471afeea87c214b8af030f6d27adb151cfd0d54e
[sfrench/cifs-2.6.git] / drivers / acpi / pmic / intel_pmic.c
1 /*
2  * intel_pmic.c - Intel PMIC operation region driver
3  *
4  * Copyright (C) 2014 Intel Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License version
8  * 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/export.h>
17 #include <linux/acpi.h>
18 #include <linux/mfd/intel_soc_pmic.h>
19 #include <linux/regmap.h>
20 #include <acpi/acpi_lpat.h>
21 #include "intel_pmic.h"
22
23 #define PMIC_POWER_OPREGION_ID          0x8d
24 #define PMIC_THERMAL_OPREGION_ID        0x8c
25 #define PMIC_REGS_OPREGION_ID           0x8f
26
27 struct intel_pmic_regs_handler_ctx {
28         unsigned int val;
29         u16 addr;
30 };
31
32 struct intel_pmic_opregion {
33         struct mutex lock;
34         struct acpi_lpat_conversion_table *lpat_table;
35         struct regmap *regmap;
36         struct intel_pmic_opregion_data *data;
37         struct intel_pmic_regs_handler_ctx ctx;
38 };
39
40 static struct intel_pmic_opregion *intel_pmic_opregion;
41
42 static int pmic_get_reg_bit(int address, struct pmic_table *table,
43                             int count, int *reg, int *bit)
44 {
45         int i;
46
47         for (i = 0; i < count; i++) {
48                 if (table[i].address == address) {
49                         *reg = table[i].reg;
50                         if (bit)
51                                 *bit = table[i].bit;
52                         return 0;
53                 }
54         }
55         return -ENOENT;
56 }
57
58 static acpi_status intel_pmic_power_handler(u32 function,
59                 acpi_physical_address address, u32 bits, u64 *value64,
60                 void *handler_context, void *region_context)
61 {
62         struct intel_pmic_opregion *opregion = region_context;
63         struct regmap *regmap = opregion->regmap;
64         struct intel_pmic_opregion_data *d = opregion->data;
65         int reg, bit, result;
66
67         if (bits != 32 || !value64)
68                 return AE_BAD_PARAMETER;
69
70         if (function == ACPI_WRITE && !(*value64 == 0 || *value64 == 1))
71                 return AE_BAD_PARAMETER;
72
73         result = pmic_get_reg_bit(address, d->power_table,
74                                   d->power_table_count, &reg, &bit);
75         if (result == -ENOENT)
76                 return AE_BAD_PARAMETER;
77
78         mutex_lock(&opregion->lock);
79
80         result = function == ACPI_READ ?
81                 d->get_power(regmap, reg, bit, value64) :
82                 d->update_power(regmap, reg, bit, *value64 == 1);
83
84         mutex_unlock(&opregion->lock);
85
86         return result ? AE_ERROR : AE_OK;
87 }
88
89 static int pmic_read_temp(struct intel_pmic_opregion *opregion,
90                           int reg, u64 *value)
91 {
92         int raw_temp, temp;
93
94         if (!opregion->data->get_raw_temp)
95                 return -ENXIO;
96
97         raw_temp = opregion->data->get_raw_temp(opregion->regmap, reg);
98         if (raw_temp < 0)
99                 return raw_temp;
100
101         if (!opregion->lpat_table) {
102                 *value = raw_temp;
103                 return 0;
104         }
105
106         temp = acpi_lpat_raw_to_temp(opregion->lpat_table, raw_temp);
107         if (temp < 0)
108                 return temp;
109
110         *value = temp;
111         return 0;
112 }
113
114 static int pmic_thermal_temp(struct intel_pmic_opregion *opregion, int reg,
115                              u32 function, u64 *value)
116 {
117         return function == ACPI_READ ?
118                 pmic_read_temp(opregion, reg, value) : -EINVAL;
119 }
120
121 static int pmic_thermal_aux(struct intel_pmic_opregion *opregion, int reg,
122                             u32 function, u64 *value)
123 {
124         int raw_temp;
125
126         if (function == ACPI_READ)
127                 return pmic_read_temp(opregion, reg, value);
128
129         if (!opregion->data->update_aux)
130                 return -ENXIO;
131
132         if (opregion->lpat_table) {
133                 raw_temp = acpi_lpat_temp_to_raw(opregion->lpat_table, *value);
134                 if (raw_temp < 0)
135                         return raw_temp;
136         } else {
137                 raw_temp = *value;
138         }
139
140         return opregion->data->update_aux(opregion->regmap, reg, raw_temp);
141 }
142
143 static int pmic_thermal_pen(struct intel_pmic_opregion *opregion, int reg,
144                             int bit, u32 function, u64 *value)
145 {
146         struct intel_pmic_opregion_data *d = opregion->data;
147         struct regmap *regmap = opregion->regmap;
148
149         if (!d->get_policy || !d->update_policy)
150                 return -ENXIO;
151
152         if (function == ACPI_READ)
153                 return d->get_policy(regmap, reg, bit, value);
154
155         if (*value != 0 && *value != 1)
156                 return -EINVAL;
157
158         return d->update_policy(regmap, reg, bit, *value);
159 }
160
161 static bool pmic_thermal_is_temp(int address)
162 {
163         return (address <= 0x3c) && !(address % 12);
164 }
165
166 static bool pmic_thermal_is_aux(int address)
167 {
168         return (address >= 4 && address <= 0x40 && !((address - 4) % 12)) ||
169                (address >= 8 && address <= 0x44 && !((address - 8) % 12));
170 }
171
172 static bool pmic_thermal_is_pen(int address)
173 {
174         return address >= 0x48 && address <= 0x5c;
175 }
176
177 static acpi_status intel_pmic_thermal_handler(u32 function,
178                 acpi_physical_address address, u32 bits, u64 *value64,
179                 void *handler_context, void *region_context)
180 {
181         struct intel_pmic_opregion *opregion = region_context;
182         struct intel_pmic_opregion_data *d = opregion->data;
183         int reg, bit, result;
184
185         if (bits != 32 || !value64)
186                 return AE_BAD_PARAMETER;
187
188         result = pmic_get_reg_bit(address, d->thermal_table,
189                                   d->thermal_table_count, &reg, &bit);
190         if (result == -ENOENT)
191                 return AE_BAD_PARAMETER;
192
193         mutex_lock(&opregion->lock);
194
195         if (pmic_thermal_is_temp(address))
196                 result = pmic_thermal_temp(opregion, reg, function, value64);
197         else if (pmic_thermal_is_aux(address))
198                 result = pmic_thermal_aux(opregion, reg, function, value64);
199         else if (pmic_thermal_is_pen(address))
200                 result = pmic_thermal_pen(opregion, reg, bit,
201                                                 function, value64);
202         else
203                 result = -EINVAL;
204
205         mutex_unlock(&opregion->lock);
206
207         if (result < 0) {
208                 if (result == -EINVAL)
209                         return AE_BAD_PARAMETER;
210                 else
211                         return AE_ERROR;
212         }
213
214         return AE_OK;
215 }
216
217 static acpi_status intel_pmic_regs_handler(u32 function,
218                 acpi_physical_address address, u32 bits, u64 *value64,
219                 void *handler_context, void *region_context)
220 {
221         struct intel_pmic_opregion *opregion = region_context;
222         int result = 0;
223
224         switch (address) {
225         case 0:
226                 return AE_OK;
227         case 1:
228                 opregion->ctx.addr |= (*value64 & 0xff) << 8;
229                 return AE_OK;
230         case 2:
231                 opregion->ctx.addr |= *value64 & 0xff;
232                 return AE_OK;
233         case 3:
234                 opregion->ctx.val = *value64 & 0xff;
235                 return AE_OK;
236         case 4:
237                 if (*value64) {
238                         result = regmap_write(opregion->regmap, opregion->ctx.addr,
239                                               opregion->ctx.val);
240                 } else {
241                         result = regmap_read(opregion->regmap, opregion->ctx.addr,
242                                              &opregion->ctx.val);
243                         if (result == 0)
244                                 *value64 = opregion->ctx.val;
245                 }
246                 memset(&opregion->ctx, 0x00, sizeof(opregion->ctx));
247         }
248
249         if (result < 0) {
250                 if (result == -EINVAL)
251                         return AE_BAD_PARAMETER;
252                 else
253                         return AE_ERROR;
254         }
255
256         return AE_OK;
257 }
258
259 int intel_pmic_install_opregion_handler(struct device *dev, acpi_handle handle,
260                                         struct regmap *regmap,
261                                         struct intel_pmic_opregion_data *d)
262 {
263         acpi_status status;
264         struct intel_pmic_opregion *opregion;
265         int ret;
266
267         if (!dev || !regmap || !d)
268                 return -EINVAL;
269
270         if (!handle)
271                 return -ENODEV;
272
273         opregion = devm_kzalloc(dev, sizeof(*opregion), GFP_KERNEL);
274         if (!opregion)
275                 return -ENOMEM;
276
277         mutex_init(&opregion->lock);
278         opregion->regmap = regmap;
279         opregion->lpat_table = acpi_lpat_get_conversion_table(handle);
280
281         status = acpi_install_address_space_handler(handle,
282                                                     PMIC_POWER_OPREGION_ID,
283                                                     intel_pmic_power_handler,
284                                                     NULL, opregion);
285         if (ACPI_FAILURE(status)) {
286                 ret = -ENODEV;
287                 goto out_error;
288         }
289
290         status = acpi_install_address_space_handler(handle,
291                                                     PMIC_THERMAL_OPREGION_ID,
292                                                     intel_pmic_thermal_handler,
293                                                     NULL, opregion);
294         if (ACPI_FAILURE(status)) {
295                 acpi_remove_address_space_handler(handle, PMIC_POWER_OPREGION_ID,
296                                                   intel_pmic_power_handler);
297                 ret = -ENODEV;
298                 goto out_remove_power_handler;
299         }
300
301         status = acpi_install_address_space_handler(handle,
302                         PMIC_REGS_OPREGION_ID, intel_pmic_regs_handler, NULL,
303                         opregion);
304         if (ACPI_FAILURE(status)) {
305                 ret = -ENODEV;
306                 goto out_remove_thermal_handler;
307         }
308
309         opregion->data = d;
310         intel_pmic_opregion = opregion;
311         return 0;
312
313 out_remove_thermal_handler:
314         acpi_remove_address_space_handler(handle, PMIC_THERMAL_OPREGION_ID,
315                                           intel_pmic_thermal_handler);
316
317 out_remove_power_handler:
318         acpi_remove_address_space_handler(handle, PMIC_POWER_OPREGION_ID,
319                                           intel_pmic_power_handler);
320
321 out_error:
322         acpi_lpat_free_conversion_table(opregion->lpat_table);
323         return ret;
324 }
325 EXPORT_SYMBOL_GPL(intel_pmic_install_opregion_handler);
326
327 /**
328  * intel_soc_pmic_exec_mipi_pmic_seq_element - Execute PMIC MIPI sequence
329  * @i2c_address:  I2C client address for the PMIC
330  * @reg_address:  PMIC register address
331  * @value:        New value for the register bits to change
332  * @mask:         Mask indicating which register bits to change
333  *
334  * DSI LCD panels describe an initialization sequence in the i915 VBT (Video
335  * BIOS Tables) using so called MIPI sequences. One possible element in these
336  * sequences is a PMIC specific element of 15 bytes.
337  *
338  * This function executes these PMIC specific elements sending the embedded
339  * commands to the PMIC.
340  *
341  * Return 0 on success, < 0 on failure.
342  */
343 int intel_soc_pmic_exec_mipi_pmic_seq_element(u16 i2c_address, u32 reg_address,
344                                               u32 value, u32 mask)
345 {
346         struct intel_pmic_opregion_data *d;
347         int ret;
348
349         if (!intel_pmic_opregion) {
350                 pr_warn("%s: No PMIC registered\n", __func__);
351                 return -ENXIO;
352         }
353
354         d = intel_pmic_opregion->data;
355
356         mutex_lock(&intel_pmic_opregion->lock);
357
358         if (d->exec_mipi_pmic_seq_element) {
359                 ret = d->exec_mipi_pmic_seq_element(intel_pmic_opregion->regmap,
360                                                     i2c_address, reg_address,
361                                                     value, mask);
362         } else {
363                 pr_warn("%s: Not implemented\n", __func__);
364                 pr_warn("%s: i2c-addr: 0x%x reg-addr 0x%x value 0x%x mask 0x%x\n",
365                         __func__, i2c_address, reg_address, value, mask);
366                 ret = -EOPNOTSUPP;
367         }
368
369         mutex_unlock(&intel_pmic_opregion->lock);
370
371         return ret;
372 }
373 EXPORT_SYMBOL_GPL(intel_soc_pmic_exec_mipi_pmic_seq_element);