recoverd: Move disabling of IP checks into do_takeover_run()
[kai/samba-autobuild/.git] / ctdb / server / ctdb_takeover.c
1 /* 
2    ctdb ip takeover code
3
4    Copyright (C) Ronnie Sahlberg  2007
5    Copyright (C) Andrew Tridgell  2007
6    Copyright (C) Martin Schwenke  2011
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12    
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17    
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21 #include "includes.h"
22 #include "tdb.h"
23 #include "lib/util/dlinklist.h"
24 #include "system/network.h"
25 #include "system/filesys.h"
26 #include "system/wait.h"
27 #include "../include/ctdb_private.h"
28 #include "../common/rb_tree.h"
29
30
31 #define TAKEOVER_TIMEOUT() timeval_current_ofs(ctdb->tunable.takeover_timeout,0)
32
33 #define CTDB_ARP_INTERVAL 1
34 #define CTDB_ARP_REPEAT   3
35
36 /* Flags used in IP allocation algorithms. */
37 struct ctdb_ipflags {
38         bool noiptakeover;
39         bool noiphost;
40 };
41
42 struct ctdb_iface {
43         struct ctdb_iface *prev, *next;
44         const char *name;
45         bool link_up;
46         uint32_t references;
47 };
48
49 static const char *ctdb_vnn_iface_string(const struct ctdb_vnn *vnn)
50 {
51         if (vnn->iface) {
52                 return vnn->iface->name;
53         }
54
55         return "__none__";
56 }
57
58 static int ctdb_add_local_iface(struct ctdb_context *ctdb, const char *iface)
59 {
60         struct ctdb_iface *i;
61
62         /* Verify that we dont have an entry for this ip yet */
63         for (i=ctdb->ifaces;i;i=i->next) {
64                 if (strcmp(i->name, iface) == 0) {
65                         return 0;
66                 }
67         }
68
69         /* create a new structure for this interface */
70         i = talloc_zero(ctdb, struct ctdb_iface);
71         CTDB_NO_MEMORY_FATAL(ctdb, i);
72         i->name = talloc_strdup(i, iface);
73         CTDB_NO_MEMORY(ctdb, i->name);
74         /*
75          * If link_up defaults to true then IPs can be allocated to a
76          * node during the first recovery.  However, then an interface
77          * could have its link marked down during the startup event,
78          * causing the IP to move almost immediately.  If link_up
79          * defaults to false then, during normal operation, IPs added
80          * to a new interface can't be assigned until a monitor cycle
81          * has occurred and marked the new interfaces up.  This makes
82          * IP allocation unpredictable.  The following is a neat
83          * compromise: early in startup link_up defaults to false, so
84          * IPs can't be assigned, and after startup IPs can be
85          * assigned immediately.
86          */
87         i->link_up = (ctdb->runstate == CTDB_RUNSTATE_RUNNING);
88
89         DLIST_ADD(ctdb->ifaces, i);
90
91         return 0;
92 }
93
94 static bool vnn_has_interface_with_name(struct ctdb_vnn *vnn,
95                                         const char *name)
96 {
97         int n;
98
99         for (n = 0; vnn->ifaces[n] != NULL; n++) {
100                 if (strcmp(name, vnn->ifaces[n]) == 0) {
101                         return true;
102                 }
103         }
104
105         return false;
106 }
107
108 /* If any interfaces now have no possible IPs then delete them.  This
109  * implementation is naive (i.e. simple) rather than clever
110  * (i.e. complex).  Given that this is run on delip and that operation
111  * is rare, this doesn't need to be efficient - it needs to be
112  * foolproof.  One alternative is reference counting, where the logic
113  * is distributed and can, therefore, be broken in multiple places.
114  * Another alternative is to build a red-black tree of interfaces that
115  * can have addresses (by walking ctdb->vnn and ctdb->single_ip_vnn
116  * once) and then walking ctdb->ifaces once and deleting those not in
117  * the tree.  Let's go to one of those if the naive implementation
118  * causes problems...  :-)
119  */
120 static void ctdb_remove_orphaned_ifaces(struct ctdb_context *ctdb,
121                                         struct ctdb_vnn *vnn,
122                                         TALLOC_CTX *mem_ctx)
123 {
124         struct ctdb_iface *i;
125
126         /* For each interface, check if there's an IP using it. */
127         for(i=ctdb->ifaces; i; i=i->next) {
128                 struct ctdb_vnn *tv;
129                 bool found;
130
131                 /* Only consider interfaces named in the given VNN. */
132                 if (!vnn_has_interface_with_name(vnn, i->name)) {
133                         continue;
134                 }
135
136                 /* Is the "single IP" on this interface? */
137                 if ((ctdb->single_ip_vnn != NULL) &&
138                     (ctdb->single_ip_vnn->ifaces[0] != NULL) &&
139                     (strcmp(i->name, ctdb->single_ip_vnn->ifaces[0]) == 0)) {
140                         /* Found, next interface please... */
141                         continue;
142                 }
143                 /* Search for a vnn with this interface. */
144                 found = false;
145                 for (tv=ctdb->vnn; tv; tv=tv->next) {
146                         if (vnn_has_interface_with_name(tv, i->name)) {
147                                 found = true;
148                                 break;
149                         }
150                 }
151
152                 if (!found) {
153                         /* None of the VNNs are using this interface. */
154                         DLIST_REMOVE(ctdb->ifaces, i);
155                         /* Caller will free mem_ctx when convenient. */
156                         talloc_steal(mem_ctx, i);
157                 }
158         }
159 }
160
161
162 static struct ctdb_iface *ctdb_find_iface(struct ctdb_context *ctdb,
163                                           const char *iface)
164 {
165         struct ctdb_iface *i;
166
167         for (i=ctdb->ifaces;i;i=i->next) {
168                 if (strcmp(i->name, iface) == 0) {
169                         return i;
170                 }
171         }
172
173         return NULL;
174 }
175
176 static struct ctdb_iface *ctdb_vnn_best_iface(struct ctdb_context *ctdb,
177                                               struct ctdb_vnn *vnn)
178 {
179         int i;
180         struct ctdb_iface *cur = NULL;
181         struct ctdb_iface *best = NULL;
182
183         for (i=0; vnn->ifaces[i]; i++) {
184
185                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
186                 if (cur == NULL) {
187                         continue;
188                 }
189
190                 if (!cur->link_up) {
191                         continue;
192                 }
193
194                 if (best == NULL) {
195                         best = cur;
196                         continue;
197                 }
198
199                 if (cur->references < best->references) {
200                         best = cur;
201                         continue;
202                 }
203         }
204
205         return best;
206 }
207
208 static int32_t ctdb_vnn_assign_iface(struct ctdb_context *ctdb,
209                                      struct ctdb_vnn *vnn)
210 {
211         struct ctdb_iface *best = NULL;
212
213         if (vnn->iface) {
214                 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
215                                    "still assigned to iface '%s'\n",
216                                    ctdb_addr_to_str(&vnn->public_address),
217                                    ctdb_vnn_iface_string(vnn)));
218                 return 0;
219         }
220
221         best = ctdb_vnn_best_iface(ctdb, vnn);
222         if (best == NULL) {
223                 DEBUG(DEBUG_ERR, (__location__ " public address '%s' "
224                                   "cannot assign to iface any iface\n",
225                                   ctdb_addr_to_str(&vnn->public_address)));
226                 return -1;
227         }
228
229         vnn->iface = best;
230         best->references++;
231         vnn->pnn = ctdb->pnn;
232
233         DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
234                            "now assigned to iface '%s' refs[%d]\n",
235                            ctdb_addr_to_str(&vnn->public_address),
236                            ctdb_vnn_iface_string(vnn),
237                            best->references));
238         return 0;
239 }
240
241 static void ctdb_vnn_unassign_iface(struct ctdb_context *ctdb,
242                                     struct ctdb_vnn *vnn)
243 {
244         DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
245                            "now unassigned (old iface '%s' refs[%d])\n",
246                            ctdb_addr_to_str(&vnn->public_address),
247                            ctdb_vnn_iface_string(vnn),
248                            vnn->iface?vnn->iface->references:0));
249         if (vnn->iface) {
250                 vnn->iface->references--;
251         }
252         vnn->iface = NULL;
253         if (vnn->pnn == ctdb->pnn) {
254                 vnn->pnn = -1;
255         }
256 }
257
258 static bool ctdb_vnn_available(struct ctdb_context *ctdb,
259                                struct ctdb_vnn *vnn)
260 {
261         int i;
262
263         if (vnn->iface && vnn->iface->link_up) {
264                 return true;
265         }
266
267         for (i=0; vnn->ifaces[i]; i++) {
268                 struct ctdb_iface *cur;
269
270                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
271                 if (cur == NULL) {
272                         continue;
273                 }
274
275                 if (cur->link_up) {
276                         return true;
277                 }
278         }
279
280         return false;
281 }
282
283 struct ctdb_takeover_arp {
284         struct ctdb_context *ctdb;
285         uint32_t count;
286         ctdb_sock_addr addr;
287         struct ctdb_tcp_array *tcparray;
288         struct ctdb_vnn *vnn;
289 };
290
291
292 /*
293   lists of tcp endpoints
294  */
295 struct ctdb_tcp_list {
296         struct ctdb_tcp_list *prev, *next;
297         struct ctdb_tcp_connection connection;
298 };
299
300 /*
301   list of clients to kill on IP release
302  */
303 struct ctdb_client_ip {
304         struct ctdb_client_ip *prev, *next;
305         struct ctdb_context *ctdb;
306         ctdb_sock_addr addr;
307         uint32_t client_id;
308 };
309
310
311 /*
312   send a gratuitous arp
313  */
314 static void ctdb_control_send_arp(struct event_context *ev, struct timed_event *te, 
315                                   struct timeval t, void *private_data)
316 {
317         struct ctdb_takeover_arp *arp = talloc_get_type(private_data, 
318                                                         struct ctdb_takeover_arp);
319         int i, ret;
320         struct ctdb_tcp_array *tcparray;
321         const char *iface = ctdb_vnn_iface_string(arp->vnn);
322
323         ret = ctdb_sys_send_arp(&arp->addr, iface);
324         if (ret != 0) {
325                 DEBUG(DEBUG_CRIT,(__location__ " sending of arp failed on iface '%s' (%s)\n",
326                                   iface, strerror(errno)));
327         }
328
329         tcparray = arp->tcparray;
330         if (tcparray) {
331                 for (i=0;i<tcparray->num;i++) {
332                         struct ctdb_tcp_connection *tcon;
333
334                         tcon = &tcparray->connections[i];
335                         DEBUG(DEBUG_INFO,("sending tcp tickle ack for %u->%s:%u\n",
336                                 (unsigned)ntohs(tcon->dst_addr.ip.sin_port), 
337                                 ctdb_addr_to_str(&tcon->src_addr),
338                                 (unsigned)ntohs(tcon->src_addr.ip.sin_port)));
339                         ret = ctdb_sys_send_tcp(
340                                 &tcon->src_addr, 
341                                 &tcon->dst_addr,
342                                 0, 0, 0);
343                         if (ret != 0) {
344                                 DEBUG(DEBUG_CRIT,(__location__ " Failed to send tcp tickle ack for %s\n",
345                                         ctdb_addr_to_str(&tcon->src_addr)));
346                         }
347                 }
348         }
349
350         arp->count++;
351
352         if (arp->count == CTDB_ARP_REPEAT) {
353                 talloc_free(arp);
354                 return;
355         }
356
357         event_add_timed(arp->ctdb->ev, arp->vnn->takeover_ctx, 
358                         timeval_current_ofs(CTDB_ARP_INTERVAL, 100000), 
359                         ctdb_control_send_arp, arp);
360 }
361
362 static int32_t ctdb_announce_vnn_iface(struct ctdb_context *ctdb,
363                                        struct ctdb_vnn *vnn)
364 {
365         struct ctdb_takeover_arp *arp;
366         struct ctdb_tcp_array *tcparray;
367
368         if (!vnn->takeover_ctx) {
369                 vnn->takeover_ctx = talloc_new(vnn);
370                 if (!vnn->takeover_ctx) {
371                         return -1;
372                 }
373         }
374
375         arp = talloc_zero(vnn->takeover_ctx, struct ctdb_takeover_arp);
376         if (!arp) {
377                 return -1;
378         }
379
380         arp->ctdb = ctdb;
381         arp->addr = vnn->public_address;
382         arp->vnn  = vnn;
383
384         tcparray = vnn->tcp_array;
385         if (tcparray) {
386                 /* add all of the known tcp connections for this IP to the
387                    list of tcp connections to send tickle acks for */
388                 arp->tcparray = talloc_steal(arp, tcparray);
389
390                 vnn->tcp_array = NULL;
391                 vnn->tcp_update_needed = true;
392         }
393
394         event_add_timed(arp->ctdb->ev, vnn->takeover_ctx,
395                         timeval_zero(), ctdb_control_send_arp, arp);
396
397         return 0;
398 }
399
400 struct takeover_callback_state {
401         struct ctdb_req_control *c;
402         ctdb_sock_addr *addr;
403         struct ctdb_vnn *vnn;
404 };
405
406 struct ctdb_do_takeip_state {
407         struct ctdb_req_control *c;
408         struct ctdb_vnn *vnn;
409 };
410
411 /*
412   called when takeip event finishes
413  */
414 static void ctdb_do_takeip_callback(struct ctdb_context *ctdb, int status,
415                                     void *private_data)
416 {
417         struct ctdb_do_takeip_state *state =
418                 talloc_get_type(private_data, struct ctdb_do_takeip_state);
419         int32_t ret;
420         TDB_DATA data;
421
422         if (status != 0) {
423                 struct ctdb_node *node = ctdb->nodes[ctdb->pnn];
424         
425                 if (status == -ETIME) {
426                         ctdb_ban_self(ctdb);
427                 }
428                 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
429                                  ctdb_addr_to_str(&state->vnn->public_address),
430                                  ctdb_vnn_iface_string(state->vnn)));
431                 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
432
433                 node->flags |= NODE_FLAGS_UNHEALTHY;
434                 talloc_free(state);
435                 return;
436         }
437
438         if (ctdb->do_checkpublicip) {
439
440         ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
441         if (ret != 0) {
442                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
443                 talloc_free(state);
444                 return;
445         }
446
447         }
448
449         data.dptr  = (uint8_t *)ctdb_addr_to_str(&state->vnn->public_address);
450         data.dsize = strlen((char *)data.dptr) + 1;
451         DEBUG(DEBUG_INFO,(__location__ " sending TAKE_IP for '%s'\n", data.dptr));
452
453         ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_TAKE_IP, data);
454
455
456         /* the control succeeded */
457         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
458         talloc_free(state);
459         return;
460 }
461
462 static int ctdb_takeip_destructor(struct ctdb_do_takeip_state *state)
463 {
464         state->vnn->update_in_flight = false;
465         return 0;
466 }
467
468 /*
469   take over an ip address
470  */
471 static int32_t ctdb_do_takeip(struct ctdb_context *ctdb,
472                               struct ctdb_req_control *c,
473                               struct ctdb_vnn *vnn)
474 {
475         int ret;
476         struct ctdb_do_takeip_state *state;
477
478         if (vnn->update_in_flight) {
479                 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u rejected "
480                                     "update for this IP already in flight\n",
481                                     ctdb_addr_to_str(&vnn->public_address),
482                                     vnn->public_netmask_bits));
483                 return -1;
484         }
485
486         ret = ctdb_vnn_assign_iface(ctdb, vnn);
487         if (ret != 0) {
488                 DEBUG(DEBUG_ERR,("Takeover of IP %s/%u failed to "
489                                  "assign a usable interface\n",
490                                  ctdb_addr_to_str(&vnn->public_address),
491                                  vnn->public_netmask_bits));
492                 return -1;
493         }
494
495         state = talloc(vnn, struct ctdb_do_takeip_state);
496         CTDB_NO_MEMORY(ctdb, state);
497
498         state->c = talloc_steal(ctdb, c);
499         state->vnn   = vnn;
500
501         vnn->update_in_flight = true;
502         talloc_set_destructor(state, ctdb_takeip_destructor);
503
504         DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u on interface %s\n",
505                             ctdb_addr_to_str(&vnn->public_address),
506                             vnn->public_netmask_bits,
507                             ctdb_vnn_iface_string(vnn)));
508
509         ret = ctdb_event_script_callback(ctdb,
510                                          state,
511                                          ctdb_do_takeip_callback,
512                                          state,
513                                          false,
514                                          CTDB_EVENT_TAKE_IP,
515                                          "%s %s %u",
516                                          ctdb_vnn_iface_string(vnn),
517                                          ctdb_addr_to_str(&vnn->public_address),
518                                          vnn->public_netmask_bits);
519
520         if (ret != 0) {
521                 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
522                         ctdb_addr_to_str(&vnn->public_address),
523                         ctdb_vnn_iface_string(vnn)));
524                 talloc_free(state);
525                 return -1;
526         }
527
528         return 0;
529 }
530
531 struct ctdb_do_updateip_state {
532         struct ctdb_req_control *c;
533         struct ctdb_iface *old;
534         struct ctdb_vnn *vnn;
535 };
536
537 /*
538   called when updateip event finishes
539  */
540 static void ctdb_do_updateip_callback(struct ctdb_context *ctdb, int status,
541                                       void *private_data)
542 {
543         struct ctdb_do_updateip_state *state =
544                 talloc_get_type(private_data, struct ctdb_do_updateip_state);
545         int32_t ret;
546
547         if (status != 0) {
548                 if (status == -ETIME) {
549                         ctdb_ban_self(ctdb);
550                 }
551                 DEBUG(DEBUG_ERR,(__location__ " Failed to move IP %s from interface %s to %s\n",
552                         ctdb_addr_to_str(&state->vnn->public_address),
553                         state->old->name,
554                         ctdb_vnn_iface_string(state->vnn)));
555
556                 /*
557                  * All we can do is reset the old interface
558                  * and let the next run fix it
559                  */
560                 ctdb_vnn_unassign_iface(ctdb, state->vnn);
561                 state->vnn->iface = state->old;
562                 state->vnn->iface->references++;
563
564                 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
565                 talloc_free(state);
566                 return;
567         }
568
569         if (ctdb->do_checkpublicip) {
570
571         ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
572         if (ret != 0) {
573                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
574                 talloc_free(state);
575                 return;
576         }
577
578         }
579
580         /* the control succeeded */
581         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
582         talloc_free(state);
583         return;
584 }
585
586 static int ctdb_updateip_destructor(struct ctdb_do_updateip_state *state)
587 {
588         state->vnn->update_in_flight = false;
589         return 0;
590 }
591
592 /*
593   update (move) an ip address
594  */
595 static int32_t ctdb_do_updateip(struct ctdb_context *ctdb,
596                                 struct ctdb_req_control *c,
597                                 struct ctdb_vnn *vnn)
598 {
599         int ret;
600         struct ctdb_do_updateip_state *state;
601         struct ctdb_iface *old = vnn->iface;
602         const char *new_name;
603
604         if (vnn->update_in_flight) {
605                 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u rejected "
606                                     "update for this IP already in flight\n",
607                                     ctdb_addr_to_str(&vnn->public_address),
608                                     vnn->public_netmask_bits));
609                 return -1;
610         }
611
612         ctdb_vnn_unassign_iface(ctdb, vnn);
613         ret = ctdb_vnn_assign_iface(ctdb, vnn);
614         if (ret != 0) {
615                 DEBUG(DEBUG_ERR,("update of IP %s/%u failed to "
616                                  "assin a usable interface (old iface '%s')\n",
617                                  ctdb_addr_to_str(&vnn->public_address),
618                                  vnn->public_netmask_bits,
619                                  old->name));
620                 return -1;
621         }
622
623         new_name = ctdb_vnn_iface_string(vnn);
624         if (old->name != NULL && new_name != NULL && !strcmp(old->name, new_name)) {
625                 /* A benign update from one interface onto itself.
626                  * no need to run the eventscripts in this case, just return
627                  * success.
628                  */
629                 ctdb_request_control_reply(ctdb, c, NULL, 0, NULL);
630                 return 0;
631         }
632
633         state = talloc(vnn, struct ctdb_do_updateip_state);
634         CTDB_NO_MEMORY(ctdb, state);
635
636         state->c = talloc_steal(ctdb, c);
637         state->old = old;
638         state->vnn = vnn;
639
640         vnn->update_in_flight = true;
641         talloc_set_destructor(state, ctdb_updateip_destructor);
642
643         DEBUG(DEBUG_NOTICE,("Update of IP %s/%u from "
644                             "interface %s to %s\n",
645                             ctdb_addr_to_str(&vnn->public_address),
646                             vnn->public_netmask_bits,
647                             old->name,
648                             new_name));
649
650         ret = ctdb_event_script_callback(ctdb,
651                                          state,
652                                          ctdb_do_updateip_callback,
653                                          state,
654                                          false,
655                                          CTDB_EVENT_UPDATE_IP,
656                                          "%s %s %s %u",
657                                          state->old->name,
658                                          new_name,
659                                          ctdb_addr_to_str(&vnn->public_address),
660                                          vnn->public_netmask_bits);
661         if (ret != 0) {
662                 DEBUG(DEBUG_ERR,(__location__ " Failed update IP %s from interface %s to %s\n",
663                                  ctdb_addr_to_str(&vnn->public_address),
664                                  old->name, new_name));
665                 talloc_free(state);
666                 return -1;
667         }
668
669         return 0;
670 }
671
672 /*
673   Find the vnn of the node that has a public ip address
674   returns -1 if the address is not known as a public address
675  */
676 static struct ctdb_vnn *find_public_ip_vnn(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
677 {
678         struct ctdb_vnn *vnn;
679
680         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
681                 if (ctdb_same_ip(&vnn->public_address, addr)) {
682                         return vnn;
683                 }
684         }
685
686         return NULL;
687 }
688
689 /*
690   take over an ip address
691  */
692 int32_t ctdb_control_takeover_ip(struct ctdb_context *ctdb,
693                                  struct ctdb_req_control *c,
694                                  TDB_DATA indata,
695                                  bool *async_reply)
696 {
697         int ret;
698         struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
699         struct ctdb_vnn *vnn;
700         bool have_ip = false;
701         bool do_updateip = false;
702         bool do_takeip = false;
703         struct ctdb_iface *best_iface = NULL;
704
705         if (pip->pnn != ctdb->pnn) {
706                 DEBUG(DEBUG_ERR,(__location__" takeoverip called for an ip '%s' "
707                                  "with pnn %d, but we're node %d\n",
708                                  ctdb_addr_to_str(&pip->addr),
709                                  pip->pnn, ctdb->pnn));
710                 return -1;
711         }
712
713         /* update out vnn list */
714         vnn = find_public_ip_vnn(ctdb, &pip->addr);
715         if (vnn == NULL) {
716                 DEBUG(DEBUG_INFO,("takeoverip called for an ip '%s' that is not a public address\n",
717                         ctdb_addr_to_str(&pip->addr)));
718                 return 0;
719         }
720
721         if (ctdb->do_checkpublicip) {
722                 have_ip = ctdb_sys_have_ip(&pip->addr);
723         }
724         best_iface = ctdb_vnn_best_iface(ctdb, vnn);
725         if (best_iface == NULL) {
726                 DEBUG(DEBUG_ERR,("takeoverip of IP %s/%u failed to find"
727                                  "a usable interface (old %s, have_ip %d)\n",
728                                  ctdb_addr_to_str(&vnn->public_address),
729                                  vnn->public_netmask_bits,
730                                  ctdb_vnn_iface_string(vnn),
731                                  have_ip));
732                 return -1;
733         }
734
735         if (vnn->iface == NULL && vnn->pnn == -1 && have_ip && best_iface != NULL) {
736                 DEBUG(DEBUG_ERR,("Taking over newly created ip\n"));
737                 have_ip = false;
738         }
739
740
741         if (vnn->iface == NULL && have_ip) {
742                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
743                                   "but we have no interface assigned, has someone manually configured it? Ignore for now.\n",
744                                  ctdb_addr_to_str(&vnn->public_address)));
745                 return 0;
746         }
747
748         if (vnn->pnn != ctdb->pnn && have_ip && vnn->pnn != -1) {
749                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
750                                   "and we have it on iface[%s], but it was assigned to node %d"
751                                   "and we are node %d, banning ourself\n",
752                                  ctdb_addr_to_str(&vnn->public_address),
753                                  ctdb_vnn_iface_string(vnn), vnn->pnn, ctdb->pnn));
754                 ctdb_ban_self(ctdb);
755                 return -1;
756         }
757
758         if (vnn->pnn == -1 && have_ip) {
759                 vnn->pnn = ctdb->pnn;
760                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
761                                   "and we already have it on iface[%s], update local daemon\n",
762                                  ctdb_addr_to_str(&vnn->public_address),
763                                   ctdb_vnn_iface_string(vnn)));
764                 return 0;
765         }
766
767         if (vnn->iface) {
768                 if (vnn->iface != best_iface) {
769                         if (!vnn->iface->link_up) {
770                                 do_updateip = true;
771                         } else if (vnn->iface->references > (best_iface->references + 1)) {
772                                 /* only move when the rebalance gains something */
773                                         do_updateip = true;
774                         }
775                 }
776         }
777
778         if (!have_ip) {
779                 if (do_updateip) {
780                         ctdb_vnn_unassign_iface(ctdb, vnn);
781                         do_updateip = false;
782                 }
783                 do_takeip = true;
784         }
785
786         if (do_takeip) {
787                 ret = ctdb_do_takeip(ctdb, c, vnn);
788                 if (ret != 0) {
789                         return -1;
790                 }
791         } else if (do_updateip) {
792                 ret = ctdb_do_updateip(ctdb, c, vnn);
793                 if (ret != 0) {
794                         return -1;
795                 }
796         } else {
797                 /*
798                  * The interface is up and the kernel known the ip
799                  * => do nothing
800                  */
801                 DEBUG(DEBUG_INFO,("Redundant takeover of IP %s/%u on interface %s (ip already held)\n",
802                         ctdb_addr_to_str(&pip->addr),
803                         vnn->public_netmask_bits,
804                         ctdb_vnn_iface_string(vnn)));
805                 return 0;
806         }
807
808         /* tell ctdb_control.c that we will be replying asynchronously */
809         *async_reply = true;
810
811         return 0;
812 }
813
814 /*
815   takeover an ip address old v4 style
816  */
817 int32_t ctdb_control_takeover_ipv4(struct ctdb_context *ctdb, 
818                                 struct ctdb_req_control *c,
819                                 TDB_DATA indata, 
820                                 bool *async_reply)
821 {
822         TDB_DATA data;
823         
824         data.dsize = sizeof(struct ctdb_public_ip);
825         data.dptr  = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
826         CTDB_NO_MEMORY(ctdb, data.dptr);
827         
828         memcpy(data.dptr, indata.dptr, indata.dsize);
829         return ctdb_control_takeover_ip(ctdb, c, data, async_reply);
830 }
831
832 /*
833   kill any clients that are registered with a IP that is being released
834  */
835 static void release_kill_clients(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
836 {
837         struct ctdb_client_ip *ip;
838
839         DEBUG(DEBUG_INFO,("release_kill_clients for ip %s\n",
840                 ctdb_addr_to_str(addr)));
841
842         for (ip=ctdb->client_ip_list; ip; ip=ip->next) {
843                 ctdb_sock_addr tmp_addr;
844
845                 tmp_addr = ip->addr;
846                 DEBUG(DEBUG_INFO,("checking for client %u with IP %s\n", 
847                         ip->client_id,
848                         ctdb_addr_to_str(&ip->addr)));
849
850                 if (ctdb_same_ip(&tmp_addr, addr)) {
851                         struct ctdb_client *client = ctdb_reqid_find(ctdb, 
852                                                                      ip->client_id, 
853                                                                      struct ctdb_client);
854                         DEBUG(DEBUG_INFO,("matched client %u with IP %s and pid %u\n", 
855                                 ip->client_id,
856                                 ctdb_addr_to_str(&ip->addr),
857                                 client->pid));
858
859                         if (client->pid != 0) {
860                                 DEBUG(DEBUG_INFO,(__location__ " Killing client pid %u for IP %s on client_id %u\n",
861                                         (unsigned)client->pid,
862                                         ctdb_addr_to_str(addr),
863                                         ip->client_id));
864                                 kill(client->pid, SIGKILL);
865                         }
866                 }
867         }
868 }
869
870 /*
871   called when releaseip event finishes
872  */
873 static void release_ip_callback(struct ctdb_context *ctdb, int status, 
874                                 void *private_data)
875 {
876         struct takeover_callback_state *state = 
877                 talloc_get_type(private_data, struct takeover_callback_state);
878         TDB_DATA data;
879
880         if (status == -ETIME) {
881                 ctdb_ban_self(ctdb);
882         }
883
884         if (ctdb->do_checkpublicip && ctdb_sys_have_ip(state->addr)) {
885                 DEBUG(DEBUG_ERR, ("IP %s still hosted during release IP callback, failing\n",
886                                   ctdb_addr_to_str(state->addr)));
887                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
888                 talloc_free(state);
889                 return;
890         }
891
892         /* send a message to all clients of this node telling them
893            that the cluster has been reconfigured and they should
894            release any sockets on this IP */
895         data.dptr = (uint8_t *)talloc_strdup(state, ctdb_addr_to_str(state->addr));
896         CTDB_NO_MEMORY_VOID(ctdb, data.dptr);
897         data.dsize = strlen((char *)data.dptr)+1;
898
899         DEBUG(DEBUG_INFO,(__location__ " sending RELEASE_IP for '%s'\n", data.dptr));
900
901         ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_RELEASE_IP, data);
902
903         /* kill clients that have registered with this IP */
904         release_kill_clients(ctdb, state->addr);
905
906         ctdb_vnn_unassign_iface(ctdb, state->vnn);
907
908         /* the control succeeded */
909         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
910         talloc_free(state);
911 }
912
913 static int ctdb_releaseip_destructor(struct takeover_callback_state *state)
914 {
915         state->vnn->update_in_flight = false;
916         return 0;
917 }
918
919 /*
920   release an ip address
921  */
922 int32_t ctdb_control_release_ip(struct ctdb_context *ctdb, 
923                                 struct ctdb_req_control *c,
924                                 TDB_DATA indata, 
925                                 bool *async_reply)
926 {
927         int ret;
928         struct takeover_callback_state *state;
929         struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
930         struct ctdb_vnn *vnn;
931         char *iface;
932
933         /* update our vnn list */
934         vnn = find_public_ip_vnn(ctdb, &pip->addr);
935         if (vnn == NULL) {
936                 DEBUG(DEBUG_INFO,("releaseip called for an ip '%s' that is not a public address\n",
937                         ctdb_addr_to_str(&pip->addr)));
938                 return 0;
939         }
940         vnn->pnn = pip->pnn;
941
942         /* stop any previous arps */
943         talloc_free(vnn->takeover_ctx);
944         vnn->takeover_ctx = NULL;
945
946         /* Some ctdb tool commands (e.g. moveip, rebalanceip) send
947          * lazy multicast to drop an IP from any node that isn't the
948          * intended new node.  The following causes makes ctdbd ignore
949          * a release for any address it doesn't host.
950          */
951         if (ctdb->do_checkpublicip) {
952                 if (!ctdb_sys_have_ip(&pip->addr)) {
953                         DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u on interface %s (ip not held)\n",
954                                 ctdb_addr_to_str(&pip->addr),
955                                 vnn->public_netmask_bits,
956                                 ctdb_vnn_iface_string(vnn)));
957                         ctdb_vnn_unassign_iface(ctdb, vnn);
958                         return 0;
959                 }
960         } else {
961                 if (vnn->iface == NULL) {
962                         DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u (ip not held)\n",
963                                            ctdb_addr_to_str(&pip->addr),
964                                            vnn->public_netmask_bits));
965                         return 0;
966                 }
967         }
968
969         /* There is a potential race between take_ip and us because we
970          * update the VNN via a callback that run when the
971          * eventscripts have been run.  Avoid the race by allowing one
972          * update to be in flight at a time.
973          */
974         if (vnn->update_in_flight) {
975                 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u rejected "
976                                     "update for this IP already in flight\n",
977                                     ctdb_addr_to_str(&vnn->public_address),
978                                     vnn->public_netmask_bits));
979                 return -1;
980         }
981
982         if (ctdb->do_checkpublicip) {
983                 iface = ctdb_sys_find_ifname(&pip->addr);
984                 if (iface == NULL) {
985                         DEBUG(DEBUG_ERR, ("Could not find which interface the ip address is hosted on. can not release it\n"));
986                         return 0;
987                 }
988                 if (vnn->iface == NULL) {
989                         DEBUG(DEBUG_WARNING,
990                               ("Public IP %s is hosted on interface %s but we have no VNN\n",
991                                ctdb_addr_to_str(&pip->addr),
992                                iface));
993                 } else if (strcmp(iface, ctdb_vnn_iface_string(vnn)) != 0) {
994                         DEBUG(DEBUG_WARNING,
995                               ("Public IP %s is hosted on inteterface %s but VNN says %s\n",
996                                ctdb_addr_to_str(&pip->addr),
997                                iface,
998                                ctdb_vnn_iface_string(vnn)));
999                         /* Should we fix vnn->iface?  If we do, what
1000                          * happens to reference counts?
1001                          */
1002                 }
1003         } else {
1004                 iface = strdup(ctdb_vnn_iface_string(vnn));
1005         }
1006
1007         DEBUG(DEBUG_NOTICE,("Release of IP %s/%u on interface %s  node:%d\n",
1008                 ctdb_addr_to_str(&pip->addr),
1009                 vnn->public_netmask_bits,
1010                 iface,
1011                 pip->pnn));
1012
1013         state = talloc(ctdb, struct takeover_callback_state);
1014         CTDB_NO_MEMORY(ctdb, state);
1015
1016         state->c = talloc_steal(state, c);
1017         state->addr = talloc(state, ctdb_sock_addr);       
1018         CTDB_NO_MEMORY(ctdb, state->addr);
1019         *state->addr = pip->addr;
1020         state->vnn   = vnn;
1021
1022         vnn->update_in_flight = true;
1023         talloc_set_destructor(state, ctdb_releaseip_destructor);
1024
1025         ret = ctdb_event_script_callback(ctdb, 
1026                                          state, release_ip_callback, state,
1027                                          false,
1028                                          CTDB_EVENT_RELEASE_IP,
1029                                          "%s %s %u",
1030                                          iface,
1031                                          ctdb_addr_to_str(&pip->addr),
1032                                          vnn->public_netmask_bits);
1033         free(iface);
1034         if (ret != 0) {
1035                 DEBUG(DEBUG_ERR,(__location__ " Failed to release IP %s on interface %s\n",
1036                         ctdb_addr_to_str(&pip->addr),
1037                         ctdb_vnn_iface_string(vnn)));
1038                 talloc_free(state);
1039                 return -1;
1040         }
1041
1042         /* tell the control that we will be reply asynchronously */
1043         *async_reply = true;
1044         return 0;
1045 }
1046
1047 /*
1048   release an ip address old v4 style
1049  */
1050 int32_t ctdb_control_release_ipv4(struct ctdb_context *ctdb, 
1051                                 struct ctdb_req_control *c,
1052                                 TDB_DATA indata, 
1053                                 bool *async_reply)
1054 {
1055         TDB_DATA data;
1056         
1057         data.dsize = sizeof(struct ctdb_public_ip);
1058         data.dptr  = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
1059         CTDB_NO_MEMORY(ctdb, data.dptr);
1060         
1061         memcpy(data.dptr, indata.dptr, indata.dsize);
1062         return ctdb_control_release_ip(ctdb, c, data, async_reply);
1063 }
1064
1065
1066 static int ctdb_add_public_address(struct ctdb_context *ctdb,
1067                                    ctdb_sock_addr *addr,
1068                                    unsigned mask, const char *ifaces,
1069                                    bool check_address)
1070 {
1071         struct ctdb_vnn      *vnn;
1072         uint32_t num = 0;
1073         char *tmp;
1074         const char *iface;
1075         int i;
1076         int ret;
1077
1078         tmp = strdup(ifaces);
1079         for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1080                 if (!ctdb_sys_check_iface_exists(iface)) {
1081                         DEBUG(DEBUG_CRIT,("Interface %s does not exist. Can not add public-address : %s\n", iface, ctdb_addr_to_str(addr)));
1082                         free(tmp);
1083                         return -1;
1084                 }
1085         }
1086         free(tmp);
1087
1088         /* Verify that we dont have an entry for this ip yet */
1089         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1090                 if (ctdb_same_sockaddr(addr, &vnn->public_address)) {
1091                         DEBUG(DEBUG_CRIT,("Same ip '%s' specified multiple times in the public address list \n", 
1092                                 ctdb_addr_to_str(addr)));
1093                         return -1;
1094                 }               
1095         }
1096
1097         /* create a new vnn structure for this ip address */
1098         vnn = talloc_zero(ctdb, struct ctdb_vnn);
1099         CTDB_NO_MEMORY_FATAL(ctdb, vnn);
1100         vnn->ifaces = talloc_array(vnn, const char *, num + 2);
1101         tmp = talloc_strdup(vnn, ifaces);
1102         CTDB_NO_MEMORY_FATAL(ctdb, tmp);
1103         for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1104                 vnn->ifaces = talloc_realloc(vnn, vnn->ifaces, const char *, num + 2);
1105                 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces);
1106                 vnn->ifaces[num] = talloc_strdup(vnn, iface);
1107                 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces[num]);
1108                 num++;
1109         }
1110         talloc_free(tmp);
1111         vnn->ifaces[num] = NULL;
1112         vnn->public_address      = *addr;
1113         vnn->public_netmask_bits = mask;
1114         vnn->pnn                 = -1;
1115         if (check_address) {
1116                 if (ctdb_sys_have_ip(addr)) {
1117                         DEBUG(DEBUG_ERR,("We are already hosting public address '%s'. setting PNN to ourself:%d\n", ctdb_addr_to_str(addr), ctdb->pnn));
1118                         vnn->pnn = ctdb->pnn;
1119                 }
1120         }
1121
1122         for (i=0; vnn->ifaces[i]; i++) {
1123                 ret = ctdb_add_local_iface(ctdb, vnn->ifaces[i]);
1124                 if (ret != 0) {
1125                         DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1126                                            "for public_address[%s]\n",
1127                                            vnn->ifaces[i], ctdb_addr_to_str(addr)));
1128                         talloc_free(vnn);
1129                         return -1;
1130                 }
1131         }
1132
1133         DLIST_ADD(ctdb->vnn, vnn);
1134
1135         return 0;
1136 }
1137
1138 /*
1139   setup the event script directory
1140 */
1141 int ctdb_set_event_script_dir(struct ctdb_context *ctdb, const char *script_dir)
1142 {
1143         ctdb->event_script_dir = talloc_strdup(ctdb, script_dir);
1144         CTDB_NO_MEMORY(ctdb, ctdb->event_script_dir);
1145         return 0;
1146 }
1147
1148 static void ctdb_check_interfaces_event(struct event_context *ev, struct timed_event *te, 
1149                                   struct timeval t, void *private_data)
1150 {
1151         struct ctdb_context *ctdb = talloc_get_type(private_data, 
1152                                                         struct ctdb_context);
1153         struct ctdb_vnn *vnn;
1154
1155         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1156                 int i;
1157
1158                 for (i=0; vnn->ifaces[i] != NULL; i++) {
1159                         if (!ctdb_sys_check_iface_exists(vnn->ifaces[i])) {
1160                                 DEBUG(DEBUG_CRIT,("Interface %s does not exist but is used by public ip %s\n",
1161                                         vnn->ifaces[i],
1162                                         ctdb_addr_to_str(&vnn->public_address)));
1163                         }
1164                 }
1165         }
1166
1167         event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx, 
1168                 timeval_current_ofs(30, 0), 
1169                 ctdb_check_interfaces_event, ctdb);
1170 }
1171
1172
1173 int ctdb_start_monitoring_interfaces(struct ctdb_context *ctdb)
1174 {
1175         if (ctdb->check_public_ifaces_ctx != NULL) {
1176                 talloc_free(ctdb->check_public_ifaces_ctx);
1177                 ctdb->check_public_ifaces_ctx = NULL;
1178         }
1179
1180         ctdb->check_public_ifaces_ctx = talloc_new(ctdb);
1181         if (ctdb->check_public_ifaces_ctx == NULL) {
1182                 ctdb_fatal(ctdb, "failed to allocate context for checking interfaces");
1183         }
1184
1185         event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx, 
1186                 timeval_current_ofs(30, 0), 
1187                 ctdb_check_interfaces_event, ctdb);
1188
1189         return 0;
1190 }
1191
1192
1193 /*
1194   setup the public address lists from a file
1195 */
1196 int ctdb_set_public_addresses(struct ctdb_context *ctdb, bool check_addresses)
1197 {
1198         char **lines;
1199         int nlines;
1200         int i;
1201
1202         lines = file_lines_load(ctdb->public_addresses_file, &nlines, ctdb);
1203         if (lines == NULL) {
1204                 ctdb_set_error(ctdb, "Failed to load public address list '%s'\n", ctdb->public_addresses_file);
1205                 return -1;
1206         }
1207         while (nlines > 0 && strcmp(lines[nlines-1], "") == 0) {
1208                 nlines--;
1209         }
1210
1211         for (i=0;i<nlines;i++) {
1212                 unsigned mask;
1213                 ctdb_sock_addr addr;
1214                 const char *addrstr;
1215                 const char *ifaces;
1216                 char *tok, *line;
1217
1218                 line = lines[i];
1219                 while ((*line == ' ') || (*line == '\t')) {
1220                         line++;
1221                 }
1222                 if (*line == '#') {
1223                         continue;
1224                 }
1225                 if (strcmp(line, "") == 0) {
1226                         continue;
1227                 }
1228                 tok = strtok(line, " \t");
1229                 addrstr = tok;
1230                 tok = strtok(NULL, " \t");
1231                 if (tok == NULL) {
1232                         if (NULL == ctdb->default_public_interface) {
1233                                 DEBUG(DEBUG_CRIT,("No default public interface and no interface specified at line %u of public address list\n",
1234                                          i+1));
1235                                 talloc_free(lines);
1236                                 return -1;
1237                         }
1238                         ifaces = ctdb->default_public_interface;
1239                 } else {
1240                         ifaces = tok;
1241                 }
1242
1243                 if (!addrstr || !parse_ip_mask(addrstr, ifaces, &addr, &mask)) {
1244                         DEBUG(DEBUG_CRIT,("Badly formed line %u in public address list\n", i+1));
1245                         talloc_free(lines);
1246                         return -1;
1247                 }
1248                 if (ctdb_add_public_address(ctdb, &addr, mask, ifaces, check_addresses)) {
1249                         DEBUG(DEBUG_CRIT,("Failed to add line %u to the public address list\n", i+1));
1250                         talloc_free(lines);
1251                         return -1;
1252                 }
1253         }
1254
1255
1256         talloc_free(lines);
1257         return 0;
1258 }
1259
1260 int ctdb_set_single_public_ip(struct ctdb_context *ctdb,
1261                               const char *iface,
1262                               const char *ip)
1263 {
1264         struct ctdb_vnn *svnn;
1265         struct ctdb_iface *cur = NULL;
1266         bool ok;
1267         int ret;
1268
1269         svnn = talloc_zero(ctdb, struct ctdb_vnn);
1270         CTDB_NO_MEMORY(ctdb, svnn);
1271
1272         svnn->ifaces = talloc_array(svnn, const char *, 2);
1273         CTDB_NO_MEMORY(ctdb, svnn->ifaces);
1274         svnn->ifaces[0] = talloc_strdup(svnn->ifaces, iface);
1275         CTDB_NO_MEMORY(ctdb, svnn->ifaces[0]);
1276         svnn->ifaces[1] = NULL;
1277
1278         ok = parse_ip(ip, iface, 0, &svnn->public_address);
1279         if (!ok) {
1280                 talloc_free(svnn);
1281                 return -1;
1282         }
1283
1284         ret = ctdb_add_local_iface(ctdb, svnn->ifaces[0]);
1285         if (ret != 0) {
1286                 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1287                                    "for single_ip[%s]\n",
1288                                    svnn->ifaces[0],
1289                                    ctdb_addr_to_str(&svnn->public_address)));
1290                 talloc_free(svnn);
1291                 return -1;
1292         }
1293
1294         /* assume the single public ip interface is initially "good" */
1295         cur = ctdb_find_iface(ctdb, iface);
1296         if (cur == NULL) {
1297                 DEBUG(DEBUG_CRIT,("Can not find public interface %s used by --single-public-ip", iface));
1298                 return -1;
1299         }
1300         cur->link_up = true;
1301
1302         ret = ctdb_vnn_assign_iface(ctdb, svnn);
1303         if (ret != 0) {
1304                 talloc_free(svnn);
1305                 return -1;
1306         }
1307
1308         ctdb->single_ip_vnn = svnn;
1309         return 0;
1310 }
1311
1312 struct ctdb_public_ip_list {
1313         struct ctdb_public_ip_list *next;
1314         uint32_t pnn;
1315         ctdb_sock_addr addr;
1316 };
1317
1318 /* Given a physical node, return the number of
1319    public addresses that is currently assigned to this node.
1320 */
1321 static int node_ip_coverage(struct ctdb_context *ctdb, 
1322         int32_t pnn,
1323         struct ctdb_public_ip_list *ips)
1324 {
1325         int num=0;
1326
1327         for (;ips;ips=ips->next) {
1328                 if (ips->pnn == pnn) {
1329                         num++;
1330                 }
1331         }
1332         return num;
1333 }
1334
1335
1336 /* Can the given node host the given IP: is the public IP known to the
1337  * node and is NOIPHOST unset?
1338 */
1339 static bool can_node_host_ip(struct ctdb_context *ctdb, int32_t pnn, 
1340                              struct ctdb_ipflags ipflags,
1341                              struct ctdb_public_ip_list *ip)
1342 {
1343         struct ctdb_all_public_ips *public_ips;
1344         int i;
1345
1346         if (ipflags.noiphost) {
1347                 return false;
1348         }
1349
1350         public_ips = ctdb->nodes[pnn]->available_public_ips;
1351
1352         if (public_ips == NULL) {
1353                 return false;
1354         }
1355
1356         for (i=0; i<public_ips->num; i++) {
1357                 if (ctdb_same_ip(&ip->addr, &public_ips->ips[i].addr)) {
1358                         /* yes, this node can serve this public ip */
1359                         return true;
1360                 }
1361         }
1362
1363         return false;
1364 }
1365
1366 static bool can_node_takeover_ip(struct ctdb_context *ctdb, int32_t pnn, 
1367                                  struct ctdb_ipflags ipflags,
1368                                  struct ctdb_public_ip_list *ip)
1369 {
1370         if (ipflags.noiptakeover) {
1371                 return false;
1372         }
1373
1374         return can_node_host_ip(ctdb, pnn, ipflags, ip);
1375 }
1376
1377 /* search the node lists list for a node to takeover this ip.
1378    pick the node that currently are serving the least number of ips
1379    so that the ips get spread out evenly.
1380 */
1381 static int find_takeover_node(struct ctdb_context *ctdb, 
1382                 struct ctdb_ipflags *ipflags,
1383                 struct ctdb_public_ip_list *ip,
1384                 struct ctdb_public_ip_list *all_ips)
1385 {
1386         int pnn, min=0, num;
1387         int i, numnodes;
1388
1389         numnodes = talloc_array_length(ipflags);
1390         pnn    = -1;
1391         for (i=0; i<numnodes; i++) {
1392                 /* verify that this node can serve this ip */
1393                 if (!can_node_takeover_ip(ctdb, i, ipflags[i], ip)) {
1394                         /* no it couldnt   so skip to the next node */
1395                         continue;
1396                 }
1397
1398                 num = node_ip_coverage(ctdb, i, all_ips);
1399                 /* was this the first node we checked ? */
1400                 if (pnn == -1) {
1401                         pnn = i;
1402                         min  = num;
1403                 } else {
1404                         if (num < min) {
1405                                 pnn = i;
1406                                 min  = num;
1407                         }
1408                 }
1409         }       
1410         if (pnn == -1) {
1411                 DEBUG(DEBUG_WARNING,(__location__ " Could not find node to take over public address '%s'\n",
1412                         ctdb_addr_to_str(&ip->addr)));
1413
1414                 return -1;
1415         }
1416
1417         ip->pnn = pnn;
1418         return 0;
1419 }
1420
1421 #define IP_KEYLEN       4
1422 static uint32_t *ip_key(ctdb_sock_addr *ip)
1423 {
1424         static uint32_t key[IP_KEYLEN];
1425
1426         bzero(key, sizeof(key));
1427
1428         switch (ip->sa.sa_family) {
1429         case AF_INET:
1430                 key[3]  = htonl(ip->ip.sin_addr.s_addr);
1431                 break;
1432         case AF_INET6: {
1433                 uint32_t *s6_a32 = (uint32_t *)&(ip->ip6.sin6_addr.s6_addr);
1434                 key[0]  = htonl(s6_a32[0]);
1435                 key[1]  = htonl(s6_a32[1]);
1436                 key[2]  = htonl(s6_a32[2]);
1437                 key[3]  = htonl(s6_a32[3]);
1438                 break;
1439         }
1440         default:
1441                 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", ip->sa.sa_family));
1442                 return key;
1443         }
1444
1445         return key;
1446 }
1447
1448 static void *add_ip_callback(void *parm, void *data)
1449 {
1450         struct ctdb_public_ip_list *this_ip = parm; 
1451         struct ctdb_public_ip_list *prev_ip = data; 
1452
1453         if (prev_ip == NULL) {
1454                 return parm;
1455         }
1456         if (this_ip->pnn == -1) {
1457                 this_ip->pnn = prev_ip->pnn;
1458         }
1459
1460         return parm;
1461 }
1462
1463 static int getips_count_callback(void *param, void *data)
1464 {
1465         struct ctdb_public_ip_list **ip_list = (struct ctdb_public_ip_list **)param;
1466         struct ctdb_public_ip_list *new_ip = (struct ctdb_public_ip_list *)data;
1467
1468         new_ip->next = *ip_list;
1469         *ip_list     = new_ip;
1470         return 0;
1471 }
1472
1473 static struct ctdb_public_ip_list *
1474 create_merged_ip_list(struct ctdb_context *ctdb)
1475 {
1476         int i, j;
1477         struct ctdb_public_ip_list *ip_list;
1478         struct ctdb_all_public_ips *public_ips;
1479
1480         if (ctdb->ip_tree != NULL) {
1481                 talloc_free(ctdb->ip_tree);
1482                 ctdb->ip_tree = NULL;
1483         }
1484         ctdb->ip_tree = trbt_create(ctdb, 0);
1485
1486         for (i=0;i<ctdb->num_nodes;i++) {
1487                 public_ips = ctdb->nodes[i]->known_public_ips;
1488
1489                 if (ctdb->nodes[i]->flags & NODE_FLAGS_DELETED) {
1490                         continue;
1491                 }
1492
1493                 /* there were no public ips for this node */
1494                 if (public_ips == NULL) {
1495                         continue;
1496                 }               
1497
1498                 for (j=0;j<public_ips->num;j++) {
1499                         struct ctdb_public_ip_list *tmp_ip; 
1500
1501                         tmp_ip = talloc_zero(ctdb->ip_tree, struct ctdb_public_ip_list);
1502                         CTDB_NO_MEMORY_NULL(ctdb, tmp_ip);
1503                         /* Do not use information about IP addresses hosted
1504                          * on other nodes, it may not be accurate */
1505                         if (public_ips->ips[j].pnn == ctdb->nodes[i]->pnn) {
1506                                 tmp_ip->pnn = public_ips->ips[j].pnn;
1507                         } else {
1508                                 tmp_ip->pnn = -1;
1509                         }
1510                         tmp_ip->addr = public_ips->ips[j].addr;
1511                         tmp_ip->next = NULL;
1512
1513                         trbt_insertarray32_callback(ctdb->ip_tree,
1514                                 IP_KEYLEN, ip_key(&public_ips->ips[j].addr),
1515                                 add_ip_callback,
1516                                 tmp_ip);
1517                 }
1518         }
1519
1520         ip_list = NULL;
1521         trbt_traversearray32(ctdb->ip_tree, IP_KEYLEN, getips_count_callback, &ip_list);
1522
1523         return ip_list;
1524 }
1525
1526 /* 
1527  * This is the length of the longtest common prefix between the IPs.
1528  * It is calculated by XOR-ing the 2 IPs together and counting the
1529  * number of leading zeroes.  The implementation means that all
1530  * addresses end up being 128 bits long.
1531  *
1532  * FIXME? Should we consider IPv4 and IPv6 separately given that the
1533  * 12 bytes of 0 prefix padding will hurt the algorithm if there are
1534  * lots of nodes and IP addresses?
1535  */
1536 static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
1537 {
1538         uint32_t ip1_k[IP_KEYLEN];
1539         uint32_t *t;
1540         int i;
1541         uint32_t x;
1542
1543         uint32_t distance = 0;
1544
1545         memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
1546         t = ip_key(ip2);
1547         for (i=0; i<IP_KEYLEN; i++) {
1548                 x = ip1_k[i] ^ t[i];
1549                 if (x == 0) {
1550                         distance += 32;
1551                 } else {
1552                         /* Count number of leading zeroes. 
1553                          * FIXME? This could be optimised...
1554                          */
1555                         while ((x & (1 << 31)) == 0) {
1556                                 x <<= 1;
1557                                 distance += 1;
1558                         }
1559                 }
1560         }
1561
1562         return distance;
1563 }
1564
1565 /* Calculate the IP distance for the given IP relative to IPs on the
1566    given node.  The ips argument is generally the all_ips variable
1567    used in the main part of the algorithm.
1568  */
1569 static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
1570                                   struct ctdb_public_ip_list *ips,
1571                                   int pnn)
1572 {
1573         struct ctdb_public_ip_list *t;
1574         uint32_t d;
1575
1576         uint32_t sum = 0;
1577
1578         for (t=ips; t != NULL; t=t->next) {
1579                 if (t->pnn != pnn) {
1580                         continue;
1581                 }
1582
1583                 /* Optimisation: We never calculate the distance
1584                  * between an address and itself.  This allows us to
1585                  * calculate the effect of removing an address from a
1586                  * node by simply calculating the distance between
1587                  * that address and all of the exitsing addresses.
1588                  * Moreover, we assume that we're only ever dealing
1589                  * with addresses from all_ips so we can identify an
1590                  * address via a pointer rather than doing a more
1591                  * expensive address comparison. */
1592                 if (&(t->addr) == ip) {
1593                         continue;
1594                 }
1595
1596                 d = ip_distance(ip, &(t->addr));
1597                 sum += d * d;  /* Cheaper than pulling in math.h :-) */
1598         }
1599
1600         return sum;
1601 }
1602
1603 /* Return the LCP2 imbalance metric for addresses currently assigned
1604    to the given node.
1605  */
1606 static uint32_t lcp2_imbalance(struct ctdb_public_ip_list * all_ips, int pnn)
1607 {
1608         struct ctdb_public_ip_list *t;
1609
1610         uint32_t imbalance = 0;
1611
1612         for (t=all_ips; t!=NULL; t=t->next) {
1613                 if (t->pnn != pnn) {
1614                         continue;
1615                 }
1616                 /* Pass the rest of the IPs rather than the whole
1617                    all_ips input list.
1618                 */
1619                 imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
1620         }
1621
1622         return imbalance;
1623 }
1624
1625 /* Allocate any unassigned IPs just by looping through the IPs and
1626  * finding the best node for each.
1627  */
1628 static void basic_allocate_unassigned(struct ctdb_context *ctdb,
1629                                       struct ctdb_ipflags *ipflags,
1630                                       struct ctdb_public_ip_list *all_ips)
1631 {
1632         struct ctdb_public_ip_list *tmp_ip;
1633
1634         /* loop over all ip's and find a physical node to cover for 
1635            each unassigned ip.
1636         */
1637         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1638                 if (tmp_ip->pnn == -1) {
1639                         if (find_takeover_node(ctdb, ipflags, tmp_ip, all_ips)) {
1640                                 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1641                                         ctdb_addr_to_str(&tmp_ip->addr)));
1642                         }
1643                 }
1644         }
1645 }
1646
1647 /* Basic non-deterministic rebalancing algorithm.
1648  */
1649 static void basic_failback(struct ctdb_context *ctdb,
1650                            struct ctdb_ipflags *ipflags,
1651                            struct ctdb_public_ip_list *all_ips,
1652                            int num_ips)
1653 {
1654         int i, numnodes;
1655         int maxnode, maxnum, minnode, minnum, num, retries;
1656         struct ctdb_public_ip_list *tmp_ip;
1657
1658         numnodes = talloc_array_length(ipflags);
1659         retries = 0;
1660
1661 try_again:
1662         maxnum=0;
1663         minnum=0;
1664
1665         /* for each ip address, loop over all nodes that can serve
1666            this ip and make sure that the difference between the node
1667            serving the most and the node serving the least ip's are
1668            not greater than 1.
1669         */
1670         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1671                 if (tmp_ip->pnn == -1) {
1672                         continue;
1673                 }
1674
1675                 /* Get the highest and lowest number of ips's served by any 
1676                    valid node which can serve this ip.
1677                 */
1678                 maxnode = -1;
1679                 minnode = -1;
1680                 for (i=0; i<numnodes; i++) {
1681                         /* only check nodes that can actually serve this ip */
1682                         if (!can_node_takeover_ip(ctdb, i, ipflags[i], tmp_ip)) {
1683                                 /* no it couldnt   so skip to the next node */
1684                                 continue;
1685                         }
1686
1687                         num = node_ip_coverage(ctdb, i, all_ips);
1688                         if (maxnode == -1) {
1689                                 maxnode = i;
1690                                 maxnum  = num;
1691                         } else {
1692                                 if (num > maxnum) {
1693                                         maxnode = i;
1694                                         maxnum  = num;
1695                                 }
1696                         }
1697                         if (minnode == -1) {
1698                                 minnode = i;
1699                                 minnum  = num;
1700                         } else {
1701                                 if (num < minnum) {
1702                                         minnode = i;
1703                                         minnum  = num;
1704                                 }
1705                         }
1706                 }
1707                 if (maxnode == -1) {
1708                         DEBUG(DEBUG_WARNING,(__location__ " Could not find maxnode. May not be able to serve ip '%s'\n",
1709                                 ctdb_addr_to_str(&tmp_ip->addr)));
1710
1711                         continue;
1712                 }
1713
1714                 /* if the spread between the smallest and largest coverage by
1715                    a node is >=2 we steal one of the ips from the node with
1716                    most coverage to even things out a bit.
1717                    try to do this a limited number of times since we dont
1718                    want to spend too much time balancing the ip coverage.
1719                 */
1720                 if ( (maxnum > minnum+1)
1721                      && (retries < (num_ips + 5)) ){
1722                         struct ctdb_public_ip_list *tmp;
1723
1724                         /* Reassign one of maxnode's VNNs */
1725                         for (tmp=all_ips;tmp;tmp=tmp->next) {
1726                                 if (tmp->pnn == maxnode) {
1727                                         (void)find_takeover_node(ctdb, ipflags, tmp, all_ips);
1728                                         retries++;
1729                                         goto try_again;;
1730                                 }
1731                         }
1732                 }
1733         }
1734 }
1735
1736 struct ctdb_rebalancenodes {
1737         struct ctdb_rebalancenodes *next;
1738         uint32_t pnn;
1739 };
1740 static struct ctdb_rebalancenodes *force_rebalance_list = NULL;
1741
1742
1743 /* set this flag to force the node to be rebalanced even if it just didnt
1744    become healthy again.
1745 */
1746 void lcp2_forcerebalance(struct ctdb_context *ctdb, uint32_t pnn)
1747 {
1748         struct ctdb_rebalancenodes *rebalance;
1749
1750         for (rebalance = force_rebalance_list; rebalance; rebalance = rebalance->next) {
1751                 if (rebalance->pnn == pnn) {
1752                         return;
1753                 }
1754         }
1755
1756         rebalance = talloc(ctdb, struct ctdb_rebalancenodes);
1757         rebalance->pnn = pnn;
1758         rebalance->next = force_rebalance_list;
1759         force_rebalance_list = rebalance;
1760 }
1761
1762 /* Do necessary LCP2 initialisation.  Bury it in a function here so
1763  * that we can unit test it.
1764  */
1765 static void lcp2_init(struct ctdb_context *tmp_ctx,
1766                       struct ctdb_ipflags *ipflags,
1767                       struct ctdb_public_ip_list *all_ips,
1768                       uint32_t **lcp2_imbalances,
1769                       bool **rebalance_candidates)
1770 {
1771         int i, numnodes;
1772         struct ctdb_public_ip_list *tmp_ip;
1773
1774         numnodes = talloc_array_length(ipflags);
1775
1776         *rebalance_candidates = talloc_array(tmp_ctx, bool, numnodes);
1777         CTDB_NO_MEMORY_FATAL(tmp_ctx, *rebalance_candidates);
1778         *lcp2_imbalances = talloc_array(tmp_ctx, uint32_t, numnodes);
1779         CTDB_NO_MEMORY_FATAL(tmp_ctx, *lcp2_imbalances);
1780
1781         for (i=0; i<numnodes; i++) {
1782                 (*lcp2_imbalances)[i] = lcp2_imbalance(all_ips, i);
1783                 /* First step: assume all nodes are candidates */
1784                 (*rebalance_candidates)[i] = true;
1785         }
1786
1787         /* 2nd step: if a node has IPs assigned then it must have been
1788          * healthy before, so we remove it from consideration.  This
1789          * is overkill but is all we have because we don't maintain
1790          * state between takeover runs.  An alternative would be to
1791          * keep state and invalidate it every time the recovery master
1792          * changes.
1793          */
1794         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1795                 if (tmp_ip->pnn != -1) {
1796                         (*rebalance_candidates)[tmp_ip->pnn] = false;
1797                 }
1798         }
1799
1800         /* 3rd step: if a node is forced to re-balance then
1801            we allow failback onto the node */
1802         while (force_rebalance_list != NULL) {
1803                 struct ctdb_rebalancenodes *next = force_rebalance_list->next;
1804
1805                 if (force_rebalance_list->pnn <= numnodes) {
1806                         (*rebalance_candidates)[force_rebalance_list->pnn] = true;
1807                 }
1808
1809                 DEBUG(DEBUG_ERR,("During ipreallocation, forced rebalance of node %d\n", force_rebalance_list->pnn));
1810                 talloc_free(force_rebalance_list);
1811                 force_rebalance_list = next;
1812         }
1813 }
1814
1815 /* Allocate any unassigned addresses using the LCP2 algorithm to find
1816  * the IP/node combination that will cost the least.
1817  */
1818 static void lcp2_allocate_unassigned(struct ctdb_context *ctdb,
1819                                      struct ctdb_ipflags *ipflags,
1820                                      struct ctdb_public_ip_list *all_ips,
1821                                      uint32_t *lcp2_imbalances)
1822 {
1823         struct ctdb_public_ip_list *tmp_ip;
1824         int dstnode, numnodes;
1825
1826         int minnode;
1827         uint32_t mindsum, dstdsum, dstimbl, minimbl;
1828         struct ctdb_public_ip_list *minip;
1829
1830         bool should_loop = true;
1831         bool have_unassigned = true;
1832
1833         numnodes = talloc_array_length(ipflags);
1834
1835         while (have_unassigned && should_loop) {
1836                 should_loop = false;
1837
1838                 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1839                 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
1840
1841                 minnode = -1;
1842                 mindsum = 0;
1843                 minip = NULL;
1844
1845                 /* loop over each unassigned ip. */
1846                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1847                         if (tmp_ip->pnn != -1) {
1848                                 continue;
1849                         }
1850
1851                         for (dstnode=0; dstnode<numnodes; dstnode++) {
1852                                 /* only check nodes that can actually takeover this ip */
1853                                 if (!can_node_takeover_ip(ctdb, dstnode,
1854                                                           ipflags[dstnode],
1855                                                           tmp_ip)) {
1856                                         /* no it couldnt   so skip to the next node */
1857                                         continue;
1858                                 }
1859
1860                                 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1861                                 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1862                                 DEBUG(DEBUG_DEBUG,(" %s -> %d [+%d]\n",
1863                                                    ctdb_addr_to_str(&(tmp_ip->addr)),
1864                                                    dstnode,
1865                                                    dstimbl - lcp2_imbalances[dstnode]));
1866
1867
1868                                 if ((minnode == -1) || (dstdsum < mindsum)) {
1869                                         minnode = dstnode;
1870                                         minimbl = dstimbl;
1871                                         mindsum = dstdsum;
1872                                         minip = tmp_ip;
1873                                         should_loop = true;
1874                                 }
1875                         }
1876                 }
1877
1878                 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1879
1880                 /* If we found one then assign it to the given node. */
1881                 if (minnode != -1) {
1882                         minip->pnn = minnode;
1883                         lcp2_imbalances[minnode] = minimbl;
1884                         DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
1885                                           ctdb_addr_to_str(&(minip->addr)),
1886                                           minnode,
1887                                           mindsum));
1888                 }
1889
1890                 /* There might be a better way but at least this is clear. */
1891                 have_unassigned = false;
1892                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1893                         if (tmp_ip->pnn == -1) {
1894                                 have_unassigned = true;
1895                         }
1896                 }
1897         }
1898
1899         /* We know if we have an unassigned addresses so we might as
1900          * well optimise.
1901          */
1902         if (have_unassigned) {
1903                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1904                         if (tmp_ip->pnn == -1) {
1905                                 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1906                                                      ctdb_addr_to_str(&tmp_ip->addr)));
1907                         }
1908                 }
1909         }
1910 }
1911
1912 /* LCP2 algorithm for rebalancing the cluster.  Given a candidate node
1913  * to move IPs from, determines the best IP/destination node
1914  * combination to move from the source node.
1915  */
1916 static bool lcp2_failback_candidate(struct ctdb_context *ctdb,
1917                                     struct ctdb_ipflags *ipflags,
1918                                     struct ctdb_public_ip_list *all_ips,
1919                                     int srcnode,
1920                                     uint32_t candimbl,
1921                                     uint32_t *lcp2_imbalances,
1922                                     bool *rebalance_candidates)
1923 {
1924         int dstnode, mindstnode, numnodes;
1925         uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
1926         uint32_t minsrcimbl, mindstimbl;
1927         struct ctdb_public_ip_list *minip;
1928         struct ctdb_public_ip_list *tmp_ip;
1929
1930         /* Find an IP and destination node that best reduces imbalance. */
1931         srcimbl = 0;
1932         minip = NULL;
1933         minsrcimbl = 0;
1934         mindstnode = -1;
1935         mindstimbl = 0;
1936
1937         numnodes = talloc_array_length(ipflags);
1938
1939         DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1940         DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n", srcnode, candimbl));
1941
1942         for (tmp_ip=all_ips; tmp_ip; tmp_ip=tmp_ip->next) {
1943                 /* Only consider addresses on srcnode. */
1944                 if (tmp_ip->pnn != srcnode) {
1945                         continue;
1946                 }
1947
1948                 /* What is this IP address costing the source node? */
1949                 srcdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, srcnode);
1950                 srcimbl = candimbl - srcdsum;
1951
1952                 /* Consider this IP address would cost each potential
1953                  * destination node.  Destination nodes are limited to
1954                  * those that are newly healthy, since we don't want
1955                  * to do gratuitous failover of IPs just to make minor
1956                  * balance improvements.
1957                  */
1958                 for (dstnode=0; dstnode<numnodes; dstnode++) {
1959                         if (!rebalance_candidates[dstnode]) {
1960                                 continue;
1961                         }
1962
1963                         /* only check nodes that can actually takeover this ip */
1964                         if (!can_node_takeover_ip(ctdb, dstnode,
1965                                                   ipflags[dstnode], tmp_ip)) {
1966                                 /* no it couldnt   so skip to the next node */
1967                                 continue;
1968                         }
1969
1970                         dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1971                         dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1972                         DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
1973                                            srcnode, srcimbl - lcp2_imbalances[srcnode],
1974                                            ctdb_addr_to_str(&(tmp_ip->addr)),
1975                                            dstnode, dstimbl - lcp2_imbalances[dstnode]));
1976
1977                         if ((dstimbl < candimbl) && (dstdsum < srcdsum) && \
1978                             ((mindstnode == -1) ||                              \
1979                              ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
1980
1981                                 minip = tmp_ip;
1982                                 minsrcimbl = srcimbl;
1983                                 mindstnode = dstnode;
1984                                 mindstimbl = dstimbl;
1985                         }
1986                 }
1987         }
1988         DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1989
1990         if (mindstnode != -1) {
1991                 /* We found a move that makes things better... */
1992                 DEBUG(DEBUG_INFO,("%d [%d] -> %s -> %d [+%d]\n",
1993                                   srcnode, minsrcimbl - lcp2_imbalances[srcnode],
1994                                   ctdb_addr_to_str(&(minip->addr)),
1995                                   mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
1996
1997
1998                 lcp2_imbalances[srcnode] = srcimbl;
1999                 lcp2_imbalances[mindstnode] = mindstimbl;
2000                 minip->pnn = mindstnode;
2001
2002                 return true;
2003         }
2004
2005         return false;
2006         
2007 }
2008
2009 struct lcp2_imbalance_pnn {
2010         uint32_t imbalance;
2011         int pnn;
2012 };
2013
2014 static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
2015 {
2016         const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
2017         const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
2018
2019         if (lipa->imbalance > lipb->imbalance) {
2020                 return -1;
2021         } else if (lipa->imbalance == lipb->imbalance) {
2022                 return 0;
2023         } else {
2024                 return 1;
2025         }
2026 }
2027
2028 /* LCP2 algorithm for rebalancing the cluster.  This finds the source
2029  * node with the highest LCP2 imbalance, and then determines the best
2030  * IP/destination node combination to move from the source node.
2031  */
2032 static void lcp2_failback(struct ctdb_context *ctdb,
2033                           struct ctdb_ipflags *ipflags,
2034                           struct ctdb_public_ip_list *all_ips,
2035                           uint32_t *lcp2_imbalances,
2036                           bool *rebalance_candidates)
2037 {
2038         int i, num_rebalance_candidates, numnodes;
2039         struct lcp2_imbalance_pnn * lips;
2040         bool again;
2041
2042         numnodes = talloc_array_length(ipflags);
2043
2044 try_again:
2045
2046         /* It is only worth continuing if we have suitable target
2047          * nodes to transfer IPs to.  This check is much cheaper than
2048          * continuing on...
2049          */
2050         num_rebalance_candidates = 0;
2051         for (i=0; i<numnodes; i++) {
2052                 if (rebalance_candidates[i]) {
2053                         num_rebalance_candidates++;
2054                 }
2055         }
2056         if (num_rebalance_candidates == 0) {
2057                 return;
2058         }
2059
2060         /* Put the imbalances and nodes into an array, sort them and
2061          * iterate through candidates.  Usually the 1st one will be
2062          * used, so this doesn't cost much...
2063          */
2064         lips = talloc_array(ctdb, struct lcp2_imbalance_pnn, numnodes);
2065         for (i=0; i<numnodes; i++) {
2066                 lips[i].imbalance = lcp2_imbalances[i];
2067                 lips[i].pnn = i;
2068         }
2069         qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
2070               lcp2_cmp_imbalance_pnn);
2071
2072         again = false;
2073         for (i=0; i<numnodes; i++) {
2074                 /* This means that all nodes had 0 or 1 addresses, so
2075                  * can't be imbalanced.
2076                  */
2077                 if (lips[i].imbalance == 0) {
2078                         break;
2079                 }
2080
2081                 if (lcp2_failback_candidate(ctdb,
2082                                             ipflags,
2083                                             all_ips,
2084                                             lips[i].pnn,
2085                                             lips[i].imbalance,
2086                                             lcp2_imbalances,
2087                                             rebalance_candidates)) {
2088                         again = true;
2089                         break;
2090                 }
2091         }
2092
2093         talloc_free(lips);
2094         if (again) {
2095                 goto try_again;
2096         }
2097 }
2098
2099 static void unassign_unsuitable_ips(struct ctdb_context *ctdb,
2100                                     struct ctdb_ipflags *ipflags,
2101                                     struct ctdb_public_ip_list *all_ips)
2102 {
2103         struct ctdb_public_ip_list *tmp_ip;
2104
2105         /* verify that the assigned nodes can serve that public ip
2106            and set it to -1 if not
2107         */
2108         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2109                 if (tmp_ip->pnn == -1) {
2110                         continue;
2111                 }
2112                 if (!can_node_host_ip(ctdb, tmp_ip->pnn,
2113                                       ipflags[tmp_ip->pnn], tmp_ip) != 0) {
2114                         /* this node can not serve this ip. */
2115                         DEBUG(DEBUG_DEBUG,("Unassign IP: %s from %d\n",
2116                                            ctdb_addr_to_str(&(tmp_ip->addr)),
2117                                            tmp_ip->pnn));
2118                         tmp_ip->pnn = -1;
2119                 }
2120         }
2121 }
2122
2123 static void ip_alloc_deterministic_ips(struct ctdb_context *ctdb,
2124                                        struct ctdb_ipflags *ipflags,
2125                                        struct ctdb_public_ip_list *all_ips)
2126 {
2127         struct ctdb_public_ip_list *tmp_ip;
2128         int i, numnodes;
2129
2130         numnodes = talloc_array_length(ipflags);
2131
2132         DEBUG(DEBUG_NOTICE,("Deterministic IPs enabled. Resetting all ip allocations\n"));
2133        /* Allocate IPs to nodes in a modulo fashion so that IPs will
2134         *  always be allocated the same way for a specific set of
2135         *  available/unavailable nodes.
2136         */
2137
2138         for (i=0,tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next,i++) {
2139                 tmp_ip->pnn = i % numnodes;
2140         }
2141
2142         /* IP failback doesn't make sense with deterministic
2143          * IPs, since the modulo step above implicitly fails
2144          * back IPs to their "home" node.
2145          */
2146         if (1 == ctdb->tunable.no_ip_failback) {
2147                 DEBUG(DEBUG_WARNING, ("WARNING: 'NoIPFailback' set but ignored - incompatible with 'DeterministicIPs\n"));
2148         }
2149
2150         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2151
2152         basic_allocate_unassigned(ctdb, ipflags, all_ips);
2153
2154         /* No failback here! */
2155 }
2156
2157 static void ip_alloc_nondeterministic_ips(struct ctdb_context *ctdb,
2158                                           struct ctdb_ipflags *ipflags,
2159                                           struct ctdb_public_ip_list *all_ips)
2160 {
2161         /* This should be pushed down into basic_failback. */
2162         struct ctdb_public_ip_list *tmp_ip;
2163         int num_ips = 0;
2164         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2165                 num_ips++;
2166         }
2167
2168         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2169
2170         basic_allocate_unassigned(ctdb, ipflags, all_ips);
2171
2172         /* If we don't want IPs to fail back then don't rebalance IPs. */
2173         if (1 == ctdb->tunable.no_ip_failback) {
2174                 return;
2175         }
2176
2177         /* Now, try to make sure the ip adresses are evenly distributed
2178            across the nodes.
2179         */
2180         basic_failback(ctdb, ipflags, all_ips, num_ips);
2181 }
2182
2183 static void ip_alloc_lcp2(struct ctdb_context *ctdb,
2184                           struct ctdb_ipflags *ipflags,
2185                           struct ctdb_public_ip_list *all_ips)
2186 {
2187         uint32_t *lcp2_imbalances;
2188         bool *rebalance_candidates;
2189
2190         TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2191
2192         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2193
2194         lcp2_init(tmp_ctx, ipflags, all_ips,
2195                   &lcp2_imbalances, &rebalance_candidates);
2196
2197         lcp2_allocate_unassigned(ctdb, ipflags, all_ips, lcp2_imbalances);
2198
2199         /* If we don't want IPs to fail back then don't rebalance IPs. */
2200         if (1 == ctdb->tunable.no_ip_failback) {
2201                 goto finished;
2202         }
2203
2204         /* Now, try to make sure the ip adresses are evenly distributed
2205            across the nodes.
2206         */
2207         lcp2_failback(ctdb, ipflags, all_ips,
2208                       lcp2_imbalances, rebalance_candidates);
2209
2210 finished:
2211         talloc_free(tmp_ctx);
2212 }
2213
2214 static bool all_nodes_are_disabled(struct ctdb_node_map *nodemap)
2215 {
2216         int i, num_healthy;
2217
2218         /* Count how many completely healthy nodes we have */
2219         num_healthy = 0;
2220         for (i=0;i<nodemap->num;i++) {
2221                 if (!(nodemap->nodes[i].flags & (NODE_FLAGS_INACTIVE|NODE_FLAGS_DISABLED))) {
2222                         num_healthy++;
2223                 }
2224         }
2225
2226         return num_healthy == 0;
2227 }
2228
2229 /* The calculation part of the IP allocation algorithm. */
2230 static void ctdb_takeover_run_core(struct ctdb_context *ctdb,
2231                                    struct ctdb_ipflags *ipflags,
2232                                    struct ctdb_public_ip_list **all_ips_p)
2233 {
2234         /* since nodes only know about those public addresses that
2235            can be served by that particular node, no single node has
2236            a full list of all public addresses that exist in the cluster.
2237            Walk over all node structures and create a merged list of
2238            all public addresses that exist in the cluster.
2239
2240            keep the tree of ips around as ctdb->ip_tree
2241         */
2242         *all_ips_p = create_merged_ip_list(ctdb);
2243
2244         if (1 == ctdb->tunable.lcp2_public_ip_assignment) {
2245                 ip_alloc_lcp2(ctdb, ipflags, *all_ips_p);
2246         } else if (1 == ctdb->tunable.deterministic_public_ips) {
2247                 ip_alloc_deterministic_ips(ctdb, ipflags, *all_ips_p);
2248         } else {
2249                 ip_alloc_nondeterministic_ips(ctdb, ipflags, *all_ips_p);
2250         }
2251
2252         /* at this point ->pnn is the node which will own each IP
2253            or -1 if there is no node that can cover this ip
2254         */
2255
2256         return;
2257 }
2258
2259 struct get_tunable_callback_data {
2260         const char *tunable;
2261         uint32_t *out;
2262         bool fatal;
2263 };
2264
2265 static void get_tunable_callback(struct ctdb_context *ctdb, uint32_t pnn,
2266                                  int32_t res, TDB_DATA outdata,
2267                                  void *callback)
2268 {
2269         struct get_tunable_callback_data *cd =
2270                 (struct get_tunable_callback_data *)callback;
2271         int size;
2272
2273         if (res != 0) {
2274                 /* Already handled in fail callback */
2275                 return;
2276         }
2277
2278         if (outdata.dsize != sizeof(uint32_t)) {
2279                 DEBUG(DEBUG_ERR,("Wrong size of returned data when reading \"%s\" tunable from node %d. Expected %d bytes but received %d bytes\n",
2280                                  cd->tunable, pnn, (int)sizeof(uint32_t),
2281                                  (int)outdata.dsize));
2282                 cd->fatal = true;
2283                 return;
2284         }
2285
2286         size = talloc_array_length(cd->out);
2287         if (pnn >= size) {
2288                 DEBUG(DEBUG_ERR,("Got %s reply from node %d but nodemap only has %d entries\n",
2289                                  cd->tunable, pnn, size));
2290                 return;
2291         }
2292
2293                 
2294         cd->out[pnn] = *(uint32_t *)outdata.dptr;
2295 }
2296
2297 static void get_tunable_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2298                                        int32_t res, TDB_DATA outdata,
2299                                        void *callback)
2300 {
2301         struct get_tunable_callback_data *cd =
2302                 (struct get_tunable_callback_data *)callback;
2303
2304         switch (res) {
2305         case -ETIME:
2306                 DEBUG(DEBUG_ERR,
2307                       ("Timed out getting tunable \"%s\" from node %d\n",
2308                        cd->tunable, pnn));
2309                 cd->fatal = true;
2310                 break;
2311         case -EINVAL:
2312         case -1:
2313                 DEBUG(DEBUG_WARNING,
2314                       ("Tunable \"%s\" not implemented on node %d\n",
2315                        cd->tunable, pnn));
2316                 break;
2317         default:
2318                 DEBUG(DEBUG_ERR,
2319                       ("Unexpected error getting tunable \"%s\" from node %d\n",
2320                        cd->tunable, pnn));
2321                 cd->fatal = true;
2322         }
2323 }
2324
2325 static uint32_t *get_tunable_from_nodes(struct ctdb_context *ctdb,
2326                                         TALLOC_CTX *tmp_ctx,
2327                                         struct ctdb_node_map *nodemap,
2328                                         const char *tunable,
2329                                         uint32_t default_value)
2330 {
2331         TDB_DATA data;
2332         struct ctdb_control_get_tunable *t;
2333         uint32_t *nodes;
2334         uint32_t *tvals;
2335         struct get_tunable_callback_data callback_data;
2336         int i;
2337
2338         tvals = talloc_array(tmp_ctx, uint32_t, nodemap->num);
2339         CTDB_NO_MEMORY_NULL(ctdb, tvals);
2340         for (i=0; i<nodemap->num; i++) {
2341                 tvals[i] = default_value;
2342         }
2343                 
2344         callback_data.out = tvals;
2345         callback_data.tunable = tunable;
2346         callback_data.fatal = false;
2347
2348         data.dsize = offsetof(struct ctdb_control_get_tunable, name) + strlen(tunable) + 1;
2349         data.dptr  = talloc_size(tmp_ctx, data.dsize);
2350         t = (struct ctdb_control_get_tunable *)data.dptr;
2351         t->length = strlen(tunable)+1;
2352         memcpy(t->name, tunable, t->length);
2353         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2354         if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_TUNABLE,
2355                                       nodes, 0, TAKEOVER_TIMEOUT(),
2356                                       false, data,
2357                                       get_tunable_callback,
2358                                       get_tunable_fail_callback,
2359                                       &callback_data) != 0) {
2360                 if (callback_data.fatal) {
2361                         talloc_free(tvals);
2362                         tvals = NULL;
2363                 }
2364         }
2365         talloc_free(nodes);
2366         talloc_free(data.dptr);
2367
2368         return tvals;
2369 }
2370
2371 struct get_runstate_callback_data {
2372         enum ctdb_runstate *out;
2373         bool fatal;
2374 };
2375
2376 static void get_runstate_callback(struct ctdb_context *ctdb, uint32_t pnn,
2377                                   int32_t res, TDB_DATA outdata,
2378                                   void *callback_data)
2379 {
2380         struct get_runstate_callback_data *cd =
2381                 (struct get_runstate_callback_data *)callback_data;
2382         int size;
2383
2384         if (res != 0) {
2385                 /* Already handled in fail callback */
2386                 return;
2387         }
2388
2389         if (outdata.dsize != sizeof(uint32_t)) {
2390                 DEBUG(DEBUG_ERR,("Wrong size of returned data when getting runstate from node %d. Expected %d bytes but received %d bytes\n",
2391                                  pnn, (int)sizeof(uint32_t),
2392                                  (int)outdata.dsize));
2393                 cd->fatal = true;
2394                 return;
2395         }
2396
2397         size = talloc_array_length(cd->out);
2398         if (pnn >= size) {
2399                 DEBUG(DEBUG_ERR,("Got reply from node %d but nodemap only has %d entries\n",
2400                                  pnn, size));
2401                 return;
2402         }
2403
2404         cd->out[pnn] = (enum ctdb_runstate)*(uint32_t *)outdata.dptr;
2405 }
2406
2407 static void get_runstate_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2408                                        int32_t res, TDB_DATA outdata,
2409                                        void *callback)
2410 {
2411         struct get_runstate_callback_data *cd =
2412                 (struct get_runstate_callback_data *)callback;
2413
2414         switch (res) {
2415         case -ETIME:
2416                 DEBUG(DEBUG_ERR,
2417                       ("Timed out getting runstate from node %d\n", pnn));
2418                 cd->fatal = true;
2419                 break;
2420         default:
2421                 DEBUG(DEBUG_WARNING,
2422                       ("Error getting runstate from node %d - assuming runstates not supported\n",
2423                        pnn));
2424         }
2425 }
2426
2427 static enum ctdb_runstate * get_runstate_from_nodes(struct ctdb_context *ctdb,
2428                                                     TALLOC_CTX *tmp_ctx,
2429                                                     struct ctdb_node_map *nodemap,
2430                                                     enum ctdb_runstate default_value)
2431 {
2432         uint32_t *nodes;
2433         enum ctdb_runstate *rs;
2434         struct get_runstate_callback_data callback_data;
2435         int i;
2436
2437         rs = talloc_array(tmp_ctx, enum ctdb_runstate, nodemap->num);
2438         CTDB_NO_MEMORY_NULL(ctdb, rs);
2439         for (i=0; i<nodemap->num; i++) {
2440                 rs[i] = default_value;
2441         }
2442
2443         callback_data.out = rs;
2444         callback_data.fatal = false;
2445
2446         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2447         if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_RUNSTATE,
2448                                       nodes, 0, TAKEOVER_TIMEOUT(),
2449                                       true, tdb_null,
2450                                       get_runstate_callback,
2451                                       get_runstate_fail_callback,
2452                                       &callback_data) != 0) {
2453                 if (callback_data.fatal) {
2454                         free(rs);
2455                         rs = NULL;
2456                 }
2457         }
2458         talloc_free(nodes);
2459
2460         return rs;
2461 }
2462
2463 /* Set internal flags for IP allocation:
2464  *   Clear ip flags
2465  *   Set NOIPTAKOVER ip flags from per-node NoIPTakeover tunable
2466  *   Set NOIPHOST ip flag for each INACTIVE node
2467  *   if all nodes are disabled:
2468  *     Set NOIPHOST ip flags from per-node NoIPHostOnAllDisabled tunable
2469  *   else
2470  *     Set NOIPHOST ip flags for disabled nodes
2471  */
2472 static struct ctdb_ipflags *
2473 set_ipflags_internal(struct ctdb_context *ctdb,
2474                      TALLOC_CTX *tmp_ctx,
2475                      struct ctdb_node_map *nodemap,
2476                      uint32_t *tval_noiptakeover,
2477                      uint32_t *tval_noiphostonalldisabled,
2478                      enum ctdb_runstate *runstate)
2479 {
2480         int i;
2481         struct ctdb_ipflags *ipflags;
2482
2483         /* Clear IP flags - implicit due to talloc_zero */
2484         ipflags = talloc_zero_array(tmp_ctx, struct ctdb_ipflags, nodemap->num);
2485         CTDB_NO_MEMORY_NULL(ctdb, ipflags);
2486
2487         for (i=0;i<nodemap->num;i++) {
2488                 /* Can not take IPs on node with NoIPTakeover set */
2489                 if (tval_noiptakeover[i] != 0) {
2490                         ipflags[i].noiptakeover = true;
2491                 }
2492
2493                 /* Can not host IPs on node not in RUNNING state */
2494                 if (runstate[i] != CTDB_RUNSTATE_RUNNING) {
2495                         ipflags[i].noiphost = true;
2496                         continue;
2497                 }
2498                 /* Can not host IPs on INACTIVE node */
2499                 if (nodemap->nodes[i].flags & NODE_FLAGS_INACTIVE) {
2500                         ipflags[i].noiphost = true;
2501                 }
2502         }
2503
2504         if (all_nodes_are_disabled(nodemap)) {
2505                 /* If all nodes are disabled, can not host IPs on node
2506                  * with NoIPHostOnAllDisabled set
2507                  */
2508                 for (i=0;i<nodemap->num;i++) {
2509                         if (tval_noiphostonalldisabled[i] != 0) {
2510                                 ipflags[i].noiphost = true;
2511                         }
2512                 }
2513         } else {
2514                 /* If some nodes are not disabled, then can not host
2515                  * IPs on DISABLED node
2516                  */
2517                 for (i=0;i<nodemap->num;i++) {
2518                         if (nodemap->nodes[i].flags & NODE_FLAGS_DISABLED) {
2519                                 ipflags[i].noiphost = true;
2520                         }
2521                 }
2522         }
2523
2524         return ipflags;
2525 }
2526
2527 static struct ctdb_ipflags *set_ipflags(struct ctdb_context *ctdb,
2528                                         TALLOC_CTX *tmp_ctx,
2529                                         struct ctdb_node_map *nodemap)
2530 {
2531         uint32_t *tval_noiptakeover;
2532         uint32_t *tval_noiphostonalldisabled;
2533         struct ctdb_ipflags *ipflags;
2534         enum ctdb_runstate *runstate;
2535
2536
2537         tval_noiptakeover = get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2538                                                    "NoIPTakeover", 0);
2539         if (tval_noiptakeover == NULL) {
2540                 return NULL;
2541         }
2542
2543         tval_noiphostonalldisabled =
2544                 get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2545                                        "NoIPHostOnAllDisabled", 0);
2546         if (tval_noiphostonalldisabled == NULL) {
2547                 /* Caller frees tmp_ctx */
2548                 return NULL;
2549         }
2550
2551         /* Any nodes where CTDB_CONTROL_GET_RUNSTATE is not supported
2552          * will default to CTDB_RUNSTATE_RUNNING.  This ensures
2553          * reasonable behaviour on a mixed cluster during upgrade.
2554          */
2555         runstate = get_runstate_from_nodes(ctdb, tmp_ctx, nodemap,
2556                                            CTDB_RUNSTATE_RUNNING);
2557         if (runstate == NULL) {
2558                 /* Caller frees tmp_ctx */
2559                 return NULL;
2560         }
2561
2562         ipflags = set_ipflags_internal(ctdb, tmp_ctx, nodemap,
2563                                        tval_noiptakeover,
2564                                        tval_noiphostonalldisabled,
2565                                        runstate);
2566
2567         talloc_free(tval_noiptakeover);
2568         talloc_free(tval_noiphostonalldisabled);
2569         talloc_free(runstate);
2570
2571         return ipflags;
2572 }
2573
2574 struct iprealloc_callback_data {
2575         bool *retry_nodes;
2576         int retry_count;
2577         client_async_callback fail_callback;
2578         void *fail_callback_data;
2579         struct ctdb_node_map *nodemap;
2580 };
2581
2582 static void iprealloc_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2583                                         int32_t res, TDB_DATA outdata,
2584                                         void *callback)
2585 {
2586         int numnodes;
2587         struct iprealloc_callback_data *cd =
2588                 (struct iprealloc_callback_data *)callback;
2589
2590         switch (res) {
2591         case -ETIME:
2592                 /* If the control timed out then that's a real error,
2593                  * so call the real fail callback
2594                  */
2595                 cd->fail_callback(ctdb, pnn, res, outdata,
2596                                   cd->fail_callback_data);
2597                 break;
2598         default:
2599                 /* If not a timeout then either the ipreallocated
2600                  * eventscript (or some setup) failed.  This might
2601                  * have failed because the IPREALLOCATED control isn't
2602                  * implemented - right now there is no way of knowing
2603                  * because the error codes are all folded down to -1.
2604                  * Consider retrying using EVENTSCRIPT control...
2605                  */
2606
2607                 numnodes = talloc_array_length(cd->retry_nodes);
2608                 if (pnn > numnodes) {
2609                         DEBUG(DEBUG_ERR,
2610                               ("ipreallocated failure from node %d, but only %d nodes in nodemap\n",
2611                                pnn, numnodes));
2612                         return;
2613                 }
2614
2615                 /* Can't run the "ipreallocated" event on a INACTIVE node */
2616                 if (cd->nodemap->nodes[pnn].flags & NODE_FLAGS_INACTIVE) {
2617                         DEBUG(DEBUG_ERR,
2618                               ("ipreallocated failure from node %d, but node is inactive - not flagging a retry\n",
2619                                pnn));
2620                         return;
2621                 }
2622
2623                 DEBUG(DEBUG_WARNING,
2624                       ("ipreallocated failure from node %d, flagging retry\n",
2625                        pnn));
2626                 cd->retry_nodes[pnn] = true;
2627                 cd->retry_count++;
2628         }
2629 }
2630
2631 struct takeover_callback_data {
2632         bool *node_failed;
2633         client_async_callback fail_callback;
2634         void *fail_callback_data;
2635         struct ctdb_node_map *nodemap;
2636 };
2637
2638 static void takeover_run_fail_callback(struct ctdb_context *ctdb,
2639                                        uint32_t node_pnn, int32_t res,
2640                                        TDB_DATA outdata, void *callback_data)
2641 {
2642         struct takeover_callback_data *cd =
2643                 talloc_get_type_abort(callback_data,
2644                                       struct takeover_callback_data);
2645         int i;
2646
2647         for (i = 0; i < cd->nodemap->num; i++) {
2648                 if (node_pnn == cd->nodemap->nodes[i].pnn) {
2649                         break;
2650                 }
2651         }
2652
2653         if (i == cd->nodemap->num) {
2654                 DEBUG(DEBUG_ERR, (__location__ " invalid PNN %u\n", node_pnn));
2655                 return;
2656         }
2657
2658         if (!cd->node_failed[i]) {
2659                 cd->node_failed[i] = true;
2660                 cd->fail_callback(ctdb, node_pnn, res, outdata,
2661                                   cd->fail_callback_data);
2662         }
2663 }
2664
2665 /*
2666   make any IP alias changes for public addresses that are necessary 
2667  */
2668 int ctdb_takeover_run(struct ctdb_context *ctdb, struct ctdb_node_map *nodemap,
2669                       client_async_callback fail_callback, void *callback_data)
2670 {
2671         int i, j, ret;
2672         struct ctdb_public_ip ip;
2673         struct ctdb_public_ipv4 ipv4;
2674         uint32_t *nodes;
2675         struct ctdb_public_ip_list *all_ips, *tmp_ip;
2676         TDB_DATA data;
2677         struct timeval timeout;
2678         struct client_async_data *async_data;
2679         struct ctdb_client_control_state *state;
2680         TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2681         struct ctdb_ipflags *ipflags;
2682         struct takeover_callback_data *takeover_data;
2683         struct iprealloc_callback_data iprealloc_data;
2684         bool *retry_data;
2685
2686         /*
2687          * ip failover is completely disabled, just send out the 
2688          * ipreallocated event.
2689          */
2690         if (ctdb->tunable.disable_ip_failover != 0) {
2691                 goto ipreallocated;
2692         }
2693
2694         ipflags = set_ipflags(ctdb, tmp_ctx, nodemap);
2695         if (ipflags == NULL) {
2696                 DEBUG(DEBUG_ERR,("Failed to set IP flags - aborting takeover run\n"));
2697                 talloc_free(tmp_ctx);
2698                 return -1;
2699         }
2700
2701         ZERO_STRUCT(ip);
2702
2703         /* Do the IP reassignment calculations */
2704         ctdb_takeover_run_core(ctdb, ipflags, &all_ips);
2705
2706         /* Now tell all nodes to release any public IPs should not
2707          * host.  This will be a NOOP on nodes that don't currently
2708          * hold the given IP.
2709          */
2710         takeover_data = talloc_zero(tmp_ctx, struct takeover_callback_data);
2711         CTDB_NO_MEMORY_FATAL(ctdb, takeover_data);
2712
2713         takeover_data->node_failed = talloc_zero_array(tmp_ctx,
2714                                                        bool, nodemap->num);
2715         CTDB_NO_MEMORY_FATAL(ctdb, takeover_data->node_failed);
2716         takeover_data->fail_callback = fail_callback;
2717         takeover_data->fail_callback_data = callback_data;
2718         takeover_data->nodemap = nodemap;
2719
2720         async_data = talloc_zero(tmp_ctx, struct client_async_data);
2721         CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2722
2723         async_data->fail_callback = takeover_run_fail_callback;
2724         async_data->callback_data = takeover_data;
2725
2726         for (i=0;i<nodemap->num;i++) {
2727                 /* don't talk to unconnected nodes, but do talk to banned nodes */
2728                 if (nodemap->nodes[i].flags & NODE_FLAGS_DISCONNECTED) {
2729                         continue;
2730                 }
2731
2732                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2733                         if (tmp_ip->pnn == nodemap->nodes[i].pnn) {
2734                                 /* This node should be serving this
2735                                    vnn so dont tell it to release the ip
2736                                 */
2737                                 continue;
2738                         }
2739                         if (tmp_ip->addr.sa.sa_family == AF_INET) {
2740                                 ipv4.pnn = tmp_ip->pnn;
2741                                 ipv4.sin = tmp_ip->addr.ip;
2742
2743                                 timeout = TAKEOVER_TIMEOUT();
2744                                 data.dsize = sizeof(ipv4);
2745                                 data.dptr  = (uint8_t *)&ipv4;
2746                                 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2747                                                 0, CTDB_CONTROL_RELEASE_IPv4, 0,
2748                                                 data, async_data,
2749                                                 &timeout, NULL);
2750                         } else {
2751                                 ip.pnn  = tmp_ip->pnn;
2752                                 ip.addr = tmp_ip->addr;
2753
2754                                 timeout = TAKEOVER_TIMEOUT();
2755                                 data.dsize = sizeof(ip);
2756                                 data.dptr  = (uint8_t *)&ip;
2757                                 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2758                                                 0, CTDB_CONTROL_RELEASE_IP, 0,
2759                                                 data, async_data,
2760                                                 &timeout, NULL);
2761                         }
2762
2763                         if (state == NULL) {
2764                                 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_RELEASE_IP to node %u\n", nodemap->nodes[i].pnn));
2765                                 talloc_free(tmp_ctx);
2766                                 return -1;
2767                         }
2768                 
2769                         ctdb_client_async_add(async_data, state);
2770                 }
2771         }
2772         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2773                 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_RELEASE_IP failed\n"));
2774                 talloc_free(tmp_ctx);
2775                 return -1;
2776         }
2777         talloc_free(async_data);
2778
2779
2780         /* tell all nodes to get their own IPs */
2781         async_data = talloc_zero(tmp_ctx, struct client_async_data);
2782         CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2783
2784         async_data->fail_callback = fail_callback;
2785         async_data->callback_data = callback_data;
2786
2787         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2788                 if (tmp_ip->pnn == -1) {
2789                         /* this IP won't be taken over */
2790                         continue;
2791                 }
2792
2793                 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2794                         ipv4.pnn = tmp_ip->pnn;
2795                         ipv4.sin = tmp_ip->addr.ip;
2796
2797                         timeout = TAKEOVER_TIMEOUT();
2798                         data.dsize = sizeof(ipv4);
2799                         data.dptr  = (uint8_t *)&ipv4;
2800                         state = ctdb_control_send(ctdb, tmp_ip->pnn,
2801                                         0, CTDB_CONTROL_TAKEOVER_IPv4, 0,
2802                                         data, async_data,
2803                                         &timeout, NULL);
2804                 } else {
2805                         ip.pnn  = tmp_ip->pnn;
2806                         ip.addr = tmp_ip->addr;
2807
2808                         timeout = TAKEOVER_TIMEOUT();
2809                         data.dsize = sizeof(ip);
2810                         data.dptr  = (uint8_t *)&ip;
2811                         state = ctdb_control_send(ctdb, tmp_ip->pnn,
2812                                         0, CTDB_CONTROL_TAKEOVER_IP, 0,
2813                                         data, async_data,
2814                                         &timeout, NULL);
2815                 }
2816                 if (state == NULL) {
2817                         DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_TAKEOVER_IP to node %u\n", tmp_ip->pnn));
2818                         talloc_free(tmp_ctx);
2819                         return -1;
2820                 }
2821                 
2822                 ctdb_client_async_add(async_data, state);
2823         }
2824         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2825                 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_TAKEOVER_IP failed\n"));
2826                 talloc_free(tmp_ctx);
2827                 return -1;
2828         }
2829
2830 ipreallocated:
2831         /* 
2832          * Tell all nodes to run eventscripts to process the
2833          * "ipreallocated" event.  This can do a lot of things,
2834          * including restarting services to reconfigure them if public
2835          * IPs have moved.  Once upon a time this event only used to
2836          * update natwg.
2837          */
2838         retry_data = talloc_zero_array(tmp_ctx, bool, nodemap->num);
2839         CTDB_NO_MEMORY_FATAL(ctdb, retry_data);
2840         iprealloc_data.retry_nodes = retry_data;
2841         iprealloc_data.retry_count = 0;
2842         iprealloc_data.fail_callback = fail_callback;
2843         iprealloc_data.fail_callback_data = callback_data;
2844         iprealloc_data.nodemap = nodemap;
2845
2846         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2847         ret = ctdb_client_async_control(ctdb, CTDB_CONTROL_IPREALLOCATED,
2848                                         nodes, 0, TAKEOVER_TIMEOUT(),
2849                                         false, tdb_null,
2850                                         NULL, iprealloc_fail_callback,
2851                                         &iprealloc_data);
2852         if (ret != 0) {
2853                 /* If the control failed then we should retry to any
2854                  * nodes flagged by iprealloc_fail_callback using the
2855                  * EVENTSCRIPT control.  This is a best-effort at
2856                  * backward compatiblity when running a mixed cluster
2857                  * where some nodes have not yet been upgraded to
2858                  * support the IPREALLOCATED control.
2859                  */
2860                 DEBUG(DEBUG_WARNING,
2861                       ("Retry ipreallocated to some nodes using eventscript control\n"));
2862
2863                 nodes = talloc_array(tmp_ctx, uint32_t,
2864                                      iprealloc_data.retry_count);
2865                 CTDB_NO_MEMORY_FATAL(ctdb, nodes);
2866
2867                 j = 0;
2868                 for (i=0; i<nodemap->num; i++) {
2869                         if (iprealloc_data.retry_nodes[i]) {
2870                                 nodes[j] = i;
2871                                 j++;
2872                         }
2873                 }
2874
2875                 data.dptr  = discard_const("ipreallocated");
2876                 data.dsize = strlen((char *)data.dptr) + 1; 
2877                 ret = ctdb_client_async_control(ctdb,
2878                                                 CTDB_CONTROL_RUN_EVENTSCRIPTS,
2879                                                 nodes, 0, TAKEOVER_TIMEOUT(),
2880                                                 false, data,
2881                                                 NULL, fail_callback,
2882                                                 callback_data);
2883                 if (ret != 0) {
2884                         DEBUG(DEBUG_ERR, (__location__ " failed to send control to run eventscripts with \"ipreallocated\"\n"));
2885                 }
2886         }
2887
2888         talloc_free(tmp_ctx);
2889         return ret;
2890 }
2891
2892
2893 /*
2894   destroy a ctdb_client_ip structure
2895  */
2896 static int ctdb_client_ip_destructor(struct ctdb_client_ip *ip)
2897 {
2898         DEBUG(DEBUG_DEBUG,("destroying client tcp for %s:%u (client_id %u)\n",
2899                 ctdb_addr_to_str(&ip->addr),
2900                 ntohs(ip->addr.ip.sin_port),
2901                 ip->client_id));
2902
2903         DLIST_REMOVE(ip->ctdb->client_ip_list, ip);
2904         return 0;
2905 }
2906
2907 /*
2908   called by a client to inform us of a TCP connection that it is managing
2909   that should tickled with an ACK when IP takeover is done
2910   we handle both the old ipv4 style of packets as well as the new ipv4/6
2911   pdus.
2912  */
2913 int32_t ctdb_control_tcp_client(struct ctdb_context *ctdb, uint32_t client_id,
2914                                 TDB_DATA indata)
2915 {
2916         struct ctdb_client *client = ctdb_reqid_find(ctdb, client_id, struct ctdb_client);
2917         struct ctdb_control_tcp *old_addr = NULL;
2918         struct ctdb_control_tcp_addr new_addr;
2919         struct ctdb_control_tcp_addr *tcp_sock = NULL;
2920         struct ctdb_tcp_list *tcp;
2921         struct ctdb_tcp_connection t;
2922         int ret;
2923         TDB_DATA data;
2924         struct ctdb_client_ip *ip;
2925         struct ctdb_vnn *vnn;
2926         ctdb_sock_addr addr;
2927
2928         switch (indata.dsize) {
2929         case sizeof(struct ctdb_control_tcp):
2930                 old_addr = (struct ctdb_control_tcp *)indata.dptr;
2931                 ZERO_STRUCT(new_addr);
2932                 tcp_sock = &new_addr;
2933                 tcp_sock->src.ip  = old_addr->src;
2934                 tcp_sock->dest.ip = old_addr->dest;
2935                 break;
2936         case sizeof(struct ctdb_control_tcp_addr):
2937                 tcp_sock = (struct ctdb_control_tcp_addr *)indata.dptr;
2938                 break;
2939         default:
2940                 DEBUG(DEBUG_ERR,(__location__ " Invalid data structure passed "
2941                                  "to ctdb_control_tcp_client. size was %d but "
2942                                  "only allowed sizes are %lu and %lu\n",
2943                                  (int)indata.dsize,
2944                                  (long unsigned)sizeof(struct ctdb_control_tcp),
2945                                  (long unsigned)sizeof(struct ctdb_control_tcp_addr)));
2946                 return -1;
2947         }
2948
2949         addr = tcp_sock->src;
2950         ctdb_canonicalize_ip(&addr,  &tcp_sock->src);
2951         addr = tcp_sock->dest;
2952         ctdb_canonicalize_ip(&addr, &tcp_sock->dest);
2953
2954         ZERO_STRUCT(addr);
2955         memcpy(&addr, &tcp_sock->dest, sizeof(addr));
2956         vnn = find_public_ip_vnn(ctdb, &addr);
2957         if (vnn == NULL) {
2958                 switch (addr.sa.sa_family) {
2959                 case AF_INET:
2960                         if (ntohl(addr.ip.sin_addr.s_addr) != INADDR_LOOPBACK) {
2961                                 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public address.\n", 
2962                                         ctdb_addr_to_str(&addr)));
2963                         }
2964                         break;
2965                 case AF_INET6:
2966                         DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public ipv6 address.\n", 
2967                                 ctdb_addr_to_str(&addr)));
2968                         break;
2969                 default:
2970                         DEBUG(DEBUG_ERR,(__location__ " Unknown family type %d\n", addr.sa.sa_family));
2971                 }
2972
2973                 return 0;
2974         }
2975
2976         if (vnn->pnn != ctdb->pnn) {
2977                 DEBUG(DEBUG_ERR,("Attempt to register tcp client for IP %s we don't hold - failing (client_id %u pid %u)\n",
2978                         ctdb_addr_to_str(&addr),
2979                         client_id, client->pid));
2980                 /* failing this call will tell smbd to die */
2981                 return -1;
2982         }
2983
2984         ip = talloc(client, struct ctdb_client_ip);
2985         CTDB_NO_MEMORY(ctdb, ip);
2986
2987         ip->ctdb      = ctdb;
2988         ip->addr      = addr;
2989         ip->client_id = client_id;
2990         talloc_set_destructor(ip, ctdb_client_ip_destructor);
2991         DLIST_ADD(ctdb->client_ip_list, ip);
2992
2993         tcp = talloc(client, struct ctdb_tcp_list);
2994         CTDB_NO_MEMORY(ctdb, tcp);
2995
2996         tcp->connection.src_addr = tcp_sock->src;
2997         tcp->connection.dst_addr = tcp_sock->dest;
2998
2999         DLIST_ADD(client->tcp_list, tcp);
3000
3001         t.src_addr = tcp_sock->src;
3002         t.dst_addr = tcp_sock->dest;
3003
3004         data.dptr = (uint8_t *)&t;
3005         data.dsize = sizeof(t);
3006
3007         switch (addr.sa.sa_family) {
3008         case AF_INET:
3009                 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
3010                         (unsigned)ntohs(tcp_sock->dest.ip.sin_port), 
3011                         ctdb_addr_to_str(&tcp_sock->src),
3012                         (unsigned)ntohs(tcp_sock->src.ip.sin_port), client_id, client->pid));
3013                 break;
3014         case AF_INET6:
3015                 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
3016                         (unsigned)ntohs(tcp_sock->dest.ip6.sin6_port), 
3017                         ctdb_addr_to_str(&tcp_sock->src),
3018                         (unsigned)ntohs(tcp_sock->src.ip6.sin6_port), client_id, client->pid));
3019                 break;
3020         default:
3021                 DEBUG(DEBUG_ERR,(__location__ " Unknown family %d\n", addr.sa.sa_family));
3022         }
3023
3024
3025         /* tell all nodes about this tcp connection */
3026         ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0, 
3027                                        CTDB_CONTROL_TCP_ADD,
3028                                        0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
3029         if (ret != 0) {
3030                 DEBUG(DEBUG_ERR,(__location__ " Failed to send CTDB_CONTROL_TCP_ADD\n"));
3031                 return -1;
3032         }
3033
3034         return 0;
3035 }
3036
3037 /*
3038   find a tcp address on a list
3039  */
3040 static struct ctdb_tcp_connection *ctdb_tcp_find(struct ctdb_tcp_array *array, 
3041                                            struct ctdb_tcp_connection *tcp)
3042 {
3043         int i;
3044
3045         if (array == NULL) {
3046                 return NULL;
3047         }
3048
3049         for (i=0;i<array->num;i++) {
3050                 if (ctdb_same_sockaddr(&array->connections[i].src_addr, &tcp->src_addr) &&
3051                     ctdb_same_sockaddr(&array->connections[i].dst_addr, &tcp->dst_addr)) {
3052                         return &array->connections[i];
3053                 }
3054         }
3055         return NULL;
3056 }
3057
3058
3059
3060 /*
3061   called by a daemon to inform us of a TCP connection that one of its
3062   clients managing that should tickled with an ACK when IP takeover is
3063   done
3064  */
3065 int32_t ctdb_control_tcp_add(struct ctdb_context *ctdb, TDB_DATA indata, bool tcp_update_needed)
3066 {
3067         struct ctdb_tcp_connection *p = (struct ctdb_tcp_connection *)indata.dptr;
3068         struct ctdb_tcp_array *tcparray;
3069         struct ctdb_tcp_connection tcp;
3070         struct ctdb_vnn *vnn;
3071
3072         vnn = find_public_ip_vnn(ctdb, &p->dst_addr);
3073         if (vnn == NULL) {
3074                 DEBUG(DEBUG_INFO,(__location__ " got TCP_ADD control for an address which is not a public address '%s'\n",
3075                         ctdb_addr_to_str(&p->dst_addr)));
3076
3077                 return -1;
3078         }
3079
3080
3081         tcparray = vnn->tcp_array;
3082
3083         /* If this is the first tickle */
3084         if (tcparray == NULL) {
3085                 tcparray = talloc_size(ctdb->nodes, 
3086                         offsetof(struct ctdb_tcp_array, connections) +
3087                         sizeof(struct ctdb_tcp_connection) * 1);
3088                 CTDB_NO_MEMORY(ctdb, tcparray);
3089                 vnn->tcp_array = tcparray;
3090
3091                 tcparray->num = 0;
3092                 tcparray->connections = talloc_size(tcparray, sizeof(struct ctdb_tcp_connection));
3093                 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3094
3095                 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3096                 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3097                 tcparray->num++;
3098
3099                 if (tcp_update_needed) {
3100                         vnn->tcp_update_needed = true;
3101                 }
3102                 return 0;
3103         }
3104
3105
3106         /* Do we already have this tickle ?*/
3107         tcp.src_addr = p->src_addr;
3108         tcp.dst_addr = p->dst_addr;
3109         if (ctdb_tcp_find(vnn->tcp_array, &tcp) != NULL) {
3110                 DEBUG(DEBUG_DEBUG,("Already had tickle info for %s:%u for vnn:%u\n",
3111                         ctdb_addr_to_str(&tcp.dst_addr),
3112                         ntohs(tcp.dst_addr.ip.sin_port),
3113                         vnn->pnn));
3114                 return 0;
3115         }
3116
3117         /* A new tickle, we must add it to the array */
3118         tcparray->connections = talloc_realloc(tcparray, tcparray->connections,
3119                                         struct ctdb_tcp_connection,
3120                                         tcparray->num+1);
3121         CTDB_NO_MEMORY(ctdb, tcparray->connections);
3122
3123         vnn->tcp_array = tcparray;
3124         tcparray->connections[tcparray->num].src_addr = p->src_addr;
3125         tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3126         tcparray->num++;
3127                                 
3128         DEBUG(DEBUG_INFO,("Added tickle info for %s:%u from vnn %u\n",
3129                 ctdb_addr_to_str(&tcp.dst_addr),
3130                 ntohs(tcp.dst_addr.ip.sin_port),
3131                 vnn->pnn));
3132
3133         if (tcp_update_needed) {
3134                 vnn->tcp_update_needed = true;
3135         }
3136
3137         return 0;
3138 }
3139
3140
3141 /*
3142   called by a daemon to inform us of a TCP connection that one of its
3143   clients managing that should tickled with an ACK when IP takeover is
3144   done
3145  */
3146 static void ctdb_remove_tcp_connection(struct ctdb_context *ctdb, struct ctdb_tcp_connection *conn)
3147 {
3148         struct ctdb_tcp_connection *tcpp;
3149         struct ctdb_vnn *vnn = find_public_ip_vnn(ctdb, &conn->dst_addr);
3150
3151         if (vnn == NULL) {
3152                 DEBUG(DEBUG_ERR,(__location__ " unable to find public address %s\n",
3153                         ctdb_addr_to_str(&conn->dst_addr)));
3154                 return;
3155         }
3156
3157         /* if the array is empty we cant remove it
3158            and we dont need to do anything
3159          */
3160         if (vnn->tcp_array == NULL) {
3161                 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist (array is empty) %s:%u\n",
3162                         ctdb_addr_to_str(&conn->dst_addr),
3163                         ntohs(conn->dst_addr.ip.sin_port)));
3164                 return;
3165         }
3166
3167
3168         /* See if we know this connection
3169            if we dont know this connection  then we dont need to do anything
3170          */
3171         tcpp = ctdb_tcp_find(vnn->tcp_array, conn);
3172         if (tcpp == NULL) {
3173                 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist %s:%u\n",
3174                         ctdb_addr_to_str(&conn->dst_addr),
3175                         ntohs(conn->dst_addr.ip.sin_port)));
3176                 return;
3177         }
3178
3179
3180         /* We need to remove this entry from the array.
3181            Instead of allocating a new array and copying data to it
3182            we cheat and just copy the last entry in the existing array
3183            to the entry that is to be removed and just shring the 
3184            ->num field
3185          */
3186         *tcpp = vnn->tcp_array->connections[vnn->tcp_array->num - 1];
3187         vnn->tcp_array->num--;
3188
3189         /* If we deleted the last entry we also need to remove the entire array
3190          */
3191         if (vnn->tcp_array->num == 0) {
3192                 talloc_free(vnn->tcp_array);
3193                 vnn->tcp_array = NULL;
3194         }               
3195
3196         vnn->tcp_update_needed = true;
3197
3198         DEBUG(DEBUG_INFO,("Removed tickle info for %s:%u\n",
3199                 ctdb_addr_to_str(&conn->src_addr),
3200                 ntohs(conn->src_addr.ip.sin_port)));
3201 }
3202
3203
3204 /*
3205   called by a daemon to inform us of a TCP connection that one of its
3206   clients used are no longer needed in the tickle database
3207  */
3208 int32_t ctdb_control_tcp_remove(struct ctdb_context *ctdb, TDB_DATA indata)
3209 {
3210         struct ctdb_tcp_connection *conn = (struct ctdb_tcp_connection *)indata.dptr;
3211
3212         ctdb_remove_tcp_connection(ctdb, conn);
3213
3214         return 0;
3215 }
3216
3217
3218 /*
3219   called when a daemon restarts - send all tickes for all public addresses
3220   we are serving immediately to the new node.
3221  */
3222 int32_t ctdb_control_startup(struct ctdb_context *ctdb, uint32_t vnn)
3223 {
3224 /*XXX here we should send all tickes we are serving to the new node */
3225         return 0;
3226 }
3227
3228
3229 /*
3230   called when a client structure goes away - hook to remove
3231   elements from the tcp_list in all daemons
3232  */
3233 void ctdb_takeover_client_destructor_hook(struct ctdb_client *client)
3234 {
3235         while (client->tcp_list) {
3236                 struct ctdb_tcp_list *tcp = client->tcp_list;
3237                 DLIST_REMOVE(client->tcp_list, tcp);
3238                 ctdb_remove_tcp_connection(client->ctdb, &tcp->connection);
3239         }
3240 }
3241
3242
3243 /*
3244   release all IPs on shutdown
3245  */
3246 void ctdb_release_all_ips(struct ctdb_context *ctdb)
3247 {
3248         struct ctdb_vnn *vnn;
3249         int count = 0;
3250
3251         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3252                 if (!ctdb_sys_have_ip(&vnn->public_address)) {
3253                         ctdb_vnn_unassign_iface(ctdb, vnn);
3254                         continue;
3255                 }
3256                 if (!vnn->iface) {
3257                         continue;
3258                 }
3259
3260                 DEBUG(DEBUG_INFO,("Release of IP %s/%u on interface %s node:-1\n",
3261                                     ctdb_addr_to_str(&vnn->public_address),
3262                                     vnn->public_netmask_bits,
3263                                     ctdb_vnn_iface_string(vnn)));
3264
3265                 ctdb_event_script_args(ctdb, CTDB_EVENT_RELEASE_IP, "%s %s %u",
3266                                   ctdb_vnn_iface_string(vnn),
3267                                   ctdb_addr_to_str(&vnn->public_address),
3268                                   vnn->public_netmask_bits);
3269                 release_kill_clients(ctdb, &vnn->public_address);
3270                 ctdb_vnn_unassign_iface(ctdb, vnn);
3271                 count++;
3272         }
3273
3274         DEBUG(DEBUG_NOTICE,(__location__ " Released %d public IPs\n", count));
3275 }
3276
3277
3278 /*
3279   get list of public IPs
3280  */
3281 int32_t ctdb_control_get_public_ips(struct ctdb_context *ctdb, 
3282                                     struct ctdb_req_control *c, TDB_DATA *outdata)
3283 {
3284         int i, num, len;
3285         struct ctdb_all_public_ips *ips;
3286         struct ctdb_vnn *vnn;
3287         bool only_available = false;
3288
3289         if (c->flags & CTDB_PUBLIC_IP_FLAGS_ONLY_AVAILABLE) {
3290                 only_available = true;
3291         }
3292
3293         /* count how many public ip structures we have */
3294         num = 0;
3295         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3296                 num++;
3297         }
3298
3299         len = offsetof(struct ctdb_all_public_ips, ips) + 
3300                 num*sizeof(struct ctdb_public_ip);
3301         ips = talloc_zero_size(outdata, len);
3302         CTDB_NO_MEMORY(ctdb, ips);
3303
3304         i = 0;
3305         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3306                 if (only_available && !ctdb_vnn_available(ctdb, vnn)) {
3307                         continue;
3308                 }
3309                 ips->ips[i].pnn  = vnn->pnn;
3310                 ips->ips[i].addr = vnn->public_address;
3311                 i++;
3312         }
3313         ips->num = i;
3314         len = offsetof(struct ctdb_all_public_ips, ips) +
3315                 i*sizeof(struct ctdb_public_ip);
3316
3317         outdata->dsize = len;
3318         outdata->dptr  = (uint8_t *)ips;
3319
3320         return 0;
3321 }
3322
3323
3324 /*
3325   get list of public IPs, old ipv4 style.  only returns ipv4 addresses
3326  */
3327 int32_t ctdb_control_get_public_ipsv4(struct ctdb_context *ctdb, 
3328                                     struct ctdb_req_control *c, TDB_DATA *outdata)
3329 {
3330         int i, num, len;
3331         struct ctdb_all_public_ipsv4 *ips;
3332         struct ctdb_vnn *vnn;
3333
3334         /* count how many public ip structures we have */
3335         num = 0;
3336         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3337                 if (vnn->public_address.sa.sa_family != AF_INET) {
3338                         continue;
3339                 }
3340                 num++;
3341         }
3342
3343         len = offsetof(struct ctdb_all_public_ipsv4, ips) + 
3344                 num*sizeof(struct ctdb_public_ipv4);
3345         ips = talloc_zero_size(outdata, len);
3346         CTDB_NO_MEMORY(ctdb, ips);
3347
3348         outdata->dsize = len;
3349         outdata->dptr  = (uint8_t *)ips;
3350
3351         ips->num = num;
3352         i = 0;
3353         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3354                 if (vnn->public_address.sa.sa_family != AF_INET) {
3355                         continue;
3356                 }
3357                 ips->ips[i].pnn = vnn->pnn;
3358                 ips->ips[i].sin = vnn->public_address.ip;
3359                 i++;
3360         }
3361
3362         return 0;
3363 }
3364
3365 int32_t ctdb_control_get_public_ip_info(struct ctdb_context *ctdb,
3366                                         struct ctdb_req_control *c,
3367                                         TDB_DATA indata,
3368                                         TDB_DATA *outdata)
3369 {
3370         int i, num, len;
3371         ctdb_sock_addr *addr;
3372         struct ctdb_control_public_ip_info *info;
3373         struct ctdb_vnn *vnn;
3374
3375         addr = (ctdb_sock_addr *)indata.dptr;
3376
3377         vnn = find_public_ip_vnn(ctdb, addr);
3378         if (vnn == NULL) {
3379                 /* if it is not a public ip   it could be our 'single ip' */
3380                 if (ctdb->single_ip_vnn) {
3381                         if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, addr)) {
3382                                 vnn = ctdb->single_ip_vnn;
3383                         }
3384                 }
3385         }
3386         if (vnn == NULL) {
3387                 DEBUG(DEBUG_ERR,(__location__ " Could not get public ip info, "
3388                                  "'%s'not a public address\n",
3389                                  ctdb_addr_to_str(addr)));
3390                 return -1;
3391         }
3392
3393         /* count how many public ip structures we have */
3394         num = 0;
3395         for (;vnn->ifaces[num];) {
3396                 num++;
3397         }
3398
3399         len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3400                 num*sizeof(struct ctdb_control_iface_info);
3401         info = talloc_zero_size(outdata, len);
3402         CTDB_NO_MEMORY(ctdb, info);
3403
3404         info->ip.addr = vnn->public_address;
3405         info->ip.pnn = vnn->pnn;
3406         info->active_idx = 0xFFFFFFFF;
3407
3408         for (i=0; vnn->ifaces[i]; i++) {
3409                 struct ctdb_iface *cur;
3410
3411                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
3412                 if (cur == NULL) {
3413                         DEBUG(DEBUG_CRIT, (__location__ " internal error iface[%s] unknown\n",
3414                                            vnn->ifaces[i]));
3415                         return -1;
3416                 }
3417                 if (vnn->iface == cur) {
3418                         info->active_idx = i;
3419                 }
3420                 strcpy(info->ifaces[i].name, cur->name);
3421                 info->ifaces[i].link_state = cur->link_up;
3422                 info->ifaces[i].references = cur->references;
3423         }
3424         info->num = i;
3425         len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3426                 i*sizeof(struct ctdb_control_iface_info);
3427
3428         outdata->dsize = len;
3429         outdata->dptr  = (uint8_t *)info;
3430
3431         return 0;
3432 }
3433
3434 int32_t ctdb_control_get_ifaces(struct ctdb_context *ctdb,
3435                                 struct ctdb_req_control *c,
3436                                 TDB_DATA *outdata)
3437 {
3438         int i, num, len;
3439         struct ctdb_control_get_ifaces *ifaces;
3440         struct ctdb_iface *cur;
3441
3442         /* count how many public ip structures we have */
3443         num = 0;
3444         for (cur=ctdb->ifaces;cur;cur=cur->next) {
3445                 num++;
3446         }
3447
3448         len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3449                 num*sizeof(struct ctdb_control_iface_info);
3450         ifaces = talloc_zero_size(outdata, len);
3451         CTDB_NO_MEMORY(ctdb, ifaces);
3452
3453         i = 0;
3454         for (cur=ctdb->ifaces;cur;cur=cur->next) {
3455                 strcpy(ifaces->ifaces[i].name, cur->name);
3456                 ifaces->ifaces[i].link_state = cur->link_up;
3457                 ifaces->ifaces[i].references = cur->references;
3458                 i++;
3459         }
3460         ifaces->num = i;
3461         len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3462                 i*sizeof(struct ctdb_control_iface_info);
3463
3464         outdata->dsize = len;
3465         outdata->dptr  = (uint8_t *)ifaces;
3466
3467         return 0;
3468 }
3469
3470 int32_t ctdb_control_set_iface_link(struct ctdb_context *ctdb,
3471                                     struct ctdb_req_control *c,
3472                                     TDB_DATA indata)
3473 {
3474         struct ctdb_control_iface_info *info;
3475         struct ctdb_iface *iface;
3476         bool link_up = false;
3477
3478         info = (struct ctdb_control_iface_info *)indata.dptr;
3479
3480         if (info->name[CTDB_IFACE_SIZE] != '\0') {
3481                 int len = strnlen(info->name, CTDB_IFACE_SIZE);
3482                 DEBUG(DEBUG_ERR, (__location__ " name[%*.*s] not terminated\n",
3483                                   len, len, info->name));
3484                 return -1;
3485         }
3486
3487         switch (info->link_state) {
3488         case 0:
3489                 link_up = false;
3490                 break;
3491         case 1:
3492                 link_up = true;
3493                 break;
3494         default:
3495                 DEBUG(DEBUG_ERR, (__location__ " link_state[%u] invalid\n",
3496                                   (unsigned int)info->link_state));
3497                 return -1;
3498         }
3499
3500         if (info->references != 0) {
3501                 DEBUG(DEBUG_ERR, (__location__ " references[%u] should be 0\n",
3502                                   (unsigned int)info->references));
3503                 return -1;
3504         }
3505
3506         iface = ctdb_find_iface(ctdb, info->name);
3507         if (iface == NULL) {
3508                 return -1;
3509         }
3510
3511         if (link_up == iface->link_up) {
3512                 return 0;
3513         }
3514
3515         DEBUG(iface->link_up?DEBUG_ERR:DEBUG_NOTICE,
3516               ("iface[%s] has changed it's link status %s => %s\n",
3517                iface->name,
3518                iface->link_up?"up":"down",
3519                link_up?"up":"down"));
3520
3521         iface->link_up = link_up;
3522         return 0;
3523 }
3524
3525
3526 /* 
3527    structure containing the listening socket and the list of tcp connections
3528    that the ctdb daemon is to kill
3529 */
3530 struct ctdb_kill_tcp {
3531         struct ctdb_vnn *vnn;
3532         struct ctdb_context *ctdb;
3533         int capture_fd;
3534         struct fd_event *fde;
3535         trbt_tree_t *connections;
3536         void *private_data;
3537 };
3538
3539 /*
3540   a tcp connection that is to be killed
3541  */
3542 struct ctdb_killtcp_con {
3543         ctdb_sock_addr src_addr;
3544         ctdb_sock_addr dst_addr;
3545         int count;
3546         struct ctdb_kill_tcp *killtcp;
3547 };
3548
3549 /* this function is used to create a key to represent this socketpair
3550    in the killtcp tree.
3551    this key is used to insert and lookup matching socketpairs that are
3552    to be tickled and RST
3553 */
3554 #define KILLTCP_KEYLEN  10
3555 static uint32_t *killtcp_key(ctdb_sock_addr *src, ctdb_sock_addr *dst)
3556 {
3557         static uint32_t key[KILLTCP_KEYLEN];
3558
3559         bzero(key, sizeof(key));
3560
3561         if (src->sa.sa_family != dst->sa.sa_family) {
3562                 DEBUG(DEBUG_ERR, (__location__ " ERROR, different families passed :%u vs %u\n", src->sa.sa_family, dst->sa.sa_family));
3563                 return key;
3564         }
3565         
3566         switch (src->sa.sa_family) {
3567         case AF_INET:
3568                 key[0]  = dst->ip.sin_addr.s_addr;
3569                 key[1]  = src->ip.sin_addr.s_addr;
3570                 key[2]  = dst->ip.sin_port;
3571                 key[3]  = src->ip.sin_port;
3572                 break;
3573         case AF_INET6: {
3574                 uint32_t *dst6_addr32 =
3575                         (uint32_t *)&(dst->ip6.sin6_addr.s6_addr);
3576                 uint32_t *src6_addr32 =
3577                         (uint32_t *)&(src->ip6.sin6_addr.s6_addr);
3578                 key[0]  = dst6_addr32[3];
3579                 key[1]  = src6_addr32[3];
3580                 key[2]  = dst6_addr32[2];
3581                 key[3]  = src6_addr32[2];
3582                 key[4]  = dst6_addr32[1];
3583                 key[5]  = src6_addr32[1];
3584                 key[6]  = dst6_addr32[0];
3585                 key[7]  = src6_addr32[0];
3586                 key[8]  = dst->ip6.sin6_port;
3587                 key[9]  = src->ip6.sin6_port;
3588                 break;
3589         }
3590         default:
3591                 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", src->sa.sa_family));
3592                 return key;
3593         }
3594
3595         return key;
3596 }
3597
3598 /*
3599   called when we get a read event on the raw socket
3600  */
3601 static void capture_tcp_handler(struct event_context *ev, struct fd_event *fde, 
3602                                 uint16_t flags, void *private_data)
3603 {
3604         struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3605         struct ctdb_killtcp_con *con;
3606         ctdb_sock_addr src, dst;
3607         uint32_t ack_seq, seq;
3608
3609         if (!(flags & EVENT_FD_READ)) {
3610                 return;
3611         }
3612
3613         if (ctdb_sys_read_tcp_packet(killtcp->capture_fd,
3614                                 killtcp->private_data,
3615                                 &src, &dst,
3616                                 &ack_seq, &seq) != 0) {
3617                 /* probably a non-tcp ACK packet */
3618                 return;
3619         }
3620
3621         /* check if we have this guy in our list of connections
3622            to kill
3623         */
3624         con = trbt_lookuparray32(killtcp->connections, 
3625                         KILLTCP_KEYLEN, killtcp_key(&src, &dst));
3626         if (con == NULL) {
3627                 /* no this was some other packet we can just ignore */
3628                 return;
3629         }
3630
3631         /* This one has been tickled !
3632            now reset him and remove him from the list.
3633          */
3634         DEBUG(DEBUG_INFO, ("sending a tcp reset to kill connection :%d -> %s:%d\n",
3635                 ntohs(con->dst_addr.ip.sin_port),
3636                 ctdb_addr_to_str(&con->src_addr),
3637                 ntohs(con->src_addr.ip.sin_port)));
3638
3639         ctdb_sys_send_tcp(&con->dst_addr, &con->src_addr, ack_seq, seq, 1);
3640         talloc_free(con);
3641 }
3642
3643
3644 /* when traversing the list of all tcp connections to send tickle acks to
3645    (so that we can capture the ack coming back and kill the connection
3646     by a RST)
3647    this callback is called for each connection we are currently trying to kill
3648 */
3649 static int tickle_connection_traverse(void *param, void *data)
3650 {
3651         struct ctdb_killtcp_con *con = talloc_get_type(data, struct ctdb_killtcp_con);
3652
3653         /* have tried too many times, just give up */
3654         if (con->count >= 5) {
3655                 /* can't delete in traverse: reparent to delete_cons */
3656                 talloc_steal(param, con);
3657                 return 0;
3658         }
3659
3660         /* othervise, try tickling it again */
3661         con->count++;
3662         ctdb_sys_send_tcp(
3663                 (ctdb_sock_addr *)&con->dst_addr,
3664                 (ctdb_sock_addr *)&con->src_addr,
3665                 0, 0, 0);
3666         return 0;
3667 }
3668
3669
3670 /* 
3671    called every second until all sentenced connections have been reset
3672  */
3673 static void ctdb_tickle_sentenced_connections(struct event_context *ev, struct timed_event *te, 
3674                                               struct timeval t, void *private_data)
3675 {
3676         struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3677         void *delete_cons = talloc_new(NULL);
3678
3679         /* loop over all connections sending tickle ACKs */
3680         trbt_traversearray32(killtcp->connections, KILLTCP_KEYLEN, tickle_connection_traverse, delete_cons);
3681
3682         /* now we've finished traverse, it's safe to do deletion. */
3683         talloc_free(delete_cons);
3684
3685         /* If there are no more connections to kill we can remove the
3686            entire killtcp structure
3687          */
3688         if ( (killtcp->connections == NULL) || 
3689              (killtcp->connections->root == NULL) ) {
3690                 talloc_free(killtcp);
3691                 return;
3692         }
3693
3694         /* try tickling them again in a seconds time
3695          */
3696         event_add_timed(killtcp->ctdb->ev, killtcp, timeval_current_ofs(1, 0), 
3697                         ctdb_tickle_sentenced_connections, killtcp);
3698 }
3699
3700 /*
3701   destroy the killtcp structure
3702  */
3703 static int ctdb_killtcp_destructor(struct ctdb_kill_tcp *killtcp)
3704 {
3705         struct ctdb_vnn *tmpvnn;
3706
3707         /* verify that this vnn is still active */
3708         for (tmpvnn = killtcp->ctdb->vnn; tmpvnn; tmpvnn = tmpvnn->next) {
3709                 if (tmpvnn == killtcp->vnn) {
3710                         break;
3711                 }
3712         }
3713
3714         if (tmpvnn == NULL) {
3715                 return 0;
3716         }
3717
3718         if (killtcp->vnn->killtcp != killtcp) {
3719                 return 0;
3720         }
3721
3722         killtcp->vnn->killtcp = NULL;
3723
3724         return 0;
3725 }
3726
3727
3728 /* nothing fancy here, just unconditionally replace any existing
3729    connection structure with the new one.
3730
3731    dont even free the old one if it did exist, that one is talloc_stolen
3732    by the same node in the tree anyway and will be deleted when the new data 
3733    is deleted
3734 */
3735 static void *add_killtcp_callback(void *parm, void *data)
3736 {
3737         return parm;
3738 }
3739
3740 /*
3741   add a tcp socket to the list of connections we want to RST
3742  */
3743 static int ctdb_killtcp_add_connection(struct ctdb_context *ctdb, 
3744                                        ctdb_sock_addr *s,
3745                                        ctdb_sock_addr *d)
3746 {
3747         ctdb_sock_addr src, dst;
3748         struct ctdb_kill_tcp *killtcp;
3749         struct ctdb_killtcp_con *con;
3750         struct ctdb_vnn *vnn;
3751
3752         ctdb_canonicalize_ip(s, &src);
3753         ctdb_canonicalize_ip(d, &dst);
3754
3755         vnn = find_public_ip_vnn(ctdb, &dst);
3756         if (vnn == NULL) {
3757                 vnn = find_public_ip_vnn(ctdb, &src);
3758         }
3759         if (vnn == NULL) {
3760                 /* if it is not a public ip   it could be our 'single ip' */
3761                 if (ctdb->single_ip_vnn) {
3762                         if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, &dst)) {
3763                                 vnn = ctdb->single_ip_vnn;
3764                         }
3765                 }
3766         }
3767         if (vnn == NULL) {
3768                 DEBUG(DEBUG_ERR,(__location__ " Could not killtcp, not a public address\n")); 
3769                 return -1;
3770         }
3771
3772         killtcp = vnn->killtcp;
3773         
3774         /* If this is the first connection to kill we must allocate
3775            a new structure
3776          */
3777         if (killtcp == NULL) {
3778                 killtcp = talloc_zero(vnn, struct ctdb_kill_tcp);
3779                 CTDB_NO_MEMORY(ctdb, killtcp);
3780
3781                 killtcp->vnn         = vnn;
3782                 killtcp->ctdb        = ctdb;
3783                 killtcp->capture_fd  = -1;
3784                 killtcp->connections = trbt_create(killtcp, 0);
3785
3786                 vnn->killtcp         = killtcp;
3787                 talloc_set_destructor(killtcp, ctdb_killtcp_destructor);
3788         }
3789
3790
3791
3792         /* create a structure that describes this connection we want to
3793            RST and store it in killtcp->connections
3794         */
3795         con = talloc(killtcp, struct ctdb_killtcp_con);
3796         CTDB_NO_MEMORY(ctdb, con);
3797         con->src_addr = src;
3798         con->dst_addr = dst;
3799         con->count    = 0;
3800         con->killtcp  = killtcp;
3801
3802
3803         trbt_insertarray32_callback(killtcp->connections,
3804                         KILLTCP_KEYLEN, killtcp_key(&con->dst_addr, &con->src_addr),
3805                         add_killtcp_callback, con);
3806
3807         /* 
3808            If we dont have a socket to listen on yet we must create it
3809          */
3810         if (killtcp->capture_fd == -1) {
3811                 const char *iface = ctdb_vnn_iface_string(vnn);
3812                 killtcp->capture_fd = ctdb_sys_open_capture_socket(iface, &killtcp->private_data);
3813                 if (killtcp->capture_fd == -1) {
3814                         DEBUG(DEBUG_CRIT,(__location__ " Failed to open capturing "
3815                                           "socket on iface '%s' for killtcp (%s)\n",
3816                                           iface, strerror(errno)));
3817                         goto failed;
3818                 }
3819         }
3820
3821
3822         if (killtcp->fde == NULL) {
3823                 killtcp->fde = event_add_fd(ctdb->ev, killtcp, killtcp->capture_fd, 
3824                                             EVENT_FD_READ,
3825                                             capture_tcp_handler, killtcp);
3826                 tevent_fd_set_auto_close(killtcp->fde);
3827
3828                 /* We also need to set up some events to tickle all these connections
3829                    until they are all reset
3830                 */
3831                 event_add_timed(ctdb->ev, killtcp, timeval_current_ofs(1, 0), 
3832                                 ctdb_tickle_sentenced_connections, killtcp);
3833         }
3834
3835         /* tickle him once now */
3836         ctdb_sys_send_tcp(
3837                 &con->dst_addr,
3838                 &con->src_addr,
3839                 0, 0, 0);
3840
3841         return 0;
3842
3843 failed:
3844         talloc_free(vnn->killtcp);
3845         vnn->killtcp = NULL;
3846         return -1;
3847 }
3848
3849 /*
3850   kill a TCP connection.
3851  */
3852 int32_t ctdb_control_kill_tcp(struct ctdb_context *ctdb, TDB_DATA indata)
3853 {
3854         struct ctdb_control_killtcp *killtcp = (struct ctdb_control_killtcp *)indata.dptr;
3855
3856         return ctdb_killtcp_add_connection(ctdb, &killtcp->src_addr, &killtcp->dst_addr);
3857 }
3858
3859 /*
3860   called by a daemon to inform us of the entire list of TCP tickles for
3861   a particular public address.
3862   this control should only be sent by the node that is currently serving
3863   that public address.
3864  */
3865 int32_t ctdb_control_set_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata)
3866 {
3867         struct ctdb_control_tcp_tickle_list *list = (struct ctdb_control_tcp_tickle_list *)indata.dptr;
3868         struct ctdb_tcp_array *tcparray;
3869         struct ctdb_vnn *vnn;
3870
3871         /* We must at least have tickles.num or else we cant verify the size
3872            of the received data blob
3873          */
3874         if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list, 
3875                                         tickles.connections)) {
3876                 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list. Not enough data for the tickle.num field\n"));
3877                 return -1;
3878         }
3879
3880         /* verify that the size of data matches what we expect */
3881         if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list, 
3882                                 tickles.connections)
3883                          + sizeof(struct ctdb_tcp_connection)
3884                                  * list->tickles.num) {
3885                 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list\n"));
3886                 return -1;
3887         }       
3888
3889         vnn = find_public_ip_vnn(ctdb, &list->addr);
3890         if (vnn == NULL) {
3891                 DEBUG(DEBUG_INFO,(__location__ " Could not set tcp tickle list, '%s' is not a public address\n", 
3892                         ctdb_addr_to_str(&list->addr)));
3893
3894                 return 1;
3895         }
3896
3897         /* remove any old ticklelist we might have */
3898         talloc_free(vnn->tcp_array);
3899         vnn->tcp_array = NULL;
3900
3901         tcparray = talloc(ctdb->nodes, struct ctdb_tcp_array);
3902         CTDB_NO_MEMORY(ctdb, tcparray);
3903
3904         tcparray->num = list->tickles.num;
3905
3906         tcparray->connections = talloc_array(tcparray, struct ctdb_tcp_connection, tcparray->num);
3907         CTDB_NO_MEMORY(ctdb, tcparray->connections);
3908
3909         memcpy(tcparray->connections, &list->tickles.connections[0], 
3910                sizeof(struct ctdb_tcp_connection)*tcparray->num);
3911
3912         /* We now have a new fresh tickle list array for this vnn */
3913         vnn->tcp_array = talloc_steal(vnn, tcparray);
3914         
3915         return 0;
3916 }
3917
3918 /*
3919   called to return the full list of tickles for the puclic address associated 
3920   with the provided vnn
3921  */
3922 int32_t ctdb_control_get_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
3923 {
3924         ctdb_sock_addr *addr = (ctdb_sock_addr *)indata.dptr;
3925         struct ctdb_control_tcp_tickle_list *list;
3926         struct ctdb_tcp_array *tcparray;
3927         int num;
3928         struct ctdb_vnn *vnn;
3929
3930         vnn = find_public_ip_vnn(ctdb, addr);
3931         if (vnn == NULL) {
3932                 DEBUG(DEBUG_ERR,(__location__ " Could not get tcp tickle list, '%s' is not a public address\n", 
3933                         ctdb_addr_to_str(addr)));
3934
3935                 return 1;
3936         }
3937
3938         tcparray = vnn->tcp_array;
3939         if (tcparray) {
3940                 num = tcparray->num;
3941         } else {
3942                 num = 0;
3943         }
3944
3945         outdata->dsize = offsetof(struct ctdb_control_tcp_tickle_list, 
3946                                 tickles.connections)
3947                         + sizeof(struct ctdb_tcp_connection) * num;
3948
3949         outdata->dptr  = talloc_size(outdata, outdata->dsize);
3950         CTDB_NO_MEMORY(ctdb, outdata->dptr);
3951         list = (struct ctdb_control_tcp_tickle_list *)outdata->dptr;
3952
3953         list->addr = *addr;
3954         list->tickles.num = num;
3955         if (num) {
3956                 memcpy(&list->tickles.connections[0], tcparray->connections, 
3957                         sizeof(struct ctdb_tcp_connection) * num);
3958         }
3959
3960         return 0;
3961 }
3962
3963
3964 /*
3965   set the list of all tcp tickles for a public address
3966  */
3967 static int ctdb_ctrl_set_tcp_tickles(struct ctdb_context *ctdb, 
3968                               struct timeval timeout, uint32_t destnode, 
3969                               ctdb_sock_addr *addr,
3970                               struct ctdb_tcp_array *tcparray)
3971 {
3972         int ret, num;
3973         TDB_DATA data;
3974         struct ctdb_control_tcp_tickle_list *list;
3975
3976         if (tcparray) {
3977                 num = tcparray->num;
3978         } else {
3979                 num = 0;
3980         }
3981
3982         data.dsize = offsetof(struct ctdb_control_tcp_tickle_list, 
3983                                 tickles.connections) +
3984                         sizeof(struct ctdb_tcp_connection) * num;
3985         data.dptr = talloc_size(ctdb, data.dsize);
3986         CTDB_NO_MEMORY(ctdb, data.dptr);
3987
3988         list = (struct ctdb_control_tcp_tickle_list *)data.dptr;
3989         list->addr = *addr;
3990         list->tickles.num = num;
3991         if (tcparray) {
3992                 memcpy(&list->tickles.connections[0], tcparray->connections, sizeof(struct ctdb_tcp_connection) * num);
3993         }
3994
3995         ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0, 
3996                                        CTDB_CONTROL_SET_TCP_TICKLE_LIST,
3997                                        0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
3998         if (ret != 0) {
3999                 DEBUG(DEBUG_ERR,(__location__ " ctdb_control for set tcp tickles failed\n"));
4000                 return -1;
4001         }
4002
4003         talloc_free(data.dptr);
4004
4005         return ret;
4006 }
4007
4008
4009 /*
4010   perform tickle updates if required
4011  */
4012 static void ctdb_update_tcp_tickles(struct event_context *ev, 
4013                                 struct timed_event *te, 
4014                                 struct timeval t, void *private_data)
4015 {
4016         struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
4017         int ret;
4018         struct ctdb_vnn *vnn;
4019
4020         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
4021                 /* we only send out updates for public addresses that 
4022                    we have taken over
4023                  */
4024                 if (ctdb->pnn != vnn->pnn) {
4025                         continue;
4026                 }
4027                 /* We only send out the updates if we need to */
4028                 if (!vnn->tcp_update_needed) {
4029                         continue;
4030                 }
4031                 ret = ctdb_ctrl_set_tcp_tickles(ctdb, 
4032                                 TAKEOVER_TIMEOUT(),
4033                                 CTDB_BROADCAST_CONNECTED,
4034                                 &vnn->public_address,
4035                                 vnn->tcp_array);
4036                 if (ret != 0) {
4037                         DEBUG(DEBUG_ERR,("Failed to send the tickle update for public address %s\n",
4038                                 ctdb_addr_to_str(&vnn->public_address)));
4039                 }
4040         }
4041
4042         event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4043                              timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0), 
4044                              ctdb_update_tcp_tickles, ctdb);
4045 }               
4046         
4047
4048 /*
4049   start periodic update of tcp tickles
4050  */
4051 void ctdb_start_tcp_tickle_update(struct ctdb_context *ctdb)
4052 {
4053         ctdb->tickle_update_context = talloc_new(ctdb);
4054
4055         event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4056                              timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0), 
4057                              ctdb_update_tcp_tickles, ctdb);
4058 }
4059
4060
4061
4062
4063 struct control_gratious_arp {
4064         struct ctdb_context *ctdb;
4065         ctdb_sock_addr addr;
4066         const char *iface;
4067         int count;
4068 };
4069
4070 /*
4071   send a control_gratuitous arp
4072  */
4073 static void send_gratious_arp(struct event_context *ev, struct timed_event *te, 
4074                                   struct timeval t, void *private_data)
4075 {
4076         int ret;
4077         struct control_gratious_arp *arp = talloc_get_type(private_data, 
4078                                                         struct control_gratious_arp);
4079
4080         ret = ctdb_sys_send_arp(&arp->addr, arp->iface);
4081         if (ret != 0) {
4082                 DEBUG(DEBUG_ERR,(__location__ " sending of gratious arp on iface '%s' failed (%s)\n",
4083                                  arp->iface, strerror(errno)));
4084         }
4085
4086
4087         arp->count++;
4088         if (arp->count == CTDB_ARP_REPEAT) {
4089                 talloc_free(arp);
4090                 return;
4091         }
4092
4093         event_add_timed(arp->ctdb->ev, arp, 
4094                         timeval_current_ofs(CTDB_ARP_INTERVAL, 0), 
4095                         send_gratious_arp, arp);
4096 }
4097
4098
4099 /*
4100   send a gratious arp 
4101  */
4102 int32_t ctdb_control_send_gratious_arp(struct ctdb_context *ctdb, TDB_DATA indata)
4103 {
4104         struct ctdb_control_gratious_arp *gratious_arp = (struct ctdb_control_gratious_arp *)indata.dptr;
4105         struct control_gratious_arp *arp;
4106
4107         /* verify the size of indata */
4108         if (indata.dsize < offsetof(struct ctdb_control_gratious_arp, iface)) {
4109                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_gratious_arp structure. Got %u require %u bytes\n", 
4110                                  (unsigned)indata.dsize, 
4111                                  (unsigned)offsetof(struct ctdb_control_gratious_arp, iface)));
4112                 return -1;
4113         }
4114         if (indata.dsize != 
4115                 ( offsetof(struct ctdb_control_gratious_arp, iface)
4116                 + gratious_arp->len ) ){
4117
4118                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4119                         "but should be %u bytes\n", 
4120                          (unsigned)indata.dsize, 
4121                          (unsigned)(offsetof(struct ctdb_control_gratious_arp, iface)+gratious_arp->len)));
4122                 return -1;
4123         }
4124
4125
4126         arp = talloc(ctdb, struct control_gratious_arp);
4127         CTDB_NO_MEMORY(ctdb, arp);
4128
4129         arp->ctdb  = ctdb;
4130         arp->addr   = gratious_arp->addr;
4131         arp->iface = talloc_strdup(arp, gratious_arp->iface);
4132         CTDB_NO_MEMORY(ctdb, arp->iface);
4133         arp->count = 0;
4134         
4135         event_add_timed(arp->ctdb->ev, arp, 
4136                         timeval_zero(), send_gratious_arp, arp);
4137
4138         return 0;
4139 }
4140
4141 int32_t ctdb_control_add_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4142 {
4143         struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4144         int ret;
4145
4146         /* verify the size of indata */
4147         if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4148                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4149                 return -1;
4150         }
4151         if (indata.dsize != 
4152                 ( offsetof(struct ctdb_control_ip_iface, iface)
4153                 + pub->len ) ){
4154
4155                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4156                         "but should be %u bytes\n", 
4157                          (unsigned)indata.dsize, 
4158                          (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4159                 return -1;
4160         }
4161
4162         DEBUG(DEBUG_NOTICE,("Add IP %s\n", ctdb_addr_to_str(&pub->addr)));
4163
4164         ret = ctdb_add_public_address(ctdb, &pub->addr, pub->mask, &pub->iface[0], true);
4165
4166         if (ret != 0) {
4167                 DEBUG(DEBUG_ERR,(__location__ " Failed to add public address\n"));
4168                 return -1;
4169         }
4170
4171         return 0;
4172 }
4173
4174 /*
4175   called when releaseip event finishes for del_public_address
4176  */
4177 static void delete_ip_callback(struct ctdb_context *ctdb, int status, 
4178                                 void *private_data)
4179 {
4180         talloc_free(private_data);
4181 }
4182
4183 int32_t ctdb_control_del_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4184 {
4185         struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4186         struct ctdb_vnn *vnn;
4187         int ret;
4188
4189         /* verify the size of indata */
4190         if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4191                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4192                 return -1;
4193         }
4194         if (indata.dsize != 
4195                 ( offsetof(struct ctdb_control_ip_iface, iface)
4196                 + pub->len ) ){
4197
4198                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4199                         "but should be %u bytes\n", 
4200                          (unsigned)indata.dsize, 
4201                          (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4202                 return -1;
4203         }
4204
4205         DEBUG(DEBUG_NOTICE,("Delete IP %s\n", ctdb_addr_to_str(&pub->addr)));
4206
4207         /* walk over all public addresses until we find a match */
4208         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
4209                 if (ctdb_same_ip(&vnn->public_address, &pub->addr)) {
4210                         TALLOC_CTX *mem_ctx = talloc_new(ctdb);
4211
4212                         DLIST_REMOVE(ctdb->vnn, vnn);
4213                         talloc_steal(mem_ctx, vnn);
4214                         ctdb_remove_orphaned_ifaces(ctdb, vnn, mem_ctx);
4215                         if (vnn->pnn != ctdb->pnn) {
4216                                 if (vnn->iface != NULL) {
4217                                         ctdb_vnn_unassign_iface(ctdb, vnn);
4218                                 }
4219                                 talloc_free(mem_ctx);
4220                                 return 0;
4221                         }
4222                         vnn->pnn = -1;
4223
4224                         ret = ctdb_event_script_callback(ctdb, 
4225                                          mem_ctx, delete_ip_callback, mem_ctx,
4226                                          false,
4227                                          CTDB_EVENT_RELEASE_IP,
4228                                          "%s %s %u",
4229                                          ctdb_vnn_iface_string(vnn),
4230                                          ctdb_addr_to_str(&vnn->public_address),
4231                                          vnn->public_netmask_bits);
4232                         if (vnn->iface != NULL) {
4233                                 ctdb_vnn_unassign_iface(ctdb, vnn);
4234                         }
4235                         if (ret != 0) {
4236                                 return -1;
4237                         }
4238                         return 0;
4239                 }
4240         }
4241
4242         return -1;
4243 }
4244
4245
4246 struct ipreallocated_callback_state {
4247         struct ctdb_req_control *c;
4248 };
4249
4250 static void ctdb_ipreallocated_callback(struct ctdb_context *ctdb,
4251                                         int status, void *p)
4252 {
4253         struct ipreallocated_callback_state *state =
4254                 talloc_get_type(p, struct ipreallocated_callback_state);
4255
4256         if (status != 0) {
4257                 DEBUG(DEBUG_ERR,
4258                       (" \"ipreallocated\" event script failed (status %d)\n",
4259                        status));
4260                 if (status == -ETIME) {
4261                         ctdb_ban_self(ctdb);
4262                 }
4263         }
4264
4265         ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
4266         talloc_free(state);
4267 }
4268
4269 /* A control to run the ipreallocated event */
4270 int32_t ctdb_control_ipreallocated(struct ctdb_context *ctdb,
4271                                    struct ctdb_req_control *c,
4272                                    bool *async_reply)
4273 {
4274         int ret;
4275         struct ipreallocated_callback_state *state;
4276
4277         state = talloc(ctdb, struct ipreallocated_callback_state);
4278         CTDB_NO_MEMORY(ctdb, state);
4279
4280         DEBUG(DEBUG_INFO,(__location__ " Running \"ipreallocated\" event\n"));
4281
4282         ret = ctdb_event_script_callback(ctdb, state,
4283                                          ctdb_ipreallocated_callback, state,
4284                                          false, CTDB_EVENT_IPREALLOCATED,
4285                                          "%s", "");
4286
4287         if (ret != 0) {
4288                 DEBUG(DEBUG_ERR,("Failed to run \"ipreallocated\" event \n"));
4289                 talloc_free(state);
4290                 return -1;
4291         }
4292
4293         /* tell the control that we will be reply asynchronously */
4294         state->c    = talloc_steal(state, c);
4295         *async_reply = true;
4296
4297         return 0;
4298 }
4299
4300
4301 /* This function is called from the recovery daemon to verify that a remote
4302    node has the expected ip allocation.
4303    This is verified against ctdb->ip_tree
4304 */
4305 int verify_remote_ip_allocation(struct ctdb_context *ctdb,
4306                                 struct ctdb_all_public_ips *ips,
4307                                 uint32_t pnn)
4308 {
4309         struct ctdb_public_ip_list *tmp_ip; 
4310         int i;
4311
4312         if (ctdb->ip_tree == NULL) {
4313                 /* dont know the expected allocation yet, assume remote node
4314                    is correct. */
4315                 return 0;
4316         }
4317
4318         if (ips == NULL) {
4319                 return 0;
4320         }
4321
4322         for (i=0; i<ips->num; i++) {
4323                 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ips->ips[i].addr));
4324                 if (tmp_ip == NULL) {
4325                         DEBUG(DEBUG_ERR,("Node %u has new or unknown public IP %s\n", pnn, ctdb_addr_to_str(&ips->ips[i].addr)));
4326                         return -1;
4327                 }
4328
4329                 if (tmp_ip->pnn == -1 || ips->ips[i].pnn == -1) {
4330                         continue;
4331                 }
4332
4333                 if (tmp_ip->pnn != ips->ips[i].pnn) {
4334                         DEBUG(DEBUG_ERR,
4335                               ("Inconsistent IP allocation - node %u thinks %s is held by node %u while it is assigned to node %u\n",
4336                                pnn,
4337                                ctdb_addr_to_str(&ips->ips[i].addr),
4338                                ips->ips[i].pnn, tmp_ip->pnn));
4339                         return -1;
4340                 }
4341         }
4342
4343         return 0;
4344 }
4345
4346 int update_ip_assignment_tree(struct ctdb_context *ctdb, struct ctdb_public_ip *ip)
4347 {
4348         struct ctdb_public_ip_list *tmp_ip; 
4349
4350         if (ctdb->ip_tree == NULL) {
4351                 DEBUG(DEBUG_ERR,("No ctdb->ip_tree yet. Failed to update ip assignment\n"));
4352                 return -1;
4353         }
4354
4355         tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ip->addr));
4356         if (tmp_ip == NULL) {
4357                 DEBUG(DEBUG_ERR,(__location__ " Could not find record for address %s, update ip\n", ctdb_addr_to_str(&ip->addr)));
4358                 return -1;
4359         }
4360
4361         DEBUG(DEBUG_NOTICE,("Updated ip assignment tree for ip : %s from node %u to node %u\n", ctdb_addr_to_str(&ip->addr), tmp_ip->pnn, ip->pnn));
4362         tmp_ip->pnn = ip->pnn;
4363
4364         return 0;
4365 }
4366
4367
4368 struct ctdb_reloadips_handle {
4369         struct ctdb_context *ctdb;
4370         struct ctdb_req_control *c;
4371         int status;
4372         int fd[2];
4373         pid_t child;
4374         struct fd_event *fde;
4375 };
4376
4377 static int ctdb_reloadips_destructor(struct ctdb_reloadips_handle *h)
4378 {
4379         if (h == h->ctdb->reload_ips) {
4380                 h->ctdb->reload_ips = NULL;
4381         }
4382         if (h->c != NULL) {
4383                 ctdb_request_control_reply(h->ctdb, h->c, NULL, h->status, NULL);
4384                 h->c = NULL;
4385         }
4386         ctdb_kill(h->ctdb, h->child, SIGKILL);
4387         return 0;
4388 }
4389
4390 static void ctdb_reloadips_timeout_event(struct event_context *ev,
4391                                 struct timed_event *te,
4392                                 struct timeval t, void *private_data)
4393 {
4394         struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4395
4396         talloc_free(h);
4397 }       
4398
4399 static void ctdb_reloadips_child_handler(struct event_context *ev, struct fd_event *fde, 
4400                              uint16_t flags, void *private_data)
4401 {
4402         struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4403
4404         char res;
4405         int ret;
4406
4407         ret = read(h->fd[0], &res, 1);
4408         if (ret < 1 || res != 0) {
4409                 DEBUG(DEBUG_ERR, (__location__ " Reloadips child process returned error\n"));
4410                 res = 1;
4411         }
4412         h->status = res;
4413
4414         talloc_free(h);
4415 }
4416
4417 static int ctdb_reloadips_child(struct ctdb_context *ctdb)
4418 {
4419         TALLOC_CTX *mem_ctx = talloc_new(NULL);
4420         struct ctdb_all_public_ips *ips;
4421         struct ctdb_vnn *vnn;
4422         int i, ret;
4423
4424         CTDB_NO_MEMORY(ctdb, mem_ctx);
4425
4426         /* read the ip allocation from the local node */
4427         ret = ctdb_ctrl_get_public_ips(ctdb, TAKEOVER_TIMEOUT(), CTDB_CURRENT_NODE, mem_ctx, &ips);
4428         if (ret != 0) {
4429                 DEBUG(DEBUG_ERR, ("Unable to get public ips from local node\n"));
4430                 talloc_free(mem_ctx);
4431                 return -1;
4432         }
4433
4434         /* re-read the public ips file */
4435         ctdb->vnn = NULL;
4436         if (ctdb_set_public_addresses(ctdb, false) != 0) {
4437                 DEBUG(DEBUG_ERR,("Failed to re-read public addresses file\n"));
4438                 talloc_free(mem_ctx);
4439                 return -1;
4440         }
4441
4442
4443         /* check the previous list of ips and scan for ips that have been
4444            dropped.
4445          */
4446         for (i = 0; i < ips->num; i++) {
4447                 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4448                         if (ctdb_same_ip(&vnn->public_address, &ips->ips[i].addr)) {
4449                                 break;
4450                         }
4451                 }
4452
4453                 /* we need to delete this ip, no longer available on this node */
4454                 if (vnn == NULL) {
4455                         struct ctdb_control_ip_iface pub;
4456
4457                         DEBUG(DEBUG_NOTICE,("RELOADIPS: IP%s is no longer available on this node. Deleting it.\n", ctdb_addr_to_str(&ips->ips[i].addr)));
4458                         pub.addr  = ips->ips[i].addr;
4459                         pub.mask  = 0;
4460                         pub.len   = 0;
4461
4462                         ret = ctdb_ctrl_del_public_ip(ctdb, TAKEOVER_TIMEOUT(), CTDB_CURRENT_NODE, &pub);
4463                         if (ret != 0) {
4464                                 talloc_free(mem_ctx);
4465                                 DEBUG(DEBUG_ERR, ("RELOADIPS: Unable to del public ip:%s from local node\n", ctdb_addr_to_str(&ips->ips[i].addr)));
4466                                 return -1;
4467                         }
4468                 }
4469         }
4470
4471
4472         /* loop over all new ones and check the ones we need to add */
4473         for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4474                 for (i = 0; i < ips->num; i++) {
4475                         if (ctdb_same_ip(&vnn->public_address, &ips->ips[i].addr)) {
4476                                 break;
4477                         }
4478                 }
4479                 if (i == ips->num) {
4480                         struct ctdb_control_ip_iface *pub;
4481                         const char *ifaces = NULL;
4482                         int iface = 0;
4483
4484                         DEBUG(DEBUG_NOTICE,("RELOADIPS: New ip:%s found, adding it.\n", ctdb_addr_to_str(&vnn->public_address)));
4485
4486                         pub = talloc_zero(mem_ctx, struct ctdb_control_ip_iface);
4487                         pub->addr  = vnn->public_address;
4488                         pub->mask  = vnn->public_netmask_bits;
4489
4490                         ifaces = vnn->ifaces[0];
4491                         iface = 1;
4492                         while (vnn->ifaces[iface] != NULL) {
4493                                 ifaces = talloc_asprintf(vnn, "%s,%s", ifaces, vnn->ifaces[iface]);
4494                                 iface++;
4495                         }
4496                         pub->len   = strlen(ifaces)+1;
4497                         pub = talloc_realloc_size(mem_ctx, pub,
4498                                 offsetof(struct ctdb_control_ip_iface, iface) + pub->len);
4499                         if (pub == NULL) {
4500                                 DEBUG(DEBUG_ERR, (__location__ " Failed to allocate memory\n"));
4501                                 talloc_free(mem_ctx);
4502                                 return -1;
4503                         }
4504                         memcpy(&pub->iface[0], ifaces, pub->len);
4505
4506                         ret = ctdb_ctrl_add_public_ip(ctdb, TAKEOVER_TIMEOUT(),
4507                                                       CTDB_CURRENT_NODE, pub);
4508                         if (ret != 0) {
4509                                 DEBUG(DEBUG_ERR, ("RELOADIPS: Unable to add public ip:%s to local node\n", ctdb_addr_to_str(&vnn->public_address)));
4510                                 talloc_free(mem_ctx);
4511                                 return -1;
4512                         }
4513                 }
4514         }
4515
4516         talloc_free(mem_ctx);
4517         return 0;
4518 }
4519
4520 /* This control is sent to force the node to re-read the public addresses file
4521    and drop any addresses we should nnot longer host, and add new addresses
4522    that we are now able to host
4523 */
4524 int32_t ctdb_control_reload_public_ips(struct ctdb_context *ctdb, struct ctdb_req_control *c, bool *async_reply)
4525 {
4526         struct ctdb_reloadips_handle *h;
4527         pid_t parent = getpid();
4528
4529         if (ctdb->reload_ips != NULL) {
4530                 talloc_free(ctdb->reload_ips);
4531                 ctdb->reload_ips = NULL;
4532         }
4533
4534         h = talloc(ctdb, struct ctdb_reloadips_handle);
4535         CTDB_NO_MEMORY(ctdb, h);
4536         h->ctdb     = ctdb;
4537         h->c        = NULL;
4538         h->status   = -1;
4539         
4540         if (pipe(h->fd) == -1) {
4541                 DEBUG(DEBUG_ERR,("Failed to create pipe for ctdb_freeze_lock\n"));
4542                 talloc_free(h);
4543                 return -1;
4544         }
4545
4546         h->child = ctdb_fork(ctdb);
4547         if (h->child == (pid_t)-1) {
4548                 DEBUG(DEBUG_ERR, ("Failed to fork a child for reloadips\n"));
4549                 close(h->fd[0]);
4550                 close(h->fd[1]);
4551                 talloc_free(h);
4552                 return -1;
4553         }
4554
4555         /* child process */
4556         if (h->child == 0) {
4557                 signed char res = 0;
4558
4559                 close(h->fd[0]);
4560                 debug_extra = talloc_asprintf(NULL, "reloadips:");
4561
4562                 ctdb_set_process_name("ctdb_reloadips");
4563                 if (switch_from_server_to_client(ctdb, "reloadips-child") != 0) {
4564                         DEBUG(DEBUG_CRIT,("ERROR: Failed to switch reloadips child into client mode\n"));
4565                         res = -1;
4566                 } else {
4567                         res = ctdb_reloadips_child(ctdb);
4568                         if (res != 0) {
4569                                 DEBUG(DEBUG_ERR,("Failed to reload ips on local node\n"));
4570                         }
4571                 }
4572
4573                 write(h->fd[1], &res, 1);
4574                 /* make sure we die when our parent dies */
4575                 while (ctdb_kill(ctdb, parent, 0) == 0 || errno != ESRCH) {
4576                         sleep(5);
4577                 }
4578                 _exit(0);
4579         }
4580
4581         h->c             = talloc_steal(h, c);
4582
4583         close(h->fd[1]);
4584         set_close_on_exec(h->fd[0]);
4585
4586         talloc_set_destructor(h, ctdb_reloadips_destructor);
4587
4588
4589         h->fde = event_add_fd(ctdb->ev, h, h->fd[0],
4590                         EVENT_FD_READ, ctdb_reloadips_child_handler,
4591                         (void *)h);
4592         tevent_fd_set_auto_close(h->fde);
4593
4594         event_add_timed(ctdb->ev, h,
4595                         timeval_current_ofs(120, 0),
4596                         ctdb_reloadips_timeout_event, h);
4597
4598         /* we reply later */
4599         *async_reply = true;
4600         return 0;
4601 }