 
2251                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253
2254         *cmdq->host_entry[ i ].status = STATUS_FREE;
2255
2256         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2257                              &cp_entry[ i ].status_haddr);
2258     }
2259
2260     /* set the head entry of the queue */
2261     cmdq->head = 0;
2262
2263     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264     return 0;
2265 }
2266
2267
2268 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269                                     enum buffer_scheme scheme,
2270                                     enum buffer_magn magn, int queue_length,
2271                                     int pool_size, int supply_blksize)
2272 {
2273     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274
2275     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2276     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2278     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2279 }
2280
2281
2282 static int fore200e_initialize(struct fore200e *fore200e)
2283 {
2284     struct cp_queues __iomem * cpq;
2285     int               ok, scheme, magn;
2286
2287     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288
2289     mutex_init(&fore200e->rate_mtx);
2290     spin_lock_init(&fore200e->q_lock);
2291
2292     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293
2294     /* enable cp to host interrupts */
2295     fore200e->bus->write(1, &cpq->imask);
2296
2297     if (fore200e->bus->irq_enable)
2298         fore200e->bus->irq_enable(fore200e);
2299     
2300     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301
2302     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2304     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2305
2306     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2307     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2308
2309     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311             fore200e_param_bs_queue(fore200e, scheme, magn,
2312                                     QUEUE_SIZE_BS, 
2313                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2314                                     RBD_BLK_SIZE);
2315
2316     /* issue the initialize command */
2317     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2318     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319
2320     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321     if (ok == 0) {
2322         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323         return -ENODEV;
2324     }
2325
2326     printk(FORE200E "device %s initialized\n", fore200e->name);
2327
2328     fore200e->state = FORE200E_STATE_INITIALIZE;
2329     return 0;
2330 }
2331
2332
2333 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2334 {
2335     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336
2337 #if 0
2338     printk("%c", c);
2339 #endif
2340     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341 }
2342
2343
2344 static int fore200e_monitor_getc(struct fore200e *fore200e)
2345 {
2346     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2348     int                c;
2349
2350     while (time_before(jiffies, timeout)) {
2351
2352         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353
2354         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355
2356             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357 #if 0
2358             printk("%c", c & 0xFF);
2359 #endif
2360             return c & 0xFF;
2361         }
2362     }
2363
2364     return -1;
2365 }
2366
2367
2368 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2369 {
2370     while (*str) {
2371
2372         /* the i960 monitor doesn't accept any new character if it has something to say */
2373         while (fore200e_monitor_getc(fore200e) >= 0);
2374         
2375         fore200e_monitor_putc(fore200e, *str++);
2376     }
2377
2378     while (fore200e_monitor_getc(fore200e) >= 0);
2379 }
2380
2381 #ifdef __LITTLE_ENDIAN
2382 #define FW_EXT ".bin"
2383 #else
2384 #define FW_EXT "_ecd.bin2"
2385 #endif
2386
2387 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2388 {
2389     const struct firmware *firmware;
2390     const struct fw_header *fw_header;
2391     const __le32 *fw_data;
2392     u32 fw_size;
2393     u32 __iomem *load_addr;
2394     char buf[48];
2395     int err;
2396
2397     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398     if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400         return err;
2401     }
2402
2403     fw_data = (const __le32 *)firmware->data;
2404     fw_size = firmware->size / sizeof(u32);
2405     fw_header = (const struct fw_header *)firmware->data;
2406     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407
2408     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409             fore200e->name, load_addr, fw_size);
2410
2411     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413         goto release;
2414     }
2415
2416     for (; fw_size--; fw_data++, load_addr++)
2417         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418
2419     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420
2421 #if defined(__sparc_v9__)
2422     /* reported to be required by SBA cards on some sparc64 hosts */
2423     fore200e_spin(100);
2424 #endif
2425
2426     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427     fore200e_monitor_puts(fore200e, buf);
2428
2429     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431         goto release;
2432     }
2433
2434     printk(FORE200E "device %s firmware started\n", fore200e->name);
2435
2436     fore200e->state = FORE200E_STATE_START_FW;
2437     err = 0;
2438
2439 release:
2440     release_firmware(firmware);
2441     return err;
2442 }
2443
2444
2445 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2446 {
2447     struct atm_dev* atm_dev;
2448
2449     DPRINTK(2, "device %s being registered\n", fore200e->name);
2450
2451     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452                                -1, NULL);
2453     if (atm_dev == NULL) {
2454         printk(FORE200E "unable to register device %s\n", fore200e->name);
2455         return -ENODEV;
2456     }
2457
2458     atm_dev->dev_data = fore200e;
2459     fore200e->atm_dev = atm_dev;
2460
2461     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463
2464     fore200e->available_cell_rate = ATM_OC3_PCR;
2465
2466     fore200e->state = FORE200E_STATE_REGISTER;
2467     return 0;
2468 }
2469
2470
2471 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2472 {
2473     if (fore200e_register(fore200e, parent) < 0)
2474         return -ENODEV;
2475     
2476     if (fore200e->bus->configure(fore200e) < 0)
2477         return -ENODEV;
2478
2479     if (fore200e->bus->map(fore200e) < 0)
2480         return -ENODEV;
2481
2482     if (fore200e_reset(fore200e, 1) < 0)
2483         return -ENODEV;
2484
2485     if (fore200e_load_and_start_fw(fore200e) < 0)
2486         return -ENODEV;
2487
2488     if (fore200e_initialize(fore200e) < 0)
2489         return -ENODEV;
2490
2491     if (fore200e_init_cmd_queue(fore200e) < 0)
2492         return -ENOMEM;
2493
2494     if (fore200e_init_tx_queue(fore200e) < 0)
2495         return -ENOMEM;
2496
2497     if (fore200e_init_rx_queue(fore200e) < 0)
2498         return -ENOMEM;
2499
2500     if (fore200e_init_bs_queue(fore200e) < 0)
2501         return -ENOMEM;
2502
2503     if (fore200e_alloc_rx_buf(fore200e) < 0)
2504         return -ENOMEM;
2505
2506     if (fore200e_get_esi(fore200e) < 0)
2507         return -EIO;
2508
2509     if (fore200e_irq_request(fore200e) < 0)
2510         return -EBUSY;
2511
2512     fore200e_supply(fore200e);
2513
2514     /* all done, board initialization is now complete */
2515     fore200e->state = FORE200E_STATE_COMPLETE;
2516     return 0;
2517 }
2518
2519 #ifdef CONFIG_SBUS
2520 static int fore200e_sba_probe(struct platform_device *op)
2521 {
2522         struct fore200e *fore200e;
2523         static int index = 0;
2524         int err;
2525
2526         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527         if (!fore200e)
2528                 return -ENOMEM;
2529
2530         fore200e->bus = &fore200e_sbus_ops;
2531         fore200e->dev = &op->dev;
2532         fore200e->irq = op->archdata.irqs[0];
2533         fore200e->phys_base = op->resource[0].start;
2534
2535         sprintf(fore200e->name, "SBA-200E-%d", index);
2536
2537         err = fore200e_init(fore200e, &op->dev);
2538         if (err < 0) {
2539                 fore200e_shutdown(fore200e);
2540                 kfree(fore200e);
2541                 return err;
2542         }
2543
2544         index++;
2545         dev_set_drvdata(&op->dev, fore200e);
2546
2547         return 0;
2548 }
2549
2550 static void fore200e_sba_remove(struct platform_device *op)
2551 {
2552         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553
2554         fore200e_shutdown(fore200e);
2555         kfree(fore200e);
2556 }
2557
2558 static const struct of_device_id fore200e_sba_match[] = {
2559         {
2560                 .name = SBA200E_PROM_NAME,
2561         },
2562         {},
2563 };
2564 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565
2566 static struct platform_driver fore200e_sba_driver = {
2567         .driver = {
2568                 .name = "fore_200e",
2569                 .of_match_table = fore200e_sba_match,
2570         },
2571         .probe          = fore200e_sba_probe,
2572         .remove_new     = fore200e_sba_remove,
2573 };
2574 #endif
2575
2576 #ifdef CONFIG_PCI
2577 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578                                const struct pci_device_id *pci_ent)
2579 {
2580     struct fore200e* fore200e;
2581     int err = 0;
2582     static int index = 0;
2583
2584     if (pci_enable_device(pci_dev)) {
2585         err = -EINVAL;
2586         goto out;
2587     }
2588
2589     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590         err = -EINVAL;
2591         goto out;
2592     }
2593     
2594     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595     if (fore200e == NULL) {
2596         err = -ENOMEM;
2597         goto out_disable;
2598     }
2599
2600     fore200e->bus       = &fore200e_pci_ops;
2601     fore200e->dev       = &pci_dev->dev;
2602     fore200e->irq       = pci_dev->irq;
2603     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604
2605     sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606
2607     pci_set_master(pci_dev);
2608
2609     printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2610            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611
2612     sprintf(fore200e->name, "PCA-200E-%d", index);
2613
2614     err = fore200e_init(fore200e, &pci_dev->dev);
2615     if (err < 0) {
2616         fore200e_shutdown(fore200e);
2617         goto out_free;
2618     }
2619
2620     ++index;
2621     pci_set_drvdata(pci_dev, fore200e);
2622
2623 out:
2624     return err;
2625
2626 out_free:
2627     kfree(fore200e);
2628 out_disable:
2629     pci_disable_device(pci_dev);
2630     goto out;
2631 }
2632
2633
2634 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635 {
2636     struct fore200e *fore200e;
2637
2638     fore200e = pci_get_drvdata(pci_dev);
2639
2640     fore200e_shutdown(fore200e);
2641     kfree(fore200e);
2642     pci_disable_device(pci_dev);
2643 }
2644
2645
2646 static const struct pci_device_id fore200e_pca_tbl[] = {
2647     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2648     { 0, }
2649 };
2650
2651 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652
2653 static struct pci_driver fore200e_pca_driver = {
2654     .name =     "fore_200e",
2655     .probe =    fore200e_pca_detect,
2656     .remove =   fore200e_pca_remove_one,
2657     .id_table = fore200e_pca_tbl,
2658 };
2659 #endif
2660
2661 static int __init fore200e_module_init(void)
2662 {
2663         int err = 0;
2664
2665         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666
2667 #ifdef CONFIG_SBUS
2668         err = platform_driver_register(&fore200e_sba_driver);
2669         if (err)
2670                 return err;
2671 #endif
2672
2673 #ifdef CONFIG_PCI
2674         err = pci_register_driver(&fore200e_pca_driver);
2675 #endif
2676
2677 #ifdef CONFIG_SBUS
2678         if (err)
2679                 platform_driver_unregister(&fore200e_sba_driver);
2680 #endif
2681
2682         return err;
2683 }
2684
2685 static void __exit fore200e_module_cleanup(void)
2686 {
2687 #ifdef CONFIG_PCI
2688         pci_unregister_driver(&fore200e_pca_driver);
2689 #endif
2690 #ifdef CONFIG_SBUS
2691         platform_driver_unregister(&fore200e_sba_driver);
2692 #endif
2693 }
2694
2695 static int
2696 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697 {
2698     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2699     struct fore200e_vcc* fore200e_vcc;
2700     struct atm_vcc*      vcc;
2701     int                  i, len, left = *pos;
2702     unsigned long        flags;
2703
2704     if (!left--) {
2705
2706         if (fore200e_getstats(fore200e) < 0)
2707             return -EIO;
2708
2709         len = sprintf(page,"\n"
2710                        " device:\n"
2711                        "   internal name:\t\t%s\n", fore200e->name);
2712
2713         /* print bus-specific information */
2714         if (fore200e->bus->proc_read)
2715             len += fore200e->bus->proc_read(fore200e, page + len);
2716         
2717         len += sprintf(page + len,
2718                 "   interrupt line:\t\t%s\n"
2719                 "   physical base address:\t0x%p\n"
2720                 "   virtual base address:\t0x%p\n"
2721                 "   factory address (ESI):\t%pM\n"
2722                 "   board serial number:\t\t%d\n\n",
2723                 fore200e_irq_itoa(fore200e->irq),
2724                 (void*)fore200e->phys_base,
2725                 fore200e->virt_base,
2726                 fore200e->esi,
2727                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2728
2729         return len;
2730     }
2731
2732     if (!left--)
2733         return sprintf(page,
2734                        "   free small bufs, scheme 1:\t%d\n"
2735                        "   free large bufs, scheme 1:\t%d\n"
2736                        "   free small bufs, scheme 2:\t%d\n"
2737                        "   free large bufs, scheme 2:\t%d\n",
2738                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742
2743     if (!left--) {
2744         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745
2746         len = sprintf(page,"\n\n"
2747                       " cell processor:\n"
2748                       "   heartbeat state:\t\t");
2749         
2750         if (hb >> 16 != 0xDEAD)
2751             len += sprintf(page + len, "0x%08x\n", hb);
2752         else
2753             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754
2755         return len;
2756     }
2757
2758     if (!left--) {
2759         static const char* media_name[] = {
2760             "unshielded twisted pair",
2761             "multimode optical fiber ST",
2762             "multimode optical fiber SC",
2763             "single-mode optical fiber ST",
2764             "single-mode optical fiber SC",
2765             "unknown"
2766         };
2767
2768         static const char* oc3_mode[] = {
2769             "normal operation",
2770             "diagnostic loopback",
2771             "line loopback",
2772             "unknown"
2773         };
2774
2775         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779         u32 oc3_index;
2780
2781         if (media_index > 4)
2782                 media_index = 5;
2783         
2784         switch (fore200e->loop_mode) {
2785             case ATM_LM_NONE:    oc3_index = 0;
2786                                  break;
2787             case ATM_LM_LOC_PHY: oc3_index = 1;
2788                                  break;
2789             case ATM_LM_RMT_PHY: oc3_index = 2;
2790                                  break;
2791             default:             oc3_index = 3;
2792         }
2793
2794         return sprintf(page,
2795                        "   firmware release:\t\t%d.%d.%d\n"
2796                        "   monitor release:\t\t%d.%d\n"
2797                        "   media type:\t\t\t%s\n"
2798                        "   OC-3 revision:\t\t0x%x\n"
2799                        "   OC-3 mode:\t\t\t%s",
2800                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2801                        mon960_release >> 16, mon960_release << 16 >> 16,
2802                        media_name[ media_index ],
2803                        oc3_revision,
2804                        oc3_mode[ oc3_index ]);
2805     }
2806
2807     if (!left--) {
2808         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809
2810         return sprintf(page,
2811                        "\n\n"
2812                        " monitor:\n"
2813                        "   version number:\t\t%d\n"
2814                        "   boot status word:\t\t0x%08x\n",
2815                        fore200e->bus->read(&cp_monitor->mon_version),
2816                        fore200e->bus->read(&cp_monitor->bstat));
2817     }
2818
2819     if (!left--)
2820         return sprintf(page,
2821                        "\n"
2822                        " device statistics:\n"
2823                        "  4b5b:\n"
2824                        "     crc_header_errors:\t\t%10u\n"
2825                        "     framing_errors:\t\t%10u\n",
2826                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2828     
2829     if (!left--)
2830         return sprintf(page, "\n"
2831                        "  OC-3:\n"
2832                        "     section_bip8_errors:\t%10u\n"
2833                        "     path_bip8_errors:\t\t%10u\n"
2834                        "     line_bip24_errors:\t\t%10u\n"
2835                        "     line_febe_errors:\t\t%10u\n"
2836                        "     path_febe_errors:\t\t%10u\n"
2837                        "     corr_hcs_errors:\t\t%10u\n"
2838                        "     ucorr_hcs_errors:\t\t%10u\n",
2839                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846
2847     if (!left--)
2848         return sprintf(page,"\n"
2849                        "   ATM:\t\t\t\t     cells\n"
2850                        "     TX:\t\t\t%10u\n"
2851                        "     RX:\t\t\t%10u\n"
2852                        "     vpi out of range:\t\t%10u\n"
2853                        "     vpi no conn:\t\t%10u\n"
2854                        "     vci out of range:\t\t%10u\n"
2855                        "     vci no conn:\t\t%10u\n",
2856                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857                        be32_to_cpu(fore200e->stats->atm.cells_received),
2858                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862     
2863     if (!left--)
2864         return sprintf(page,"\n"
2865                        "   AAL0:\t\t\t     cells\n"
2866                        "     TX:\t\t\t%10u\n"
2867                        "     RX:\t\t\t%10u\n"
2868                        "     dropped:\t\t\t%10u\n",
2869                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870                        be32_to_cpu(fore200e->stats->aal0.cells_received),
2871                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872     
2873     if (!left--)
2874         return sprintf(page,"\n"
2875                        "   AAL3/4:\n"
2876                        "     SAR sublayer:\t\t     cells\n"
2877                        "       TX:\t\t\t%10u\n"
2878                        "       RX:\t\t\t%10u\n"
2879                        "       dropped:\t\t\t%10u\n"
2880                        "       CRC errors:\t\t%10u\n"
2881                        "       protocol errors:\t\t%10u\n\n"
2882                        "     CS  sublayer:\t\t      PDUs\n"
2883                        "       TX:\t\t\t%10u\n"
2884                        "       RX:\t\t\t%10u\n"
2885                        "       dropped:\t\t\t%10u\n"
2886                        "       protocol errors:\t\t%10u\n",
2887                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888                        be32_to_cpu(fore200e->stats->aal34.cells_received),
2889                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896     
2897     if (!left--)
2898         return sprintf(page,"\n"
2899                        "   AAL5:\n"
2900                        "     SAR sublayer:\t\t     cells\n"
2901                        "       TX:\t\t\t%10u\n"
2902                        "       RX:\t\t\t%10u\n"
2903                        "       dropped:\t\t\t%10u\n"
2904                        "       congestions:\t\t%10u\n\n"
2905                        "     CS  sublayer:\t\t      PDUs\n"
2906                        "       TX:\t\t\t%10u\n"
2907                        "       RX:\t\t\t%10u\n"
2908                        "       dropped:\t\t\t%10u\n"
2909                        "       CRC errors:\t\t%10u\n"
2910                        "       protocol errors:\t\t%10u\n",
2911                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912                        be32_to_cpu(fore200e->stats->aal5.cells_received),
2913                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920     
2921     if (!left--)
2922         return sprintf(page,"\n"
2923                        "   AUX:\t\t       allocation failures\n"
2924                        "     small b1:\t\t\t%10u\n"
2925                        "     large b1:\t\t\t%10u\n"
2926                        "     small b2:\t\t\t%10u\n"
2927                        "     large b2:\t\t\t%10u\n"
2928                        "     RX PDUs:\t\t\t%10u\n"
2929                        "     TX PDUs:\t\t\t%10lu\n",
2930                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935                        fore200e->tx_sat);
2936     
2937     if (!left--)
2938         return sprintf(page,"\n"
2939                        " receive carrier:\t\t\t%s\n",
2940                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941     
2942     if (!left--) {
2943         return sprintf(page,"\n"
2944                        " VCCs:\n  address   VPI VCI   AAL "
2945                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2946     }
2947
2948     for (i = 0; i < NBR_CONNECT; i++) {
2949
2950         vcc = fore200e->vc_map[i].vcc;
2951
2952         if (vcc == NULL)
2953             continue;
2954
2955         spin_lock_irqsave(&fore200e->q_lock, flags);
2956
2957         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958
2959             fore200e_vcc = FORE200E_VCC(vcc);
2960             ASSERT(fore200e_vcc);
2961
2962             len = sprintf(page,
2963                           "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2964                           vcc,
2965                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966                           fore200e_vcc->tx_pdu,
2967                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968                           fore200e_vcc->tx_max_pdu,
2969                           fore200e_vcc->rx_pdu,
2970                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971                           fore200e_vcc->rx_max_pdu);
2972
2973             spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974             return len;
2975         }
2976
2977         spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978     }
2979     
2980     return 0;
2981 }
2982
2983 module_init(fore200e_module_init);
2984 module_exit(fore200e_module_cleanup);
2985
2986
2987 static const struct atmdev_ops fore200e_ops = {
2988         .open       = fore200e_open,
2989         .close      = fore200e_close,
2990         .ioctl      = fore200e_ioctl,
2991         .send       = fore200e_send,
2992         .change_qos = fore200e_change_qos,
2993         .proc_read  = fore200e_proc_read,
2994         .owner      = THIS_MODULE
2995 };
2996
2997 MODULE_LICENSE("GPL");
2998 #ifdef CONFIG_PCI
2999 #ifdef __LITTLE_ENDIAN__
3000 MODULE_FIRMWARE("pca200e.bin");
3001 #else
3002 MODULE_FIRMWARE("pca200e_ecd.bin2");
3003 #endif
3004 #endif /* CONFIG_PCI */
3005 #ifdef CONFIG_SBUS
3006 MODULE_FIRMWARE("sba200e_ecd.bin2");
3007 #endif