Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44 #include "svm_ops.h"
45
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54         {}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58
59 #define IOPM_ALLOC_ORDER 2
60 #define MSRPM_ALLOC_ORDER 1
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 #define SVM_FEATURE_LBRV           (1 <<  1)
66 #define SVM_FEATURE_SVML           (1 <<  2)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN           0x0000000000000001ULL
77 #define TSC_RATIO_MAX           0x000000ffffffffffULL
78
79 static bool erratum_383_found __read_mostly;
80
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82
83 /*
84  * Set osvw_len to higher value when updated Revision Guides
85  * are published and we know what the new status bits are
86  */
87 static uint64_t osvw_len = 4, osvw_status;
88
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT       0x0100000000ULL
91
92 static const struct svm_direct_access_msrs {
93         u32 index;   /* Index of the MSR */
94         bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96         { .index = MSR_STAR,                            .always = true  },
97         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
98 #ifdef CONFIG_X86_64
99         { .index = MSR_GS_BASE,                         .always = true  },
100         { .index = MSR_FS_BASE,                         .always = true  },
101         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
102         { .index = MSR_LSTAR,                           .always = true  },
103         { .index = MSR_CSTAR,                           .always = true  },
104         { .index = MSR_SYSCALL_MASK,                    .always = true  },
105 #endif
106         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
107         { .index = MSR_IA32_PRED_CMD,                   .always = false },
108         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
109         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
110         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
111         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
112         { .index = MSR_EFER,                            .always = false },
113         { .index = MSR_IA32_CR_PAT,                     .always = false },
114         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
115         { .index = MSR_INVALID,                         .always = false },
116 };
117
118 /* enable NPT for AMD64 and X86 with PAE */
119 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
120 bool npt_enabled = true;
121 #else
122 bool npt_enabled;
123 #endif
124
125 /*
126  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
127  * pause_filter_count: On processors that support Pause filtering(indicated
128  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
129  *      count value. On VMRUN this value is loaded into an internal counter.
130  *      Each time a pause instruction is executed, this counter is decremented
131  *      until it reaches zero at which time a #VMEXIT is generated if pause
132  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
133  *      Intercept Filtering for more details.
134  *      This also indicate if ple logic enabled.
135  *
136  * pause_filter_thresh: In addition, some processor families support advanced
137  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
138  *      the amount of time a guest is allowed to execute in a pause loop.
139  *      In this mode, a 16-bit pause filter threshold field is added in the
140  *      VMCB. The threshold value is a cycle count that is used to reset the
141  *      pause counter. As with simple pause filtering, VMRUN loads the pause
142  *      count value from VMCB into an internal counter. Then, on each pause
143  *      instruction the hardware checks the elapsed number of cycles since
144  *      the most recent pause instruction against the pause filter threshold.
145  *      If the elapsed cycle count is greater than the pause filter threshold,
146  *      then the internal pause count is reloaded from the VMCB and execution
147  *      continues. If the elapsed cycle count is less than the pause filter
148  *      threshold, then the internal pause count is decremented. If the count
149  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
150  *      triggered. If advanced pause filtering is supported and pause filter
151  *      threshold field is set to zero, the filter will operate in the simpler,
152  *      count only mode.
153  */
154
155 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
156 module_param(pause_filter_thresh, ushort, 0444);
157
158 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
159 module_param(pause_filter_count, ushort, 0444);
160
161 /* Default doubles per-vcpu window every exit. */
162 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
163 module_param(pause_filter_count_grow, ushort, 0444);
164
165 /* Default resets per-vcpu window every exit to pause_filter_count. */
166 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
167 module_param(pause_filter_count_shrink, ushort, 0444);
168
169 /* Default is to compute the maximum so we can never overflow. */
170 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
171 module_param(pause_filter_count_max, ushort, 0444);
172
173 /* allow nested paging (virtualized MMU) for all guests */
174 static int npt = true;
175 module_param(npt, int, S_IRUGO);
176
177 /* allow nested virtualization in KVM/SVM */
178 static int nested = true;
179 module_param(nested, int, S_IRUGO);
180
181 /* enable/disable Next RIP Save */
182 static int nrips = true;
183 module_param(nrips, int, 0444);
184
185 /* enable/disable Virtual VMLOAD VMSAVE */
186 static int vls = true;
187 module_param(vls, int, 0444);
188
189 /* enable/disable Virtual GIF */
190 static int vgif = true;
191 module_param(vgif, int, 0444);
192
193 /* enable/disable SEV support */
194 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
195 module_param(sev, int, 0444);
196
197 /* enable/disable SEV-ES support */
198 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
199 module_param(sev_es, int, 0444);
200
201 bool __read_mostly dump_invalid_vmcb;
202 module_param(dump_invalid_vmcb, bool, 0644);
203
204 static bool svm_gp_erratum_intercept = true;
205
206 static u8 rsm_ins_bytes[] = "\x0f\xaa";
207
208 static unsigned long iopm_base;
209
210 struct kvm_ldttss_desc {
211         u16 limit0;
212         u16 base0;
213         unsigned base1:8, type:5, dpl:2, p:1;
214         unsigned limit1:4, zero0:3, g:1, base2:8;
215         u32 base3;
216         u32 zero1;
217 } __attribute__((packed));
218
219 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
220
221 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
222
223 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
224 #define MSRS_RANGE_SIZE 2048
225 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
226
227 u32 svm_msrpm_offset(u32 msr)
228 {
229         u32 offset;
230         int i;
231
232         for (i = 0; i < NUM_MSR_MAPS; i++) {
233                 if (msr < msrpm_ranges[i] ||
234                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
235                         continue;
236
237                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
238                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
239
240                 /* Now we have the u8 offset - but need the u32 offset */
241                 return offset / 4;
242         }
243
244         /* MSR not in any range */
245         return MSR_INVALID;
246 }
247
248 #define MAX_INST_SIZE 15
249
250 static int get_max_npt_level(void)
251 {
252 #ifdef CONFIG_X86_64
253         return PT64_ROOT_4LEVEL;
254 #else
255         return PT32E_ROOT_LEVEL;
256 #endif
257 }
258
259 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
260 {
261         struct vcpu_svm *svm = to_svm(vcpu);
262         u64 old_efer = vcpu->arch.efer;
263         vcpu->arch.efer = efer;
264
265         if (!npt_enabled) {
266                 /* Shadow paging assumes NX to be available.  */
267                 efer |= EFER_NX;
268
269                 if (!(efer & EFER_LMA))
270                         efer &= ~EFER_LME;
271         }
272
273         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
274                 if (!(efer & EFER_SVME)) {
275                         svm_leave_nested(svm);
276                         svm_set_gif(svm, true);
277                         /* #GP intercept is still needed for vmware backdoor */
278                         if (!enable_vmware_backdoor)
279                                 clr_exception_intercept(svm, GP_VECTOR);
280
281                         /*
282                          * Free the nested guest state, unless we are in SMM.
283                          * In this case we will return to the nested guest
284                          * as soon as we leave SMM.
285                          */
286                         if (!is_smm(&svm->vcpu))
287                                 svm_free_nested(svm);
288
289                 } else {
290                         int ret = svm_allocate_nested(svm);
291
292                         if (ret) {
293                                 vcpu->arch.efer = old_efer;
294                                 return ret;
295                         }
296
297                         if (svm_gp_erratum_intercept)
298                                 set_exception_intercept(svm, GP_VECTOR);
299                 }
300         }
301
302         svm->vmcb->save.efer = efer | EFER_SVME;
303         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
304         return 0;
305 }
306
307 static int is_external_interrupt(u32 info)
308 {
309         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
310         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
311 }
312
313 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
314 {
315         struct vcpu_svm *svm = to_svm(vcpu);
316         u32 ret = 0;
317
318         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
319                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
320         return ret;
321 }
322
323 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
324 {
325         struct vcpu_svm *svm = to_svm(vcpu);
326
327         if (mask == 0)
328                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
329         else
330                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
331
332 }
333
334 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
335 {
336         struct vcpu_svm *svm = to_svm(vcpu);
337
338         /*
339          * SEV-ES does not expose the next RIP. The RIP update is controlled by
340          * the type of exit and the #VC handler in the guest.
341          */
342         if (sev_es_guest(vcpu->kvm))
343                 goto done;
344
345         if (nrips && svm->vmcb->control.next_rip != 0) {
346                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
347                 svm->next_rip = svm->vmcb->control.next_rip;
348         }
349
350         if (!svm->next_rip) {
351                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
352                         return 0;
353         } else {
354                 kvm_rip_write(vcpu, svm->next_rip);
355         }
356
357 done:
358         svm_set_interrupt_shadow(vcpu, 0);
359
360         return 1;
361 }
362
363 static void svm_queue_exception(struct kvm_vcpu *vcpu)
364 {
365         struct vcpu_svm *svm = to_svm(vcpu);
366         unsigned nr = vcpu->arch.exception.nr;
367         bool has_error_code = vcpu->arch.exception.has_error_code;
368         u32 error_code = vcpu->arch.exception.error_code;
369
370         kvm_deliver_exception_payload(&svm->vcpu);
371
372         if (nr == BP_VECTOR && !nrips) {
373                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
374
375                 /*
376                  * For guest debugging where we have to reinject #BP if some
377                  * INT3 is guest-owned:
378                  * Emulate nRIP by moving RIP forward. Will fail if injection
379                  * raises a fault that is not intercepted. Still better than
380                  * failing in all cases.
381                  */
382                 (void)skip_emulated_instruction(&svm->vcpu);
383                 rip = kvm_rip_read(&svm->vcpu);
384                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
385                 svm->int3_injected = rip - old_rip;
386         }
387
388         svm->vmcb->control.event_inj = nr
389                 | SVM_EVTINJ_VALID
390                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
391                 | SVM_EVTINJ_TYPE_EXEPT;
392         svm->vmcb->control.event_inj_err = error_code;
393 }
394
395 static void svm_init_erratum_383(void)
396 {
397         u32 low, high;
398         int err;
399         u64 val;
400
401         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
402                 return;
403
404         /* Use _safe variants to not break nested virtualization */
405         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
406         if (err)
407                 return;
408
409         val |= (1ULL << 47);
410
411         low  = lower_32_bits(val);
412         high = upper_32_bits(val);
413
414         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
415
416         erratum_383_found = true;
417 }
418
419 static void svm_init_osvw(struct kvm_vcpu *vcpu)
420 {
421         /*
422          * Guests should see errata 400 and 415 as fixed (assuming that
423          * HLT and IO instructions are intercepted).
424          */
425         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
426         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
427
428         /*
429          * By increasing VCPU's osvw.length to 3 we are telling the guest that
430          * all osvw.status bits inside that length, including bit 0 (which is
431          * reserved for erratum 298), are valid. However, if host processor's
432          * osvw_len is 0 then osvw_status[0] carries no information. We need to
433          * be conservative here and therefore we tell the guest that erratum 298
434          * is present (because we really don't know).
435          */
436         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
437                 vcpu->arch.osvw.status |= 1;
438 }
439
440 static int has_svm(void)
441 {
442         const char *msg;
443
444         if (!cpu_has_svm(&msg)) {
445                 printk(KERN_INFO "has_svm: %s\n", msg);
446                 return 0;
447         }
448
449         if (sev_active()) {
450                 pr_info("KVM is unsupported when running as an SEV guest\n");
451                 return 0;
452         }
453
454         return 1;
455 }
456
457 static void svm_hardware_disable(void)
458 {
459         /* Make sure we clean up behind us */
460         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
461                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
462
463         cpu_svm_disable();
464
465         amd_pmu_disable_virt();
466 }
467
468 static int svm_hardware_enable(void)
469 {
470
471         struct svm_cpu_data *sd;
472         uint64_t efer;
473         struct desc_struct *gdt;
474         int me = raw_smp_processor_id();
475
476         rdmsrl(MSR_EFER, efer);
477         if (efer & EFER_SVME)
478                 return -EBUSY;
479
480         if (!has_svm()) {
481                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
482                 return -EINVAL;
483         }
484         sd = per_cpu(svm_data, me);
485         if (!sd) {
486                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
487                 return -EINVAL;
488         }
489
490         sd->asid_generation = 1;
491         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
492         sd->next_asid = sd->max_asid + 1;
493         sd->min_asid = max_sev_asid + 1;
494
495         gdt = get_current_gdt_rw();
496         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
497
498         wrmsrl(MSR_EFER, efer | EFER_SVME);
499
500         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
501
502         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
503                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
504                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
505         }
506
507
508         /*
509          * Get OSVW bits.
510          *
511          * Note that it is possible to have a system with mixed processor
512          * revisions and therefore different OSVW bits. If bits are not the same
513          * on different processors then choose the worst case (i.e. if erratum
514          * is present on one processor and not on another then assume that the
515          * erratum is present everywhere).
516          */
517         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
518                 uint64_t len, status = 0;
519                 int err;
520
521                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
522                 if (!err)
523                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
524                                                       &err);
525
526                 if (err)
527                         osvw_status = osvw_len = 0;
528                 else {
529                         if (len < osvw_len)
530                                 osvw_len = len;
531                         osvw_status |= status;
532                         osvw_status &= (1ULL << osvw_len) - 1;
533                 }
534         } else
535                 osvw_status = osvw_len = 0;
536
537         svm_init_erratum_383();
538
539         amd_pmu_enable_virt();
540
541         return 0;
542 }
543
544 static void svm_cpu_uninit(int cpu)
545 {
546         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
547
548         if (!sd)
549                 return;
550
551         per_cpu(svm_data, cpu) = NULL;
552         kfree(sd->sev_vmcbs);
553         __free_page(sd->save_area);
554         kfree(sd);
555 }
556
557 static int svm_cpu_init(int cpu)
558 {
559         struct svm_cpu_data *sd;
560
561         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
562         if (!sd)
563                 return -ENOMEM;
564         sd->cpu = cpu;
565         sd->save_area = alloc_page(GFP_KERNEL);
566         if (!sd->save_area)
567                 goto free_cpu_data;
568         clear_page(page_address(sd->save_area));
569
570         if (svm_sev_enabled()) {
571                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
572                                               sizeof(void *),
573                                               GFP_KERNEL);
574                 if (!sd->sev_vmcbs)
575                         goto free_save_area;
576         }
577
578         per_cpu(svm_data, cpu) = sd;
579
580         return 0;
581
582 free_save_area:
583         __free_page(sd->save_area);
584 free_cpu_data:
585         kfree(sd);
586         return -ENOMEM;
587
588 }
589
590 static int direct_access_msr_slot(u32 msr)
591 {
592         u32 i;
593
594         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
595                 if (direct_access_msrs[i].index == msr)
596                         return i;
597
598         return -ENOENT;
599 }
600
601 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
602                                      int write)
603 {
604         struct vcpu_svm *svm = to_svm(vcpu);
605         int slot = direct_access_msr_slot(msr);
606
607         if (slot == -ENOENT)
608                 return;
609
610         /* Set the shadow bitmaps to the desired intercept states */
611         if (read)
612                 set_bit(slot, svm->shadow_msr_intercept.read);
613         else
614                 clear_bit(slot, svm->shadow_msr_intercept.read);
615
616         if (write)
617                 set_bit(slot, svm->shadow_msr_intercept.write);
618         else
619                 clear_bit(slot, svm->shadow_msr_intercept.write);
620 }
621
622 static bool valid_msr_intercept(u32 index)
623 {
624         return direct_access_msr_slot(index) != -ENOENT;
625 }
626
627 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
628 {
629         u8 bit_write;
630         unsigned long tmp;
631         u32 offset;
632         u32 *msrpm;
633
634         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
635                                       to_svm(vcpu)->msrpm;
636
637         offset    = svm_msrpm_offset(msr);
638         bit_write = 2 * (msr & 0x0f) + 1;
639         tmp       = msrpm[offset];
640
641         BUG_ON(offset == MSR_INVALID);
642
643         return !!test_bit(bit_write,  &tmp);
644 }
645
646 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
647                                         u32 msr, int read, int write)
648 {
649         u8 bit_read, bit_write;
650         unsigned long tmp;
651         u32 offset;
652
653         /*
654          * If this warning triggers extend the direct_access_msrs list at the
655          * beginning of the file
656          */
657         WARN_ON(!valid_msr_intercept(msr));
658
659         /* Enforce non allowed MSRs to trap */
660         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
661                 read = 0;
662
663         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
664                 write = 0;
665
666         offset    = svm_msrpm_offset(msr);
667         bit_read  = 2 * (msr & 0x0f);
668         bit_write = 2 * (msr & 0x0f) + 1;
669         tmp       = msrpm[offset];
670
671         BUG_ON(offset == MSR_INVALID);
672
673         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
674         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
675
676         msrpm[offset] = tmp;
677 }
678
679 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
680                           int read, int write)
681 {
682         set_shadow_msr_intercept(vcpu, msr, read, write);
683         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
684 }
685
686 u32 *svm_vcpu_alloc_msrpm(void)
687 {
688         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
689         u32 *msrpm;
690
691         if (!pages)
692                 return NULL;
693
694         msrpm = page_address(pages);
695         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
696
697         return msrpm;
698 }
699
700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
701 {
702         int i;
703
704         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
705                 if (!direct_access_msrs[i].always)
706                         continue;
707                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
708         }
709 }
710
711
712 void svm_vcpu_free_msrpm(u32 *msrpm)
713 {
714         __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
715 }
716
717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
718 {
719         struct vcpu_svm *svm = to_svm(vcpu);
720         u32 i;
721
722         /*
723          * Set intercept permissions for all direct access MSRs again. They
724          * will automatically get filtered through the MSR filter, so we are
725          * back in sync after this.
726          */
727         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
728                 u32 msr = direct_access_msrs[i].index;
729                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
730                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
731
732                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
733         }
734 }
735
736 static void add_msr_offset(u32 offset)
737 {
738         int i;
739
740         for (i = 0; i < MSRPM_OFFSETS; ++i) {
741
742                 /* Offset already in list? */
743                 if (msrpm_offsets[i] == offset)
744                         return;
745
746                 /* Slot used by another offset? */
747                 if (msrpm_offsets[i] != MSR_INVALID)
748                         continue;
749
750                 /* Add offset to list */
751                 msrpm_offsets[i] = offset;
752
753                 return;
754         }
755
756         /*
757          * If this BUG triggers the msrpm_offsets table has an overflow. Just
758          * increase MSRPM_OFFSETS in this case.
759          */
760         BUG();
761 }
762
763 static void init_msrpm_offsets(void)
764 {
765         int i;
766
767         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
768
769         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
770                 u32 offset;
771
772                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
773                 BUG_ON(offset == MSR_INVALID);
774
775                 add_msr_offset(offset);
776         }
777 }
778
779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
780 {
781         struct vcpu_svm *svm = to_svm(vcpu);
782
783         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
784         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
785         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
786         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
787         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
788 }
789
790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
791 {
792         struct vcpu_svm *svm = to_svm(vcpu);
793
794         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
795         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
796         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
797         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
798         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
799 }
800
801 void disable_nmi_singlestep(struct vcpu_svm *svm)
802 {
803         svm->nmi_singlestep = false;
804
805         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
806                 /* Clear our flags if they were not set by the guest */
807                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
808                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
809                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
810                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
811         }
812 }
813
814 static void grow_ple_window(struct kvm_vcpu *vcpu)
815 {
816         struct vcpu_svm *svm = to_svm(vcpu);
817         struct vmcb_control_area *control = &svm->vmcb->control;
818         int old = control->pause_filter_count;
819
820         control->pause_filter_count = __grow_ple_window(old,
821                                                         pause_filter_count,
822                                                         pause_filter_count_grow,
823                                                         pause_filter_count_max);
824
825         if (control->pause_filter_count != old) {
826                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
827                 trace_kvm_ple_window_update(vcpu->vcpu_id,
828                                             control->pause_filter_count, old);
829         }
830 }
831
832 static void shrink_ple_window(struct kvm_vcpu *vcpu)
833 {
834         struct vcpu_svm *svm = to_svm(vcpu);
835         struct vmcb_control_area *control = &svm->vmcb->control;
836         int old = control->pause_filter_count;
837
838         control->pause_filter_count =
839                                 __shrink_ple_window(old,
840                                                     pause_filter_count,
841                                                     pause_filter_count_shrink,
842                                                     pause_filter_count);
843         if (control->pause_filter_count != old) {
844                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
845                 trace_kvm_ple_window_update(vcpu->vcpu_id,
846                                             control->pause_filter_count, old);
847         }
848 }
849
850 /*
851  * The default MMIO mask is a single bit (excluding the present bit),
852  * which could conflict with the memory encryption bit. Check for
853  * memory encryption support and override the default MMIO mask if
854  * memory encryption is enabled.
855  */
856 static __init void svm_adjust_mmio_mask(void)
857 {
858         unsigned int enc_bit, mask_bit;
859         u64 msr, mask;
860
861         /* If there is no memory encryption support, use existing mask */
862         if (cpuid_eax(0x80000000) < 0x8000001f)
863                 return;
864
865         /* If memory encryption is not enabled, use existing mask */
866         rdmsrl(MSR_K8_SYSCFG, msr);
867         if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
868                 return;
869
870         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
871         mask_bit = boot_cpu_data.x86_phys_bits;
872
873         /* Increment the mask bit if it is the same as the encryption bit */
874         if (enc_bit == mask_bit)
875                 mask_bit++;
876
877         /*
878          * If the mask bit location is below 52, then some bits above the
879          * physical addressing limit will always be reserved, so use the
880          * rsvd_bits() function to generate the mask. This mask, along with
881          * the present bit, will be used to generate a page fault with
882          * PFER.RSV = 1.
883          *
884          * If the mask bit location is 52 (or above), then clear the mask.
885          */
886         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
887
888         kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
889 }
890
891 static void svm_hardware_teardown(void)
892 {
893         int cpu;
894
895         if (svm_sev_enabled())
896                 sev_hardware_teardown();
897
898         for_each_possible_cpu(cpu)
899                 svm_cpu_uninit(cpu);
900
901         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
902         iopm_base = 0;
903 }
904
905 static __init void svm_set_cpu_caps(void)
906 {
907         kvm_set_cpu_caps();
908
909         supported_xss = 0;
910
911         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
912         if (nested) {
913                 kvm_cpu_cap_set(X86_FEATURE_SVM);
914
915                 if (nrips)
916                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
917
918                 if (npt_enabled)
919                         kvm_cpu_cap_set(X86_FEATURE_NPT);
920
921                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
922                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
923         }
924
925         /* CPUID 0x80000008 */
926         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
927             boot_cpu_has(X86_FEATURE_AMD_SSBD))
928                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
929
930         /* Enable INVPCID feature */
931         kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
932 }
933
934 static __init int svm_hardware_setup(void)
935 {
936         int cpu;
937         struct page *iopm_pages;
938         void *iopm_va;
939         int r;
940
941         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
942
943         if (!iopm_pages)
944                 return -ENOMEM;
945
946         iopm_va = page_address(iopm_pages);
947         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
948         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
949
950         init_msrpm_offsets();
951
952         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
953
954         if (boot_cpu_has(X86_FEATURE_NX))
955                 kvm_enable_efer_bits(EFER_NX);
956
957         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
958                 kvm_enable_efer_bits(EFER_FFXSR);
959
960         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
961                 kvm_has_tsc_control = true;
962                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
963                 kvm_tsc_scaling_ratio_frac_bits = 32;
964         }
965
966         /* Check for pause filtering support */
967         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
968                 pause_filter_count = 0;
969                 pause_filter_thresh = 0;
970         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
971                 pause_filter_thresh = 0;
972         }
973
974         if (nested) {
975                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
976                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
977         }
978
979         if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) {
980                 sev_hardware_setup();
981         } else {
982                 sev = false;
983                 sev_es = false;
984         }
985
986         svm_adjust_mmio_mask();
987
988         for_each_possible_cpu(cpu) {
989                 r = svm_cpu_init(cpu);
990                 if (r)
991                         goto err;
992         }
993
994         if (!boot_cpu_has(X86_FEATURE_NPT))
995                 npt_enabled = false;
996
997         if (npt_enabled && !npt)
998                 npt_enabled = false;
999
1000         kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
1001         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1002
1003         if (nrips) {
1004                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1005                         nrips = false;
1006         }
1007
1008         if (avic) {
1009                 if (!npt_enabled ||
1010                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1011                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1012                         avic = false;
1013                 } else {
1014                         pr_info("AVIC enabled\n");
1015
1016                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1017                 }
1018         }
1019
1020         if (vls) {
1021                 if (!npt_enabled ||
1022                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1023                     !IS_ENABLED(CONFIG_X86_64)) {
1024                         vls = false;
1025                 } else {
1026                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1027                 }
1028         }
1029
1030         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1031                 svm_gp_erratum_intercept = false;
1032
1033         if (vgif) {
1034                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1035                         vgif = false;
1036                 else
1037                         pr_info("Virtual GIF supported\n");
1038         }
1039
1040         svm_set_cpu_caps();
1041
1042         /*
1043          * It seems that on AMD processors PTE's accessed bit is
1044          * being set by the CPU hardware before the NPF vmexit.
1045          * This is not expected behaviour and our tests fail because
1046          * of it.
1047          * A workaround here is to disable support for
1048          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1049          * In this case userspace can know if there is support using
1050          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1051          * it
1052          * If future AMD CPU models change the behaviour described above,
1053          * this variable can be changed accordingly
1054          */
1055         allow_smaller_maxphyaddr = !npt_enabled;
1056
1057         return 0;
1058
1059 err:
1060         svm_hardware_teardown();
1061         return r;
1062 }
1063
1064 static void init_seg(struct vmcb_seg *seg)
1065 {
1066         seg->selector = 0;
1067         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1068                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1069         seg->limit = 0xffff;
1070         seg->base = 0;
1071 }
1072
1073 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1074 {
1075         seg->selector = 0;
1076         seg->attrib = SVM_SELECTOR_P_MASK | type;
1077         seg->limit = 0xffff;
1078         seg->base = 0;
1079 }
1080
1081 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1082 {
1083         struct vcpu_svm *svm = to_svm(vcpu);
1084         u64 g_tsc_offset = 0;
1085
1086         if (is_guest_mode(vcpu)) {
1087                 /* Write L1's TSC offset.  */
1088                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1089                                svm->nested.hsave->control.tsc_offset;
1090                 svm->nested.hsave->control.tsc_offset = offset;
1091         }
1092
1093         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1094                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1095                                    offset);
1096
1097         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1098
1099         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1100         return svm->vmcb->control.tsc_offset;
1101 }
1102
1103 static void svm_check_invpcid(struct vcpu_svm *svm)
1104 {
1105         /*
1106          * Intercept INVPCID instruction only if shadow page table is
1107          * enabled. Interception is not required with nested page table
1108          * enabled.
1109          */
1110         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1111                 if (!npt_enabled)
1112                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1113                 else
1114                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1115         }
1116 }
1117
1118 static void init_vmcb(struct vcpu_svm *svm)
1119 {
1120         struct vmcb_control_area *control = &svm->vmcb->control;
1121         struct vmcb_save_area *save = &svm->vmcb->save;
1122
1123         svm->vcpu.arch.hflags = 0;
1124
1125         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1126         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1127         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1128         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1129         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1130         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1131         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1132                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1133
1134         set_dr_intercepts(svm);
1135
1136         set_exception_intercept(svm, PF_VECTOR);
1137         set_exception_intercept(svm, UD_VECTOR);
1138         set_exception_intercept(svm, MC_VECTOR);
1139         set_exception_intercept(svm, AC_VECTOR);
1140         set_exception_intercept(svm, DB_VECTOR);
1141         /*
1142          * Guest access to VMware backdoor ports could legitimately
1143          * trigger #GP because of TSS I/O permission bitmap.
1144          * We intercept those #GP and allow access to them anyway
1145          * as VMware does.
1146          */
1147         if (enable_vmware_backdoor)
1148                 set_exception_intercept(svm, GP_VECTOR);
1149
1150         svm_set_intercept(svm, INTERCEPT_INTR);
1151         svm_set_intercept(svm, INTERCEPT_NMI);
1152         svm_set_intercept(svm, INTERCEPT_SMI);
1153         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1154         svm_set_intercept(svm, INTERCEPT_RDPMC);
1155         svm_set_intercept(svm, INTERCEPT_CPUID);
1156         svm_set_intercept(svm, INTERCEPT_INVD);
1157         svm_set_intercept(svm, INTERCEPT_INVLPG);
1158         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1159         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1160         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1161         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1162         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1163         svm_set_intercept(svm, INTERCEPT_VMRUN);
1164         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1165         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1166         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1167         svm_set_intercept(svm, INTERCEPT_STGI);
1168         svm_set_intercept(svm, INTERCEPT_CLGI);
1169         svm_set_intercept(svm, INTERCEPT_SKINIT);
1170         svm_set_intercept(svm, INTERCEPT_WBINVD);
1171         svm_set_intercept(svm, INTERCEPT_XSETBV);
1172         svm_set_intercept(svm, INTERCEPT_RDPRU);
1173         svm_set_intercept(svm, INTERCEPT_RSM);
1174
1175         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1176                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1177                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1178         }
1179
1180         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1181                 svm_set_intercept(svm, INTERCEPT_HLT);
1182
1183         control->iopm_base_pa = __sme_set(iopm_base);
1184         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1185         control->int_ctl = V_INTR_MASKING_MASK;
1186
1187         init_seg(&save->es);
1188         init_seg(&save->ss);
1189         init_seg(&save->ds);
1190         init_seg(&save->fs);
1191         init_seg(&save->gs);
1192
1193         save->cs.selector = 0xf000;
1194         save->cs.base = 0xffff0000;
1195         /* Executable/Readable Code Segment */
1196         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1197                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1198         save->cs.limit = 0xffff;
1199
1200         save->gdtr.limit = 0xffff;
1201         save->idtr.limit = 0xffff;
1202
1203         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1204         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1205
1206         svm_set_efer(&svm->vcpu, 0);
1207         save->dr6 = 0xffff0ff0;
1208         kvm_set_rflags(&svm->vcpu, X86_EFLAGS_FIXED);
1209         save->rip = 0x0000fff0;
1210         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1211
1212         /*
1213          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1214          * It also updates the guest-visible cr0 value.
1215          */
1216         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1217         kvm_mmu_reset_context(&svm->vcpu);
1218
1219         save->cr4 = X86_CR4_PAE;
1220         /* rdx = ?? */
1221
1222         if (npt_enabled) {
1223                 /* Setup VMCB for Nested Paging */
1224                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1225                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1226                 clr_exception_intercept(svm, PF_VECTOR);
1227                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1228                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1229                 save->g_pat = svm->vcpu.arch.pat;
1230                 save->cr3 = 0;
1231                 save->cr4 = 0;
1232         }
1233         svm->asid_generation = 0;
1234         svm->asid = 0;
1235
1236         svm->nested.vmcb12_gpa = 0;
1237         svm->vcpu.arch.hflags = 0;
1238
1239         if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1240                 control->pause_filter_count = pause_filter_count;
1241                 if (pause_filter_thresh)
1242                         control->pause_filter_thresh = pause_filter_thresh;
1243                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1244         } else {
1245                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1246         }
1247
1248         svm_check_invpcid(svm);
1249
1250         if (kvm_vcpu_apicv_active(&svm->vcpu))
1251                 avic_init_vmcb(svm);
1252
1253         /*
1254          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1255          * in VMCB and clear intercepts to avoid #VMEXIT.
1256          */
1257         if (vls) {
1258                 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1259                 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1260                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1261         }
1262
1263         if (vgif) {
1264                 svm_clr_intercept(svm, INTERCEPT_STGI);
1265                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1266                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1267         }
1268
1269         if (sev_guest(svm->vcpu.kvm)) {
1270                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1271                 clr_exception_intercept(svm, UD_VECTOR);
1272
1273                 if (sev_es_guest(svm->vcpu.kvm)) {
1274                         /* Perform SEV-ES specific VMCB updates */
1275                         sev_es_init_vmcb(svm);
1276                 }
1277         }
1278
1279         vmcb_mark_all_dirty(svm->vmcb);
1280
1281         enable_gif(svm);
1282
1283 }
1284
1285 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1286 {
1287         struct vcpu_svm *svm = to_svm(vcpu);
1288         u32 dummy;
1289         u32 eax = 1;
1290
1291         svm->spec_ctrl = 0;
1292         svm->virt_spec_ctrl = 0;
1293
1294         if (!init_event) {
1295                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1296                                            MSR_IA32_APICBASE_ENABLE;
1297                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1298                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1299         }
1300         init_vmcb(svm);
1301
1302         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1303         kvm_rdx_write(vcpu, eax);
1304
1305         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1306                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1307 }
1308
1309 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1310 {
1311         struct vcpu_svm *svm;
1312         struct page *vmcb_page;
1313         struct page *vmsa_page = NULL;
1314         int err;
1315
1316         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1317         svm = to_svm(vcpu);
1318
1319         err = -ENOMEM;
1320         vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1321         if (!vmcb_page)
1322                 goto out;
1323
1324         if (sev_es_guest(svm->vcpu.kvm)) {
1325                 /*
1326                  * SEV-ES guests require a separate VMSA page used to contain
1327                  * the encrypted register state of the guest.
1328                  */
1329                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1330                 if (!vmsa_page)
1331                         goto error_free_vmcb_page;
1332
1333                 /*
1334                  * SEV-ES guests maintain an encrypted version of their FPU
1335                  * state which is restored and saved on VMRUN and VMEXIT.
1336                  * Free the fpu structure to prevent KVM from attempting to
1337                  * access the FPU state.
1338                  */
1339                 kvm_free_guest_fpu(vcpu);
1340         }
1341
1342         err = avic_init_vcpu(svm);
1343         if (err)
1344                 goto error_free_vmsa_page;
1345
1346         /* We initialize this flag to true to make sure that the is_running
1347          * bit would be set the first time the vcpu is loaded.
1348          */
1349         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1350                 svm->avic_is_running = true;
1351
1352         svm->msrpm = svm_vcpu_alloc_msrpm();
1353         if (!svm->msrpm) {
1354                 err = -ENOMEM;
1355                 goto error_free_vmsa_page;
1356         }
1357
1358         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1359
1360         svm->vmcb = page_address(vmcb_page);
1361         svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1362
1363         if (vmsa_page)
1364                 svm->vmsa = page_address(vmsa_page);
1365
1366         svm->asid_generation = 0;
1367         svm->guest_state_loaded = false;
1368         init_vmcb(svm);
1369
1370         svm_init_osvw(vcpu);
1371         vcpu->arch.microcode_version = 0x01000065;
1372
1373         if (sev_es_guest(svm->vcpu.kvm))
1374                 /* Perform SEV-ES specific VMCB creation updates */
1375                 sev_es_create_vcpu(svm);
1376
1377         return 0;
1378
1379 error_free_vmsa_page:
1380         if (vmsa_page)
1381                 __free_page(vmsa_page);
1382 error_free_vmcb_page:
1383         __free_page(vmcb_page);
1384 out:
1385         return err;
1386 }
1387
1388 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1389 {
1390         int i;
1391
1392         for_each_online_cpu(i)
1393                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1394 }
1395
1396 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1397 {
1398         struct vcpu_svm *svm = to_svm(vcpu);
1399
1400         /*
1401          * The vmcb page can be recycled, causing a false negative in
1402          * svm_vcpu_load(). So, ensure that no logical CPU has this
1403          * vmcb page recorded as its current vmcb.
1404          */
1405         svm_clear_current_vmcb(svm->vmcb);
1406
1407         svm_free_nested(svm);
1408
1409         sev_free_vcpu(vcpu);
1410
1411         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1412         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1413 }
1414
1415 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1416 {
1417         struct vcpu_svm *svm = to_svm(vcpu);
1418         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1419         unsigned int i;
1420
1421         if (svm->guest_state_loaded)
1422                 return;
1423
1424         /*
1425          * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save
1426          * area (non-sev-es). Save ones that aren't so we can restore them
1427          * individually later.
1428          */
1429         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1430                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1431
1432         /*
1433          * Save additional host state that will be restored on VMEXIT (sev-es)
1434          * or subsequent vmload of host save area.
1435          */
1436         if (sev_es_guest(svm->vcpu.kvm)) {
1437                 sev_es_prepare_guest_switch(svm, vcpu->cpu);
1438         } else {
1439                 vmsave(__sme_page_pa(sd->save_area));
1440         }
1441
1442         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1443                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1444                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1445                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1446                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1447                 }
1448         }
1449
1450         /* This assumes that the kernel never uses MSR_TSC_AUX */
1451         if (static_cpu_has(X86_FEATURE_RDTSCP))
1452                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1453
1454         svm->guest_state_loaded = true;
1455 }
1456
1457 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1458 {
1459         struct vcpu_svm *svm = to_svm(vcpu);
1460         unsigned int i;
1461
1462         if (!svm->guest_state_loaded)
1463                 return;
1464
1465         /*
1466          * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save
1467          * area (non-sev-es). Restore the ones that weren't.
1468          */
1469         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1470                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1471
1472         svm->guest_state_loaded = false;
1473 }
1474
1475 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1476 {
1477         struct vcpu_svm *svm = to_svm(vcpu);
1478         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1479
1480         if (unlikely(cpu != vcpu->cpu)) {
1481                 svm->asid_generation = 0;
1482                 vmcb_mark_all_dirty(svm->vmcb);
1483         }
1484
1485         if (sd->current_vmcb != svm->vmcb) {
1486                 sd->current_vmcb = svm->vmcb;
1487                 indirect_branch_prediction_barrier();
1488         }
1489         avic_vcpu_load(vcpu, cpu);
1490 }
1491
1492 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1493 {
1494         avic_vcpu_put(vcpu);
1495         svm_prepare_host_switch(vcpu);
1496
1497         ++vcpu->stat.host_state_reload;
1498 }
1499
1500 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502         struct vcpu_svm *svm = to_svm(vcpu);
1503         unsigned long rflags = svm->vmcb->save.rflags;
1504
1505         if (svm->nmi_singlestep) {
1506                 /* Hide our flags if they were not set by the guest */
1507                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1508                         rflags &= ~X86_EFLAGS_TF;
1509                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1510                         rflags &= ~X86_EFLAGS_RF;
1511         }
1512         return rflags;
1513 }
1514
1515 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1516 {
1517         if (to_svm(vcpu)->nmi_singlestep)
1518                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1519
1520        /*
1521         * Any change of EFLAGS.VM is accompanied by a reload of SS
1522         * (caused by either a task switch or an inter-privilege IRET),
1523         * so we do not need to update the CPL here.
1524         */
1525         to_svm(vcpu)->vmcb->save.rflags = rflags;
1526 }
1527
1528 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1529 {
1530         switch (reg) {
1531         case VCPU_EXREG_PDPTR:
1532                 BUG_ON(!npt_enabled);
1533                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1534                 break;
1535         default:
1536                 WARN_ON_ONCE(1);
1537         }
1538 }
1539
1540 static void svm_set_vintr(struct vcpu_svm *svm)
1541 {
1542         struct vmcb_control_area *control;
1543
1544         /* The following fields are ignored when AVIC is enabled */
1545         WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1546         svm_set_intercept(svm, INTERCEPT_VINTR);
1547
1548         /*
1549          * This is just a dummy VINTR to actually cause a vmexit to happen.
1550          * Actual injection of virtual interrupts happens through EVENTINJ.
1551          */
1552         control = &svm->vmcb->control;
1553         control->int_vector = 0x0;
1554         control->int_ctl &= ~V_INTR_PRIO_MASK;
1555         control->int_ctl |= V_IRQ_MASK |
1556                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1557         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1558 }
1559
1560 static void svm_clear_vintr(struct vcpu_svm *svm)
1561 {
1562         const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1563         svm_clr_intercept(svm, INTERCEPT_VINTR);
1564
1565         /* Drop int_ctl fields related to VINTR injection.  */
1566         svm->vmcb->control.int_ctl &= mask;
1567         if (is_guest_mode(&svm->vcpu)) {
1568                 svm->nested.hsave->control.int_ctl &= mask;
1569
1570                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1571                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1572                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1573         }
1574
1575         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1576 }
1577
1578 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1579 {
1580         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1581
1582         switch (seg) {
1583         case VCPU_SREG_CS: return &save->cs;
1584         case VCPU_SREG_DS: return &save->ds;
1585         case VCPU_SREG_ES: return &save->es;
1586         case VCPU_SREG_FS: return &save->fs;
1587         case VCPU_SREG_GS: return &save->gs;
1588         case VCPU_SREG_SS: return &save->ss;
1589         case VCPU_SREG_TR: return &save->tr;
1590         case VCPU_SREG_LDTR: return &save->ldtr;
1591         }
1592         BUG();
1593         return NULL;
1594 }
1595
1596 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1597 {
1598         struct vmcb_seg *s = svm_seg(vcpu, seg);
1599
1600         return s->base;
1601 }
1602
1603 static void svm_get_segment(struct kvm_vcpu *vcpu,
1604                             struct kvm_segment *var, int seg)
1605 {
1606         struct vmcb_seg *s = svm_seg(vcpu, seg);
1607
1608         var->base = s->base;
1609         var->limit = s->limit;
1610         var->selector = s->selector;
1611         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1612         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1613         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1614         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1615         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1616         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1617         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1618
1619         /*
1620          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1621          * However, the SVM spec states that the G bit is not observed by the
1622          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1623          * So let's synthesize a legal G bit for all segments, this helps
1624          * running KVM nested. It also helps cross-vendor migration, because
1625          * Intel's vmentry has a check on the 'G' bit.
1626          */
1627         var->g = s->limit > 0xfffff;
1628
1629         /*
1630          * AMD's VMCB does not have an explicit unusable field, so emulate it
1631          * for cross vendor migration purposes by "not present"
1632          */
1633         var->unusable = !var->present;
1634
1635         switch (seg) {
1636         case VCPU_SREG_TR:
1637                 /*
1638                  * Work around a bug where the busy flag in the tr selector
1639                  * isn't exposed
1640                  */
1641                 var->type |= 0x2;
1642                 break;
1643         case VCPU_SREG_DS:
1644         case VCPU_SREG_ES:
1645         case VCPU_SREG_FS:
1646         case VCPU_SREG_GS:
1647                 /*
1648                  * The accessed bit must always be set in the segment
1649                  * descriptor cache, although it can be cleared in the
1650                  * descriptor, the cached bit always remains at 1. Since
1651                  * Intel has a check on this, set it here to support
1652                  * cross-vendor migration.
1653                  */
1654                 if (!var->unusable)
1655                         var->type |= 0x1;
1656                 break;
1657         case VCPU_SREG_SS:
1658                 /*
1659                  * On AMD CPUs sometimes the DB bit in the segment
1660                  * descriptor is left as 1, although the whole segment has
1661                  * been made unusable. Clear it here to pass an Intel VMX
1662                  * entry check when cross vendor migrating.
1663                  */
1664                 if (var->unusable)
1665                         var->db = 0;
1666                 /* This is symmetric with svm_set_segment() */
1667                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1668                 break;
1669         }
1670 }
1671
1672 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1673 {
1674         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1675
1676         return save->cpl;
1677 }
1678
1679 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1680 {
1681         struct vcpu_svm *svm = to_svm(vcpu);
1682
1683         dt->size = svm->vmcb->save.idtr.limit;
1684         dt->address = svm->vmcb->save.idtr.base;
1685 }
1686
1687 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1688 {
1689         struct vcpu_svm *svm = to_svm(vcpu);
1690
1691         svm->vmcb->save.idtr.limit = dt->size;
1692         svm->vmcb->save.idtr.base = dt->address ;
1693         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1694 }
1695
1696 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1697 {
1698         struct vcpu_svm *svm = to_svm(vcpu);
1699
1700         dt->size = svm->vmcb->save.gdtr.limit;
1701         dt->address = svm->vmcb->save.gdtr.base;
1702 }
1703
1704 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1705 {
1706         struct vcpu_svm *svm = to_svm(vcpu);
1707
1708         svm->vmcb->save.gdtr.limit = dt->size;
1709         svm->vmcb->save.gdtr.base = dt->address ;
1710         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1711 }
1712
1713 static void update_cr0_intercept(struct vcpu_svm *svm)
1714 {
1715         ulong gcr0;
1716         u64 *hcr0;
1717
1718         /*
1719          * SEV-ES guests must always keep the CR intercepts cleared. CR
1720          * tracking is done using the CR write traps.
1721          */
1722         if (sev_es_guest(svm->vcpu.kvm))
1723                 return;
1724
1725         gcr0 = svm->vcpu.arch.cr0;
1726         hcr0 = &svm->vmcb->save.cr0;
1727         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1728                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1729
1730         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1731
1732         if (gcr0 == *hcr0) {
1733                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1734                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1735         } else {
1736                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1737                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1738         }
1739 }
1740
1741 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1742 {
1743         struct vcpu_svm *svm = to_svm(vcpu);
1744
1745 #ifdef CONFIG_X86_64
1746         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1747                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1748                         vcpu->arch.efer |= EFER_LMA;
1749                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1750                 }
1751
1752                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1753                         vcpu->arch.efer &= ~EFER_LMA;
1754                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1755                 }
1756         }
1757 #endif
1758         vcpu->arch.cr0 = cr0;
1759
1760         if (!npt_enabled)
1761                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1762
1763         /*
1764          * re-enable caching here because the QEMU bios
1765          * does not do it - this results in some delay at
1766          * reboot
1767          */
1768         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1769                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1770         svm->vmcb->save.cr0 = cr0;
1771         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1772         update_cr0_intercept(svm);
1773 }
1774
1775 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1776 {
1777         return true;
1778 }
1779
1780 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1781 {
1782         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1783         unsigned long old_cr4 = vcpu->arch.cr4;
1784
1785         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1786                 svm_flush_tlb(vcpu);
1787
1788         vcpu->arch.cr4 = cr4;
1789         if (!npt_enabled)
1790                 cr4 |= X86_CR4_PAE;
1791         cr4 |= host_cr4_mce;
1792         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1793         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1794
1795         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1796                 kvm_update_cpuid_runtime(vcpu);
1797 }
1798
1799 static void svm_set_segment(struct kvm_vcpu *vcpu,
1800                             struct kvm_segment *var, int seg)
1801 {
1802         struct vcpu_svm *svm = to_svm(vcpu);
1803         struct vmcb_seg *s = svm_seg(vcpu, seg);
1804
1805         s->base = var->base;
1806         s->limit = var->limit;
1807         s->selector = var->selector;
1808         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1809         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1810         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1811         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1812         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1813         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1814         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1815         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1816
1817         /*
1818          * This is always accurate, except if SYSRET returned to a segment
1819          * with SS.DPL != 3.  Intel does not have this quirk, and always
1820          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1821          * would entail passing the CPL to userspace and back.
1822          */
1823         if (seg == VCPU_SREG_SS)
1824                 /* This is symmetric with svm_get_segment() */
1825                 svm->vmcb->save.cpl = (var->dpl & 3);
1826
1827         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1828 }
1829
1830 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1831 {
1832         struct vcpu_svm *svm = to_svm(vcpu);
1833
1834         clr_exception_intercept(svm, BP_VECTOR);
1835
1836         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1837                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1838                         set_exception_intercept(svm, BP_VECTOR);
1839         }
1840 }
1841
1842 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1843 {
1844         if (sd->next_asid > sd->max_asid) {
1845                 ++sd->asid_generation;
1846                 sd->next_asid = sd->min_asid;
1847                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1848                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1849         }
1850
1851         svm->asid_generation = sd->asid_generation;
1852         svm->asid = sd->next_asid++;
1853 }
1854
1855 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1856 {
1857         struct vmcb *vmcb = svm->vmcb;
1858
1859         if (svm->vcpu.arch.guest_state_protected)
1860                 return;
1861
1862         if (unlikely(value != vmcb->save.dr6)) {
1863                 vmcb->save.dr6 = value;
1864                 vmcb_mark_dirty(vmcb, VMCB_DR);
1865         }
1866 }
1867
1868 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1869 {
1870         struct vcpu_svm *svm = to_svm(vcpu);
1871
1872         if (vcpu->arch.guest_state_protected)
1873                 return;
1874
1875         get_debugreg(vcpu->arch.db[0], 0);
1876         get_debugreg(vcpu->arch.db[1], 1);
1877         get_debugreg(vcpu->arch.db[2], 2);
1878         get_debugreg(vcpu->arch.db[3], 3);
1879         /*
1880          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1881          * because db_interception might need it.  We can do it before vmentry.
1882          */
1883         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1884         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1885         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1886         set_dr_intercepts(svm);
1887 }
1888
1889 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1890 {
1891         struct vcpu_svm *svm = to_svm(vcpu);
1892
1893         if (vcpu->arch.guest_state_protected)
1894                 return;
1895
1896         svm->vmcb->save.dr7 = value;
1897         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1898 }
1899
1900 static int pf_interception(struct vcpu_svm *svm)
1901 {
1902         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1903         u64 error_code = svm->vmcb->control.exit_info_1;
1904
1905         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1906                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1907                         svm->vmcb->control.insn_bytes : NULL,
1908                         svm->vmcb->control.insn_len);
1909 }
1910
1911 static int npf_interception(struct vcpu_svm *svm)
1912 {
1913         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1914         u64 error_code = svm->vmcb->control.exit_info_1;
1915
1916         trace_kvm_page_fault(fault_address, error_code);
1917         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1918                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1919                         svm->vmcb->control.insn_bytes : NULL,
1920                         svm->vmcb->control.insn_len);
1921 }
1922
1923 static int db_interception(struct vcpu_svm *svm)
1924 {
1925         struct kvm_run *kvm_run = svm->vcpu.run;
1926         struct kvm_vcpu *vcpu = &svm->vcpu;
1927
1928         if (!(svm->vcpu.guest_debug &
1929               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1930                 !svm->nmi_singlestep) {
1931                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1932                 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1933                 return 1;
1934         }
1935
1936         if (svm->nmi_singlestep) {
1937                 disable_nmi_singlestep(svm);
1938                 /* Make sure we check for pending NMIs upon entry */
1939                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1940         }
1941
1942         if (svm->vcpu.guest_debug &
1943             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1944                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1945                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1946                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1947                 kvm_run->debug.arch.pc =
1948                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1949                 kvm_run->debug.arch.exception = DB_VECTOR;
1950                 return 0;
1951         }
1952
1953         return 1;
1954 }
1955
1956 static int bp_interception(struct vcpu_svm *svm)
1957 {
1958         struct kvm_run *kvm_run = svm->vcpu.run;
1959
1960         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1961         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1962         kvm_run->debug.arch.exception = BP_VECTOR;
1963         return 0;
1964 }
1965
1966 static int ud_interception(struct vcpu_svm *svm)
1967 {
1968         return handle_ud(&svm->vcpu);
1969 }
1970
1971 static int ac_interception(struct vcpu_svm *svm)
1972 {
1973         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1974         return 1;
1975 }
1976
1977 static bool is_erratum_383(void)
1978 {
1979         int err, i;
1980         u64 value;
1981
1982         if (!erratum_383_found)
1983                 return false;
1984
1985         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1986         if (err)
1987                 return false;
1988
1989         /* Bit 62 may or may not be set for this mce */
1990         value &= ~(1ULL << 62);
1991
1992         if (value != 0xb600000000010015ULL)
1993                 return false;
1994
1995         /* Clear MCi_STATUS registers */
1996         for (i = 0; i < 6; ++i)
1997                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1998
1999         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2000         if (!err) {
2001                 u32 low, high;
2002
2003                 value &= ~(1ULL << 2);
2004                 low    = lower_32_bits(value);
2005                 high   = upper_32_bits(value);
2006
2007                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2008         }
2009
2010         /* Flush tlb to evict multi-match entries */
2011         __flush_tlb_all();
2012
2013         return true;
2014 }
2015
2016 static void svm_handle_mce(struct vcpu_svm *svm)
2017 {
2018         if (is_erratum_383()) {
2019                 /*
2020                  * Erratum 383 triggered. Guest state is corrupt so kill the
2021                  * guest.
2022                  */
2023                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2024
2025                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2026
2027                 return;
2028         }
2029
2030         /*
2031          * On an #MC intercept the MCE handler is not called automatically in
2032          * the host. So do it by hand here.
2033          */
2034         kvm_machine_check();
2035 }
2036
2037 static int mc_interception(struct vcpu_svm *svm)
2038 {
2039         return 1;
2040 }
2041
2042 static int shutdown_interception(struct vcpu_svm *svm)
2043 {
2044         struct kvm_run *kvm_run = svm->vcpu.run;
2045
2046         /*
2047          * The VM save area has already been encrypted so it
2048          * cannot be reinitialized - just terminate.
2049          */
2050         if (sev_es_guest(svm->vcpu.kvm))
2051                 return -EINVAL;
2052
2053         /*
2054          * VMCB is undefined after a SHUTDOWN intercept
2055          * so reinitialize it.
2056          */
2057         clear_page(svm->vmcb);
2058         init_vmcb(svm);
2059
2060         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2061         return 0;
2062 }
2063
2064 static int io_interception(struct vcpu_svm *svm)
2065 {
2066         struct kvm_vcpu *vcpu = &svm->vcpu;
2067         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2068         int size, in, string;
2069         unsigned port;
2070
2071         ++svm->vcpu.stat.io_exits;
2072         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2073         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2074         port = io_info >> 16;
2075         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2076
2077         if (string) {
2078                 if (sev_es_guest(vcpu->kvm))
2079                         return sev_es_string_io(svm, size, port, in);
2080                 else
2081                         return kvm_emulate_instruction(vcpu, 0);
2082         }
2083
2084         svm->next_rip = svm->vmcb->control.exit_info_2;
2085
2086         return kvm_fast_pio(&svm->vcpu, size, port, in);
2087 }
2088
2089 static int nmi_interception(struct vcpu_svm *svm)
2090 {
2091         return 1;
2092 }
2093
2094 static int intr_interception(struct vcpu_svm *svm)
2095 {
2096         ++svm->vcpu.stat.irq_exits;
2097         return 1;
2098 }
2099
2100 static int nop_on_interception(struct vcpu_svm *svm)
2101 {
2102         return 1;
2103 }
2104
2105 static int halt_interception(struct vcpu_svm *svm)
2106 {
2107         return kvm_emulate_halt(&svm->vcpu);
2108 }
2109
2110 static int vmmcall_interception(struct vcpu_svm *svm)
2111 {
2112         return kvm_emulate_hypercall(&svm->vcpu);
2113 }
2114
2115 static int vmload_interception(struct vcpu_svm *svm)
2116 {
2117         struct vmcb *nested_vmcb;
2118         struct kvm_host_map map;
2119         int ret;
2120
2121         if (nested_svm_check_permissions(svm))
2122                 return 1;
2123
2124         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2125         if (ret) {
2126                 if (ret == -EINVAL)
2127                         kvm_inject_gp(&svm->vcpu, 0);
2128                 return 1;
2129         }
2130
2131         nested_vmcb = map.hva;
2132
2133         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2134
2135         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2136         kvm_vcpu_unmap(&svm->vcpu, &map, true);
2137
2138         return ret;
2139 }
2140
2141 static int vmsave_interception(struct vcpu_svm *svm)
2142 {
2143         struct vmcb *nested_vmcb;
2144         struct kvm_host_map map;
2145         int ret;
2146
2147         if (nested_svm_check_permissions(svm))
2148                 return 1;
2149
2150         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2151         if (ret) {
2152                 if (ret == -EINVAL)
2153                         kvm_inject_gp(&svm->vcpu, 0);
2154                 return 1;
2155         }
2156
2157         nested_vmcb = map.hva;
2158
2159         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2160
2161         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2162         kvm_vcpu_unmap(&svm->vcpu, &map, true);
2163
2164         return ret;
2165 }
2166
2167 static int vmrun_interception(struct vcpu_svm *svm)
2168 {
2169         if (nested_svm_check_permissions(svm))
2170                 return 1;
2171
2172         return nested_svm_vmrun(svm);
2173 }
2174
2175 enum {
2176         NONE_SVM_INSTR,
2177         SVM_INSTR_VMRUN,
2178         SVM_INSTR_VMLOAD,
2179         SVM_INSTR_VMSAVE,
2180 };
2181
2182 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2183 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2184 {
2185         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2186
2187         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2188                 return NONE_SVM_INSTR;
2189
2190         switch (ctxt->modrm) {
2191         case 0xd8: /* VMRUN */
2192                 return SVM_INSTR_VMRUN;
2193         case 0xda: /* VMLOAD */
2194                 return SVM_INSTR_VMLOAD;
2195         case 0xdb: /* VMSAVE */
2196                 return SVM_INSTR_VMSAVE;
2197         default:
2198                 break;
2199         }
2200
2201         return NONE_SVM_INSTR;
2202 }
2203
2204 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2205 {
2206         const int guest_mode_exit_codes[] = {
2207                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2208                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2209                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2210         };
2211         int (*const svm_instr_handlers[])(struct vcpu_svm *svm) = {
2212                 [SVM_INSTR_VMRUN] = vmrun_interception,
2213                 [SVM_INSTR_VMLOAD] = vmload_interception,
2214                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2215         };
2216         struct vcpu_svm *svm = to_svm(vcpu);
2217
2218         if (is_guest_mode(vcpu)) {
2219                 svm->vmcb->control.exit_code = guest_mode_exit_codes[opcode];
2220                 svm->vmcb->control.exit_info_1 = 0;
2221                 svm->vmcb->control.exit_info_2 = 0;
2222
2223                 return nested_svm_vmexit(svm);
2224         } else
2225                 return svm_instr_handlers[opcode](svm);
2226 }
2227
2228 /*
2229  * #GP handling code. Note that #GP can be triggered under the following two
2230  * cases:
2231  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2232  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2233  *      regions (e.g. SMM memory on host).
2234  *   2) VMware backdoor
2235  */
2236 static int gp_interception(struct vcpu_svm *svm)
2237 {
2238         struct kvm_vcpu *vcpu = &svm->vcpu;
2239         u32 error_code = svm->vmcb->control.exit_info_1;
2240         int opcode;
2241
2242         /* Both #GP cases have zero error_code */
2243         if (error_code)
2244                 goto reinject;
2245
2246         /* Decode the instruction for usage later */
2247         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2248                 goto reinject;
2249
2250         opcode = svm_instr_opcode(vcpu);
2251
2252         if (opcode == NONE_SVM_INSTR) {
2253                 if (!enable_vmware_backdoor)
2254                         goto reinject;
2255
2256                 /*
2257                  * VMware backdoor emulation on #GP interception only handles
2258                  * IN{S}, OUT{S}, and RDPMC.
2259                  */
2260                 if (!is_guest_mode(vcpu))
2261                         return kvm_emulate_instruction(vcpu,
2262                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2263         } else
2264                 return emulate_svm_instr(vcpu, opcode);
2265
2266 reinject:
2267         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2268         return 1;
2269 }
2270
2271 void svm_set_gif(struct vcpu_svm *svm, bool value)
2272 {
2273         if (value) {
2274                 /*
2275                  * If VGIF is enabled, the STGI intercept is only added to
2276                  * detect the opening of the SMI/NMI window; remove it now.
2277                  * Likewise, clear the VINTR intercept, we will set it
2278                  * again while processing KVM_REQ_EVENT if needed.
2279                  */
2280                 if (vgif_enabled(svm))
2281                         svm_clr_intercept(svm, INTERCEPT_STGI);
2282                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2283                         svm_clear_vintr(svm);
2284
2285                 enable_gif(svm);
2286                 if (svm->vcpu.arch.smi_pending ||
2287                     svm->vcpu.arch.nmi_pending ||
2288                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2289                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2290         } else {
2291                 disable_gif(svm);
2292
2293                 /*
2294                  * After a CLGI no interrupts should come.  But if vGIF is
2295                  * in use, we still rely on the VINTR intercept (rather than
2296                  * STGI) to detect an open interrupt window.
2297                 */
2298                 if (!vgif_enabled(svm))
2299                         svm_clear_vintr(svm);
2300         }
2301 }
2302
2303 static int stgi_interception(struct vcpu_svm *svm)
2304 {
2305         int ret;
2306
2307         if (nested_svm_check_permissions(svm))
2308                 return 1;
2309
2310         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2311         svm_set_gif(svm, true);
2312         return ret;
2313 }
2314
2315 static int clgi_interception(struct vcpu_svm *svm)
2316 {
2317         int ret;
2318
2319         if (nested_svm_check_permissions(svm))
2320                 return 1;
2321
2322         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2323         svm_set_gif(svm, false);
2324         return ret;
2325 }
2326
2327 static int invlpga_interception(struct vcpu_svm *svm)
2328 {
2329         struct kvm_vcpu *vcpu = &svm->vcpu;
2330
2331         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2332                           kvm_rax_read(&svm->vcpu));
2333
2334         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2335         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2336
2337         return kvm_skip_emulated_instruction(&svm->vcpu);
2338 }
2339
2340 static int skinit_interception(struct vcpu_svm *svm)
2341 {
2342         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2343
2344         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2345         return 1;
2346 }
2347
2348 static int wbinvd_interception(struct vcpu_svm *svm)
2349 {
2350         return kvm_emulate_wbinvd(&svm->vcpu);
2351 }
2352
2353 static int xsetbv_interception(struct vcpu_svm *svm)
2354 {
2355         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2356         u32 index = kvm_rcx_read(&svm->vcpu);
2357
2358         int err = kvm_set_xcr(&svm->vcpu, index, new_bv);
2359         return kvm_complete_insn_gp(&svm->vcpu, err);
2360 }
2361
2362 static int rdpru_interception(struct vcpu_svm *svm)
2363 {
2364         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2365         return 1;
2366 }
2367
2368 static int task_switch_interception(struct vcpu_svm *svm)
2369 {
2370         u16 tss_selector;
2371         int reason;
2372         int int_type = svm->vmcb->control.exit_int_info &
2373                 SVM_EXITINTINFO_TYPE_MASK;
2374         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2375         uint32_t type =
2376                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2377         uint32_t idt_v =
2378                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2379         bool has_error_code = false;
2380         u32 error_code = 0;
2381
2382         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2383
2384         if (svm->vmcb->control.exit_info_2 &
2385             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2386                 reason = TASK_SWITCH_IRET;
2387         else if (svm->vmcb->control.exit_info_2 &
2388                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2389                 reason = TASK_SWITCH_JMP;
2390         else if (idt_v)
2391                 reason = TASK_SWITCH_GATE;
2392         else
2393                 reason = TASK_SWITCH_CALL;
2394
2395         if (reason == TASK_SWITCH_GATE) {
2396                 switch (type) {
2397                 case SVM_EXITINTINFO_TYPE_NMI:
2398                         svm->vcpu.arch.nmi_injected = false;
2399                         break;
2400                 case SVM_EXITINTINFO_TYPE_EXEPT:
2401                         if (svm->vmcb->control.exit_info_2 &
2402                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2403                                 has_error_code = true;
2404                                 error_code =
2405                                         (u32)svm->vmcb->control.exit_info_2;
2406                         }
2407                         kvm_clear_exception_queue(&svm->vcpu);
2408                         break;
2409                 case SVM_EXITINTINFO_TYPE_INTR:
2410                         kvm_clear_interrupt_queue(&svm->vcpu);
2411                         break;
2412                 default:
2413                         break;
2414                 }
2415         }
2416
2417         if (reason != TASK_SWITCH_GATE ||
2418             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2419             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2420              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2421                 if (!skip_emulated_instruction(&svm->vcpu))
2422                         return 0;
2423         }
2424
2425         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2426                 int_vec = -1;
2427
2428         return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2429                                has_error_code, error_code);
2430 }
2431
2432 static int cpuid_interception(struct vcpu_svm *svm)
2433 {
2434         return kvm_emulate_cpuid(&svm->vcpu);
2435 }
2436
2437 static int iret_interception(struct vcpu_svm *svm)
2438 {
2439         ++svm->vcpu.stat.nmi_window_exits;
2440         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2441         if (!sev_es_guest(svm->vcpu.kvm)) {
2442                 svm_clr_intercept(svm, INTERCEPT_IRET);
2443                 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2444         }
2445         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2446         return 1;
2447 }
2448
2449 static int invd_interception(struct vcpu_svm *svm)
2450 {
2451         /* Treat an INVD instruction as a NOP and just skip it. */
2452         return kvm_skip_emulated_instruction(&svm->vcpu);
2453 }
2454
2455 static int invlpg_interception(struct vcpu_svm *svm)
2456 {
2457         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2458                 return kvm_emulate_instruction(&svm->vcpu, 0);
2459
2460         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2461         return kvm_skip_emulated_instruction(&svm->vcpu);
2462 }
2463
2464 static int emulate_on_interception(struct vcpu_svm *svm)
2465 {
2466         return kvm_emulate_instruction(&svm->vcpu, 0);
2467 }
2468
2469 static int rsm_interception(struct vcpu_svm *svm)
2470 {
2471         return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2472 }
2473
2474 static int rdpmc_interception(struct vcpu_svm *svm)
2475 {
2476         int err;
2477
2478         if (!nrips)
2479                 return emulate_on_interception(svm);
2480
2481         err = kvm_rdpmc(&svm->vcpu);
2482         return kvm_complete_insn_gp(&svm->vcpu, err);
2483 }
2484
2485 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2486                                             unsigned long val)
2487 {
2488         unsigned long cr0 = svm->vcpu.arch.cr0;
2489         bool ret = false;
2490
2491         if (!is_guest_mode(&svm->vcpu) ||
2492             (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2493                 return false;
2494
2495         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2496         val &= ~SVM_CR0_SELECTIVE_MASK;
2497
2498         if (cr0 ^ val) {
2499                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2500                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2501         }
2502
2503         return ret;
2504 }
2505
2506 #define CR_VALID (1ULL << 63)
2507
2508 static int cr_interception(struct vcpu_svm *svm)
2509 {
2510         int reg, cr;
2511         unsigned long val;
2512         int err;
2513
2514         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2515                 return emulate_on_interception(svm);
2516
2517         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2518                 return emulate_on_interception(svm);
2519
2520         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2521         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2522                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2523         else
2524                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2525
2526         err = 0;
2527         if (cr >= 16) { /* mov to cr */
2528                 cr -= 16;
2529                 val = kvm_register_read(&svm->vcpu, reg);
2530                 trace_kvm_cr_write(cr, val);
2531                 switch (cr) {
2532                 case 0:
2533                         if (!check_selective_cr0_intercepted(svm, val))
2534                                 err = kvm_set_cr0(&svm->vcpu, val);
2535                         else
2536                                 return 1;
2537
2538                         break;
2539                 case 3:
2540                         err = kvm_set_cr3(&svm->vcpu, val);
2541                         break;
2542                 case 4:
2543                         err = kvm_set_cr4(&svm->vcpu, val);
2544                         break;
2545                 case 8:
2546                         err = kvm_set_cr8(&svm->vcpu, val);
2547                         break;
2548                 default:
2549                         WARN(1, "unhandled write to CR%d", cr);
2550                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2551                         return 1;
2552                 }
2553         } else { /* mov from cr */
2554                 switch (cr) {
2555                 case 0:
2556                         val = kvm_read_cr0(&svm->vcpu);
2557                         break;
2558                 case 2:
2559                         val = svm->vcpu.arch.cr2;
2560                         break;
2561                 case 3:
2562                         val = kvm_read_cr3(&svm->vcpu);
2563                         break;
2564                 case 4:
2565                         val = kvm_read_cr4(&svm->vcpu);
2566                         break;
2567                 case 8:
2568                         val = kvm_get_cr8(&svm->vcpu);
2569                         break;
2570                 default:
2571                         WARN(1, "unhandled read from CR%d", cr);
2572                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2573                         return 1;
2574                 }
2575                 kvm_register_write(&svm->vcpu, reg, val);
2576                 trace_kvm_cr_read(cr, val);
2577         }
2578         return kvm_complete_insn_gp(&svm->vcpu, err);
2579 }
2580
2581 static int cr_trap(struct vcpu_svm *svm)
2582 {
2583         struct kvm_vcpu *vcpu = &svm->vcpu;
2584         unsigned long old_value, new_value;
2585         unsigned int cr;
2586         int ret = 0;
2587
2588         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2589
2590         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2591         switch (cr) {
2592         case 0:
2593                 old_value = kvm_read_cr0(vcpu);
2594                 svm_set_cr0(vcpu, new_value);
2595
2596                 kvm_post_set_cr0(vcpu, old_value, new_value);
2597                 break;
2598         case 4:
2599                 old_value = kvm_read_cr4(vcpu);
2600                 svm_set_cr4(vcpu, new_value);
2601
2602                 kvm_post_set_cr4(vcpu, old_value, new_value);
2603                 break;
2604         case 8:
2605                 ret = kvm_set_cr8(&svm->vcpu, new_value);
2606                 break;
2607         default:
2608                 WARN(1, "unhandled CR%d write trap", cr);
2609                 kvm_queue_exception(vcpu, UD_VECTOR);
2610                 return 1;
2611         }
2612
2613         return kvm_complete_insn_gp(vcpu, ret);
2614 }
2615
2616 static int dr_interception(struct vcpu_svm *svm)
2617 {
2618         int reg, dr;
2619         unsigned long val;
2620         int err = 0;
2621
2622         if (svm->vcpu.guest_debug == 0) {
2623                 /*
2624                  * No more DR vmexits; force a reload of the debug registers
2625                  * and reenter on this instruction.  The next vmexit will
2626                  * retrieve the full state of the debug registers.
2627                  */
2628                 clr_dr_intercepts(svm);
2629                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2630                 return 1;
2631         }
2632
2633         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2634                 return emulate_on_interception(svm);
2635
2636         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2637         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2638         if (dr >= 16) { /* mov to DRn  */
2639                 dr -= 16;
2640                 val = kvm_register_read(&svm->vcpu, reg);
2641                 err = kvm_set_dr(&svm->vcpu, dr, val);
2642         } else {
2643                 kvm_get_dr(&svm->vcpu, dr, &val);
2644                 kvm_register_write(&svm->vcpu, reg, val);
2645         }
2646
2647         return kvm_complete_insn_gp(&svm->vcpu, err);
2648 }
2649
2650 static int cr8_write_interception(struct vcpu_svm *svm)
2651 {
2652         struct kvm_run *kvm_run = svm->vcpu.run;
2653         int r;
2654
2655         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2656         /* instruction emulation calls kvm_set_cr8() */
2657         r = cr_interception(svm);
2658         if (lapic_in_kernel(&svm->vcpu))
2659                 return r;
2660         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2661                 return r;
2662         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2663         return 0;
2664 }
2665
2666 static int efer_trap(struct vcpu_svm *svm)
2667 {
2668         struct msr_data msr_info;
2669         int ret;
2670
2671         /*
2672          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2673          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2674          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2675          * the guest doesn't have X86_FEATURE_SVM.
2676          */
2677         msr_info.host_initiated = false;
2678         msr_info.index = MSR_EFER;
2679         msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME;
2680         ret = kvm_set_msr_common(&svm->vcpu, &msr_info);
2681
2682         return kvm_complete_insn_gp(&svm->vcpu, ret);
2683 }
2684
2685 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2686 {
2687         msr->data = 0;
2688
2689         switch (msr->index) {
2690         case MSR_F10H_DECFG:
2691                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2692                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2693                 break;
2694         case MSR_IA32_PERF_CAPABILITIES:
2695                 return 0;
2696         default:
2697                 return KVM_MSR_RET_INVALID;
2698         }
2699
2700         return 0;
2701 }
2702
2703 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2704 {
2705         struct vcpu_svm *svm = to_svm(vcpu);
2706
2707         switch (msr_info->index) {
2708         case MSR_STAR:
2709                 msr_info->data = svm->vmcb->save.star;
2710                 break;
2711 #ifdef CONFIG_X86_64
2712         case MSR_LSTAR:
2713                 msr_info->data = svm->vmcb->save.lstar;
2714                 break;
2715         case MSR_CSTAR:
2716                 msr_info->data = svm->vmcb->save.cstar;
2717                 break;
2718         case MSR_KERNEL_GS_BASE:
2719                 msr_info->data = svm->vmcb->save.kernel_gs_base;
2720                 break;
2721         case MSR_SYSCALL_MASK:
2722                 msr_info->data = svm->vmcb->save.sfmask;
2723                 break;
2724 #endif
2725         case MSR_IA32_SYSENTER_CS:
2726                 msr_info->data = svm->vmcb->save.sysenter_cs;
2727                 break;
2728         case MSR_IA32_SYSENTER_EIP:
2729                 msr_info->data = svm->sysenter_eip;
2730                 break;
2731         case MSR_IA32_SYSENTER_ESP:
2732                 msr_info->data = svm->sysenter_esp;
2733                 break;
2734         case MSR_TSC_AUX:
2735                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2736                         return 1;
2737                 msr_info->data = svm->tsc_aux;
2738                 break;
2739         /*
2740          * Nobody will change the following 5 values in the VMCB so we can
2741          * safely return them on rdmsr. They will always be 0 until LBRV is
2742          * implemented.
2743          */
2744         case MSR_IA32_DEBUGCTLMSR:
2745                 msr_info->data = svm->vmcb->save.dbgctl;
2746                 break;
2747         case MSR_IA32_LASTBRANCHFROMIP:
2748                 msr_info->data = svm->vmcb->save.br_from;
2749                 break;
2750         case MSR_IA32_LASTBRANCHTOIP:
2751                 msr_info->data = svm->vmcb->save.br_to;
2752                 break;
2753         case MSR_IA32_LASTINTFROMIP:
2754                 msr_info->data = svm->vmcb->save.last_excp_from;
2755                 break;
2756         case MSR_IA32_LASTINTTOIP:
2757                 msr_info->data = svm->vmcb->save.last_excp_to;
2758                 break;
2759         case MSR_VM_HSAVE_PA:
2760                 msr_info->data = svm->nested.hsave_msr;
2761                 break;
2762         case MSR_VM_CR:
2763                 msr_info->data = svm->nested.vm_cr_msr;
2764                 break;
2765         case MSR_IA32_SPEC_CTRL:
2766                 if (!msr_info->host_initiated &&
2767                     !guest_has_spec_ctrl_msr(vcpu))
2768                         return 1;
2769
2770                 msr_info->data = svm->spec_ctrl;
2771                 break;
2772         case MSR_AMD64_VIRT_SPEC_CTRL:
2773                 if (!msr_info->host_initiated &&
2774                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2775                         return 1;
2776
2777                 msr_info->data = svm->virt_spec_ctrl;
2778                 break;
2779         case MSR_F15H_IC_CFG: {
2780
2781                 int family, model;
2782
2783                 family = guest_cpuid_family(vcpu);
2784                 model  = guest_cpuid_model(vcpu);
2785
2786                 if (family < 0 || model < 0)
2787                         return kvm_get_msr_common(vcpu, msr_info);
2788
2789                 msr_info->data = 0;
2790
2791                 if (family == 0x15 &&
2792                     (model >= 0x2 && model < 0x20))
2793                         msr_info->data = 0x1E;
2794                 }
2795                 break;
2796         case MSR_F10H_DECFG:
2797                 msr_info->data = svm->msr_decfg;
2798                 break;
2799         default:
2800                 return kvm_get_msr_common(vcpu, msr_info);
2801         }
2802         return 0;
2803 }
2804
2805 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2806 {
2807         struct vcpu_svm *svm = to_svm(vcpu);
2808         if (!sev_es_guest(svm->vcpu.kvm) || !err)
2809                 return kvm_complete_insn_gp(&svm->vcpu, err);
2810
2811         ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2812         ghcb_set_sw_exit_info_2(svm->ghcb,
2813                                 X86_TRAP_GP |
2814                                 SVM_EVTINJ_TYPE_EXEPT |
2815                                 SVM_EVTINJ_VALID);
2816         return 1;
2817 }
2818
2819 static int rdmsr_interception(struct vcpu_svm *svm)
2820 {
2821         return kvm_emulate_rdmsr(&svm->vcpu);
2822 }
2823
2824 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2825 {
2826         struct vcpu_svm *svm = to_svm(vcpu);
2827         int svm_dis, chg_mask;
2828
2829         if (data & ~SVM_VM_CR_VALID_MASK)
2830                 return 1;
2831
2832         chg_mask = SVM_VM_CR_VALID_MASK;
2833
2834         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2835                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2836
2837         svm->nested.vm_cr_msr &= ~chg_mask;
2838         svm->nested.vm_cr_msr |= (data & chg_mask);
2839
2840         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2841
2842         /* check for svm_disable while efer.svme is set */
2843         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2844                 return 1;
2845
2846         return 0;
2847 }
2848
2849 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2850 {
2851         struct vcpu_svm *svm = to_svm(vcpu);
2852
2853         u32 ecx = msr->index;
2854         u64 data = msr->data;
2855         switch (ecx) {
2856         case MSR_IA32_CR_PAT:
2857                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2858                         return 1;
2859                 vcpu->arch.pat = data;
2860                 svm->vmcb->save.g_pat = data;
2861                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2862                 break;
2863         case MSR_IA32_SPEC_CTRL:
2864                 if (!msr->host_initiated &&
2865                     !guest_has_spec_ctrl_msr(vcpu))
2866                         return 1;
2867
2868                 if (kvm_spec_ctrl_test_value(data))
2869                         return 1;
2870
2871                 svm->spec_ctrl = data;
2872                 if (!data)
2873                         break;
2874
2875                 /*
2876                  * For non-nested:
2877                  * When it's written (to non-zero) for the first time, pass
2878                  * it through.
2879                  *
2880                  * For nested:
2881                  * The handling of the MSR bitmap for L2 guests is done in
2882                  * nested_svm_vmrun_msrpm.
2883                  * We update the L1 MSR bit as well since it will end up
2884                  * touching the MSR anyway now.
2885                  */
2886                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2887                 break;
2888         case MSR_IA32_PRED_CMD:
2889                 if (!msr->host_initiated &&
2890                     !guest_has_pred_cmd_msr(vcpu))
2891                         return 1;
2892
2893                 if (data & ~PRED_CMD_IBPB)
2894                         return 1;
2895                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2896                         return 1;
2897                 if (!data)
2898                         break;
2899
2900                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2901                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2902                 break;
2903         case MSR_AMD64_VIRT_SPEC_CTRL:
2904                 if (!msr->host_initiated &&
2905                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2906                         return 1;
2907
2908                 if (data & ~SPEC_CTRL_SSBD)
2909                         return 1;
2910
2911                 svm->virt_spec_ctrl = data;
2912                 break;
2913         case MSR_STAR:
2914                 svm->vmcb->save.star = data;
2915                 break;
2916 #ifdef CONFIG_X86_64
2917         case MSR_LSTAR:
2918                 svm->vmcb->save.lstar = data;
2919                 break;
2920         case MSR_CSTAR:
2921                 svm->vmcb->save.cstar = data;
2922                 break;
2923         case MSR_KERNEL_GS_BASE:
2924                 svm->vmcb->save.kernel_gs_base = data;
2925                 break;
2926         case MSR_SYSCALL_MASK:
2927                 svm->vmcb->save.sfmask = data;
2928                 break;
2929 #endif
2930         case MSR_IA32_SYSENTER_CS:
2931                 svm->vmcb->save.sysenter_cs = data;
2932                 break;
2933         case MSR_IA32_SYSENTER_EIP:
2934                 svm->sysenter_eip = data;
2935                 svm->vmcb->save.sysenter_eip = data;
2936                 break;
2937         case MSR_IA32_SYSENTER_ESP:
2938                 svm->sysenter_esp = data;
2939                 svm->vmcb->save.sysenter_esp = data;
2940                 break;
2941         case MSR_TSC_AUX:
2942                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2943                         return 1;
2944
2945                 /*
2946                  * This is rare, so we update the MSR here instead of using
2947                  * direct_access_msrs.  Doing that would require a rdmsr in
2948                  * svm_vcpu_put.
2949                  */
2950                 svm->tsc_aux = data;
2951                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2952                 break;
2953         case MSR_IA32_DEBUGCTLMSR:
2954                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2955                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2956                                     __func__, data);
2957                         break;
2958                 }
2959                 if (data & DEBUGCTL_RESERVED_BITS)
2960                         return 1;
2961
2962                 svm->vmcb->save.dbgctl = data;
2963                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2964                 if (data & (1ULL<<0))
2965                         svm_enable_lbrv(vcpu);
2966                 else
2967                         svm_disable_lbrv(vcpu);
2968                 break;
2969         case MSR_VM_HSAVE_PA:
2970                 svm->nested.hsave_msr = data;
2971                 break;
2972         case MSR_VM_CR:
2973                 return svm_set_vm_cr(vcpu, data);
2974         case MSR_VM_IGNNE:
2975                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2976                 break;
2977         case MSR_F10H_DECFG: {
2978                 struct kvm_msr_entry msr_entry;
2979
2980                 msr_entry.index = msr->index;
2981                 if (svm_get_msr_feature(&msr_entry))
2982                         return 1;
2983
2984                 /* Check the supported bits */
2985                 if (data & ~msr_entry.data)
2986                         return 1;
2987
2988                 /* Don't allow the guest to change a bit, #GP */
2989                 if (!msr->host_initiated && (data ^ msr_entry.data))
2990                         return 1;
2991
2992                 svm->msr_decfg = data;
2993                 break;
2994         }
2995         case MSR_IA32_APICBASE:
2996                 if (kvm_vcpu_apicv_active(vcpu))
2997                         avic_update_vapic_bar(to_svm(vcpu), data);
2998                 fallthrough;
2999         default:
3000                 return kvm_set_msr_common(vcpu, msr);
3001         }
3002         return 0;
3003 }
3004
3005 static int wrmsr_interception(struct vcpu_svm *svm)
3006 {
3007         return kvm_emulate_wrmsr(&svm->vcpu);
3008 }
3009
3010 static int msr_interception(struct vcpu_svm *svm)
3011 {
3012         if (svm->vmcb->control.exit_info_1)
3013                 return wrmsr_interception(svm);
3014         else
3015                 return rdmsr_interception(svm);
3016 }
3017
3018 static int interrupt_window_interception(struct vcpu_svm *svm)
3019 {
3020         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3021         svm_clear_vintr(svm);
3022
3023         /*
3024          * For AVIC, the only reason to end up here is ExtINTs.
3025          * In this case AVIC was temporarily disabled for
3026          * requesting the IRQ window and we have to re-enable it.
3027          */
3028         svm_toggle_avic_for_irq_window(&svm->vcpu, true);
3029
3030         ++svm->vcpu.stat.irq_window_exits;
3031         return 1;
3032 }
3033
3034 static int pause_interception(struct vcpu_svm *svm)
3035 {
3036         struct kvm_vcpu *vcpu = &svm->vcpu;
3037         bool in_kernel;
3038
3039         /*
3040          * CPL is not made available for an SEV-ES guest, therefore
3041          * vcpu->arch.preempted_in_kernel can never be true.  Just
3042          * set in_kernel to false as well.
3043          */
3044         in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0;
3045
3046         if (!kvm_pause_in_guest(vcpu->kvm))
3047                 grow_ple_window(vcpu);
3048
3049         kvm_vcpu_on_spin(vcpu, in_kernel);
3050         return 1;
3051 }
3052
3053 static int nop_interception(struct vcpu_svm *svm)
3054 {
3055         return kvm_skip_emulated_instruction(&(svm->vcpu));
3056 }
3057
3058 static int monitor_interception(struct vcpu_svm *svm)
3059 {
3060         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3061         return nop_interception(svm);
3062 }
3063
3064 static int mwait_interception(struct vcpu_svm *svm)
3065 {
3066         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3067         return nop_interception(svm);
3068 }
3069
3070 static int invpcid_interception(struct vcpu_svm *svm)
3071 {
3072         struct kvm_vcpu *vcpu = &svm->vcpu;
3073         unsigned long type;
3074         gva_t gva;
3075
3076         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3077                 kvm_queue_exception(vcpu, UD_VECTOR);
3078                 return 1;
3079         }
3080
3081         /*
3082          * For an INVPCID intercept:
3083          * EXITINFO1 provides the linear address of the memory operand.
3084          * EXITINFO2 provides the contents of the register operand.
3085          */
3086         type = svm->vmcb->control.exit_info_2;
3087         gva = svm->vmcb->control.exit_info_1;
3088
3089         if (type > 3) {
3090                 kvm_inject_gp(vcpu, 0);
3091                 return 1;
3092         }
3093
3094         return kvm_handle_invpcid(vcpu, type, gva);
3095 }
3096
3097 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3098         [SVM_EXIT_READ_CR0]                     = cr_interception,
3099         [SVM_EXIT_READ_CR3]                     = cr_interception,
3100         [SVM_EXIT_READ_CR4]                     = cr_interception,
3101         [SVM_EXIT_READ_CR8]                     = cr_interception,
3102         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3103         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3104         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3105         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3106         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3107         [SVM_EXIT_READ_DR0]                     = dr_interception,
3108         [SVM_EXIT_READ_DR1]                     = dr_interception,
3109         [SVM_EXIT_READ_DR2]                     = dr_interception,
3110         [SVM_EXIT_READ_DR3]                     = dr_interception,
3111         [SVM_EXIT_READ_DR4]                     = dr_interception,
3112         [SVM_EXIT_READ_DR5]                     = dr_interception,
3113         [SVM_EXIT_READ_DR6]                     = dr_interception,
3114         [SVM_EXIT_READ_DR7]                     = dr_interception,
3115         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3116         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3117         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3118         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3119         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3120         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3121         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3122         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3123         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3124         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3125         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3126         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3127         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3128         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3129         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3130         [SVM_EXIT_INTR]                         = intr_interception,
3131         [SVM_EXIT_NMI]                          = nmi_interception,
3132         [SVM_EXIT_SMI]                          = nop_on_interception,
3133         [SVM_EXIT_INIT]                         = nop_on_interception,
3134         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3135         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3136         [SVM_EXIT_CPUID]                        = cpuid_interception,
3137         [SVM_EXIT_IRET]                         = iret_interception,
3138         [SVM_EXIT_INVD]                         = invd_interception,
3139         [SVM_EXIT_PAUSE]                        = pause_interception,
3140         [SVM_EXIT_HLT]                          = halt_interception,
3141         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3142         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3143         [SVM_EXIT_IOIO]                         = io_interception,
3144         [SVM_EXIT_MSR]                          = msr_interception,
3145         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3146         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3147         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3148         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3149         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3150         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3151         [SVM_EXIT_STGI]                         = stgi_interception,
3152         [SVM_EXIT_CLGI]                         = clgi_interception,
3153         [SVM_EXIT_SKINIT]                       = skinit_interception,
3154         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3155         [SVM_EXIT_MONITOR]                      = monitor_interception,
3156         [SVM_EXIT_MWAIT]                        = mwait_interception,
3157         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3158         [SVM_EXIT_RDPRU]                        = rdpru_interception,
3159         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3160         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3161         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3162         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3163         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3164         [SVM_EXIT_NPF]                          = npf_interception,
3165         [SVM_EXIT_RSM]                          = rsm_interception,
3166         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3167         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3168         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3169 };
3170
3171 static void dump_vmcb(struct kvm_vcpu *vcpu)
3172 {
3173         struct vcpu_svm *svm = to_svm(vcpu);
3174         struct vmcb_control_area *control = &svm->vmcb->control;
3175         struct vmcb_save_area *save = &svm->vmcb->save;
3176
3177         if (!dump_invalid_vmcb) {
3178                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3179                 return;
3180         }
3181
3182         pr_err("VMCB Control Area:\n");
3183         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3184         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3185         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3186         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3187         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3188         pr_err("%-20s%08x %08x\n", "intercepts:",
3189               control->intercepts[INTERCEPT_WORD3],
3190                control->intercepts[INTERCEPT_WORD4]);
3191         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3192         pr_err("%-20s%d\n", "pause filter threshold:",
3193                control->pause_filter_thresh);
3194         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3195         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3196         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3197         pr_err("%-20s%d\n", "asid:", control->asid);
3198         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3199         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3200         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3201         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3202         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3203         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3204         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3205         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3206         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3207         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3208         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3209         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3210         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3211         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3212         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3213         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3214         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3215         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3216         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3217         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3218         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3219         pr_err("VMCB State Save Area:\n");
3220         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3221                "es:",
3222                save->es.selector, save->es.attrib,
3223                save->es.limit, save->es.base);
3224         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3225                "cs:",
3226                save->cs.selector, save->cs.attrib,
3227                save->cs.limit, save->cs.base);
3228         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3229                "ss:",
3230                save->ss.selector, save->ss.attrib,
3231                save->ss.limit, save->ss.base);
3232         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3233                "ds:",
3234                save->ds.selector, save->ds.attrib,
3235                save->ds.limit, save->ds.base);
3236         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3237                "fs:",
3238                save->fs.selector, save->fs.attrib,
3239                save->fs.limit, save->fs.base);
3240         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3241                "gs:",
3242                save->gs.selector, save->gs.attrib,
3243                save->gs.limit, save->gs.base);
3244         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3245                "gdtr:",
3246                save->gdtr.selector, save->gdtr.attrib,
3247                save->gdtr.limit, save->gdtr.base);
3248         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3249                "ldtr:",
3250                save->ldtr.selector, save->ldtr.attrib,
3251                save->ldtr.limit, save->ldtr.base);
3252         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3253                "idtr:",
3254                save->idtr.selector, save->idtr.attrib,
3255                save->idtr.limit, save->idtr.base);
3256         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3257                "tr:",
3258                save->tr.selector, save->tr.attrib,
3259                save->tr.limit, save->tr.base);
3260         pr_err("cpl:            %d                efer:         %016llx\n",
3261                 save->cpl, save->efer);
3262         pr_err("%-15s %016llx %-13s %016llx\n",
3263                "cr0:", save->cr0, "cr2:", save->cr2);
3264         pr_err("%-15s %016llx %-13s %016llx\n",
3265                "cr3:", save->cr3, "cr4:", save->cr4);
3266         pr_err("%-15s %016llx %-13s %016llx\n",
3267                "dr6:", save->dr6, "dr7:", save->dr7);
3268         pr_err("%-15s %016llx %-13s %016llx\n",
3269                "rip:", save->rip, "rflags:", save->rflags);
3270         pr_err("%-15s %016llx %-13s %016llx\n",
3271                "rsp:", save->rsp, "rax:", save->rax);
3272         pr_err("%-15s %016llx %-13s %016llx\n",
3273                "star:", save->star, "lstar:", save->lstar);
3274         pr_err("%-15s %016llx %-13s %016llx\n",
3275                "cstar:", save->cstar, "sfmask:", save->sfmask);
3276         pr_err("%-15s %016llx %-13s %016llx\n",
3277                "kernel_gs_base:", save->kernel_gs_base,
3278                "sysenter_cs:", save->sysenter_cs);
3279         pr_err("%-15s %016llx %-13s %016llx\n",
3280                "sysenter_esp:", save->sysenter_esp,
3281                "sysenter_eip:", save->sysenter_eip);
3282         pr_err("%-15s %016llx %-13s %016llx\n",
3283                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3284         pr_err("%-15s %016llx %-13s %016llx\n",
3285                "br_from:", save->br_from, "br_to:", save->br_to);
3286         pr_err("%-15s %016llx %-13s %016llx\n",
3287                "excp_from:", save->last_excp_from,
3288                "excp_to:", save->last_excp_to);
3289 }
3290
3291 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3292 {
3293         if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3294             svm_exit_handlers[exit_code])
3295                 return 0;
3296
3297         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3298         dump_vmcb(vcpu);
3299         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3300         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3301         vcpu->run->internal.ndata = 2;
3302         vcpu->run->internal.data[0] = exit_code;
3303         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3304
3305         return -EINVAL;
3306 }
3307
3308 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code)
3309 {
3310         if (svm_handle_invalid_exit(&svm->vcpu, exit_code))
3311                 return 0;
3312
3313 #ifdef CONFIG_RETPOLINE
3314         if (exit_code == SVM_EXIT_MSR)
3315                 return msr_interception(svm);
3316         else if (exit_code == SVM_EXIT_VINTR)
3317                 return interrupt_window_interception(svm);
3318         else if (exit_code == SVM_EXIT_INTR)
3319                 return intr_interception(svm);
3320         else if (exit_code == SVM_EXIT_HLT)
3321                 return halt_interception(svm);
3322         else if (exit_code == SVM_EXIT_NPF)
3323                 return npf_interception(svm);
3324 #endif
3325         return svm_exit_handlers[exit_code](svm);
3326 }
3327
3328 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3329                               u32 *intr_info, u32 *error_code)
3330 {
3331         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3332
3333         *info1 = control->exit_info_1;
3334         *info2 = control->exit_info_2;
3335         *intr_info = control->exit_int_info;
3336         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3337             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3338                 *error_code = control->exit_int_info_err;
3339         else
3340                 *error_code = 0;
3341 }
3342
3343 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3344 {
3345         struct vcpu_svm *svm = to_svm(vcpu);
3346         struct kvm_run *kvm_run = vcpu->run;
3347         u32 exit_code = svm->vmcb->control.exit_code;
3348
3349         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3350
3351         /* SEV-ES guests must use the CR write traps to track CR registers. */
3352         if (!sev_es_guest(vcpu->kvm)) {
3353                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3354                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3355                 if (npt_enabled)
3356                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3357         }
3358
3359         if (is_guest_mode(vcpu)) {
3360                 int vmexit;
3361
3362                 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3363
3364                 vmexit = nested_svm_exit_special(svm);
3365
3366                 if (vmexit == NESTED_EXIT_CONTINUE)
3367                         vmexit = nested_svm_exit_handled(svm);
3368
3369                 if (vmexit == NESTED_EXIT_DONE)
3370                         return 1;
3371         }
3372
3373         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3374                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3375                 kvm_run->fail_entry.hardware_entry_failure_reason
3376                         = svm->vmcb->control.exit_code;
3377                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3378                 dump_vmcb(vcpu);
3379                 return 0;
3380         }
3381
3382         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3383             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3384             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3385             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3386                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3387                        "exit_code 0x%x\n",
3388                        __func__, svm->vmcb->control.exit_int_info,
3389                        exit_code);
3390
3391         if (exit_fastpath != EXIT_FASTPATH_NONE)
3392                 return 1;
3393
3394         return svm_invoke_exit_handler(svm, exit_code);
3395 }
3396
3397 static void reload_tss(struct kvm_vcpu *vcpu)
3398 {
3399         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3400
3401         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3402         load_TR_desc();
3403 }
3404
3405 static void pre_svm_run(struct vcpu_svm *svm)
3406 {
3407         struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3408
3409         if (sev_guest(svm->vcpu.kvm))
3410                 return pre_sev_run(svm, svm->vcpu.cpu);
3411
3412         /* FIXME: handle wraparound of asid_generation */
3413         if (svm->asid_generation != sd->asid_generation)
3414                 new_asid(svm, sd);
3415 }
3416
3417 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3418 {
3419         struct vcpu_svm *svm = to_svm(vcpu);
3420
3421         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3422         vcpu->arch.hflags |= HF_NMI_MASK;
3423         if (!sev_es_guest(svm->vcpu.kvm))
3424                 svm_set_intercept(svm, INTERCEPT_IRET);
3425         ++vcpu->stat.nmi_injections;
3426 }
3427
3428 static void svm_set_irq(struct kvm_vcpu *vcpu)
3429 {
3430         struct vcpu_svm *svm = to_svm(vcpu);
3431
3432         BUG_ON(!(gif_set(svm)));
3433
3434         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3435         ++vcpu->stat.irq_injections;
3436
3437         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3438                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3439 }
3440
3441 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3442 {
3443         struct vcpu_svm *svm = to_svm(vcpu);
3444
3445         /*
3446          * SEV-ES guests must always keep the CR intercepts cleared. CR
3447          * tracking is done using the CR write traps.
3448          */
3449         if (sev_es_guest(vcpu->kvm))
3450                 return;
3451
3452         if (nested_svm_virtualize_tpr(vcpu))
3453                 return;
3454
3455         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3456
3457         if (irr == -1)
3458                 return;
3459
3460         if (tpr >= irr)
3461                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3462 }
3463
3464 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3465 {
3466         struct vcpu_svm *svm = to_svm(vcpu);
3467         struct vmcb *vmcb = svm->vmcb;
3468         bool ret;
3469
3470         if (!gif_set(svm))
3471                 return true;
3472
3473         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3474                 return false;
3475
3476         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3477               (svm->vcpu.arch.hflags & HF_NMI_MASK);
3478
3479         return ret;
3480 }
3481
3482 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3483 {
3484         struct vcpu_svm *svm = to_svm(vcpu);
3485         if (svm->nested.nested_run_pending)
3486                 return -EBUSY;
3487
3488         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3489         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3490                 return -EBUSY;
3491
3492         return !svm_nmi_blocked(vcpu);
3493 }
3494
3495 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3496 {
3497         struct vcpu_svm *svm = to_svm(vcpu);
3498
3499         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3500 }
3501
3502 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3503 {
3504         struct vcpu_svm *svm = to_svm(vcpu);
3505
3506         if (masked) {
3507                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3508                 if (!sev_es_guest(svm->vcpu.kvm))
3509                         svm_set_intercept(svm, INTERCEPT_IRET);
3510         } else {
3511                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3512                 if (!sev_es_guest(svm->vcpu.kvm))
3513                         svm_clr_intercept(svm, INTERCEPT_IRET);
3514         }
3515 }
3516
3517 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3518 {
3519         struct vcpu_svm *svm = to_svm(vcpu);
3520         struct vmcb *vmcb = svm->vmcb;
3521
3522         if (!gif_set(svm))
3523                 return true;
3524
3525         if (sev_es_guest(svm->vcpu.kvm)) {
3526                 /*
3527                  * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3528                  * bit to determine the state of the IF flag.
3529                  */
3530                 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3531                         return true;
3532         } else if (is_guest_mode(vcpu)) {
3533                 /* As long as interrupts are being delivered...  */
3534                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3535                     ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3536                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3537                         return true;
3538
3539                 /* ... vmexits aren't blocked by the interrupt shadow  */
3540                 if (nested_exit_on_intr(svm))
3541                         return false;
3542         } else {
3543                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3544                         return true;
3545         }
3546
3547         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3548 }
3549
3550 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3551 {
3552         struct vcpu_svm *svm = to_svm(vcpu);
3553         if (svm->nested.nested_run_pending)
3554                 return -EBUSY;
3555
3556         /*
3557          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3558          * e.g. if the IRQ arrived asynchronously after checking nested events.
3559          */
3560         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3561                 return -EBUSY;
3562
3563         return !svm_interrupt_blocked(vcpu);
3564 }
3565
3566 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3567 {
3568         struct vcpu_svm *svm = to_svm(vcpu);
3569
3570         /*
3571          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3572          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3573          * get that intercept, this function will be called again though and
3574          * we'll get the vintr intercept. However, if the vGIF feature is
3575          * enabled, the STGI interception will not occur. Enable the irq
3576          * window under the assumption that the hardware will set the GIF.
3577          */
3578         if (vgif_enabled(svm) || gif_set(svm)) {
3579                 /*
3580                  * IRQ window is not needed when AVIC is enabled,
3581                  * unless we have pending ExtINT since it cannot be injected
3582                  * via AVIC. In such case, we need to temporarily disable AVIC,
3583                  * and fallback to injecting IRQ via V_IRQ.
3584                  */
3585                 svm_toggle_avic_for_irq_window(vcpu, false);
3586                 svm_set_vintr(svm);
3587         }
3588 }
3589
3590 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3591 {
3592         struct vcpu_svm *svm = to_svm(vcpu);
3593
3594         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3595             == HF_NMI_MASK)
3596                 return; /* IRET will cause a vm exit */
3597
3598         if (!gif_set(svm)) {
3599                 if (vgif_enabled(svm))
3600                         svm_set_intercept(svm, INTERCEPT_STGI);
3601                 return; /* STGI will cause a vm exit */
3602         }
3603
3604         /*
3605          * Something prevents NMI from been injected. Single step over possible
3606          * problem (IRET or exception injection or interrupt shadow)
3607          */
3608         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3609         svm->nmi_singlestep = true;
3610         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3611 }
3612
3613 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3614 {
3615         return 0;
3616 }
3617
3618 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3619 {
3620         return 0;
3621 }
3622
3623 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3624 {
3625         struct vcpu_svm *svm = to_svm(vcpu);
3626
3627         /*
3628          * Flush only the current ASID even if the TLB flush was invoked via
3629          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3630          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3631          * unconditionally does a TLB flush on both nested VM-Enter and nested
3632          * VM-Exit (via kvm_mmu_reset_context()).
3633          */
3634         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3635                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3636         else
3637                 svm->asid_generation--;
3638 }
3639
3640 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3641 {
3642         struct vcpu_svm *svm = to_svm(vcpu);
3643
3644         invlpga(gva, svm->vmcb->control.asid);
3645 }
3646
3647 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3648 {
3649         struct vcpu_svm *svm = to_svm(vcpu);
3650
3651         if (nested_svm_virtualize_tpr(vcpu))
3652                 return;
3653
3654         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3655                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3656                 kvm_set_cr8(vcpu, cr8);
3657         }
3658 }
3659
3660 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3661 {
3662         struct vcpu_svm *svm = to_svm(vcpu);
3663         u64 cr8;
3664
3665         if (nested_svm_virtualize_tpr(vcpu) ||
3666             kvm_vcpu_apicv_active(vcpu))
3667                 return;
3668
3669         cr8 = kvm_get_cr8(vcpu);
3670         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3671         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3672 }
3673
3674 static void svm_complete_interrupts(struct vcpu_svm *svm)
3675 {
3676         u8 vector;
3677         int type;
3678         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3679         unsigned int3_injected = svm->int3_injected;
3680
3681         svm->int3_injected = 0;
3682
3683         /*
3684          * If we've made progress since setting HF_IRET_MASK, we've
3685          * executed an IRET and can allow NMI injection.
3686          */
3687         if ((svm->vcpu.arch.hflags & HF_IRET_MASK) &&
3688             (sev_es_guest(svm->vcpu.kvm) ||
3689              kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) {
3690                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3691                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3692         }
3693
3694         svm->vcpu.arch.nmi_injected = false;
3695         kvm_clear_exception_queue(&svm->vcpu);
3696         kvm_clear_interrupt_queue(&svm->vcpu);
3697
3698         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3699                 return;
3700
3701         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3702
3703         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3704         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3705
3706         switch (type) {
3707         case SVM_EXITINTINFO_TYPE_NMI:
3708                 svm->vcpu.arch.nmi_injected = true;
3709                 break;
3710         case SVM_EXITINTINFO_TYPE_EXEPT:
3711                 /*
3712                  * Never re-inject a #VC exception.
3713                  */
3714                 if (vector == X86_TRAP_VC)
3715                         break;
3716
3717                 /*
3718                  * In case of software exceptions, do not reinject the vector,
3719                  * but re-execute the instruction instead. Rewind RIP first
3720                  * if we emulated INT3 before.
3721                  */
3722                 if (kvm_exception_is_soft(vector)) {
3723                         if (vector == BP_VECTOR && int3_injected &&
3724                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3725                                 kvm_rip_write(&svm->vcpu,
3726                                               kvm_rip_read(&svm->vcpu) -
3727                                               int3_injected);
3728                         break;
3729                 }
3730                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3731                         u32 err = svm->vmcb->control.exit_int_info_err;
3732                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3733
3734                 } else
3735                         kvm_requeue_exception(&svm->vcpu, vector);
3736                 break;
3737         case SVM_EXITINTINFO_TYPE_INTR:
3738                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3739                 break;
3740         default:
3741                 break;
3742         }
3743 }
3744
3745 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3746 {
3747         struct vcpu_svm *svm = to_svm(vcpu);
3748         struct vmcb_control_area *control = &svm->vmcb->control;
3749
3750         control->exit_int_info = control->event_inj;
3751         control->exit_int_info_err = control->event_inj_err;
3752         control->event_inj = 0;
3753         svm_complete_interrupts(svm);
3754 }
3755
3756 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3757 {
3758         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3759             to_svm(vcpu)->vmcb->control.exit_info_1)
3760                 return handle_fastpath_set_msr_irqoff(vcpu);
3761
3762         return EXIT_FASTPATH_NONE;
3763 }
3764
3765 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3766                                         struct vcpu_svm *svm)
3767 {
3768         /*
3769          * VMENTER enables interrupts (host state), but the kernel state is
3770          * interrupts disabled when this is invoked. Also tell RCU about
3771          * it. This is the same logic as for exit_to_user_mode().
3772          *
3773          * This ensures that e.g. latency analysis on the host observes
3774          * guest mode as interrupt enabled.
3775          *
3776          * guest_enter_irqoff() informs context tracking about the
3777          * transition to guest mode and if enabled adjusts RCU state
3778          * accordingly.
3779          */
3780         instrumentation_begin();
3781         trace_hardirqs_on_prepare();
3782         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3783         instrumentation_end();
3784
3785         guest_enter_irqoff();
3786         lockdep_hardirqs_on(CALLER_ADDR0);
3787
3788         if (sev_es_guest(svm->vcpu.kvm)) {
3789                 __svm_sev_es_vcpu_run(svm->vmcb_pa);
3790         } else {
3791                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3792
3793                 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3794
3795                 vmload(__sme_page_pa(sd->save_area));
3796         }
3797
3798         /*
3799          * VMEXIT disables interrupts (host state), but tracing and lockdep
3800          * have them in state 'on' as recorded before entering guest mode.
3801          * Same as enter_from_user_mode().
3802          *
3803          * guest_exit_irqoff() restores host context and reinstates RCU if
3804          * enabled and required.
3805          *
3806          * This needs to be done before the below as native_read_msr()
3807          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3808          * into world and some more.
3809          */
3810         lockdep_hardirqs_off(CALLER_ADDR0);
3811         guest_exit_irqoff();
3812
3813         instrumentation_begin();
3814         trace_hardirqs_off_finish();
3815         instrumentation_end();
3816 }
3817
3818 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3819 {
3820         struct vcpu_svm *svm = to_svm(vcpu);
3821
3822         trace_kvm_entry(vcpu);
3823
3824         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3825         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3826         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3827
3828         /*
3829          * Disable singlestep if we're injecting an interrupt/exception.
3830          * We don't want our modified rflags to be pushed on the stack where
3831          * we might not be able to easily reset them if we disabled NMI
3832          * singlestep later.
3833          */
3834         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3835                 /*
3836                  * Event injection happens before external interrupts cause a
3837                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3838                  * is enough to force an immediate vmexit.
3839                  */
3840                 disable_nmi_singlestep(svm);
3841                 smp_send_reschedule(vcpu->cpu);
3842         }
3843
3844         pre_svm_run(svm);
3845
3846         sync_lapic_to_cr8(vcpu);
3847
3848         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3849                 svm->vmcb->control.asid = svm->asid;
3850                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3851         }
3852         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3853
3854         /*
3855          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3856          * of a #DB.
3857          */
3858         if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3859                 svm_set_dr6(svm, vcpu->arch.dr6);
3860         else
3861                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3862
3863         clgi();
3864         kvm_load_guest_xsave_state(vcpu);
3865
3866         kvm_wait_lapic_expire(vcpu);
3867
3868         /*
3869          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3870          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3871          * is no need to worry about the conditional branch over the wrmsr
3872          * being speculatively taken.
3873          */
3874         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3875
3876         svm_vcpu_enter_exit(vcpu, svm);
3877
3878         /*
3879          * We do not use IBRS in the kernel. If this vCPU has used the
3880          * SPEC_CTRL MSR it may have left it on; save the value and
3881          * turn it off. This is much more efficient than blindly adding
3882          * it to the atomic save/restore list. Especially as the former
3883          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3884          *
3885          * For non-nested case:
3886          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3887          * save it.
3888          *
3889          * For nested case:
3890          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3891          * save it.
3892          */
3893         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3894                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3895
3896         if (!sev_es_guest(svm->vcpu.kvm))
3897                 reload_tss(vcpu);
3898
3899         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3900
3901         if (!sev_es_guest(svm->vcpu.kvm)) {
3902                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3903                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3904                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3905                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3906         }
3907
3908         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3909                 kvm_before_interrupt(&svm->vcpu);
3910
3911         kvm_load_host_xsave_state(vcpu);
3912         stgi();
3913
3914         /* Any pending NMI will happen here */
3915
3916         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3917                 kvm_after_interrupt(&svm->vcpu);
3918
3919         sync_cr8_to_lapic(vcpu);
3920
3921         svm->next_rip = 0;
3922         if (is_guest_mode(&svm->vcpu)) {
3923                 sync_nested_vmcb_control(svm);
3924                 svm->nested.nested_run_pending = 0;
3925         }
3926
3927         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3928         vmcb_mark_all_clean(svm->vmcb);
3929
3930         /* if exit due to PF check for async PF */
3931         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3932                 svm->vcpu.arch.apf.host_apf_flags =
3933                         kvm_read_and_reset_apf_flags();
3934
3935         if (npt_enabled) {
3936                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3937                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3938         }
3939
3940         /*
3941          * We need to handle MC intercepts here before the vcpu has a chance to
3942          * change the physical cpu
3943          */
3944         if (unlikely(svm->vmcb->control.exit_code ==
3945                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3946                 svm_handle_mce(svm);
3947
3948         svm_complete_interrupts(svm);
3949
3950         if (is_guest_mode(vcpu))
3951                 return EXIT_FASTPATH_NONE;
3952
3953         return svm_exit_handlers_fastpath(vcpu);
3954 }
3955
3956 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3957                              int root_level)
3958 {
3959         struct vcpu_svm *svm = to_svm(vcpu);
3960         unsigned long cr3;
3961
3962         cr3 = __sme_set(root);
3963         if (npt_enabled) {
3964                 svm->vmcb->control.nested_cr3 = cr3;
3965                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3966
3967                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3968                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3969                         return;
3970                 cr3 = vcpu->arch.cr3;
3971         }
3972
3973         svm->vmcb->save.cr3 = cr3;
3974         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3975 }
3976
3977 static int is_disabled(void)
3978 {
3979         u64 vm_cr;
3980
3981         rdmsrl(MSR_VM_CR, vm_cr);
3982         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3983                 return 1;
3984
3985         return 0;
3986 }
3987
3988 static void
3989 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3990 {
3991         /*
3992          * Patch in the VMMCALL instruction:
3993          */
3994         hypercall[0] = 0x0f;
3995         hypercall[1] = 0x01;
3996         hypercall[2] = 0xd9;
3997 }
3998
3999 static int __init svm_check_processor_compat(void)
4000 {
4001         return 0;
4002 }
4003
4004 static bool svm_cpu_has_accelerated_tpr(void)
4005 {
4006         return false;
4007 }
4008
4009 /*
4010  * The kvm parameter can be NULL (module initialization, or invocation before
4011  * VM creation). Be sure to check the kvm parameter before using it.
4012  */
4013 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4014 {
4015         switch (index) {
4016         case MSR_IA32_MCG_EXT_CTL:
4017         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4018                 return false;
4019         case MSR_IA32_SMBASE:
4020                 /* SEV-ES guests do not support SMM, so report false */
4021                 if (kvm && sev_es_guest(kvm))
4022                         return false;
4023                 break;
4024         default:
4025                 break;
4026         }
4027
4028         return true;
4029 }
4030
4031 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4032 {
4033         return 0;
4034 }
4035
4036 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4037 {
4038         struct vcpu_svm *svm = to_svm(vcpu);
4039         struct kvm_cpuid_entry2 *best;
4040
4041         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4042                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4043                                     boot_cpu_has(X86_FEATURE_XSAVES);
4044
4045         /* Update nrips enabled cache */
4046         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4047                              guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
4048
4049         /* Check again if INVPCID interception if required */
4050         svm_check_invpcid(svm);
4051
4052         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4053         if (sev_guest(vcpu->kvm)) {
4054                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4055                 if (best)
4056                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4057         }
4058
4059         if (!kvm_vcpu_apicv_active(vcpu))
4060                 return;
4061
4062         /*
4063          * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4064          * is exposed to the guest, disable AVIC.
4065          */
4066         if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4067                 kvm_request_apicv_update(vcpu->kvm, false,
4068                                          APICV_INHIBIT_REASON_X2APIC);
4069
4070         /*
4071          * Currently, AVIC does not work with nested virtualization.
4072          * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4073          */
4074         if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4075                 kvm_request_apicv_update(vcpu->kvm, false,
4076                                          APICV_INHIBIT_REASON_NESTED);
4077 }
4078
4079 static bool svm_has_wbinvd_exit(void)
4080 {
4081         return true;
4082 }
4083
4084 #define PRE_EX(exit)  { .exit_code = (exit), \
4085                         .stage = X86_ICPT_PRE_EXCEPT, }
4086 #define POST_EX(exit) { .exit_code = (exit), \
4087                         .stage = X86_ICPT_POST_EXCEPT, }
4088 #define POST_MEM(exit) { .exit_code = (exit), \
4089                         .stage = X86_ICPT_POST_MEMACCESS, }
4090
4091 static const struct __x86_intercept {
4092         u32 exit_code;
4093         enum x86_intercept_stage stage;
4094 } x86_intercept_map[] = {
4095         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4096         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4097         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4098         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4099         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4100         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4101         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4102         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4103         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4104         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4105         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4106         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4107         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4108         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4109         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4110         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4111         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4112         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4113         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4114         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4115         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4116         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4117         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4118         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4119         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4120         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4121         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4122         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4123         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4124         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4125         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4126         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4127         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4128         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4129         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4130         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4131         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4132         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4133         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4134         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4135         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4136         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4137         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4138         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4139         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4140         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4141         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4142 };
4143
4144 #undef PRE_EX
4145 #undef POST_EX
4146 #undef POST_MEM
4147
4148 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4149                                struct x86_instruction_info *info,
4150                                enum x86_intercept_stage stage,
4151                                struct x86_exception *exception)
4152 {
4153         struct vcpu_svm *svm = to_svm(vcpu);
4154         int vmexit, ret = X86EMUL_CONTINUE;
4155         struct __x86_intercept icpt_info;
4156         struct vmcb *vmcb = svm->vmcb;
4157
4158         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4159                 goto out;
4160
4161         icpt_info = x86_intercept_map[info->intercept];
4162
4163         if (stage != icpt_info.stage)
4164                 goto out;
4165
4166         switch (icpt_info.exit_code) {
4167         case SVM_EXIT_READ_CR0:
4168                 if (info->intercept == x86_intercept_cr_read)
4169                         icpt_info.exit_code += info->modrm_reg;
4170                 break;
4171         case SVM_EXIT_WRITE_CR0: {
4172                 unsigned long cr0, val;
4173
4174                 if (info->intercept == x86_intercept_cr_write)
4175                         icpt_info.exit_code += info->modrm_reg;
4176
4177                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4178                     info->intercept == x86_intercept_clts)
4179                         break;
4180
4181                 if (!(vmcb_is_intercept(&svm->nested.ctl,
4182                                         INTERCEPT_SELECTIVE_CR0)))
4183                         break;
4184
4185                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4186                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4187
4188                 if (info->intercept == x86_intercept_lmsw) {
4189                         cr0 &= 0xfUL;
4190                         val &= 0xfUL;
4191                         /* lmsw can't clear PE - catch this here */
4192                         if (cr0 & X86_CR0_PE)
4193                                 val |= X86_CR0_PE;
4194                 }
4195
4196                 if (cr0 ^ val)
4197                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4198
4199                 break;
4200         }
4201         case SVM_EXIT_READ_DR0:
4202         case SVM_EXIT_WRITE_DR0:
4203                 icpt_info.exit_code += info->modrm_reg;
4204                 break;
4205         case SVM_EXIT_MSR:
4206                 if (info->intercept == x86_intercept_wrmsr)
4207                         vmcb->control.exit_info_1 = 1;
4208                 else
4209                         vmcb->control.exit_info_1 = 0;
4210                 break;
4211         case SVM_EXIT_PAUSE:
4212                 /*
4213                  * We get this for NOP only, but pause
4214                  * is rep not, check this here
4215                  */
4216                 if (info->rep_prefix != REPE_PREFIX)
4217                         goto out;
4218                 break;
4219         case SVM_EXIT_IOIO: {
4220                 u64 exit_info;
4221                 u32 bytes;
4222
4223                 if (info->intercept == x86_intercept_in ||
4224                     info->intercept == x86_intercept_ins) {
4225                         exit_info = ((info->src_val & 0xffff) << 16) |
4226                                 SVM_IOIO_TYPE_MASK;
4227                         bytes = info->dst_bytes;
4228                 } else {
4229                         exit_info = (info->dst_val & 0xffff) << 16;
4230                         bytes = info->src_bytes;
4231                 }
4232
4233                 if (info->intercept == x86_intercept_outs ||
4234                     info->intercept == x86_intercept_ins)
4235                         exit_info |= SVM_IOIO_STR_MASK;
4236
4237                 if (info->rep_prefix)
4238                         exit_info |= SVM_IOIO_REP_MASK;
4239
4240                 bytes = min(bytes, 4u);
4241
4242                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4243
4244                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4245
4246                 vmcb->control.exit_info_1 = exit_info;
4247                 vmcb->control.exit_info_2 = info->next_rip;
4248
4249                 break;
4250         }
4251         default:
4252                 break;
4253         }
4254
4255         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4256         if (static_cpu_has(X86_FEATURE_NRIPS))
4257                 vmcb->control.next_rip  = info->next_rip;
4258         vmcb->control.exit_code = icpt_info.exit_code;
4259         vmexit = nested_svm_exit_handled(svm);
4260
4261         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4262                                            : X86EMUL_CONTINUE;
4263
4264 out:
4265         return ret;
4266 }
4267
4268 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4269 {
4270 }
4271
4272 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4273 {
4274         if (!kvm_pause_in_guest(vcpu->kvm))
4275                 shrink_ple_window(vcpu);
4276 }
4277
4278 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4279 {
4280         /* [63:9] are reserved. */
4281         vcpu->arch.mcg_cap &= 0x1ff;
4282 }
4283
4284 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4285 {
4286         struct vcpu_svm *svm = to_svm(vcpu);
4287
4288         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4289         if (!gif_set(svm))
4290                 return true;
4291
4292         return is_smm(vcpu);
4293 }
4294
4295 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4296 {
4297         struct vcpu_svm *svm = to_svm(vcpu);
4298         if (svm->nested.nested_run_pending)
4299                 return -EBUSY;
4300
4301         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4302         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4303                 return -EBUSY;
4304
4305         return !svm_smi_blocked(vcpu);
4306 }
4307
4308 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4309 {
4310         struct vcpu_svm *svm = to_svm(vcpu);
4311         int ret;
4312
4313         if (is_guest_mode(vcpu)) {
4314                 /* FED8h - SVM Guest */
4315                 put_smstate(u64, smstate, 0x7ed8, 1);
4316                 /* FEE0h - SVM Guest VMCB Physical Address */
4317                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4318
4319                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4320                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4321                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4322
4323                 ret = nested_svm_vmexit(svm);
4324                 if (ret)
4325                         return ret;
4326         }
4327         return 0;
4328 }
4329
4330 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4331 {
4332         struct vcpu_svm *svm = to_svm(vcpu);
4333         struct kvm_host_map map;
4334         int ret = 0;
4335
4336         if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4337                 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4338                 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4339                 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4340
4341                 if (guest) {
4342                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4343                                 return 1;
4344
4345                         if (!(saved_efer & EFER_SVME))
4346                                 return 1;
4347
4348                         if (kvm_vcpu_map(&svm->vcpu,
4349                                          gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4350                                 return 1;
4351
4352                         if (svm_allocate_nested(svm))
4353                                 return 1;
4354
4355                         ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4356                         kvm_vcpu_unmap(&svm->vcpu, &map, true);
4357                 }
4358         }
4359
4360         return ret;
4361 }
4362
4363 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4364 {
4365         struct vcpu_svm *svm = to_svm(vcpu);
4366
4367         if (!gif_set(svm)) {
4368                 if (vgif_enabled(svm))
4369                         svm_set_intercept(svm, INTERCEPT_STGI);
4370                 /* STGI will cause a vm exit */
4371         } else {
4372                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4373         }
4374 }
4375
4376 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4377 {
4378         bool smep, smap, is_user;
4379         unsigned long cr4;
4380
4381         /*
4382          * When the guest is an SEV-ES guest, emulation is not possible.
4383          */
4384         if (sev_es_guest(vcpu->kvm))
4385                 return false;
4386
4387         /*
4388          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4389          *
4390          * Errata:
4391          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4392          * possible that CPU microcode implementing DecodeAssist will fail
4393          * to read bytes of instruction which caused #NPF. In this case,
4394          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4395          * return 0 instead of the correct guest instruction bytes.
4396          *
4397          * This happens because CPU microcode reading instruction bytes
4398          * uses a special opcode which attempts to read data using CPL=0
4399          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4400          * fault, it gives up and returns no instruction bytes.
4401          *
4402          * Detection:
4403          * We reach here in case CPU supports DecodeAssist, raised #NPF and
4404          * returned 0 in GuestIntrBytes field of the VMCB.
4405          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4406          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4407          * in case vCPU CPL==3 (Because otherwise guest would have triggered
4408          * a SMEP fault instead of #NPF).
4409          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4410          * As most guests enable SMAP if they have also enabled SMEP, use above
4411          * logic in order to attempt minimize false-positive of detecting errata
4412          * while still preserving all cases semantic correctness.
4413          *
4414          * Workaround:
4415          * To determine what instruction the guest was executing, the hypervisor
4416          * will have to decode the instruction at the instruction pointer.
4417          *
4418          * In non SEV guest, hypervisor will be able to read the guest
4419          * memory to decode the instruction pointer when insn_len is zero
4420          * so we return true to indicate that decoding is possible.
4421          *
4422          * But in the SEV guest, the guest memory is encrypted with the
4423          * guest specific key and hypervisor will not be able to decode the
4424          * instruction pointer so we will not able to workaround it. Lets
4425          * print the error and request to kill the guest.
4426          */
4427         if (likely(!insn || insn_len))
4428                 return true;
4429
4430         /*
4431          * If RIP is invalid, go ahead with emulation which will cause an
4432          * internal error exit.
4433          */
4434         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4435                 return true;
4436
4437         cr4 = kvm_read_cr4(vcpu);
4438         smep = cr4 & X86_CR4_SMEP;
4439         smap = cr4 & X86_CR4_SMAP;
4440         is_user = svm_get_cpl(vcpu) == 3;
4441         if (smap && (!smep || is_user)) {
4442                 if (!sev_guest(vcpu->kvm))
4443                         return true;
4444
4445                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4446                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4447         }
4448
4449         return false;
4450 }
4451
4452 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4453 {
4454         struct vcpu_svm *svm = to_svm(vcpu);
4455
4456         /*
4457          * TODO: Last condition latch INIT signals on vCPU when
4458          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4459          * To properly emulate the INIT intercept,
4460          * svm_check_nested_events() should call nested_svm_vmexit()
4461          * if an INIT signal is pending.
4462          */
4463         return !gif_set(svm) ||
4464                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4465 }
4466
4467 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4468 {
4469         if (!sev_es_guest(vcpu->kvm))
4470                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4471
4472         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4473 }
4474
4475 static void svm_vm_destroy(struct kvm *kvm)
4476 {
4477         avic_vm_destroy(kvm);
4478         sev_vm_destroy(kvm);
4479 }
4480
4481 static int svm_vm_init(struct kvm *kvm)
4482 {
4483         if (!pause_filter_count || !pause_filter_thresh)
4484                 kvm->arch.pause_in_guest = true;
4485
4486         if (avic) {
4487                 int ret = avic_vm_init(kvm);
4488                 if (ret)
4489                         return ret;
4490         }
4491
4492         kvm_apicv_init(kvm, avic);
4493         return 0;
4494 }
4495
4496 static struct kvm_x86_ops svm_x86_ops __initdata = {
4497         .hardware_unsetup = svm_hardware_teardown,
4498         .hardware_enable = svm_hardware_enable,
4499         .hardware_disable = svm_hardware_disable,
4500         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4501         .has_emulated_msr = svm_has_emulated_msr,
4502
4503         .vcpu_create = svm_create_vcpu,
4504         .vcpu_free = svm_free_vcpu,
4505         .vcpu_reset = svm_vcpu_reset,
4506
4507         .vm_size = sizeof(struct kvm_svm),
4508         .vm_init = svm_vm_init,
4509         .vm_destroy = svm_vm_destroy,
4510
4511         .prepare_guest_switch = svm_prepare_guest_switch,
4512         .vcpu_load = svm_vcpu_load,
4513         .vcpu_put = svm_vcpu_put,
4514         .vcpu_blocking = svm_vcpu_blocking,
4515         .vcpu_unblocking = svm_vcpu_unblocking,
4516
4517         .update_exception_bitmap = svm_update_exception_bitmap,
4518         .get_msr_feature = svm_get_msr_feature,
4519         .get_msr = svm_get_msr,
4520         .set_msr = svm_set_msr,
4521         .get_segment_base = svm_get_segment_base,
4522         .get_segment = svm_get_segment,
4523         .set_segment = svm_set_segment,
4524         .get_cpl = svm_get_cpl,
4525         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4526         .set_cr0 = svm_set_cr0,
4527         .is_valid_cr4 = svm_is_valid_cr4,
4528         .set_cr4 = svm_set_cr4,
4529         .set_efer = svm_set_efer,
4530         .get_idt = svm_get_idt,
4531         .set_idt = svm_set_idt,
4532         .get_gdt = svm_get_gdt,
4533         .set_gdt = svm_set_gdt,
4534         .set_dr7 = svm_set_dr7,
4535         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4536         .cache_reg = svm_cache_reg,
4537         .get_rflags = svm_get_rflags,
4538         .set_rflags = svm_set_rflags,
4539
4540         .tlb_flush_all = svm_flush_tlb,
4541         .tlb_flush_current = svm_flush_tlb,
4542         .tlb_flush_gva = svm_flush_tlb_gva,
4543         .tlb_flush_guest = svm_flush_tlb,
4544
4545         .run = svm_vcpu_run,
4546         .handle_exit = handle_exit,
4547         .skip_emulated_instruction = skip_emulated_instruction,
4548         .update_emulated_instruction = NULL,
4549         .set_interrupt_shadow = svm_set_interrupt_shadow,
4550         .get_interrupt_shadow = svm_get_interrupt_shadow,
4551         .patch_hypercall = svm_patch_hypercall,
4552         .set_irq = svm_set_irq,
4553         .set_nmi = svm_inject_nmi,
4554         .queue_exception = svm_queue_exception,
4555         .cancel_injection = svm_cancel_injection,
4556         .interrupt_allowed = svm_interrupt_allowed,
4557         .nmi_allowed = svm_nmi_allowed,
4558         .get_nmi_mask = svm_get_nmi_mask,
4559         .set_nmi_mask = svm_set_nmi_mask,
4560         .enable_nmi_window = svm_enable_nmi_window,
4561         .enable_irq_window = svm_enable_irq_window,
4562         .update_cr8_intercept = svm_update_cr8_intercept,
4563         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4564         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4565         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4566         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4567         .load_eoi_exitmap = svm_load_eoi_exitmap,
4568         .hwapic_irr_update = svm_hwapic_irr_update,
4569         .hwapic_isr_update = svm_hwapic_isr_update,
4570         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4571         .apicv_post_state_restore = avic_post_state_restore,
4572
4573         .set_tss_addr = svm_set_tss_addr,
4574         .set_identity_map_addr = svm_set_identity_map_addr,
4575         .get_mt_mask = svm_get_mt_mask,
4576
4577         .get_exit_info = svm_get_exit_info,
4578
4579         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4580
4581         .has_wbinvd_exit = svm_has_wbinvd_exit,
4582
4583         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4584
4585         .load_mmu_pgd = svm_load_mmu_pgd,
4586
4587         .check_intercept = svm_check_intercept,
4588         .handle_exit_irqoff = svm_handle_exit_irqoff,
4589
4590         .request_immediate_exit = __kvm_request_immediate_exit,
4591
4592         .sched_in = svm_sched_in,
4593
4594         .pmu_ops = &amd_pmu_ops,
4595         .nested_ops = &svm_nested_ops,
4596
4597         .deliver_posted_interrupt = svm_deliver_avic_intr,
4598         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4599         .update_pi_irte = svm_update_pi_irte,
4600         .setup_mce = svm_setup_mce,
4601
4602         .smi_allowed = svm_smi_allowed,
4603         .pre_enter_smm = svm_pre_enter_smm,
4604         .pre_leave_smm = svm_pre_leave_smm,
4605         .enable_smi_window = svm_enable_smi_window,
4606
4607         .mem_enc_op = svm_mem_enc_op,
4608         .mem_enc_reg_region = svm_register_enc_region,
4609         .mem_enc_unreg_region = svm_unregister_enc_region,
4610
4611         .can_emulate_instruction = svm_can_emulate_instruction,
4612
4613         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4614
4615         .msr_filter_changed = svm_msr_filter_changed,
4616         .complete_emulated_msr = svm_complete_emulated_msr,
4617
4618         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4619 };
4620
4621 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4622         .cpu_has_kvm_support = has_svm,
4623         .disabled_by_bios = is_disabled,
4624         .hardware_setup = svm_hardware_setup,
4625         .check_processor_compatibility = svm_check_processor_compat,
4626
4627         .runtime_ops = &svm_x86_ops,
4628 };
4629
4630 static int __init svm_init(void)
4631 {
4632         __unused_size_checks();
4633
4634         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4635                         __alignof__(struct vcpu_svm), THIS_MODULE);
4636 }
4637
4638 static void __exit svm_exit(void)
4639 {
4640         kvm_exit();
4641 }
4642
4643 module_init(svm_init)
4644 module_exit(svm_exit)