Merge tag 'linux-kselftest-kunit-5.20-rc1' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <linux/perf_event.h>
25 #include <acpi/processor.h>
26 #include <linux/context_tracking.h>
27
28 /*
29  * Include the apic definitions for x86 to have the APIC timer related defines
30  * available also for UP (on SMP it gets magically included via linux/smp.h).
31  * asm/acpi.h is not an option, as it would require more include magic. Also
32  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33  */
34 #ifdef CONFIG_X86
35 #include <asm/apic.h>
36 #include <asm/cpu.h>
37 #endif
38
39 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40
41 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42 module_param(max_cstate, uint, 0400);
43 static bool nocst __read_mostly;
44 module_param(nocst, bool, 0400);
45 static bool bm_check_disable __read_mostly;
46 module_param(bm_check_disable, bool, 0400);
47
48 static unsigned int latency_factor __read_mostly = 2;
49 module_param(latency_factor, uint, 0644);
50
51 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52
53 struct cpuidle_driver acpi_idle_driver = {
54         .name =         "acpi_idle",
55         .owner =        THIS_MODULE,
56 };
57
58 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59 static
60 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61
62 static int disabled_by_idle_boot_param(void)
63 {
64         return boot_option_idle_override == IDLE_POLL ||
65                 boot_option_idle_override == IDLE_HALT;
66 }
67
68 /*
69  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70  * For now disable this. Probably a bug somewhere else.
71  *
72  * To skip this limit, boot/load with a large max_cstate limit.
73  */
74 static int set_max_cstate(const struct dmi_system_id *id)
75 {
76         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77                 return 0;
78
79         pr_notice("%s detected - limiting to C%ld max_cstate."
80                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
81                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82
83         max_cstate = (long)id->driver_data;
84
85         return 0;
86 }
87
88 static const struct dmi_system_id processor_power_dmi_table[] = {
89         { set_max_cstate, "Clevo 5600D", {
90           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92          (void *)2},
93         { set_max_cstate, "Pavilion zv5000", {
94           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96          (void *)1},
97         { set_max_cstate, "Asus L8400B", {
98           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100          (void *)1},
101         {},
102 };
103
104
105 /*
106  * Callers should disable interrupts before the call and enable
107  * interrupts after return.
108  */
109 static void __cpuidle acpi_safe_halt(void)
110 {
111         if (!tif_need_resched()) {
112                 safe_halt();
113                 local_irq_disable();
114         }
115 }
116
117 #ifdef ARCH_APICTIMER_STOPS_ON_C3
118
119 /*
120  * Some BIOS implementations switch to C3 in the published C2 state.
121  * This seems to be a common problem on AMD boxen, but other vendors
122  * are affected too. We pick the most conservative approach: we assume
123  * that the local APIC stops in both C2 and C3.
124  */
125 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126                                    struct acpi_processor_cx *cx)
127 {
128         struct acpi_processor_power *pwr = &pr->power;
129         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130
131         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132                 return;
133
134         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135                 type = ACPI_STATE_C1;
136
137         /*
138          * Check, if one of the previous states already marked the lapic
139          * unstable
140          */
141         if (pwr->timer_broadcast_on_state < state)
142                 return;
143
144         if (cx->type >= type)
145                 pr->power.timer_broadcast_on_state = state;
146 }
147
148 static void __lapic_timer_propagate_broadcast(void *arg)
149 {
150         struct acpi_processor *pr = (struct acpi_processor *) arg;
151
152         if (pr->power.timer_broadcast_on_state < INT_MAX)
153                 tick_broadcast_enable();
154         else
155                 tick_broadcast_disable();
156 }
157
158 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 {
160         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161                                  (void *)pr, 1);
162 }
163
164 /* Power(C) State timer broadcast control */
165 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166                                         struct acpi_processor_cx *cx)
167 {
168         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169 }
170
171 #else
172
173 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174                                    struct acpi_processor_cx *cstate) { }
175 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176
177 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178                                         struct acpi_processor_cx *cx)
179 {
180         return false;
181 }
182
183 #endif
184
185 #if defined(CONFIG_X86)
186 static void tsc_check_state(int state)
187 {
188         switch (boot_cpu_data.x86_vendor) {
189         case X86_VENDOR_HYGON:
190         case X86_VENDOR_AMD:
191         case X86_VENDOR_INTEL:
192         case X86_VENDOR_CENTAUR:
193         case X86_VENDOR_ZHAOXIN:
194                 /*
195                  * AMD Fam10h TSC will tick in all
196                  * C/P/S0/S1 states when this bit is set.
197                  */
198                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199                         return;
200                 fallthrough;
201         default:
202                 /* TSC could halt in idle, so notify users */
203                 if (state > ACPI_STATE_C1)
204                         mark_tsc_unstable("TSC halts in idle");
205         }
206 }
207 #else
208 static void tsc_check_state(int state) { return; }
209 #endif
210
211 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212 {
213
214         if (!pr->pblk)
215                 return -ENODEV;
216
217         /* if info is obtained from pblk/fadt, type equals state */
218         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220
221 #ifndef CONFIG_HOTPLUG_CPU
222         /*
223          * Check for P_LVL2_UP flag before entering C2 and above on
224          * an SMP system.
225          */
226         if ((num_online_cpus() > 1) &&
227             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228                 return -ENODEV;
229 #endif
230
231         /* determine C2 and C3 address from pblk */
232         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234
235         /* determine latencies from FADT */
236         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238
239         /*
240          * FADT specified C2 latency must be less than or equal to
241          * 100 microseconds.
242          */
243         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245                                   acpi_gbl_FADT.c2_latency);
246                 /* invalidate C2 */
247                 pr->power.states[ACPI_STATE_C2].address = 0;
248         }
249
250         /*
251          * FADT supplied C3 latency must be less than or equal to
252          * 1000 microseconds.
253          */
254         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256                                   acpi_gbl_FADT.c3_latency);
257                 /* invalidate C3 */
258                 pr->power.states[ACPI_STATE_C3].address = 0;
259         }
260
261         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262                           pr->power.states[ACPI_STATE_C2].address,
263                           pr->power.states[ACPI_STATE_C3].address);
264
265         snprintf(pr->power.states[ACPI_STATE_C2].desc,
266                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267                          pr->power.states[ACPI_STATE_C2].address);
268         snprintf(pr->power.states[ACPI_STATE_C3].desc,
269                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270                          pr->power.states[ACPI_STATE_C3].address);
271
272         return 0;
273 }
274
275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277         if (!pr->power.states[ACPI_STATE_C1].valid) {
278                 /* set the first C-State to C1 */
279                 /* all processors need to support C1 */
280                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281                 pr->power.states[ACPI_STATE_C1].valid = 1;
282                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285                          ACPI_CX_DESC_LEN, "ACPI HLT");
286         }
287         /* the C0 state only exists as a filler in our array */
288         pr->power.states[ACPI_STATE_C0].valid = 1;
289         return 0;
290 }
291
292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294         int ret;
295
296         if (nocst)
297                 return -ENODEV;
298
299         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300         if (ret)
301                 return ret;
302
303         if (!pr->power.count)
304                 return -EFAULT;
305
306         pr->flags.has_cst = 1;
307         return 0;
308 }
309
310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311                                            struct acpi_processor_cx *cx)
312 {
313         static int bm_check_flag = -1;
314         static int bm_control_flag = -1;
315
316
317         if (!cx->address)
318                 return;
319
320         /*
321          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322          * DMA transfers are used by any ISA device to avoid livelock.
323          * Note that we could disable Type-F DMA (as recommended by
324          * the erratum), but this is known to disrupt certain ISA
325          * devices thus we take the conservative approach.
326          */
327         else if (errata.piix4.fdma) {
328                 acpi_handle_debug(pr->handle,
329                                   "C3 not supported on PIIX4 with Type-F DMA\n");
330                 return;
331         }
332
333         /* All the logic here assumes flags.bm_check is same across all CPUs */
334         if (bm_check_flag == -1) {
335                 /* Determine whether bm_check is needed based on CPU  */
336                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337                 bm_check_flag = pr->flags.bm_check;
338                 bm_control_flag = pr->flags.bm_control;
339         } else {
340                 pr->flags.bm_check = bm_check_flag;
341                 pr->flags.bm_control = bm_control_flag;
342         }
343
344         if (pr->flags.bm_check) {
345                 if (!pr->flags.bm_control) {
346                         if (pr->flags.has_cst != 1) {
347                                 /* bus mastering control is necessary */
348                                 acpi_handle_debug(pr->handle,
349                                                   "C3 support requires BM control\n");
350                                 return;
351                         } else {
352                                 /* Here we enter C3 without bus mastering */
353                                 acpi_handle_debug(pr->handle,
354                                                   "C3 support without BM control\n");
355                         }
356                 }
357         } else {
358                 /*
359                  * WBINVD should be set in fadt, for C3 state to be
360                  * supported on when bm_check is not required.
361                  */
362                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363                         acpi_handle_debug(pr->handle,
364                                           "Cache invalidation should work properly"
365                                           " for C3 to be enabled on SMP systems\n");
366                         return;
367                 }
368         }
369
370         /*
371          * Otherwise we've met all of our C3 requirements.
372          * Normalize the C3 latency to expidite policy.  Enable
373          * checking of bus mastering status (bm_check) so we can
374          * use this in our C3 policy
375          */
376         cx->valid = 1;
377
378         /*
379          * On older chipsets, BM_RLD needs to be set
380          * in order for Bus Master activity to wake the
381          * system from C3.  Newer chipsets handle DMA
382          * during C3 automatically and BM_RLD is a NOP.
383          * In either case, the proper way to
384          * handle BM_RLD is to set it and leave it set.
385          */
386         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387
388         return;
389 }
390
391 static int acpi_cst_latency_cmp(const void *a, const void *b)
392 {
393         const struct acpi_processor_cx *x = a, *y = b;
394
395         if (!(x->valid && y->valid))
396                 return 0;
397         if (x->latency > y->latency)
398                 return 1;
399         if (x->latency < y->latency)
400                 return -1;
401         return 0;
402 }
403 static void acpi_cst_latency_swap(void *a, void *b, int n)
404 {
405         struct acpi_processor_cx *x = a, *y = b;
406
407         if (!(x->valid && y->valid))
408                 return;
409         swap(x->latency, y->latency);
410 }
411
412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414         unsigned int i;
415         unsigned int working = 0;
416         unsigned int last_latency = 0;
417         unsigned int last_type = 0;
418         bool buggy_latency = false;
419
420         pr->power.timer_broadcast_on_state = INT_MAX;
421
422         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423                 struct acpi_processor_cx *cx = &pr->power.states[i];
424
425                 switch (cx->type) {
426                 case ACPI_STATE_C1:
427                         cx->valid = 1;
428                         break;
429
430                 case ACPI_STATE_C2:
431                         if (!cx->address)
432                                 break;
433                         cx->valid = 1;
434                         break;
435
436                 case ACPI_STATE_C3:
437                         acpi_processor_power_verify_c3(pr, cx);
438                         break;
439                 }
440                 if (!cx->valid)
441                         continue;
442                 if (cx->type >= last_type && cx->latency < last_latency)
443                         buggy_latency = true;
444                 last_latency = cx->latency;
445                 last_type = cx->type;
446
447                 lapic_timer_check_state(i, pr, cx);
448                 tsc_check_state(cx->type);
449                 working++;
450         }
451
452         if (buggy_latency) {
453                 pr_notice("FW issue: working around C-state latencies out of order\n");
454                 sort(&pr->power.states[1], max_cstate,
455                      sizeof(struct acpi_processor_cx),
456                      acpi_cst_latency_cmp,
457                      acpi_cst_latency_swap);
458         }
459
460         lapic_timer_propagate_broadcast(pr);
461
462         return (working);
463 }
464
465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466 {
467         unsigned int i;
468         int result;
469
470
471         /* NOTE: the idle thread may not be running while calling
472          * this function */
473
474         /* Zero initialize all the C-states info. */
475         memset(pr->power.states, 0, sizeof(pr->power.states));
476
477         result = acpi_processor_get_power_info_cst(pr);
478         if (result == -ENODEV)
479                 result = acpi_processor_get_power_info_fadt(pr);
480
481         if (result)
482                 return result;
483
484         acpi_processor_get_power_info_default(pr);
485
486         pr->power.count = acpi_processor_power_verify(pr);
487
488         /*
489          * if one state of type C2 or C3 is available, mark this
490          * CPU as being "idle manageable"
491          */
492         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493                 if (pr->power.states[i].valid) {
494                         pr->power.count = i;
495                         pr->flags.power = 1;
496                 }
497         }
498
499         return 0;
500 }
501
502 /**
503  * acpi_idle_bm_check - checks if bus master activity was detected
504  */
505 static int acpi_idle_bm_check(void)
506 {
507         u32 bm_status = 0;
508
509         if (bm_check_disable)
510                 return 0;
511
512         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513         if (bm_status)
514                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515         /*
516          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517          * the true state of bus mastering activity; forcing us to
518          * manually check the BMIDEA bit of each IDE channel.
519          */
520         else if (errata.piix4.bmisx) {
521                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523                         bm_status = 1;
524         }
525         return bm_status;
526 }
527
528 static void wait_for_freeze(void)
529 {
530 #ifdef  CONFIG_X86
531         /* No delay is needed if we are in guest */
532         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533                 return;
534 #endif
535         /* Dummy wait op - must do something useless after P_LVL2 read
536            because chipsets cannot guarantee that STPCLK# signal
537            gets asserted in time to freeze execution properly. */
538         inl(acpi_gbl_FADT.xpm_timer_block.address);
539 }
540
541 /**
542  * acpi_idle_do_entry - enter idle state using the appropriate method
543  * @cx: cstate data
544  *
545  * Caller disables interrupt before call and enables interrupt after return.
546  */
547 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
548 {
549         perf_lopwr_cb(true);
550
551         if (cx->entry_method == ACPI_CSTATE_FFH) {
552                 /* Call into architectural FFH based C-state */
553                 acpi_processor_ffh_cstate_enter(cx);
554         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
555                 acpi_safe_halt();
556         } else {
557                 /* IO port based C-state */
558                 inb(cx->address);
559                 wait_for_freeze();
560         }
561
562         perf_lopwr_cb(false);
563 }
564
565 /**
566  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
567  * @dev: the target CPU
568  * @index: the index of suggested state
569  */
570 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
571 {
572         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
573
574         ACPI_FLUSH_CPU_CACHE();
575
576         while (1) {
577
578                 if (cx->entry_method == ACPI_CSTATE_HALT)
579                         safe_halt();
580                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
581                         inb(cx->address);
582                         wait_for_freeze();
583                 } else
584                         return -ENODEV;
585
586 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
587                 cond_wakeup_cpu0();
588 #endif
589         }
590
591         /* Never reached */
592         return 0;
593 }
594
595 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
596 {
597         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
598                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
599 }
600
601 static int c3_cpu_count;
602 static DEFINE_RAW_SPINLOCK(c3_lock);
603
604 /**
605  * acpi_idle_enter_bm - enters C3 with proper BM handling
606  * @drv: cpuidle driver
607  * @pr: Target processor
608  * @cx: Target state context
609  * @index: index of target state
610  */
611 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
612                                struct acpi_processor *pr,
613                                struct acpi_processor_cx *cx,
614                                int index)
615 {
616         static struct acpi_processor_cx safe_cx = {
617                 .entry_method = ACPI_CSTATE_HALT,
618         };
619
620         /*
621          * disable bus master
622          * bm_check implies we need ARB_DIS
623          * bm_control implies whether we can do ARB_DIS
624          *
625          * That leaves a case where bm_check is set and bm_control is not set.
626          * In that case we cannot do much, we enter C3 without doing anything.
627          */
628         bool dis_bm = pr->flags.bm_control;
629
630         /* If we can skip BM, demote to a safe state. */
631         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
632                 dis_bm = false;
633                 index = drv->safe_state_index;
634                 if (index >= 0) {
635                         cx = this_cpu_read(acpi_cstate[index]);
636                 } else {
637                         cx = &safe_cx;
638                         index = -EBUSY;
639                 }
640         }
641
642         if (dis_bm) {
643                 raw_spin_lock(&c3_lock);
644                 c3_cpu_count++;
645                 /* Disable bus master arbitration when all CPUs are in C3 */
646                 if (c3_cpu_count == num_online_cpus())
647                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
648                 raw_spin_unlock(&c3_lock);
649         }
650
651         ct_idle_enter();
652
653         acpi_idle_do_entry(cx);
654
655         ct_idle_exit();
656
657         /* Re-enable bus master arbitration */
658         if (dis_bm) {
659                 raw_spin_lock(&c3_lock);
660                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
661                 c3_cpu_count--;
662                 raw_spin_unlock(&c3_lock);
663         }
664
665         return index;
666 }
667
668 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
669                            struct cpuidle_driver *drv, int index)
670 {
671         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
672         struct acpi_processor *pr;
673
674         pr = __this_cpu_read(processors);
675         if (unlikely(!pr))
676                 return -EINVAL;
677
678         if (cx->type != ACPI_STATE_C1) {
679                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
680                         return acpi_idle_enter_bm(drv, pr, cx, index);
681
682                 /* C2 to C1 demotion. */
683                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
684                         index = ACPI_IDLE_STATE_START;
685                         cx = per_cpu(acpi_cstate[index], dev->cpu);
686                 }
687         }
688
689         if (cx->type == ACPI_STATE_C3)
690                 ACPI_FLUSH_CPU_CACHE();
691
692         acpi_idle_do_entry(cx);
693
694         return index;
695 }
696
697 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
698                                   struct cpuidle_driver *drv, int index)
699 {
700         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
701
702         if (cx->type == ACPI_STATE_C3) {
703                 struct acpi_processor *pr = __this_cpu_read(processors);
704
705                 if (unlikely(!pr))
706                         return 0;
707
708                 if (pr->flags.bm_check) {
709                         u8 bm_sts_skip = cx->bm_sts_skip;
710
711                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
712                         cx->bm_sts_skip = 1;
713                         acpi_idle_enter_bm(drv, pr, cx, index);
714                         cx->bm_sts_skip = bm_sts_skip;
715
716                         return 0;
717                 } else {
718                         ACPI_FLUSH_CPU_CACHE();
719                 }
720         }
721         acpi_idle_do_entry(cx);
722
723         return 0;
724 }
725
726 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
727                                            struct cpuidle_device *dev)
728 {
729         int i, count = ACPI_IDLE_STATE_START;
730         struct acpi_processor_cx *cx;
731         struct cpuidle_state *state;
732
733         if (max_cstate == 0)
734                 max_cstate = 1;
735
736         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
737                 state = &acpi_idle_driver.states[count];
738                 cx = &pr->power.states[i];
739
740                 if (!cx->valid)
741                         continue;
742
743                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
744
745                 if (lapic_timer_needs_broadcast(pr, cx))
746                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
747
748                 if (cx->type == ACPI_STATE_C3) {
749                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
750                         if (pr->flags.bm_check)
751                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
752                 }
753
754                 count++;
755                 if (count == CPUIDLE_STATE_MAX)
756                         break;
757         }
758
759         if (!count)
760                 return -EINVAL;
761
762         return 0;
763 }
764
765 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
766 {
767         int i, count;
768         struct acpi_processor_cx *cx;
769         struct cpuidle_state *state;
770         struct cpuidle_driver *drv = &acpi_idle_driver;
771
772         if (max_cstate == 0)
773                 max_cstate = 1;
774
775         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
776                 cpuidle_poll_state_init(drv);
777                 count = 1;
778         } else {
779                 count = 0;
780         }
781
782         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
783                 cx = &pr->power.states[i];
784
785                 if (!cx->valid)
786                         continue;
787
788                 state = &drv->states[count];
789                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
790                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
791                 state->exit_latency = cx->latency;
792                 state->target_residency = cx->latency * latency_factor;
793                 state->enter = acpi_idle_enter;
794
795                 state->flags = 0;
796                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
797                     cx->type == ACPI_STATE_C3) {
798                         state->enter_dead = acpi_idle_play_dead;
799                         if (cx->type != ACPI_STATE_C3)
800                                 drv->safe_state_index = count;
801                 }
802                 /*
803                  * Halt-induced C1 is not good for ->enter_s2idle, because it
804                  * re-enables interrupts on exit.  Moreover, C1 is generally not
805                  * particularly interesting from the suspend-to-idle angle, so
806                  * avoid C1 and the situations in which we may need to fall back
807                  * to it altogether.
808                  */
809                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
810                         state->enter_s2idle = acpi_idle_enter_s2idle;
811
812                 count++;
813                 if (count == CPUIDLE_STATE_MAX)
814                         break;
815         }
816
817         drv->state_count = count;
818
819         if (!count)
820                 return -EINVAL;
821
822         return 0;
823 }
824
825 static inline void acpi_processor_cstate_first_run_checks(void)
826 {
827         static int first_run;
828
829         if (first_run)
830                 return;
831         dmi_check_system(processor_power_dmi_table);
832         max_cstate = acpi_processor_cstate_check(max_cstate);
833         if (max_cstate < ACPI_C_STATES_MAX)
834                 pr_notice("processor limited to max C-state %d\n", max_cstate);
835
836         first_run++;
837
838         if (nocst)
839                 return;
840
841         acpi_processor_claim_cst_control();
842 }
843 #else
844
845 static inline int disabled_by_idle_boot_param(void) { return 0; }
846 static inline void acpi_processor_cstate_first_run_checks(void) { }
847 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
848 {
849         return -ENODEV;
850 }
851
852 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
853                                            struct cpuidle_device *dev)
854 {
855         return -EINVAL;
856 }
857
858 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
859 {
860         return -EINVAL;
861 }
862
863 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
864
865 struct acpi_lpi_states_array {
866         unsigned int size;
867         unsigned int composite_states_size;
868         struct acpi_lpi_state *entries;
869         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
870 };
871
872 static int obj_get_integer(union acpi_object *obj, u32 *value)
873 {
874         if (obj->type != ACPI_TYPE_INTEGER)
875                 return -EINVAL;
876
877         *value = obj->integer.value;
878         return 0;
879 }
880
881 static int acpi_processor_evaluate_lpi(acpi_handle handle,
882                                        struct acpi_lpi_states_array *info)
883 {
884         acpi_status status;
885         int ret = 0;
886         int pkg_count, state_idx = 1, loop;
887         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
888         union acpi_object *lpi_data;
889         struct acpi_lpi_state *lpi_state;
890
891         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
892         if (ACPI_FAILURE(status)) {
893                 acpi_handle_debug(handle, "No _LPI, giving up\n");
894                 return -ENODEV;
895         }
896
897         lpi_data = buffer.pointer;
898
899         /* There must be at least 4 elements = 3 elements + 1 package */
900         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
901             lpi_data->package.count < 4) {
902                 pr_debug("not enough elements in _LPI\n");
903                 ret = -ENODATA;
904                 goto end;
905         }
906
907         pkg_count = lpi_data->package.elements[2].integer.value;
908
909         /* Validate number of power states. */
910         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
911                 pr_debug("count given by _LPI is not valid\n");
912                 ret = -ENODATA;
913                 goto end;
914         }
915
916         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
917         if (!lpi_state) {
918                 ret = -ENOMEM;
919                 goto end;
920         }
921
922         info->size = pkg_count;
923         info->entries = lpi_state;
924
925         /* LPI States start at index 3 */
926         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
927                 union acpi_object *element, *pkg_elem, *obj;
928
929                 element = &lpi_data->package.elements[loop];
930                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
931                         continue;
932
933                 pkg_elem = element->package.elements;
934
935                 obj = pkg_elem + 6;
936                 if (obj->type == ACPI_TYPE_BUFFER) {
937                         struct acpi_power_register *reg;
938
939                         reg = (struct acpi_power_register *)obj->buffer.pointer;
940                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
941                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
942                                 continue;
943
944                         lpi_state->address = reg->address;
945                         lpi_state->entry_method =
946                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
947                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
948                 } else if (obj->type == ACPI_TYPE_INTEGER) {
949                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
950                         lpi_state->address = obj->integer.value;
951                 } else {
952                         continue;
953                 }
954
955                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
956
957                 obj = pkg_elem + 9;
958                 if (obj->type == ACPI_TYPE_STRING)
959                         strlcpy(lpi_state->desc, obj->string.pointer,
960                                 ACPI_CX_DESC_LEN);
961
962                 lpi_state->index = state_idx;
963                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
964                         pr_debug("No min. residency found, assuming 10 us\n");
965                         lpi_state->min_residency = 10;
966                 }
967
968                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
969                         pr_debug("No wakeup residency found, assuming 10 us\n");
970                         lpi_state->wake_latency = 10;
971                 }
972
973                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
974                         lpi_state->flags = 0;
975
976                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
977                         lpi_state->arch_flags = 0;
978
979                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
980                         lpi_state->res_cnt_freq = 1;
981
982                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
983                         lpi_state->enable_parent_state = 0;
984         }
985
986         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
987 end:
988         kfree(buffer.pointer);
989         return ret;
990 }
991
992 /*
993  * flat_state_cnt - the number of composite LPI states after the process of flattening
994  */
995 static int flat_state_cnt;
996
997 /**
998  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
999  *
1000  * @local: local LPI state
1001  * @parent: parent LPI state
1002  * @result: composite LPI state
1003  */
1004 static bool combine_lpi_states(struct acpi_lpi_state *local,
1005                                struct acpi_lpi_state *parent,
1006                                struct acpi_lpi_state *result)
1007 {
1008         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1009                 if (!parent->address) /* 0 means autopromotable */
1010                         return false;
1011                 result->address = local->address + parent->address;
1012         } else {
1013                 result->address = parent->address;
1014         }
1015
1016         result->min_residency = max(local->min_residency, parent->min_residency);
1017         result->wake_latency = local->wake_latency + parent->wake_latency;
1018         result->enable_parent_state = parent->enable_parent_state;
1019         result->entry_method = local->entry_method;
1020
1021         result->flags = parent->flags;
1022         result->arch_flags = parent->arch_flags;
1023         result->index = parent->index;
1024
1025         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1026         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1027         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1028         return true;
1029 }
1030
1031 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1032
1033 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1034                                   struct acpi_lpi_state *t)
1035 {
1036         curr_level->composite_states[curr_level->composite_states_size++] = t;
1037 }
1038
1039 static int flatten_lpi_states(struct acpi_processor *pr,
1040                               struct acpi_lpi_states_array *curr_level,
1041                               struct acpi_lpi_states_array *prev_level)
1042 {
1043         int i, j, state_count = curr_level->size;
1044         struct acpi_lpi_state *p, *t = curr_level->entries;
1045
1046         curr_level->composite_states_size = 0;
1047         for (j = 0; j < state_count; j++, t++) {
1048                 struct acpi_lpi_state *flpi;
1049
1050                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1051                         continue;
1052
1053                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1054                         pr_warn("Limiting number of LPI states to max (%d)\n",
1055                                 ACPI_PROCESSOR_MAX_POWER);
1056                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1057                         break;
1058                 }
1059
1060                 flpi = &pr->power.lpi_states[flat_state_cnt];
1061
1062                 if (!prev_level) { /* leaf/processor node */
1063                         memcpy(flpi, t, sizeof(*t));
1064                         stash_composite_state(curr_level, flpi);
1065                         flat_state_cnt++;
1066                         continue;
1067                 }
1068
1069                 for (i = 0; i < prev_level->composite_states_size; i++) {
1070                         p = prev_level->composite_states[i];
1071                         if (t->index <= p->enable_parent_state &&
1072                             combine_lpi_states(p, t, flpi)) {
1073                                 stash_composite_state(curr_level, flpi);
1074                                 flat_state_cnt++;
1075                                 flpi++;
1076                         }
1077                 }
1078         }
1079
1080         kfree(curr_level->entries);
1081         return 0;
1082 }
1083
1084 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1085 {
1086         return -EOPNOTSUPP;
1087 }
1088
1089 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1090 {
1091         int ret, i;
1092         acpi_status status;
1093         acpi_handle handle = pr->handle, pr_ahandle;
1094         struct acpi_device *d = NULL;
1095         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1096
1097         /* make sure our architecture has support */
1098         ret = acpi_processor_ffh_lpi_probe(pr->id);
1099         if (ret == -EOPNOTSUPP)
1100                 return ret;
1101
1102         if (!osc_pc_lpi_support_confirmed)
1103                 return -EOPNOTSUPP;
1104
1105         if (!acpi_has_method(handle, "_LPI"))
1106                 return -EINVAL;
1107
1108         flat_state_cnt = 0;
1109         prev = &info[0];
1110         curr = &info[1];
1111         handle = pr->handle;
1112         ret = acpi_processor_evaluate_lpi(handle, prev);
1113         if (ret)
1114                 return ret;
1115         flatten_lpi_states(pr, prev, NULL);
1116
1117         status = acpi_get_parent(handle, &pr_ahandle);
1118         while (ACPI_SUCCESS(status)) {
1119                 d = acpi_fetch_acpi_dev(pr_ahandle);
1120                 handle = pr_ahandle;
1121
1122                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1123                         break;
1124
1125                 /* can be optional ? */
1126                 if (!acpi_has_method(handle, "_LPI"))
1127                         break;
1128
1129                 ret = acpi_processor_evaluate_lpi(handle, curr);
1130                 if (ret)
1131                         break;
1132
1133                 /* flatten all the LPI states in this level of hierarchy */
1134                 flatten_lpi_states(pr, curr, prev);
1135
1136                 tmp = prev, prev = curr, curr = tmp;
1137
1138                 status = acpi_get_parent(handle, &pr_ahandle);
1139         }
1140
1141         pr->power.count = flat_state_cnt;
1142         /* reset the index after flattening */
1143         for (i = 0; i < pr->power.count; i++)
1144                 pr->power.lpi_states[i].index = i;
1145
1146         /* Tell driver that _LPI is supported. */
1147         pr->flags.has_lpi = 1;
1148         pr->flags.power = 1;
1149
1150         return 0;
1151 }
1152
1153 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1154 {
1155         return -ENODEV;
1156 }
1157
1158 /**
1159  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1160  * @dev: the target CPU
1161  * @drv: cpuidle driver containing cpuidle state info
1162  * @index: index of target state
1163  *
1164  * Return: 0 for success or negative value for error
1165  */
1166 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1167                                struct cpuidle_driver *drv, int index)
1168 {
1169         struct acpi_processor *pr;
1170         struct acpi_lpi_state *lpi;
1171
1172         pr = __this_cpu_read(processors);
1173
1174         if (unlikely(!pr))
1175                 return -EINVAL;
1176
1177         lpi = &pr->power.lpi_states[index];
1178         if (lpi->entry_method == ACPI_CSTATE_FFH)
1179                 return acpi_processor_ffh_lpi_enter(lpi);
1180
1181         return -EINVAL;
1182 }
1183
1184 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1185 {
1186         int i;
1187         struct acpi_lpi_state *lpi;
1188         struct cpuidle_state *state;
1189         struct cpuidle_driver *drv = &acpi_idle_driver;
1190
1191         if (!pr->flags.has_lpi)
1192                 return -EOPNOTSUPP;
1193
1194         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1195                 lpi = &pr->power.lpi_states[i];
1196
1197                 state = &drv->states[i];
1198                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1199                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1200                 state->exit_latency = lpi->wake_latency;
1201                 state->target_residency = lpi->min_residency;
1202                 if (lpi->arch_flags)
1203                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1204                 state->enter = acpi_idle_lpi_enter;
1205                 drv->safe_state_index = i;
1206         }
1207
1208         drv->state_count = i;
1209
1210         return 0;
1211 }
1212
1213 /**
1214  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1215  * global state data i.e. idle routines
1216  *
1217  * @pr: the ACPI processor
1218  */
1219 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1220 {
1221         int i;
1222         struct cpuidle_driver *drv = &acpi_idle_driver;
1223
1224         if (!pr->flags.power_setup_done || !pr->flags.power)
1225                 return -EINVAL;
1226
1227         drv->safe_state_index = -1;
1228         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1229                 drv->states[i].name[0] = '\0';
1230                 drv->states[i].desc[0] = '\0';
1231         }
1232
1233         if (pr->flags.has_lpi)
1234                 return acpi_processor_setup_lpi_states(pr);
1235
1236         return acpi_processor_setup_cstates(pr);
1237 }
1238
1239 /**
1240  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1241  * device i.e. per-cpu data
1242  *
1243  * @pr: the ACPI processor
1244  * @dev : the cpuidle device
1245  */
1246 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1247                                             struct cpuidle_device *dev)
1248 {
1249         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1250                 return -EINVAL;
1251
1252         dev->cpu = pr->id;
1253         if (pr->flags.has_lpi)
1254                 return acpi_processor_ffh_lpi_probe(pr->id);
1255
1256         return acpi_processor_setup_cpuidle_cx(pr, dev);
1257 }
1258
1259 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1260 {
1261         int ret;
1262
1263         ret = acpi_processor_get_lpi_info(pr);
1264         if (ret)
1265                 ret = acpi_processor_get_cstate_info(pr);
1266
1267         return ret;
1268 }
1269
1270 int acpi_processor_hotplug(struct acpi_processor *pr)
1271 {
1272         int ret = 0;
1273         struct cpuidle_device *dev;
1274
1275         if (disabled_by_idle_boot_param())
1276                 return 0;
1277
1278         if (!pr->flags.power_setup_done)
1279                 return -ENODEV;
1280
1281         dev = per_cpu(acpi_cpuidle_device, pr->id);
1282         cpuidle_pause_and_lock();
1283         cpuidle_disable_device(dev);
1284         ret = acpi_processor_get_power_info(pr);
1285         if (!ret && pr->flags.power) {
1286                 acpi_processor_setup_cpuidle_dev(pr, dev);
1287                 ret = cpuidle_enable_device(dev);
1288         }
1289         cpuidle_resume_and_unlock();
1290
1291         return ret;
1292 }
1293
1294 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1295 {
1296         int cpu;
1297         struct acpi_processor *_pr;
1298         struct cpuidle_device *dev;
1299
1300         if (disabled_by_idle_boot_param())
1301                 return 0;
1302
1303         if (!pr->flags.power_setup_done)
1304                 return -ENODEV;
1305
1306         /*
1307          * FIXME:  Design the ACPI notification to make it once per
1308          * system instead of once per-cpu.  This condition is a hack
1309          * to make the code that updates C-States be called once.
1310          */
1311
1312         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1313
1314                 /* Protect against cpu-hotplug */
1315                 cpus_read_lock();
1316                 cpuidle_pause_and_lock();
1317
1318                 /* Disable all cpuidle devices */
1319                 for_each_online_cpu(cpu) {
1320                         _pr = per_cpu(processors, cpu);
1321                         if (!_pr || !_pr->flags.power_setup_done)
1322                                 continue;
1323                         dev = per_cpu(acpi_cpuidle_device, cpu);
1324                         cpuidle_disable_device(dev);
1325                 }
1326
1327                 /* Populate Updated C-state information */
1328                 acpi_processor_get_power_info(pr);
1329                 acpi_processor_setup_cpuidle_states(pr);
1330
1331                 /* Enable all cpuidle devices */
1332                 for_each_online_cpu(cpu) {
1333                         _pr = per_cpu(processors, cpu);
1334                         if (!_pr || !_pr->flags.power_setup_done)
1335                                 continue;
1336                         acpi_processor_get_power_info(_pr);
1337                         if (_pr->flags.power) {
1338                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1339                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1340                                 cpuidle_enable_device(dev);
1341                         }
1342                 }
1343                 cpuidle_resume_and_unlock();
1344                 cpus_read_unlock();
1345         }
1346
1347         return 0;
1348 }
1349
1350 static int acpi_processor_registered;
1351
1352 int acpi_processor_power_init(struct acpi_processor *pr)
1353 {
1354         int retval;
1355         struct cpuidle_device *dev;
1356
1357         if (disabled_by_idle_boot_param())
1358                 return 0;
1359
1360         acpi_processor_cstate_first_run_checks();
1361
1362         if (!acpi_processor_get_power_info(pr))
1363                 pr->flags.power_setup_done = 1;
1364
1365         /*
1366          * Install the idle handler if processor power management is supported.
1367          * Note that we use previously set idle handler will be used on
1368          * platforms that only support C1.
1369          */
1370         if (pr->flags.power) {
1371                 /* Register acpi_idle_driver if not already registered */
1372                 if (!acpi_processor_registered) {
1373                         acpi_processor_setup_cpuidle_states(pr);
1374                         retval = cpuidle_register_driver(&acpi_idle_driver);
1375                         if (retval)
1376                                 return retval;
1377                         pr_debug("%s registered with cpuidle\n",
1378                                  acpi_idle_driver.name);
1379                 }
1380
1381                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1382                 if (!dev)
1383                         return -ENOMEM;
1384                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1385
1386                 acpi_processor_setup_cpuidle_dev(pr, dev);
1387
1388                 /* Register per-cpu cpuidle_device. Cpuidle driver
1389                  * must already be registered before registering device
1390                  */
1391                 retval = cpuidle_register_device(dev);
1392                 if (retval) {
1393                         if (acpi_processor_registered == 0)
1394                                 cpuidle_unregister_driver(&acpi_idle_driver);
1395                         return retval;
1396                 }
1397                 acpi_processor_registered++;
1398         }
1399         return 0;
1400 }
1401
1402 int acpi_processor_power_exit(struct acpi_processor *pr)
1403 {
1404         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1405
1406         if (disabled_by_idle_boot_param())
1407                 return 0;
1408
1409         if (pr->flags.power) {
1410                 cpuidle_unregister_device(dev);
1411                 acpi_processor_registered--;
1412                 if (acpi_processor_registered == 0)
1413                         cpuidle_unregister_driver(&acpi_idle_driver);
1414         }
1415
1416         pr->flags.power_setup_done = 0;
1417         return 0;
1418 }