Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / acpi / processor_thermal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_thermal.c - Passive cooling submodule of the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/cpufreq.h>
16 #include <linux/acpi.h>
17 #include <acpi/processor.h>
18 #include <linux/uaccess.h>
19
20 #include "internal.h"
21
22 #ifdef CONFIG_CPU_FREQ
23
24 /* If a passive cooling situation is detected, primarily CPUfreq is used, as it
25  * offers (in most cases) voltage scaling in addition to frequency scaling, and
26  * thus a cubic (instead of linear) reduction of energy. Also, we allow for
27  * _any_ cpufreq driver and not only the acpi-cpufreq driver.
28  */
29
30 #define CPUFREQ_THERMAL_MIN_STEP 0
31
32 static int cpufreq_thermal_max_step __read_mostly = 3;
33
34 /*
35  * Minimum throttle percentage for processor_thermal cooling device.
36  * The processor_thermal driver uses it to calculate the percentage amount by
37  * which cpu frequency must be reduced for each cooling state. This is also used
38  * to calculate the maximum number of throttling steps or cooling states.
39  */
40 static int cpufreq_thermal_reduction_pctg __read_mostly = 20;
41
42 static DEFINE_PER_CPU(unsigned int, cpufreq_thermal_reduction_step);
43
44 #define reduction_step(cpu) \
45         per_cpu(cpufreq_thermal_reduction_step, phys_package_first_cpu(cpu))
46
47 /*
48  * Emulate "per package data" using per cpu data (which should really be
49  * provided elsewhere)
50  *
51  * Note we can lose a CPU on cpu hotunplug, in this case we forget the state
52  * temporarily. Fortunately that's not a big issue here (I hope)
53  */
54 static int phys_package_first_cpu(int cpu)
55 {
56         int i;
57         int id = topology_physical_package_id(cpu);
58
59         for_each_online_cpu(i)
60                 if (topology_physical_package_id(i) == id)
61                         return i;
62         return 0;
63 }
64
65 static int cpu_has_cpufreq(unsigned int cpu)
66 {
67         struct cpufreq_policy *policy;
68
69         if (!acpi_processor_cpufreq_init)
70                 return 0;
71
72         policy = cpufreq_cpu_get(cpu);
73         if (policy) {
74                 cpufreq_cpu_put(policy);
75                 return 1;
76         }
77         return 0;
78 }
79
80 static int cpufreq_get_max_state(unsigned int cpu)
81 {
82         if (!cpu_has_cpufreq(cpu))
83                 return 0;
84
85         return cpufreq_thermal_max_step;
86 }
87
88 static int cpufreq_get_cur_state(unsigned int cpu)
89 {
90         if (!cpu_has_cpufreq(cpu))
91                 return 0;
92
93         return reduction_step(cpu);
94 }
95
96 static int cpufreq_set_cur_state(unsigned int cpu, int state)
97 {
98         struct cpufreq_policy *policy;
99         struct acpi_processor *pr;
100         unsigned long max_freq;
101         int i, ret;
102
103         if (!cpu_has_cpufreq(cpu))
104                 return 0;
105
106         reduction_step(cpu) = state;
107
108         /*
109          * Update all the CPUs in the same package because they all
110          * contribute to the temperature and often share the same
111          * frequency.
112          */
113         for_each_online_cpu(i) {
114                 if (topology_physical_package_id(i) !=
115                     topology_physical_package_id(cpu))
116                         continue;
117
118                 pr = per_cpu(processors, i);
119
120                 if (unlikely(!freq_qos_request_active(&pr->thermal_req)))
121                         continue;
122
123                 policy = cpufreq_cpu_get(i);
124                 if (!policy)
125                         return -EINVAL;
126
127                 max_freq = (policy->cpuinfo.max_freq *
128                             (100 - reduction_step(i) * cpufreq_thermal_reduction_pctg)) / 100;
129
130                 cpufreq_cpu_put(policy);
131
132                 ret = freq_qos_update_request(&pr->thermal_req, max_freq);
133                 if (ret < 0) {
134                         pr_warn("Failed to update thermal freq constraint: CPU%d (%d)\n",
135                                 pr->id, ret);
136                 }
137         }
138         return 0;
139 }
140
141 static void acpi_thermal_cpufreq_config(void)
142 {
143         int cpufreq_pctg = acpi_arch_thermal_cpufreq_pctg();
144
145         if (!cpufreq_pctg)
146                 return;
147
148         cpufreq_thermal_reduction_pctg = cpufreq_pctg;
149
150         /*
151          * Derive the MAX_STEP from minimum throttle percentage so that the reduction
152          * percentage doesn't end up becoming negative. Also, cap the MAX_STEP so that
153          * the CPU performance doesn't become 0.
154          */
155         cpufreq_thermal_max_step = (100 / cpufreq_pctg) - 2;
156 }
157
158 void acpi_thermal_cpufreq_init(struct cpufreq_policy *policy)
159 {
160         unsigned int cpu;
161
162         acpi_thermal_cpufreq_config();
163
164         for_each_cpu(cpu, policy->related_cpus) {
165                 struct acpi_processor *pr = per_cpu(processors, cpu);
166                 int ret;
167
168                 if (!pr)
169                         continue;
170
171                 ret = freq_qos_add_request(&policy->constraints,
172                                            &pr->thermal_req,
173                                            FREQ_QOS_MAX, INT_MAX);
174                 if (ret < 0) {
175                         pr_err("Failed to add freq constraint for CPU%d (%d)\n",
176                                cpu, ret);
177                         continue;
178                 }
179
180                 thermal_cooling_device_update(pr->cdev);
181         }
182 }
183
184 void acpi_thermal_cpufreq_exit(struct cpufreq_policy *policy)
185 {
186         unsigned int cpu;
187
188         for_each_cpu(cpu, policy->related_cpus) {
189                 struct acpi_processor *pr = per_cpu(processors, cpu);
190
191                 if (!pr)
192                         continue;
193
194                 freq_qos_remove_request(&pr->thermal_req);
195
196                 thermal_cooling_device_update(pr->cdev);
197         }
198 }
199 #else                           /* ! CONFIG_CPU_FREQ */
200 static int cpufreq_get_max_state(unsigned int cpu)
201 {
202         return 0;
203 }
204
205 static int cpufreq_get_cur_state(unsigned int cpu)
206 {
207         return 0;
208 }
209
210 static int cpufreq_set_cur_state(unsigned int cpu, int state)
211 {
212         return 0;
213 }
214
215 #endif
216
217 /* thermal cooling device callbacks */
218 static int acpi_processor_max_state(struct acpi_processor *pr)
219 {
220         int max_state = 0;
221
222         /*
223          * There exists four states according to
224          * cpufreq_thermal_reduction_step. 0, 1, 2, 3
225          */
226         max_state += cpufreq_get_max_state(pr->id);
227         if (pr->flags.throttling)
228                 max_state += (pr->throttling.state_count -1);
229
230         return max_state;
231 }
232 static int
233 processor_get_max_state(struct thermal_cooling_device *cdev,
234                         unsigned long *state)
235 {
236         struct acpi_device *device = cdev->devdata;
237         struct acpi_processor *pr;
238
239         if (!device)
240                 return -EINVAL;
241
242         pr = acpi_driver_data(device);
243         if (!pr)
244                 return -EINVAL;
245
246         *state = acpi_processor_max_state(pr);
247         return 0;
248 }
249
250 static int
251 processor_get_cur_state(struct thermal_cooling_device *cdev,
252                         unsigned long *cur_state)
253 {
254         struct acpi_device *device = cdev->devdata;
255         struct acpi_processor *pr;
256
257         if (!device)
258                 return -EINVAL;
259
260         pr = acpi_driver_data(device);
261         if (!pr)
262                 return -EINVAL;
263
264         *cur_state = cpufreq_get_cur_state(pr->id);
265         if (pr->flags.throttling)
266                 *cur_state += pr->throttling.state;
267         return 0;
268 }
269
270 static int
271 processor_set_cur_state(struct thermal_cooling_device *cdev,
272                         unsigned long state)
273 {
274         struct acpi_device *device = cdev->devdata;
275         struct acpi_processor *pr;
276         int result = 0;
277         int max_pstate;
278
279         if (!device)
280                 return -EINVAL;
281
282         pr = acpi_driver_data(device);
283         if (!pr)
284                 return -EINVAL;
285
286         max_pstate = cpufreq_get_max_state(pr->id);
287
288         if (state > acpi_processor_max_state(pr))
289                 return -EINVAL;
290
291         if (state <= max_pstate) {
292                 if (pr->flags.throttling && pr->throttling.state)
293                         result = acpi_processor_set_throttling(pr, 0, false);
294                 cpufreq_set_cur_state(pr->id, state);
295         } else {
296                 cpufreq_set_cur_state(pr->id, max_pstate);
297                 result = acpi_processor_set_throttling(pr,
298                                 state - max_pstate, false);
299         }
300         return result;
301 }
302
303 const struct thermal_cooling_device_ops processor_cooling_ops = {
304         .get_max_state = processor_get_max_state,
305         .get_cur_state = processor_get_cur_state,
306         .set_cur_state = processor_set_cur_state,
307 };
308
309 int acpi_processor_thermal_init(struct acpi_processor *pr,
310                                 struct acpi_device *device)
311 {
312         int result = 0;
313
314         pr->cdev = thermal_cooling_device_register("Processor", device,
315                                                    &processor_cooling_ops);
316         if (IS_ERR(pr->cdev)) {
317                 result = PTR_ERR(pr->cdev);
318                 return result;
319         }
320
321         dev_dbg(&device->dev, "registered as cooling_device%d\n",
322                 pr->cdev->id);
323
324         result = sysfs_create_link(&device->dev.kobj,
325                                    &pr->cdev->device.kobj,
326                                    "thermal_cooling");
327         if (result) {
328                 dev_err(&device->dev,
329                         "Failed to create sysfs link 'thermal_cooling'\n");
330                 goto err_thermal_unregister;
331         }
332
333         result = sysfs_create_link(&pr->cdev->device.kobj,
334                                    &device->dev.kobj,
335                                    "device");
336         if (result) {
337                 dev_err(&pr->cdev->device,
338                         "Failed to create sysfs link 'device'\n");
339                 goto err_remove_sysfs_thermal;
340         }
341
342         return 0;
343
344 err_remove_sysfs_thermal:
345         sysfs_remove_link(&device->dev.kobj, "thermal_cooling");
346 err_thermal_unregister:
347         thermal_cooling_device_unregister(pr->cdev);
348
349         return result;
350 }
351
352 void acpi_processor_thermal_exit(struct acpi_processor *pr,
353                                  struct acpi_device *device)
354 {
355         if (pr->cdev) {
356                 sysfs_remove_link(&device->dev.kobj, "thermal_cooling");
357                 sysfs_remove_link(&pr->cdev->device.kobj, "device");
358                 thermal_cooling_device_unregister(pr->cdev);
359                 pr->cdev = NULL;
360         }
361 }