Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155  * Return values of handle_mmio_page_fault and mmu.page_fault:
156  * RET_PF_RETRY: let CPU fault again on the address.
157  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158  *
159  * For handle_mmio_page_fault only:
160  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161  */
162 enum {
163         RET_PF_RETRY = 0,
164         RET_PF_EMULATE = 1,
165         RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169         u64 *sptes[PTE_LIST_EXT];
170         struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174         u64 addr;
175         hpa_t shadow_addr;
176         u64 *sptep;
177         int level;
178         unsigned index;
179 };
180
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
182         .cr0_wp = 1,
183         .cr4_pae = 1,
184         .nxe = 1,
185         .smep_andnot_wp = 1,
186         .smap_andnot_wp = 1,
187         .smm = 1,
188         .guest_mode = 1,
189         .ad_disabled = 1,
190 };
191
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
193         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
194                                          (_root), (_addr));                \
195              shadow_walk_okay(&(_walker));                                 \
196              shadow_walk_next(&(_walker)))
197
198 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
200              shadow_walk_okay(&(_walker));                      \
201              shadow_walk_next(&(_walker)))
202
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
204         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
205              shadow_walk_okay(&(_walker)) &&                            \
206                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
207              __shadow_walk_next(&(_walker), spte))
208
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
212
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
222
223 /*
224  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225  * Non-present SPTEs with shadow_acc_track_value set are in place for access
226  * tracking.
227  */
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231 /*
232  * The mask/shift to use for saving the original R/X bits when marking the PTE
233  * as not-present for access tracking purposes. We do not save the W bit as the
234  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235  * restored only when a write is attempted to the page.
236  */
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238                                                     PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
241 /*
242  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243  * to guard against L1TF attacks.
244  */
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247 /*
248  * The number of high-order 1 bits to use in the mask above.
249  */
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
252 static void mmu_spte_set(u64 *sptep, u64 spte);
253 static union kvm_mmu_page_role
254 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
255
256 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
257 {
258         BUG_ON((mmio_mask & mmio_value) != mmio_value);
259         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
260         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
261 }
262 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
263
264 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
265 {
266         return sp->role.ad_disabled;
267 }
268
269 static inline bool spte_ad_enabled(u64 spte)
270 {
271         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
272         return !(spte & shadow_acc_track_value);
273 }
274
275 static inline u64 spte_shadow_accessed_mask(u64 spte)
276 {
277         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
278         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
279 }
280
281 static inline u64 spte_shadow_dirty_mask(u64 spte)
282 {
283         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
284         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
285 }
286
287 static inline bool is_access_track_spte(u64 spte)
288 {
289         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
290 }
291
292 /*
293  * the low bit of the generation number is always presumed to be zero.
294  * This disables mmio caching during memslot updates.  The concept is
295  * similar to a seqcount but instead of retrying the access we just punt
296  * and ignore the cache.
297  *
298  * spte bits 3-11 are used as bits 1-9 of the generation number,
299  * the bits 52-61 are used as bits 10-19 of the generation number.
300  */
301 #define MMIO_SPTE_GEN_LOW_SHIFT         2
302 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
303
304 #define MMIO_GEN_SHIFT                  20
305 #define MMIO_GEN_LOW_SHIFT              10
306 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
307 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
308
309 static u64 generation_mmio_spte_mask(unsigned int gen)
310 {
311         u64 mask;
312
313         WARN_ON(gen & ~MMIO_GEN_MASK);
314
315         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
316         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
317         return mask;
318 }
319
320 static unsigned int get_mmio_spte_generation(u64 spte)
321 {
322         unsigned int gen;
323
324         spte &= ~shadow_mmio_mask;
325
326         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
327         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
328         return gen;
329 }
330
331 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
332 {
333         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
334 }
335
336 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
337                            unsigned access)
338 {
339         unsigned int gen = kvm_current_mmio_generation(vcpu);
340         u64 mask = generation_mmio_spte_mask(gen);
341         u64 gpa = gfn << PAGE_SHIFT;
342
343         access &= ACC_WRITE_MASK | ACC_USER_MASK;
344         mask |= shadow_mmio_value | access;
345         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
346         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
347                 << shadow_nonpresent_or_rsvd_mask_len;
348
349         trace_mark_mmio_spte(sptep, gfn, access, gen);
350         mmu_spte_set(sptep, mask);
351 }
352
353 static bool is_mmio_spte(u64 spte)
354 {
355         return (spte & shadow_mmio_mask) == shadow_mmio_value;
356 }
357
358 static gfn_t get_mmio_spte_gfn(u64 spte)
359 {
360         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask |
361                    shadow_nonpresent_or_rsvd_mask;
362         u64 gpa = spte & ~mask;
363
364         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
365                & shadow_nonpresent_or_rsvd_mask;
366
367         return gpa >> PAGE_SHIFT;
368 }
369
370 static unsigned get_mmio_spte_access(u64 spte)
371 {
372         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
373         return (spte & ~mask) & ~PAGE_MASK;
374 }
375
376 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
377                           kvm_pfn_t pfn, unsigned access)
378 {
379         if (unlikely(is_noslot_pfn(pfn))) {
380                 mark_mmio_spte(vcpu, sptep, gfn, access);
381                 return true;
382         }
383
384         return false;
385 }
386
387 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
388 {
389         unsigned int kvm_gen, spte_gen;
390
391         kvm_gen = kvm_current_mmio_generation(vcpu);
392         spte_gen = get_mmio_spte_generation(spte);
393
394         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
395         return likely(kvm_gen == spte_gen);
396 }
397
398 /*
399  * Sets the shadow PTE masks used by the MMU.
400  *
401  * Assumptions:
402  *  - Setting either @accessed_mask or @dirty_mask requires setting both
403  *  - At least one of @accessed_mask or @acc_track_mask must be set
404  */
405 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
406                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
407                 u64 acc_track_mask, u64 me_mask)
408 {
409         BUG_ON(!dirty_mask != !accessed_mask);
410         BUG_ON(!accessed_mask && !acc_track_mask);
411         BUG_ON(acc_track_mask & shadow_acc_track_value);
412
413         shadow_user_mask = user_mask;
414         shadow_accessed_mask = accessed_mask;
415         shadow_dirty_mask = dirty_mask;
416         shadow_nx_mask = nx_mask;
417         shadow_x_mask = x_mask;
418         shadow_present_mask = p_mask;
419         shadow_acc_track_mask = acc_track_mask;
420         shadow_me_mask = me_mask;
421 }
422 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
423
424 static void kvm_mmu_reset_all_pte_masks(void)
425 {
426         shadow_user_mask = 0;
427         shadow_accessed_mask = 0;
428         shadow_dirty_mask = 0;
429         shadow_nx_mask = 0;
430         shadow_x_mask = 0;
431         shadow_mmio_mask = 0;
432         shadow_present_mask = 0;
433         shadow_acc_track_mask = 0;
434
435         /*
436          * If the CPU has 46 or less physical address bits, then set an
437          * appropriate mask to guard against L1TF attacks. Otherwise, it is
438          * assumed that the CPU is not vulnerable to L1TF.
439          */
440         if (boot_cpu_data.x86_phys_bits <
441             52 - shadow_nonpresent_or_rsvd_mask_len)
442                 shadow_nonpresent_or_rsvd_mask =
443                         rsvd_bits(boot_cpu_data.x86_phys_bits -
444                                   shadow_nonpresent_or_rsvd_mask_len,
445                                   boot_cpu_data.x86_phys_bits - 1);
446 }
447
448 static int is_cpuid_PSE36(void)
449 {
450         return 1;
451 }
452
453 static int is_nx(struct kvm_vcpu *vcpu)
454 {
455         return vcpu->arch.efer & EFER_NX;
456 }
457
458 static int is_shadow_present_pte(u64 pte)
459 {
460         return (pte != 0) && !is_mmio_spte(pte);
461 }
462
463 static int is_large_pte(u64 pte)
464 {
465         return pte & PT_PAGE_SIZE_MASK;
466 }
467
468 static int is_last_spte(u64 pte, int level)
469 {
470         if (level == PT_PAGE_TABLE_LEVEL)
471                 return 1;
472         if (is_large_pte(pte))
473                 return 1;
474         return 0;
475 }
476
477 static bool is_executable_pte(u64 spte)
478 {
479         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
480 }
481
482 static kvm_pfn_t spte_to_pfn(u64 pte)
483 {
484         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
485 }
486
487 static gfn_t pse36_gfn_delta(u32 gpte)
488 {
489         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
490
491         return (gpte & PT32_DIR_PSE36_MASK) << shift;
492 }
493
494 #ifdef CONFIG_X86_64
495 static void __set_spte(u64 *sptep, u64 spte)
496 {
497         WRITE_ONCE(*sptep, spte);
498 }
499
500 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
501 {
502         WRITE_ONCE(*sptep, spte);
503 }
504
505 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
506 {
507         return xchg(sptep, spte);
508 }
509
510 static u64 __get_spte_lockless(u64 *sptep)
511 {
512         return READ_ONCE(*sptep);
513 }
514 #else
515 union split_spte {
516         struct {
517                 u32 spte_low;
518                 u32 spte_high;
519         };
520         u64 spte;
521 };
522
523 static void count_spte_clear(u64 *sptep, u64 spte)
524 {
525         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
526
527         if (is_shadow_present_pte(spte))
528                 return;
529
530         /* Ensure the spte is completely set before we increase the count */
531         smp_wmb();
532         sp->clear_spte_count++;
533 }
534
535 static void __set_spte(u64 *sptep, u64 spte)
536 {
537         union split_spte *ssptep, sspte;
538
539         ssptep = (union split_spte *)sptep;
540         sspte = (union split_spte)spte;
541
542         ssptep->spte_high = sspte.spte_high;
543
544         /*
545          * If we map the spte from nonpresent to present, We should store
546          * the high bits firstly, then set present bit, so cpu can not
547          * fetch this spte while we are setting the spte.
548          */
549         smp_wmb();
550
551         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
552 }
553
554 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
555 {
556         union split_spte *ssptep, sspte;
557
558         ssptep = (union split_spte *)sptep;
559         sspte = (union split_spte)spte;
560
561         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
562
563         /*
564          * If we map the spte from present to nonpresent, we should clear
565          * present bit firstly to avoid vcpu fetch the old high bits.
566          */
567         smp_wmb();
568
569         ssptep->spte_high = sspte.spte_high;
570         count_spte_clear(sptep, spte);
571 }
572
573 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
574 {
575         union split_spte *ssptep, sspte, orig;
576
577         ssptep = (union split_spte *)sptep;
578         sspte = (union split_spte)spte;
579
580         /* xchg acts as a barrier before the setting of the high bits */
581         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
582         orig.spte_high = ssptep->spte_high;
583         ssptep->spte_high = sspte.spte_high;
584         count_spte_clear(sptep, spte);
585
586         return orig.spte;
587 }
588
589 /*
590  * The idea using the light way get the spte on x86_32 guest is from
591  * gup_get_pte(arch/x86/mm/gup.c).
592  *
593  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
594  * coalesces them and we are running out of the MMU lock.  Therefore
595  * we need to protect against in-progress updates of the spte.
596  *
597  * Reading the spte while an update is in progress may get the old value
598  * for the high part of the spte.  The race is fine for a present->non-present
599  * change (because the high part of the spte is ignored for non-present spte),
600  * but for a present->present change we must reread the spte.
601  *
602  * All such changes are done in two steps (present->non-present and
603  * non-present->present), hence it is enough to count the number of
604  * present->non-present updates: if it changed while reading the spte,
605  * we might have hit the race.  This is done using clear_spte_count.
606  */
607 static u64 __get_spte_lockless(u64 *sptep)
608 {
609         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
610         union split_spte spte, *orig = (union split_spte *)sptep;
611         int count;
612
613 retry:
614         count = sp->clear_spte_count;
615         smp_rmb();
616
617         spte.spte_low = orig->spte_low;
618         smp_rmb();
619
620         spte.spte_high = orig->spte_high;
621         smp_rmb();
622
623         if (unlikely(spte.spte_low != orig->spte_low ||
624               count != sp->clear_spte_count))
625                 goto retry;
626
627         return spte.spte;
628 }
629 #endif
630
631 static bool spte_can_locklessly_be_made_writable(u64 spte)
632 {
633         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
634                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
635 }
636
637 static bool spte_has_volatile_bits(u64 spte)
638 {
639         if (!is_shadow_present_pte(spte))
640                 return false;
641
642         /*
643          * Always atomically update spte if it can be updated
644          * out of mmu-lock, it can ensure dirty bit is not lost,
645          * also, it can help us to get a stable is_writable_pte()
646          * to ensure tlb flush is not missed.
647          */
648         if (spte_can_locklessly_be_made_writable(spte) ||
649             is_access_track_spte(spte))
650                 return true;
651
652         if (spte_ad_enabled(spte)) {
653                 if ((spte & shadow_accessed_mask) == 0 ||
654                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
655                         return true;
656         }
657
658         return false;
659 }
660
661 static bool is_accessed_spte(u64 spte)
662 {
663         u64 accessed_mask = spte_shadow_accessed_mask(spte);
664
665         return accessed_mask ? spte & accessed_mask
666                              : !is_access_track_spte(spte);
667 }
668
669 static bool is_dirty_spte(u64 spte)
670 {
671         u64 dirty_mask = spte_shadow_dirty_mask(spte);
672
673         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
674 }
675
676 /* Rules for using mmu_spte_set:
677  * Set the sptep from nonpresent to present.
678  * Note: the sptep being assigned *must* be either not present
679  * or in a state where the hardware will not attempt to update
680  * the spte.
681  */
682 static void mmu_spte_set(u64 *sptep, u64 new_spte)
683 {
684         WARN_ON(is_shadow_present_pte(*sptep));
685         __set_spte(sptep, new_spte);
686 }
687
688 /*
689  * Update the SPTE (excluding the PFN), but do not track changes in its
690  * accessed/dirty status.
691  */
692 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
693 {
694         u64 old_spte = *sptep;
695
696         WARN_ON(!is_shadow_present_pte(new_spte));
697
698         if (!is_shadow_present_pte(old_spte)) {
699                 mmu_spte_set(sptep, new_spte);
700                 return old_spte;
701         }
702
703         if (!spte_has_volatile_bits(old_spte))
704                 __update_clear_spte_fast(sptep, new_spte);
705         else
706                 old_spte = __update_clear_spte_slow(sptep, new_spte);
707
708         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
709
710         return old_spte;
711 }
712
713 /* Rules for using mmu_spte_update:
714  * Update the state bits, it means the mapped pfn is not changed.
715  *
716  * Whenever we overwrite a writable spte with a read-only one we
717  * should flush remote TLBs. Otherwise rmap_write_protect
718  * will find a read-only spte, even though the writable spte
719  * might be cached on a CPU's TLB, the return value indicates this
720  * case.
721  *
722  * Returns true if the TLB needs to be flushed
723  */
724 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
725 {
726         bool flush = false;
727         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
728
729         if (!is_shadow_present_pte(old_spte))
730                 return false;
731
732         /*
733          * For the spte updated out of mmu-lock is safe, since
734          * we always atomically update it, see the comments in
735          * spte_has_volatile_bits().
736          */
737         if (spte_can_locklessly_be_made_writable(old_spte) &&
738               !is_writable_pte(new_spte))
739                 flush = true;
740
741         /*
742          * Flush TLB when accessed/dirty states are changed in the page tables,
743          * to guarantee consistency between TLB and page tables.
744          */
745
746         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
747                 flush = true;
748                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
749         }
750
751         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
752                 flush = true;
753                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
754         }
755
756         return flush;
757 }
758
759 /*
760  * Rules for using mmu_spte_clear_track_bits:
761  * It sets the sptep from present to nonpresent, and track the
762  * state bits, it is used to clear the last level sptep.
763  * Returns non-zero if the PTE was previously valid.
764  */
765 static int mmu_spte_clear_track_bits(u64 *sptep)
766 {
767         kvm_pfn_t pfn;
768         u64 old_spte = *sptep;
769
770         if (!spte_has_volatile_bits(old_spte))
771                 __update_clear_spte_fast(sptep, 0ull);
772         else
773                 old_spte = __update_clear_spte_slow(sptep, 0ull);
774
775         if (!is_shadow_present_pte(old_spte))
776                 return 0;
777
778         pfn = spte_to_pfn(old_spte);
779
780         /*
781          * KVM does not hold the refcount of the page used by
782          * kvm mmu, before reclaiming the page, we should
783          * unmap it from mmu first.
784          */
785         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
786
787         if (is_accessed_spte(old_spte))
788                 kvm_set_pfn_accessed(pfn);
789
790         if (is_dirty_spte(old_spte))
791                 kvm_set_pfn_dirty(pfn);
792
793         return 1;
794 }
795
796 /*
797  * Rules for using mmu_spte_clear_no_track:
798  * Directly clear spte without caring the state bits of sptep,
799  * it is used to set the upper level spte.
800  */
801 static void mmu_spte_clear_no_track(u64 *sptep)
802 {
803         __update_clear_spte_fast(sptep, 0ull);
804 }
805
806 static u64 mmu_spte_get_lockless(u64 *sptep)
807 {
808         return __get_spte_lockless(sptep);
809 }
810
811 static u64 mark_spte_for_access_track(u64 spte)
812 {
813         if (spte_ad_enabled(spte))
814                 return spte & ~shadow_accessed_mask;
815
816         if (is_access_track_spte(spte))
817                 return spte;
818
819         /*
820          * Making an Access Tracking PTE will result in removal of write access
821          * from the PTE. So, verify that we will be able to restore the write
822          * access in the fast page fault path later on.
823          */
824         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
825                   !spte_can_locklessly_be_made_writable(spte),
826                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
827
828         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
829                           shadow_acc_track_saved_bits_shift),
830                   "kvm: Access Tracking saved bit locations are not zero\n");
831
832         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
833                 shadow_acc_track_saved_bits_shift;
834         spte &= ~shadow_acc_track_mask;
835
836         return spte;
837 }
838
839 /* Restore an acc-track PTE back to a regular PTE */
840 static u64 restore_acc_track_spte(u64 spte)
841 {
842         u64 new_spte = spte;
843         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
844                          & shadow_acc_track_saved_bits_mask;
845
846         WARN_ON_ONCE(spte_ad_enabled(spte));
847         WARN_ON_ONCE(!is_access_track_spte(spte));
848
849         new_spte &= ~shadow_acc_track_mask;
850         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
851                       shadow_acc_track_saved_bits_shift);
852         new_spte |= saved_bits;
853
854         return new_spte;
855 }
856
857 /* Returns the Accessed status of the PTE and resets it at the same time. */
858 static bool mmu_spte_age(u64 *sptep)
859 {
860         u64 spte = mmu_spte_get_lockless(sptep);
861
862         if (!is_accessed_spte(spte))
863                 return false;
864
865         if (spte_ad_enabled(spte)) {
866                 clear_bit((ffs(shadow_accessed_mask) - 1),
867                           (unsigned long *)sptep);
868         } else {
869                 /*
870                  * Capture the dirty status of the page, so that it doesn't get
871                  * lost when the SPTE is marked for access tracking.
872                  */
873                 if (is_writable_pte(spte))
874                         kvm_set_pfn_dirty(spte_to_pfn(spte));
875
876                 spte = mark_spte_for_access_track(spte);
877                 mmu_spte_update_no_track(sptep, spte);
878         }
879
880         return true;
881 }
882
883 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
884 {
885         /*
886          * Prevent page table teardown by making any free-er wait during
887          * kvm_flush_remote_tlbs() IPI to all active vcpus.
888          */
889         local_irq_disable();
890
891         /*
892          * Make sure a following spte read is not reordered ahead of the write
893          * to vcpu->mode.
894          */
895         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
896 }
897
898 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
899 {
900         /*
901          * Make sure the write to vcpu->mode is not reordered in front of
902          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
903          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
904          */
905         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
906         local_irq_enable();
907 }
908
909 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
910                                   struct kmem_cache *base_cache, int min)
911 {
912         void *obj;
913
914         if (cache->nobjs >= min)
915                 return 0;
916         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
917                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
918                 if (!obj)
919                         return -ENOMEM;
920                 cache->objects[cache->nobjs++] = obj;
921         }
922         return 0;
923 }
924
925 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
926 {
927         return cache->nobjs;
928 }
929
930 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
931                                   struct kmem_cache *cache)
932 {
933         while (mc->nobjs)
934                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
935 }
936
937 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
938                                        int min)
939 {
940         void *page;
941
942         if (cache->nobjs >= min)
943                 return 0;
944         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
945                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
946                 if (!page)
947                         return -ENOMEM;
948                 cache->objects[cache->nobjs++] = page;
949         }
950         return 0;
951 }
952
953 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
954 {
955         while (mc->nobjs)
956                 free_page((unsigned long)mc->objects[--mc->nobjs]);
957 }
958
959 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
960 {
961         int r;
962
963         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
964                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
965         if (r)
966                 goto out;
967         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
968         if (r)
969                 goto out;
970         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
971                                    mmu_page_header_cache, 4);
972 out:
973         return r;
974 }
975
976 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
977 {
978         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
979                                 pte_list_desc_cache);
980         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
981         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
982                                 mmu_page_header_cache);
983 }
984
985 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
986 {
987         void *p;
988
989         BUG_ON(!mc->nobjs);
990         p = mc->objects[--mc->nobjs];
991         return p;
992 }
993
994 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
995 {
996         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
997 }
998
999 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1000 {
1001         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1002 }
1003
1004 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1005 {
1006         if (!sp->role.direct)
1007                 return sp->gfns[index];
1008
1009         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1010 }
1011
1012 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1013 {
1014         if (sp->role.direct)
1015                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1016         else
1017                 sp->gfns[index] = gfn;
1018 }
1019
1020 /*
1021  * Return the pointer to the large page information for a given gfn,
1022  * handling slots that are not large page aligned.
1023  */
1024 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1025                                               struct kvm_memory_slot *slot,
1026                                               int level)
1027 {
1028         unsigned long idx;
1029
1030         idx = gfn_to_index(gfn, slot->base_gfn, level);
1031         return &slot->arch.lpage_info[level - 2][idx];
1032 }
1033
1034 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1035                                             gfn_t gfn, int count)
1036 {
1037         struct kvm_lpage_info *linfo;
1038         int i;
1039
1040         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1041                 linfo = lpage_info_slot(gfn, slot, i);
1042                 linfo->disallow_lpage += count;
1043                 WARN_ON(linfo->disallow_lpage < 0);
1044         }
1045 }
1046
1047 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1048 {
1049         update_gfn_disallow_lpage_count(slot, gfn, 1);
1050 }
1051
1052 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1053 {
1054         update_gfn_disallow_lpage_count(slot, gfn, -1);
1055 }
1056
1057 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1058 {
1059         struct kvm_memslots *slots;
1060         struct kvm_memory_slot *slot;
1061         gfn_t gfn;
1062
1063         kvm->arch.indirect_shadow_pages++;
1064         gfn = sp->gfn;
1065         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1066         slot = __gfn_to_memslot(slots, gfn);
1067
1068         /* the non-leaf shadow pages are keeping readonly. */
1069         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1070                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1071                                                     KVM_PAGE_TRACK_WRITE);
1072
1073         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1074 }
1075
1076 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1077 {
1078         struct kvm_memslots *slots;
1079         struct kvm_memory_slot *slot;
1080         gfn_t gfn;
1081
1082         kvm->arch.indirect_shadow_pages--;
1083         gfn = sp->gfn;
1084         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1085         slot = __gfn_to_memslot(slots, gfn);
1086         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1087                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1088                                                        KVM_PAGE_TRACK_WRITE);
1089
1090         kvm_mmu_gfn_allow_lpage(slot, gfn);
1091 }
1092
1093 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1094                                           struct kvm_memory_slot *slot)
1095 {
1096         struct kvm_lpage_info *linfo;
1097
1098         if (slot) {
1099                 linfo = lpage_info_slot(gfn, slot, level);
1100                 return !!linfo->disallow_lpage;
1101         }
1102
1103         return true;
1104 }
1105
1106 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1107                                         int level)
1108 {
1109         struct kvm_memory_slot *slot;
1110
1111         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1112         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1113 }
1114
1115 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1116 {
1117         unsigned long page_size;
1118         int i, ret = 0;
1119
1120         page_size = kvm_host_page_size(kvm, gfn);
1121
1122         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1123                 if (page_size >= KVM_HPAGE_SIZE(i))
1124                         ret = i;
1125                 else
1126                         break;
1127         }
1128
1129         return ret;
1130 }
1131
1132 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1133                                           bool no_dirty_log)
1134 {
1135         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1136                 return false;
1137         if (no_dirty_log && slot->dirty_bitmap)
1138                 return false;
1139
1140         return true;
1141 }
1142
1143 static struct kvm_memory_slot *
1144 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1145                             bool no_dirty_log)
1146 {
1147         struct kvm_memory_slot *slot;
1148
1149         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1150         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1151                 slot = NULL;
1152
1153         return slot;
1154 }
1155
1156 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1157                          bool *force_pt_level)
1158 {
1159         int host_level, level, max_level;
1160         struct kvm_memory_slot *slot;
1161
1162         if (unlikely(*force_pt_level))
1163                 return PT_PAGE_TABLE_LEVEL;
1164
1165         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1166         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1167         if (unlikely(*force_pt_level))
1168                 return PT_PAGE_TABLE_LEVEL;
1169
1170         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1171
1172         if (host_level == PT_PAGE_TABLE_LEVEL)
1173                 return host_level;
1174
1175         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1176
1177         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1178                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1179                         break;
1180
1181         return level - 1;
1182 }
1183
1184 /*
1185  * About rmap_head encoding:
1186  *
1187  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1188  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1189  * pte_list_desc containing more mappings.
1190  */
1191
1192 /*
1193  * Returns the number of pointers in the rmap chain, not counting the new one.
1194  */
1195 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1196                         struct kvm_rmap_head *rmap_head)
1197 {
1198         struct pte_list_desc *desc;
1199         int i, count = 0;
1200
1201         if (!rmap_head->val) {
1202                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1203                 rmap_head->val = (unsigned long)spte;
1204         } else if (!(rmap_head->val & 1)) {
1205                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1206                 desc = mmu_alloc_pte_list_desc(vcpu);
1207                 desc->sptes[0] = (u64 *)rmap_head->val;
1208                 desc->sptes[1] = spte;
1209                 rmap_head->val = (unsigned long)desc | 1;
1210                 ++count;
1211         } else {
1212                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1213                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1214                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1215                         desc = desc->more;
1216                         count += PTE_LIST_EXT;
1217                 }
1218                 if (desc->sptes[PTE_LIST_EXT-1]) {
1219                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1220                         desc = desc->more;
1221                 }
1222                 for (i = 0; desc->sptes[i]; ++i)
1223                         ++count;
1224                 desc->sptes[i] = spte;
1225         }
1226         return count;
1227 }
1228
1229 static void
1230 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1231                            struct pte_list_desc *desc, int i,
1232                            struct pte_list_desc *prev_desc)
1233 {
1234         int j;
1235
1236         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1237                 ;
1238         desc->sptes[i] = desc->sptes[j];
1239         desc->sptes[j] = NULL;
1240         if (j != 0)
1241                 return;
1242         if (!prev_desc && !desc->more)
1243                 rmap_head->val = (unsigned long)desc->sptes[0];
1244         else
1245                 if (prev_desc)
1246                         prev_desc->more = desc->more;
1247                 else
1248                         rmap_head->val = (unsigned long)desc->more | 1;
1249         mmu_free_pte_list_desc(desc);
1250 }
1251
1252 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1253 {
1254         struct pte_list_desc *desc;
1255         struct pte_list_desc *prev_desc;
1256         int i;
1257
1258         if (!rmap_head->val) {
1259                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1260                 BUG();
1261         } else if (!(rmap_head->val & 1)) {
1262                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1263                 if ((u64 *)rmap_head->val != spte) {
1264                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1265                         BUG();
1266                 }
1267                 rmap_head->val = 0;
1268         } else {
1269                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1270                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1271                 prev_desc = NULL;
1272                 while (desc) {
1273                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1274                                 if (desc->sptes[i] == spte) {
1275                                         pte_list_desc_remove_entry(rmap_head,
1276                                                         desc, i, prev_desc);
1277                                         return;
1278                                 }
1279                         }
1280                         prev_desc = desc;
1281                         desc = desc->more;
1282                 }
1283                 pr_err("pte_list_remove: %p many->many\n", spte);
1284                 BUG();
1285         }
1286 }
1287
1288 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1289                                            struct kvm_memory_slot *slot)
1290 {
1291         unsigned long idx;
1292
1293         idx = gfn_to_index(gfn, slot->base_gfn, level);
1294         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1295 }
1296
1297 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1298                                          struct kvm_mmu_page *sp)
1299 {
1300         struct kvm_memslots *slots;
1301         struct kvm_memory_slot *slot;
1302
1303         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1304         slot = __gfn_to_memslot(slots, gfn);
1305         return __gfn_to_rmap(gfn, sp->role.level, slot);
1306 }
1307
1308 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1309 {
1310         struct kvm_mmu_memory_cache *cache;
1311
1312         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1313         return mmu_memory_cache_free_objects(cache);
1314 }
1315
1316 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1317 {
1318         struct kvm_mmu_page *sp;
1319         struct kvm_rmap_head *rmap_head;
1320
1321         sp = page_header(__pa(spte));
1322         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1323         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1324         return pte_list_add(vcpu, spte, rmap_head);
1325 }
1326
1327 static void rmap_remove(struct kvm *kvm, u64 *spte)
1328 {
1329         struct kvm_mmu_page *sp;
1330         gfn_t gfn;
1331         struct kvm_rmap_head *rmap_head;
1332
1333         sp = page_header(__pa(spte));
1334         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1335         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1336         pte_list_remove(spte, rmap_head);
1337 }
1338
1339 /*
1340  * Used by the following functions to iterate through the sptes linked by a
1341  * rmap.  All fields are private and not assumed to be used outside.
1342  */
1343 struct rmap_iterator {
1344         /* private fields */
1345         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1346         int pos;                        /* index of the sptep */
1347 };
1348
1349 /*
1350  * Iteration must be started by this function.  This should also be used after
1351  * removing/dropping sptes from the rmap link because in such cases the
1352  * information in the itererator may not be valid.
1353  *
1354  * Returns sptep if found, NULL otherwise.
1355  */
1356 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1357                            struct rmap_iterator *iter)
1358 {
1359         u64 *sptep;
1360
1361         if (!rmap_head->val)
1362                 return NULL;
1363
1364         if (!(rmap_head->val & 1)) {
1365                 iter->desc = NULL;
1366                 sptep = (u64 *)rmap_head->val;
1367                 goto out;
1368         }
1369
1370         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1371         iter->pos = 0;
1372         sptep = iter->desc->sptes[iter->pos];
1373 out:
1374         BUG_ON(!is_shadow_present_pte(*sptep));
1375         return sptep;
1376 }
1377
1378 /*
1379  * Must be used with a valid iterator: e.g. after rmap_get_first().
1380  *
1381  * Returns sptep if found, NULL otherwise.
1382  */
1383 static u64 *rmap_get_next(struct rmap_iterator *iter)
1384 {
1385         u64 *sptep;
1386
1387         if (iter->desc) {
1388                 if (iter->pos < PTE_LIST_EXT - 1) {
1389                         ++iter->pos;
1390                         sptep = iter->desc->sptes[iter->pos];
1391                         if (sptep)
1392                                 goto out;
1393                 }
1394
1395                 iter->desc = iter->desc->more;
1396
1397                 if (iter->desc) {
1398                         iter->pos = 0;
1399                         /* desc->sptes[0] cannot be NULL */
1400                         sptep = iter->desc->sptes[iter->pos];
1401                         goto out;
1402                 }
1403         }
1404
1405         return NULL;
1406 out:
1407         BUG_ON(!is_shadow_present_pte(*sptep));
1408         return sptep;
1409 }
1410
1411 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1412         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1413              _spte_; _spte_ = rmap_get_next(_iter_))
1414
1415 static void drop_spte(struct kvm *kvm, u64 *sptep)
1416 {
1417         if (mmu_spte_clear_track_bits(sptep))
1418                 rmap_remove(kvm, sptep);
1419 }
1420
1421
1422 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1423 {
1424         if (is_large_pte(*sptep)) {
1425                 WARN_ON(page_header(__pa(sptep))->role.level ==
1426                         PT_PAGE_TABLE_LEVEL);
1427                 drop_spte(kvm, sptep);
1428                 --kvm->stat.lpages;
1429                 return true;
1430         }
1431
1432         return false;
1433 }
1434
1435 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1436 {
1437         if (__drop_large_spte(vcpu->kvm, sptep))
1438                 kvm_flush_remote_tlbs(vcpu->kvm);
1439 }
1440
1441 /*
1442  * Write-protect on the specified @sptep, @pt_protect indicates whether
1443  * spte write-protection is caused by protecting shadow page table.
1444  *
1445  * Note: write protection is difference between dirty logging and spte
1446  * protection:
1447  * - for dirty logging, the spte can be set to writable at anytime if
1448  *   its dirty bitmap is properly set.
1449  * - for spte protection, the spte can be writable only after unsync-ing
1450  *   shadow page.
1451  *
1452  * Return true if tlb need be flushed.
1453  */
1454 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1455 {
1456         u64 spte = *sptep;
1457
1458         if (!is_writable_pte(spte) &&
1459               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1460                 return false;
1461
1462         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1463
1464         if (pt_protect)
1465                 spte &= ~SPTE_MMU_WRITEABLE;
1466         spte = spte & ~PT_WRITABLE_MASK;
1467
1468         return mmu_spte_update(sptep, spte);
1469 }
1470
1471 static bool __rmap_write_protect(struct kvm *kvm,
1472                                  struct kvm_rmap_head *rmap_head,
1473                                  bool pt_protect)
1474 {
1475         u64 *sptep;
1476         struct rmap_iterator iter;
1477         bool flush = false;
1478
1479         for_each_rmap_spte(rmap_head, &iter, sptep)
1480                 flush |= spte_write_protect(sptep, pt_protect);
1481
1482         return flush;
1483 }
1484
1485 static bool spte_clear_dirty(u64 *sptep)
1486 {
1487         u64 spte = *sptep;
1488
1489         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1490
1491         spte &= ~shadow_dirty_mask;
1492
1493         return mmu_spte_update(sptep, spte);
1494 }
1495
1496 static bool wrprot_ad_disabled_spte(u64 *sptep)
1497 {
1498         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1499                                                (unsigned long *)sptep);
1500         if (was_writable)
1501                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1502
1503         return was_writable;
1504 }
1505
1506 /*
1507  * Gets the GFN ready for another round of dirty logging by clearing the
1508  *      - D bit on ad-enabled SPTEs, and
1509  *      - W bit on ad-disabled SPTEs.
1510  * Returns true iff any D or W bits were cleared.
1511  */
1512 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1513 {
1514         u64 *sptep;
1515         struct rmap_iterator iter;
1516         bool flush = false;
1517
1518         for_each_rmap_spte(rmap_head, &iter, sptep)
1519                 if (spte_ad_enabled(*sptep))
1520                         flush |= spte_clear_dirty(sptep);
1521                 else
1522                         flush |= wrprot_ad_disabled_spte(sptep);
1523
1524         return flush;
1525 }
1526
1527 static bool spte_set_dirty(u64 *sptep)
1528 {
1529         u64 spte = *sptep;
1530
1531         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1532
1533         spte |= shadow_dirty_mask;
1534
1535         return mmu_spte_update(sptep, spte);
1536 }
1537
1538 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1539 {
1540         u64 *sptep;
1541         struct rmap_iterator iter;
1542         bool flush = false;
1543
1544         for_each_rmap_spte(rmap_head, &iter, sptep)
1545                 if (spte_ad_enabled(*sptep))
1546                         flush |= spte_set_dirty(sptep);
1547
1548         return flush;
1549 }
1550
1551 /**
1552  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1553  * @kvm: kvm instance
1554  * @slot: slot to protect
1555  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1556  * @mask: indicates which pages we should protect
1557  *
1558  * Used when we do not need to care about huge page mappings: e.g. during dirty
1559  * logging we do not have any such mappings.
1560  */
1561 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1562                                      struct kvm_memory_slot *slot,
1563                                      gfn_t gfn_offset, unsigned long mask)
1564 {
1565         struct kvm_rmap_head *rmap_head;
1566
1567         while (mask) {
1568                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1569                                           PT_PAGE_TABLE_LEVEL, slot);
1570                 __rmap_write_protect(kvm, rmap_head, false);
1571
1572                 /* clear the first set bit */
1573                 mask &= mask - 1;
1574         }
1575 }
1576
1577 /**
1578  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1579  * protect the page if the D-bit isn't supported.
1580  * @kvm: kvm instance
1581  * @slot: slot to clear D-bit
1582  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1583  * @mask: indicates which pages we should clear D-bit
1584  *
1585  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1586  */
1587 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1588                                      struct kvm_memory_slot *slot,
1589                                      gfn_t gfn_offset, unsigned long mask)
1590 {
1591         struct kvm_rmap_head *rmap_head;
1592
1593         while (mask) {
1594                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1595                                           PT_PAGE_TABLE_LEVEL, slot);
1596                 __rmap_clear_dirty(kvm, rmap_head);
1597
1598                 /* clear the first set bit */
1599                 mask &= mask - 1;
1600         }
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1603
1604 /**
1605  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1606  * PT level pages.
1607  *
1608  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1609  * enable dirty logging for them.
1610  *
1611  * Used when we do not need to care about huge page mappings: e.g. during dirty
1612  * logging we do not have any such mappings.
1613  */
1614 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1615                                 struct kvm_memory_slot *slot,
1616                                 gfn_t gfn_offset, unsigned long mask)
1617 {
1618         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1619                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1620                                 mask);
1621         else
1622                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1623 }
1624
1625 /**
1626  * kvm_arch_write_log_dirty - emulate dirty page logging
1627  * @vcpu: Guest mode vcpu
1628  *
1629  * Emulate arch specific page modification logging for the
1630  * nested hypervisor
1631  */
1632 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1633 {
1634         if (kvm_x86_ops->write_log_dirty)
1635                 return kvm_x86_ops->write_log_dirty(vcpu);
1636
1637         return 0;
1638 }
1639
1640 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1641                                     struct kvm_memory_slot *slot, u64 gfn)
1642 {
1643         struct kvm_rmap_head *rmap_head;
1644         int i;
1645         bool write_protected = false;
1646
1647         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1648                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1649                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1650         }
1651
1652         return write_protected;
1653 }
1654
1655 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1656 {
1657         struct kvm_memory_slot *slot;
1658
1659         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1660         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1661 }
1662
1663 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1664 {
1665         u64 *sptep;
1666         struct rmap_iterator iter;
1667         bool flush = false;
1668
1669         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1670                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1671
1672                 drop_spte(kvm, sptep);
1673                 flush = true;
1674         }
1675
1676         return flush;
1677 }
1678
1679 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1680                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1681                            unsigned long data)
1682 {
1683         return kvm_zap_rmapp(kvm, rmap_head);
1684 }
1685
1686 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1687                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1688                              unsigned long data)
1689 {
1690         u64 *sptep;
1691         struct rmap_iterator iter;
1692         int need_flush = 0;
1693         u64 new_spte;
1694         pte_t *ptep = (pte_t *)data;
1695         kvm_pfn_t new_pfn;
1696
1697         WARN_ON(pte_huge(*ptep));
1698         new_pfn = pte_pfn(*ptep);
1699
1700 restart:
1701         for_each_rmap_spte(rmap_head, &iter, sptep) {
1702                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1703                             sptep, *sptep, gfn, level);
1704
1705                 need_flush = 1;
1706
1707                 if (pte_write(*ptep)) {
1708                         drop_spte(kvm, sptep);
1709                         goto restart;
1710                 } else {
1711                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1712                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1713
1714                         new_spte &= ~PT_WRITABLE_MASK;
1715                         new_spte &= ~SPTE_HOST_WRITEABLE;
1716
1717                         new_spte = mark_spte_for_access_track(new_spte);
1718
1719                         mmu_spte_clear_track_bits(sptep);
1720                         mmu_spte_set(sptep, new_spte);
1721                 }
1722         }
1723
1724         if (need_flush)
1725                 kvm_flush_remote_tlbs(kvm);
1726
1727         return 0;
1728 }
1729
1730 struct slot_rmap_walk_iterator {
1731         /* input fields. */
1732         struct kvm_memory_slot *slot;
1733         gfn_t start_gfn;
1734         gfn_t end_gfn;
1735         int start_level;
1736         int end_level;
1737
1738         /* output fields. */
1739         gfn_t gfn;
1740         struct kvm_rmap_head *rmap;
1741         int level;
1742
1743         /* private field. */
1744         struct kvm_rmap_head *end_rmap;
1745 };
1746
1747 static void
1748 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1749 {
1750         iterator->level = level;
1751         iterator->gfn = iterator->start_gfn;
1752         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1753         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1754                                            iterator->slot);
1755 }
1756
1757 static void
1758 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1759                     struct kvm_memory_slot *slot, int start_level,
1760                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1761 {
1762         iterator->slot = slot;
1763         iterator->start_level = start_level;
1764         iterator->end_level = end_level;
1765         iterator->start_gfn = start_gfn;
1766         iterator->end_gfn = end_gfn;
1767
1768         rmap_walk_init_level(iterator, iterator->start_level);
1769 }
1770
1771 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1772 {
1773         return !!iterator->rmap;
1774 }
1775
1776 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1777 {
1778         if (++iterator->rmap <= iterator->end_rmap) {
1779                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1780                 return;
1781         }
1782
1783         if (++iterator->level > iterator->end_level) {
1784                 iterator->rmap = NULL;
1785                 return;
1786         }
1787
1788         rmap_walk_init_level(iterator, iterator->level);
1789 }
1790
1791 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1792            _start_gfn, _end_gfn, _iter_)                                \
1793         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1794                                  _end_level_, _start_gfn, _end_gfn);    \
1795              slot_rmap_walk_okay(_iter_);                               \
1796              slot_rmap_walk_next(_iter_))
1797
1798 static int kvm_handle_hva_range(struct kvm *kvm,
1799                                 unsigned long start,
1800                                 unsigned long end,
1801                                 unsigned long data,
1802                                 int (*handler)(struct kvm *kvm,
1803                                                struct kvm_rmap_head *rmap_head,
1804                                                struct kvm_memory_slot *slot,
1805                                                gfn_t gfn,
1806                                                int level,
1807                                                unsigned long data))
1808 {
1809         struct kvm_memslots *slots;
1810         struct kvm_memory_slot *memslot;
1811         struct slot_rmap_walk_iterator iterator;
1812         int ret = 0;
1813         int i;
1814
1815         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1816                 slots = __kvm_memslots(kvm, i);
1817                 kvm_for_each_memslot(memslot, slots) {
1818                         unsigned long hva_start, hva_end;
1819                         gfn_t gfn_start, gfn_end;
1820
1821                         hva_start = max(start, memslot->userspace_addr);
1822                         hva_end = min(end, memslot->userspace_addr +
1823                                       (memslot->npages << PAGE_SHIFT));
1824                         if (hva_start >= hva_end)
1825                                 continue;
1826                         /*
1827                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1828                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1829                          */
1830                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1831                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1832
1833                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1834                                                  PT_MAX_HUGEPAGE_LEVEL,
1835                                                  gfn_start, gfn_end - 1,
1836                                                  &iterator)
1837                                 ret |= handler(kvm, iterator.rmap, memslot,
1838                                                iterator.gfn, iterator.level, data);
1839                 }
1840         }
1841
1842         return ret;
1843 }
1844
1845 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1846                           unsigned long data,
1847                           int (*handler)(struct kvm *kvm,
1848                                          struct kvm_rmap_head *rmap_head,
1849                                          struct kvm_memory_slot *slot,
1850                                          gfn_t gfn, int level,
1851                                          unsigned long data))
1852 {
1853         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1854 }
1855
1856 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1857 {
1858         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1859 }
1860
1861 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1862 {
1863         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1864 }
1865
1866 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1867 {
1868         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1869 }
1870
1871 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1872                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1873                          unsigned long data)
1874 {
1875         u64 *sptep;
1876         struct rmap_iterator uninitialized_var(iter);
1877         int young = 0;
1878
1879         for_each_rmap_spte(rmap_head, &iter, sptep)
1880                 young |= mmu_spte_age(sptep);
1881
1882         trace_kvm_age_page(gfn, level, slot, young);
1883         return young;
1884 }
1885
1886 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1887                               struct kvm_memory_slot *slot, gfn_t gfn,
1888                               int level, unsigned long data)
1889 {
1890         u64 *sptep;
1891         struct rmap_iterator iter;
1892
1893         for_each_rmap_spte(rmap_head, &iter, sptep)
1894                 if (is_accessed_spte(*sptep))
1895                         return 1;
1896         return 0;
1897 }
1898
1899 #define RMAP_RECYCLE_THRESHOLD 1000
1900
1901 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1902 {
1903         struct kvm_rmap_head *rmap_head;
1904         struct kvm_mmu_page *sp;
1905
1906         sp = page_header(__pa(spte));
1907
1908         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1909
1910         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1911         kvm_flush_remote_tlbs(vcpu->kvm);
1912 }
1913
1914 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1915 {
1916         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1917 }
1918
1919 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1920 {
1921         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1922 }
1923
1924 #ifdef MMU_DEBUG
1925 static int is_empty_shadow_page(u64 *spt)
1926 {
1927         u64 *pos;
1928         u64 *end;
1929
1930         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1931                 if (is_shadow_present_pte(*pos)) {
1932                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1933                                pos, *pos);
1934                         return 0;
1935                 }
1936         return 1;
1937 }
1938 #endif
1939
1940 /*
1941  * This value is the sum of all of the kvm instances's
1942  * kvm->arch.n_used_mmu_pages values.  We need a global,
1943  * aggregate version in order to make the slab shrinker
1944  * faster
1945  */
1946 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1947 {
1948         kvm->arch.n_used_mmu_pages += nr;
1949         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1950 }
1951
1952 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1953 {
1954         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1955         hlist_del(&sp->hash_link);
1956         list_del(&sp->link);
1957         free_page((unsigned long)sp->spt);
1958         if (!sp->role.direct)
1959                 free_page((unsigned long)sp->gfns);
1960         kmem_cache_free(mmu_page_header_cache, sp);
1961 }
1962
1963 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1964 {
1965         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1966 }
1967
1968 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1969                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1970 {
1971         if (!parent_pte)
1972                 return;
1973
1974         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1975 }
1976
1977 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1978                                        u64 *parent_pte)
1979 {
1980         pte_list_remove(parent_pte, &sp->parent_ptes);
1981 }
1982
1983 static void drop_parent_pte(struct kvm_mmu_page *sp,
1984                             u64 *parent_pte)
1985 {
1986         mmu_page_remove_parent_pte(sp, parent_pte);
1987         mmu_spte_clear_no_track(parent_pte);
1988 }
1989
1990 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1991 {
1992         struct kvm_mmu_page *sp;
1993
1994         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1995         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1996         if (!direct)
1997                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1998         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1999
2000         /*
2001          * The active_mmu_pages list is the FIFO list, do not move the
2002          * page until it is zapped. kvm_zap_obsolete_pages depends on
2003          * this feature. See the comments in kvm_zap_obsolete_pages().
2004          */
2005         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2006         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2007         return sp;
2008 }
2009
2010 static void mark_unsync(u64 *spte);
2011 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2012 {
2013         u64 *sptep;
2014         struct rmap_iterator iter;
2015
2016         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2017                 mark_unsync(sptep);
2018         }
2019 }
2020
2021 static void mark_unsync(u64 *spte)
2022 {
2023         struct kvm_mmu_page *sp;
2024         unsigned int index;
2025
2026         sp = page_header(__pa(spte));
2027         index = spte - sp->spt;
2028         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2029                 return;
2030         if (sp->unsync_children++)
2031                 return;
2032         kvm_mmu_mark_parents_unsync(sp);
2033 }
2034
2035 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2036                                struct kvm_mmu_page *sp)
2037 {
2038         return 0;
2039 }
2040
2041 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2042 {
2043 }
2044
2045 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2046                                  struct kvm_mmu_page *sp, u64 *spte,
2047                                  const void *pte)
2048 {
2049         WARN_ON(1);
2050 }
2051
2052 #define KVM_PAGE_ARRAY_NR 16
2053
2054 struct kvm_mmu_pages {
2055         struct mmu_page_and_offset {
2056                 struct kvm_mmu_page *sp;
2057                 unsigned int idx;
2058         } page[KVM_PAGE_ARRAY_NR];
2059         unsigned int nr;
2060 };
2061
2062 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2063                          int idx)
2064 {
2065         int i;
2066
2067         if (sp->unsync)
2068                 for (i=0; i < pvec->nr; i++)
2069                         if (pvec->page[i].sp == sp)
2070                                 return 0;
2071
2072         pvec->page[pvec->nr].sp = sp;
2073         pvec->page[pvec->nr].idx = idx;
2074         pvec->nr++;
2075         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2076 }
2077
2078 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2079 {
2080         --sp->unsync_children;
2081         WARN_ON((int)sp->unsync_children < 0);
2082         __clear_bit(idx, sp->unsync_child_bitmap);
2083 }
2084
2085 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2086                            struct kvm_mmu_pages *pvec)
2087 {
2088         int i, ret, nr_unsync_leaf = 0;
2089
2090         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2091                 struct kvm_mmu_page *child;
2092                 u64 ent = sp->spt[i];
2093
2094                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2095                         clear_unsync_child_bit(sp, i);
2096                         continue;
2097                 }
2098
2099                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2100
2101                 if (child->unsync_children) {
2102                         if (mmu_pages_add(pvec, child, i))
2103                                 return -ENOSPC;
2104
2105                         ret = __mmu_unsync_walk(child, pvec);
2106                         if (!ret) {
2107                                 clear_unsync_child_bit(sp, i);
2108                                 continue;
2109                         } else if (ret > 0) {
2110                                 nr_unsync_leaf += ret;
2111                         } else
2112                                 return ret;
2113                 } else if (child->unsync) {
2114                         nr_unsync_leaf++;
2115                         if (mmu_pages_add(pvec, child, i))
2116                                 return -ENOSPC;
2117                 } else
2118                         clear_unsync_child_bit(sp, i);
2119         }
2120
2121         return nr_unsync_leaf;
2122 }
2123
2124 #define INVALID_INDEX (-1)
2125
2126 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2127                            struct kvm_mmu_pages *pvec)
2128 {
2129         pvec->nr = 0;
2130         if (!sp->unsync_children)
2131                 return 0;
2132
2133         mmu_pages_add(pvec, sp, INVALID_INDEX);
2134         return __mmu_unsync_walk(sp, pvec);
2135 }
2136
2137 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2138 {
2139         WARN_ON(!sp->unsync);
2140         trace_kvm_mmu_sync_page(sp);
2141         sp->unsync = 0;
2142         --kvm->stat.mmu_unsync;
2143 }
2144
2145 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2146                                     struct list_head *invalid_list);
2147 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2148                                     struct list_head *invalid_list);
2149
2150 /*
2151  * NOTE: we should pay more attention on the zapped-obsolete page
2152  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2153  * since it has been deleted from active_mmu_pages but still can be found
2154  * at hast list.
2155  *
2156  * for_each_valid_sp() has skipped that kind of pages.
2157  */
2158 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2159         hlist_for_each_entry(_sp,                                       \
2160           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2161                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2162                 } else
2163
2164 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2165         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2166                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2167
2168 /* @sp->gfn should be write-protected at the call site */
2169 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2170                             struct list_head *invalid_list)
2171 {
2172         if (sp->role.cr4_pae != !!is_pae(vcpu)
2173             || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2174                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2175                 return false;
2176         }
2177
2178         return true;
2179 }
2180
2181 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2182                                  struct list_head *invalid_list,
2183                                  bool remote_flush, bool local_flush)
2184 {
2185         if (!list_empty(invalid_list)) {
2186                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2187                 return;
2188         }
2189
2190         if (remote_flush)
2191                 kvm_flush_remote_tlbs(vcpu->kvm);
2192         else if (local_flush)
2193                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2194 }
2195
2196 #ifdef CONFIG_KVM_MMU_AUDIT
2197 #include "mmu_audit.c"
2198 #else
2199 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2200 static void mmu_audit_disable(void) { }
2201 #endif
2202
2203 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2204 {
2205         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2206 }
2207
2208 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2209                          struct list_head *invalid_list)
2210 {
2211         kvm_unlink_unsync_page(vcpu->kvm, sp);
2212         return __kvm_sync_page(vcpu, sp, invalid_list);
2213 }
2214
2215 /* @gfn should be write-protected at the call site */
2216 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2217                            struct list_head *invalid_list)
2218 {
2219         struct kvm_mmu_page *s;
2220         bool ret = false;
2221
2222         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2223                 if (!s->unsync)
2224                         continue;
2225
2226                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2227                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2228         }
2229
2230         return ret;
2231 }
2232
2233 struct mmu_page_path {
2234         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2235         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2236 };
2237
2238 #define for_each_sp(pvec, sp, parents, i)                       \
2239                 for (i = mmu_pages_first(&pvec, &parents);      \
2240                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2241                         i = mmu_pages_next(&pvec, &parents, i))
2242
2243 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2244                           struct mmu_page_path *parents,
2245                           int i)
2246 {
2247         int n;
2248
2249         for (n = i+1; n < pvec->nr; n++) {
2250                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2251                 unsigned idx = pvec->page[n].idx;
2252                 int level = sp->role.level;
2253
2254                 parents->idx[level-1] = idx;
2255                 if (level == PT_PAGE_TABLE_LEVEL)
2256                         break;
2257
2258                 parents->parent[level-2] = sp;
2259         }
2260
2261         return n;
2262 }
2263
2264 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2265                            struct mmu_page_path *parents)
2266 {
2267         struct kvm_mmu_page *sp;
2268         int level;
2269
2270         if (pvec->nr == 0)
2271                 return 0;
2272
2273         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2274
2275         sp = pvec->page[0].sp;
2276         level = sp->role.level;
2277         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2278
2279         parents->parent[level-2] = sp;
2280
2281         /* Also set up a sentinel.  Further entries in pvec are all
2282          * children of sp, so this element is never overwritten.
2283          */
2284         parents->parent[level-1] = NULL;
2285         return mmu_pages_next(pvec, parents, 0);
2286 }
2287
2288 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2289 {
2290         struct kvm_mmu_page *sp;
2291         unsigned int level = 0;
2292
2293         do {
2294                 unsigned int idx = parents->idx[level];
2295                 sp = parents->parent[level];
2296                 if (!sp)
2297                         return;
2298
2299                 WARN_ON(idx == INVALID_INDEX);
2300                 clear_unsync_child_bit(sp, idx);
2301                 level++;
2302         } while (!sp->unsync_children);
2303 }
2304
2305 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2306                               struct kvm_mmu_page *parent)
2307 {
2308         int i;
2309         struct kvm_mmu_page *sp;
2310         struct mmu_page_path parents;
2311         struct kvm_mmu_pages pages;
2312         LIST_HEAD(invalid_list);
2313         bool flush = false;
2314
2315         while (mmu_unsync_walk(parent, &pages)) {
2316                 bool protected = false;
2317
2318                 for_each_sp(pages, sp, parents, i)
2319                         protected |= rmap_write_protect(vcpu, sp->gfn);
2320
2321                 if (protected) {
2322                         kvm_flush_remote_tlbs(vcpu->kvm);
2323                         flush = false;
2324                 }
2325
2326                 for_each_sp(pages, sp, parents, i) {
2327                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2328                         mmu_pages_clear_parents(&parents);
2329                 }
2330                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2331                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2332                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2333                         flush = false;
2334                 }
2335         }
2336
2337         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2338 }
2339
2340 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2341 {
2342         atomic_set(&sp->write_flooding_count,  0);
2343 }
2344
2345 static void clear_sp_write_flooding_count(u64 *spte)
2346 {
2347         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2348
2349         __clear_sp_write_flooding_count(sp);
2350 }
2351
2352 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2353                                              gfn_t gfn,
2354                                              gva_t gaddr,
2355                                              unsigned level,
2356                                              int direct,
2357                                              unsigned access)
2358 {
2359         union kvm_mmu_page_role role;
2360         unsigned quadrant;
2361         struct kvm_mmu_page *sp;
2362         bool need_sync = false;
2363         bool flush = false;
2364         int collisions = 0;
2365         LIST_HEAD(invalid_list);
2366
2367         role = vcpu->arch.mmu.base_role;
2368         role.level = level;
2369         role.direct = direct;
2370         if (role.direct)
2371                 role.cr4_pae = 0;
2372         role.access = access;
2373         if (!vcpu->arch.mmu.direct_map
2374             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2375                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2376                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2377                 role.quadrant = quadrant;
2378         }
2379         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2380                 if (sp->gfn != gfn) {
2381                         collisions++;
2382                         continue;
2383                 }
2384
2385                 if (!need_sync && sp->unsync)
2386                         need_sync = true;
2387
2388                 if (sp->role.word != role.word)
2389                         continue;
2390
2391                 if (sp->unsync) {
2392                         /* The page is good, but __kvm_sync_page might still end
2393                          * up zapping it.  If so, break in order to rebuild it.
2394                          */
2395                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2396                                 break;
2397
2398                         WARN_ON(!list_empty(&invalid_list));
2399                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2400                 }
2401
2402                 if (sp->unsync_children)
2403                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2404
2405                 __clear_sp_write_flooding_count(sp);
2406                 trace_kvm_mmu_get_page(sp, false);
2407                 goto out;
2408         }
2409
2410         ++vcpu->kvm->stat.mmu_cache_miss;
2411
2412         sp = kvm_mmu_alloc_page(vcpu, direct);
2413
2414         sp->gfn = gfn;
2415         sp->role = role;
2416         hlist_add_head(&sp->hash_link,
2417                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2418         if (!direct) {
2419                 /*
2420                  * we should do write protection before syncing pages
2421                  * otherwise the content of the synced shadow page may
2422                  * be inconsistent with guest page table.
2423                  */
2424                 account_shadowed(vcpu->kvm, sp);
2425                 if (level == PT_PAGE_TABLE_LEVEL &&
2426                       rmap_write_protect(vcpu, gfn))
2427                         kvm_flush_remote_tlbs(vcpu->kvm);
2428
2429                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2430                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2431         }
2432         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2433         clear_page(sp->spt);
2434         trace_kvm_mmu_get_page(sp, true);
2435
2436         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2437 out:
2438         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2439                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2440         return sp;
2441 }
2442
2443 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2444                                         struct kvm_vcpu *vcpu, hpa_t root,
2445                                         u64 addr)
2446 {
2447         iterator->addr = addr;
2448         iterator->shadow_addr = root;
2449         iterator->level = vcpu->arch.mmu.shadow_root_level;
2450
2451         if (iterator->level == PT64_ROOT_4LEVEL &&
2452             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2453             !vcpu->arch.mmu.direct_map)
2454                 --iterator->level;
2455
2456         if (iterator->level == PT32E_ROOT_LEVEL) {
2457                 /*
2458                  * prev_root is currently only used for 64-bit hosts. So only
2459                  * the active root_hpa is valid here.
2460                  */
2461                 BUG_ON(root != vcpu->arch.mmu.root_hpa);
2462
2463                 iterator->shadow_addr
2464                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2465                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2466                 --iterator->level;
2467                 if (!iterator->shadow_addr)
2468                         iterator->level = 0;
2469         }
2470 }
2471
2472 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2473                              struct kvm_vcpu *vcpu, u64 addr)
2474 {
2475         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
2476                                     addr);
2477 }
2478
2479 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2480 {
2481         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2482                 return false;
2483
2484         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2485         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2486         return true;
2487 }
2488
2489 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2490                                u64 spte)
2491 {
2492         if (is_last_spte(spte, iterator->level)) {
2493                 iterator->level = 0;
2494                 return;
2495         }
2496
2497         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2498         --iterator->level;
2499 }
2500
2501 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2502 {
2503         __shadow_walk_next(iterator, *iterator->sptep);
2504 }
2505
2506 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2507                              struct kvm_mmu_page *sp)
2508 {
2509         u64 spte;
2510
2511         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2512
2513         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2514                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2515
2516         if (sp_ad_disabled(sp))
2517                 spte |= shadow_acc_track_value;
2518         else
2519                 spte |= shadow_accessed_mask;
2520
2521         mmu_spte_set(sptep, spte);
2522
2523         mmu_page_add_parent_pte(vcpu, sp, sptep);
2524
2525         if (sp->unsync_children || sp->unsync)
2526                 mark_unsync(sptep);
2527 }
2528
2529 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2530                                    unsigned direct_access)
2531 {
2532         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2533                 struct kvm_mmu_page *child;
2534
2535                 /*
2536                  * For the direct sp, if the guest pte's dirty bit
2537                  * changed form clean to dirty, it will corrupt the
2538                  * sp's access: allow writable in the read-only sp,
2539                  * so we should update the spte at this point to get
2540                  * a new sp with the correct access.
2541                  */
2542                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2543                 if (child->role.access == direct_access)
2544                         return;
2545
2546                 drop_parent_pte(child, sptep);
2547                 kvm_flush_remote_tlbs(vcpu->kvm);
2548         }
2549 }
2550
2551 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2552                              u64 *spte)
2553 {
2554         u64 pte;
2555         struct kvm_mmu_page *child;
2556
2557         pte = *spte;
2558         if (is_shadow_present_pte(pte)) {
2559                 if (is_last_spte(pte, sp->role.level)) {
2560                         drop_spte(kvm, spte);
2561                         if (is_large_pte(pte))
2562                                 --kvm->stat.lpages;
2563                 } else {
2564                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2565                         drop_parent_pte(child, spte);
2566                 }
2567                 return true;
2568         }
2569
2570         if (is_mmio_spte(pte))
2571                 mmu_spte_clear_no_track(spte);
2572
2573         return false;
2574 }
2575
2576 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2577                                          struct kvm_mmu_page *sp)
2578 {
2579         unsigned i;
2580
2581         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2582                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2583 }
2584
2585 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2586 {
2587         u64 *sptep;
2588         struct rmap_iterator iter;
2589
2590         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2591                 drop_parent_pte(sp, sptep);
2592 }
2593
2594 static int mmu_zap_unsync_children(struct kvm *kvm,
2595                                    struct kvm_mmu_page *parent,
2596                                    struct list_head *invalid_list)
2597 {
2598         int i, zapped = 0;
2599         struct mmu_page_path parents;
2600         struct kvm_mmu_pages pages;
2601
2602         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2603                 return 0;
2604
2605         while (mmu_unsync_walk(parent, &pages)) {
2606                 struct kvm_mmu_page *sp;
2607
2608                 for_each_sp(pages, sp, parents, i) {
2609                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2610                         mmu_pages_clear_parents(&parents);
2611                         zapped++;
2612                 }
2613         }
2614
2615         return zapped;
2616 }
2617
2618 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2619                                     struct list_head *invalid_list)
2620 {
2621         int ret;
2622
2623         trace_kvm_mmu_prepare_zap_page(sp);
2624         ++kvm->stat.mmu_shadow_zapped;
2625         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2626         kvm_mmu_page_unlink_children(kvm, sp);
2627         kvm_mmu_unlink_parents(kvm, sp);
2628
2629         if (!sp->role.invalid && !sp->role.direct)
2630                 unaccount_shadowed(kvm, sp);
2631
2632         if (sp->unsync)
2633                 kvm_unlink_unsync_page(kvm, sp);
2634         if (!sp->root_count) {
2635                 /* Count self */
2636                 ret++;
2637                 list_move(&sp->link, invalid_list);
2638                 kvm_mod_used_mmu_pages(kvm, -1);
2639         } else {
2640                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2641
2642                 /*
2643                  * The obsolete pages can not be used on any vcpus.
2644                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2645                  */
2646                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2647                         kvm_reload_remote_mmus(kvm);
2648         }
2649
2650         sp->role.invalid = 1;
2651         return ret;
2652 }
2653
2654 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2655                                     struct list_head *invalid_list)
2656 {
2657         struct kvm_mmu_page *sp, *nsp;
2658
2659         if (list_empty(invalid_list))
2660                 return;
2661
2662         /*
2663          * We need to make sure everyone sees our modifications to
2664          * the page tables and see changes to vcpu->mode here. The barrier
2665          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2666          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2667          *
2668          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2669          * guest mode and/or lockless shadow page table walks.
2670          */
2671         kvm_flush_remote_tlbs(kvm);
2672
2673         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2674                 WARN_ON(!sp->role.invalid || sp->root_count);
2675                 kvm_mmu_free_page(sp);
2676         }
2677 }
2678
2679 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2680                                         struct list_head *invalid_list)
2681 {
2682         struct kvm_mmu_page *sp;
2683
2684         if (list_empty(&kvm->arch.active_mmu_pages))
2685                 return false;
2686
2687         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2688                              struct kvm_mmu_page, link);
2689         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2690 }
2691
2692 /*
2693  * Changing the number of mmu pages allocated to the vm
2694  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2695  */
2696 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2697 {
2698         LIST_HEAD(invalid_list);
2699
2700         spin_lock(&kvm->mmu_lock);
2701
2702         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2703                 /* Need to free some mmu pages to achieve the goal. */
2704                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2705                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2706                                 break;
2707
2708                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2709                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2710         }
2711
2712         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2713
2714         spin_unlock(&kvm->mmu_lock);
2715 }
2716
2717 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2718 {
2719         struct kvm_mmu_page *sp;
2720         LIST_HEAD(invalid_list);
2721         int r;
2722
2723         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2724         r = 0;
2725         spin_lock(&kvm->mmu_lock);
2726         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2727                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2728                          sp->role.word);
2729                 r = 1;
2730                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2731         }
2732         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2733         spin_unlock(&kvm->mmu_lock);
2734
2735         return r;
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2738
2739 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2740 {
2741         trace_kvm_mmu_unsync_page(sp);
2742         ++vcpu->kvm->stat.mmu_unsync;
2743         sp->unsync = 1;
2744
2745         kvm_mmu_mark_parents_unsync(sp);
2746 }
2747
2748 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2749                                    bool can_unsync)
2750 {
2751         struct kvm_mmu_page *sp;
2752
2753         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2754                 return true;
2755
2756         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2757                 if (!can_unsync)
2758                         return true;
2759
2760                 if (sp->unsync)
2761                         continue;
2762
2763                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2764                 kvm_unsync_page(vcpu, sp);
2765         }
2766
2767         /*
2768          * We need to ensure that the marking of unsync pages is visible
2769          * before the SPTE is updated to allow writes because
2770          * kvm_mmu_sync_roots() checks the unsync flags without holding
2771          * the MMU lock and so can race with this. If the SPTE was updated
2772          * before the page had been marked as unsync-ed, something like the
2773          * following could happen:
2774          *
2775          * CPU 1                    CPU 2
2776          * ---------------------------------------------------------------------
2777          * 1.2 Host updates SPTE
2778          *     to be writable
2779          *                      2.1 Guest writes a GPTE for GVA X.
2780          *                          (GPTE being in the guest page table shadowed
2781          *                           by the SP from CPU 1.)
2782          *                          This reads SPTE during the page table walk.
2783          *                          Since SPTE.W is read as 1, there is no
2784          *                          fault.
2785          *
2786          *                      2.2 Guest issues TLB flush.
2787          *                          That causes a VM Exit.
2788          *
2789          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2790          *                          Since it is false, so it just returns.
2791          *
2792          *                      2.4 Guest accesses GVA X.
2793          *                          Since the mapping in the SP was not updated,
2794          *                          so the old mapping for GVA X incorrectly
2795          *                          gets used.
2796          * 1.1 Host marks SP
2797          *     as unsync
2798          *     (sp->unsync = true)
2799          *
2800          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2801          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2802          * pairs with this write barrier.
2803          */
2804         smp_wmb();
2805
2806         return false;
2807 }
2808
2809 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2810 {
2811         if (pfn_valid(pfn))
2812                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2813                         /*
2814                          * Some reserved pages, such as those from NVDIMM
2815                          * DAX devices, are not for MMIO, and can be mapped
2816                          * with cached memory type for better performance.
2817                          * However, the above check misconceives those pages
2818                          * as MMIO, and results in KVM mapping them with UC
2819                          * memory type, which would hurt the performance.
2820                          * Therefore, we check the host memory type in addition
2821                          * and only treat UC/UC-/WC pages as MMIO.
2822                          */
2823                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2824
2825         return true;
2826 }
2827
2828 /* Bits which may be returned by set_spte() */
2829 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2830 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2831
2832 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2833                     unsigned pte_access, int level,
2834                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2835                     bool can_unsync, bool host_writable)
2836 {
2837         u64 spte = 0;
2838         int ret = 0;
2839         struct kvm_mmu_page *sp;
2840
2841         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2842                 return 0;
2843
2844         sp = page_header(__pa(sptep));
2845         if (sp_ad_disabled(sp))
2846                 spte |= shadow_acc_track_value;
2847
2848         /*
2849          * For the EPT case, shadow_present_mask is 0 if hardware
2850          * supports exec-only page table entries.  In that case,
2851          * ACC_USER_MASK and shadow_user_mask are used to represent
2852          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2853          */
2854         spte |= shadow_present_mask;
2855         if (!speculative)
2856                 spte |= spte_shadow_accessed_mask(spte);
2857
2858         if (pte_access & ACC_EXEC_MASK)
2859                 spte |= shadow_x_mask;
2860         else
2861                 spte |= shadow_nx_mask;
2862
2863         if (pte_access & ACC_USER_MASK)
2864                 spte |= shadow_user_mask;
2865
2866         if (level > PT_PAGE_TABLE_LEVEL)
2867                 spte |= PT_PAGE_SIZE_MASK;
2868         if (tdp_enabled)
2869                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2870                         kvm_is_mmio_pfn(pfn));
2871
2872         if (host_writable)
2873                 spte |= SPTE_HOST_WRITEABLE;
2874         else
2875                 pte_access &= ~ACC_WRITE_MASK;
2876
2877         if (!kvm_is_mmio_pfn(pfn))
2878                 spte |= shadow_me_mask;
2879
2880         spte |= (u64)pfn << PAGE_SHIFT;
2881
2882         if (pte_access & ACC_WRITE_MASK) {
2883
2884                 /*
2885                  * Other vcpu creates new sp in the window between
2886                  * mapping_level() and acquiring mmu-lock. We can
2887                  * allow guest to retry the access, the mapping can
2888                  * be fixed if guest refault.
2889                  */
2890                 if (level > PT_PAGE_TABLE_LEVEL &&
2891                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2892                         goto done;
2893
2894                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2895
2896                 /*
2897                  * Optimization: for pte sync, if spte was writable the hash
2898                  * lookup is unnecessary (and expensive). Write protection
2899                  * is responsibility of mmu_get_page / kvm_sync_page.
2900                  * Same reasoning can be applied to dirty page accounting.
2901                  */
2902                 if (!can_unsync && is_writable_pte(*sptep))
2903                         goto set_pte;
2904
2905                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2906                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2907                                  __func__, gfn);
2908                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2909                         pte_access &= ~ACC_WRITE_MASK;
2910                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2911                 }
2912         }
2913
2914         if (pte_access & ACC_WRITE_MASK) {
2915                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2916                 spte |= spte_shadow_dirty_mask(spte);
2917         }
2918
2919         if (speculative)
2920                 spte = mark_spte_for_access_track(spte);
2921
2922 set_pte:
2923         if (mmu_spte_update(sptep, spte))
2924                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2925 done:
2926         return ret;
2927 }
2928
2929 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2930                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2931                         bool speculative, bool host_writable)
2932 {
2933         int was_rmapped = 0;
2934         int rmap_count;
2935         int set_spte_ret;
2936         int ret = RET_PF_RETRY;
2937         bool flush = false;
2938
2939         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2940                  *sptep, write_fault, gfn);
2941
2942         if (is_shadow_present_pte(*sptep)) {
2943                 /*
2944                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2945                  * the parent of the now unreachable PTE.
2946                  */
2947                 if (level > PT_PAGE_TABLE_LEVEL &&
2948                     !is_large_pte(*sptep)) {
2949                         struct kvm_mmu_page *child;
2950                         u64 pte = *sptep;
2951
2952                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2953                         drop_parent_pte(child, sptep);
2954                         flush = true;
2955                 } else if (pfn != spte_to_pfn(*sptep)) {
2956                         pgprintk("hfn old %llx new %llx\n",
2957                                  spte_to_pfn(*sptep), pfn);
2958                         drop_spte(vcpu->kvm, sptep);
2959                         flush = true;
2960                 } else
2961                         was_rmapped = 1;
2962         }
2963
2964         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2965                                 speculative, true, host_writable);
2966         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2967                 if (write_fault)
2968                         ret = RET_PF_EMULATE;
2969                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2970         }
2971         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2972                 kvm_flush_remote_tlbs(vcpu->kvm);
2973
2974         if (unlikely(is_mmio_spte(*sptep)))
2975                 ret = RET_PF_EMULATE;
2976
2977         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2978         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2979                  is_large_pte(*sptep)? "2MB" : "4kB",
2980                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2981                  *sptep, sptep);
2982         if (!was_rmapped && is_large_pte(*sptep))
2983                 ++vcpu->kvm->stat.lpages;
2984
2985         if (is_shadow_present_pte(*sptep)) {
2986                 if (!was_rmapped) {
2987                         rmap_count = rmap_add(vcpu, sptep, gfn);
2988                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2989                                 rmap_recycle(vcpu, sptep, gfn);
2990                 }
2991         }
2992
2993         kvm_release_pfn_clean(pfn);
2994
2995         return ret;
2996 }
2997
2998 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2999                                      bool no_dirty_log)
3000 {
3001         struct kvm_memory_slot *slot;
3002
3003         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3004         if (!slot)
3005                 return KVM_PFN_ERR_FAULT;
3006
3007         return gfn_to_pfn_memslot_atomic(slot, gfn);
3008 }
3009
3010 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3011                                     struct kvm_mmu_page *sp,
3012                                     u64 *start, u64 *end)
3013 {
3014         struct page *pages[PTE_PREFETCH_NUM];
3015         struct kvm_memory_slot *slot;
3016         unsigned access = sp->role.access;
3017         int i, ret;
3018         gfn_t gfn;
3019
3020         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3021         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3022         if (!slot)
3023                 return -1;
3024
3025         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3026         if (ret <= 0)
3027                 return -1;
3028
3029         for (i = 0; i < ret; i++, gfn++, start++)
3030                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3031                              page_to_pfn(pages[i]), true, true);
3032
3033         return 0;
3034 }
3035
3036 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3037                                   struct kvm_mmu_page *sp, u64 *sptep)
3038 {
3039         u64 *spte, *start = NULL;
3040         int i;
3041
3042         WARN_ON(!sp->role.direct);
3043
3044         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3045         spte = sp->spt + i;
3046
3047         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3048                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3049                         if (!start)
3050                                 continue;
3051                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3052                                 break;
3053                         start = NULL;
3054                 } else if (!start)
3055                         start = spte;
3056         }
3057 }
3058
3059 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3060 {
3061         struct kvm_mmu_page *sp;
3062
3063         sp = page_header(__pa(sptep));
3064
3065         /*
3066          * Without accessed bits, there's no way to distinguish between
3067          * actually accessed translations and prefetched, so disable pte
3068          * prefetch if accessed bits aren't available.
3069          */
3070         if (sp_ad_disabled(sp))
3071                 return;
3072
3073         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3074                 return;
3075
3076         __direct_pte_prefetch(vcpu, sp, sptep);
3077 }
3078
3079 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3080                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3081 {
3082         struct kvm_shadow_walk_iterator iterator;
3083         struct kvm_mmu_page *sp;
3084         int emulate = 0;
3085         gfn_t pseudo_gfn;
3086
3087         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3088                 return 0;
3089
3090         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3091                 if (iterator.level == level) {
3092                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3093                                                write, level, gfn, pfn, prefault,
3094                                                map_writable);
3095                         direct_pte_prefetch(vcpu, iterator.sptep);
3096                         ++vcpu->stat.pf_fixed;
3097                         break;
3098                 }
3099
3100                 drop_large_spte(vcpu, iterator.sptep);
3101                 if (!is_shadow_present_pte(*iterator.sptep)) {
3102                         u64 base_addr = iterator.addr;
3103
3104                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3105                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3106                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3107                                               iterator.level - 1, 1, ACC_ALL);
3108
3109                         link_shadow_page(vcpu, iterator.sptep, sp);
3110                 }
3111         }
3112         return emulate;
3113 }
3114
3115 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3116 {
3117         siginfo_t info;
3118
3119         clear_siginfo(&info);
3120         info.si_signo   = SIGBUS;
3121         info.si_errno   = 0;
3122         info.si_code    = BUS_MCEERR_AR;
3123         info.si_addr    = (void __user *)address;
3124         info.si_addr_lsb = PAGE_SHIFT;
3125
3126         send_sig_info(SIGBUS, &info, tsk);
3127 }
3128
3129 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3130 {
3131         /*
3132          * Do not cache the mmio info caused by writing the readonly gfn
3133          * into the spte otherwise read access on readonly gfn also can
3134          * caused mmio page fault and treat it as mmio access.
3135          */
3136         if (pfn == KVM_PFN_ERR_RO_FAULT)
3137                 return RET_PF_EMULATE;
3138
3139         if (pfn == KVM_PFN_ERR_HWPOISON) {
3140                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3141                 return RET_PF_RETRY;
3142         }
3143
3144         return -EFAULT;
3145 }
3146
3147 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3148                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3149                                         int *levelp)
3150 {
3151         kvm_pfn_t pfn = *pfnp;
3152         gfn_t gfn = *gfnp;
3153         int level = *levelp;
3154
3155         /*
3156          * Check if it's a transparent hugepage. If this would be an
3157          * hugetlbfs page, level wouldn't be set to
3158          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3159          * here.
3160          */
3161         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3162             level == PT_PAGE_TABLE_LEVEL &&
3163             PageTransCompoundMap(pfn_to_page(pfn)) &&
3164             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3165                 unsigned long mask;
3166                 /*
3167                  * mmu_notifier_retry was successful and we hold the
3168                  * mmu_lock here, so the pmd can't become splitting
3169                  * from under us, and in turn
3170                  * __split_huge_page_refcount() can't run from under
3171                  * us and we can safely transfer the refcount from
3172                  * PG_tail to PG_head as we switch the pfn to tail to
3173                  * head.
3174                  */
3175                 *levelp = level = PT_DIRECTORY_LEVEL;
3176                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3177                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3178                 if (pfn & mask) {
3179                         gfn &= ~mask;
3180                         *gfnp = gfn;
3181                         kvm_release_pfn_clean(pfn);
3182                         pfn &= ~mask;
3183                         kvm_get_pfn(pfn);
3184                         *pfnp = pfn;
3185                 }
3186         }
3187 }
3188
3189 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3190                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3191 {
3192         /* The pfn is invalid, report the error! */
3193         if (unlikely(is_error_pfn(pfn))) {
3194                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3195                 return true;
3196         }
3197
3198         if (unlikely(is_noslot_pfn(pfn)))
3199                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3200
3201         return false;
3202 }
3203
3204 static bool page_fault_can_be_fast(u32 error_code)
3205 {
3206         /*
3207          * Do not fix the mmio spte with invalid generation number which
3208          * need to be updated by slow page fault path.
3209          */
3210         if (unlikely(error_code & PFERR_RSVD_MASK))
3211                 return false;
3212
3213         /* See if the page fault is due to an NX violation */
3214         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3215                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3216                 return false;
3217
3218         /*
3219          * #PF can be fast if:
3220          * 1. The shadow page table entry is not present, which could mean that
3221          *    the fault is potentially caused by access tracking (if enabled).
3222          * 2. The shadow page table entry is present and the fault
3223          *    is caused by write-protect, that means we just need change the W
3224          *    bit of the spte which can be done out of mmu-lock.
3225          *
3226          * However, if access tracking is disabled we know that a non-present
3227          * page must be a genuine page fault where we have to create a new SPTE.
3228          * So, if access tracking is disabled, we return true only for write
3229          * accesses to a present page.
3230          */
3231
3232         return shadow_acc_track_mask != 0 ||
3233                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3234                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3235 }
3236
3237 /*
3238  * Returns true if the SPTE was fixed successfully. Otherwise,
3239  * someone else modified the SPTE from its original value.
3240  */
3241 static bool
3242 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3243                         u64 *sptep, u64 old_spte, u64 new_spte)
3244 {
3245         gfn_t gfn;
3246
3247         WARN_ON(!sp->role.direct);
3248
3249         /*
3250          * Theoretically we could also set dirty bit (and flush TLB) here in
3251          * order to eliminate unnecessary PML logging. See comments in
3252          * set_spte. But fast_page_fault is very unlikely to happen with PML
3253          * enabled, so we do not do this. This might result in the same GPA
3254          * to be logged in PML buffer again when the write really happens, and
3255          * eventually to be called by mark_page_dirty twice. But it's also no
3256          * harm. This also avoids the TLB flush needed after setting dirty bit
3257          * so non-PML cases won't be impacted.
3258          *
3259          * Compare with set_spte where instead shadow_dirty_mask is set.
3260          */
3261         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3262                 return false;
3263
3264         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3265                 /*
3266                  * The gfn of direct spte is stable since it is
3267                  * calculated by sp->gfn.
3268                  */
3269                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3270                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3271         }
3272
3273         return true;
3274 }
3275
3276 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3277 {
3278         if (fault_err_code & PFERR_FETCH_MASK)
3279                 return is_executable_pte(spte);
3280
3281         if (fault_err_code & PFERR_WRITE_MASK)
3282                 return is_writable_pte(spte);
3283
3284         /* Fault was on Read access */
3285         return spte & PT_PRESENT_MASK;
3286 }
3287
3288 /*
3289  * Return value:
3290  * - true: let the vcpu to access on the same address again.
3291  * - false: let the real page fault path to fix it.
3292  */
3293 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3294                             u32 error_code)
3295 {
3296         struct kvm_shadow_walk_iterator iterator;
3297         struct kvm_mmu_page *sp;
3298         bool fault_handled = false;
3299         u64 spte = 0ull;
3300         uint retry_count = 0;
3301
3302         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3303                 return false;
3304
3305         if (!page_fault_can_be_fast(error_code))
3306                 return false;
3307
3308         walk_shadow_page_lockless_begin(vcpu);
3309
3310         do {
3311                 u64 new_spte;
3312
3313                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3314                         if (!is_shadow_present_pte(spte) ||
3315                             iterator.level < level)
3316                                 break;
3317
3318                 sp = page_header(__pa(iterator.sptep));
3319                 if (!is_last_spte(spte, sp->role.level))
3320                         break;
3321
3322                 /*
3323                  * Check whether the memory access that caused the fault would
3324                  * still cause it if it were to be performed right now. If not,
3325                  * then this is a spurious fault caused by TLB lazily flushed,
3326                  * or some other CPU has already fixed the PTE after the
3327                  * current CPU took the fault.
3328                  *
3329                  * Need not check the access of upper level table entries since
3330                  * they are always ACC_ALL.
3331                  */
3332                 if (is_access_allowed(error_code, spte)) {
3333                         fault_handled = true;
3334                         break;
3335                 }
3336
3337                 new_spte = spte;
3338
3339                 if (is_access_track_spte(spte))
3340                         new_spte = restore_acc_track_spte(new_spte);
3341
3342                 /*
3343                  * Currently, to simplify the code, write-protection can
3344                  * be removed in the fast path only if the SPTE was
3345                  * write-protected for dirty-logging or access tracking.
3346                  */
3347                 if ((error_code & PFERR_WRITE_MASK) &&
3348                     spte_can_locklessly_be_made_writable(spte))
3349                 {
3350                         new_spte |= PT_WRITABLE_MASK;
3351
3352                         /*
3353                          * Do not fix write-permission on the large spte.  Since
3354                          * we only dirty the first page into the dirty-bitmap in
3355                          * fast_pf_fix_direct_spte(), other pages are missed
3356                          * if its slot has dirty logging enabled.
3357                          *
3358                          * Instead, we let the slow page fault path create a
3359                          * normal spte to fix the access.
3360                          *
3361                          * See the comments in kvm_arch_commit_memory_region().
3362                          */
3363                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3364                                 break;
3365                 }
3366
3367                 /* Verify that the fault can be handled in the fast path */
3368                 if (new_spte == spte ||
3369                     !is_access_allowed(error_code, new_spte))
3370                         break;
3371
3372                 /*
3373                  * Currently, fast page fault only works for direct mapping
3374                  * since the gfn is not stable for indirect shadow page. See
3375                  * Documentation/virtual/kvm/locking.txt to get more detail.
3376                  */
3377                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3378                                                         iterator.sptep, spte,
3379                                                         new_spte);
3380                 if (fault_handled)
3381                         break;
3382
3383                 if (++retry_count > 4) {
3384                         printk_once(KERN_WARNING
3385                                 "kvm: Fast #PF retrying more than 4 times.\n");
3386                         break;
3387                 }
3388
3389         } while (true);
3390
3391         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3392                               spte, fault_handled);
3393         walk_shadow_page_lockless_end(vcpu);
3394
3395         return fault_handled;
3396 }
3397
3398 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3399                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3400 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3401
3402 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3403                          gfn_t gfn, bool prefault)
3404 {
3405         int r;
3406         int level;
3407         bool force_pt_level = false;
3408         kvm_pfn_t pfn;
3409         unsigned long mmu_seq;
3410         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3411
3412         level = mapping_level(vcpu, gfn, &force_pt_level);
3413         if (likely(!force_pt_level)) {
3414                 /*
3415                  * This path builds a PAE pagetable - so we can map
3416                  * 2mb pages at maximum. Therefore check if the level
3417                  * is larger than that.
3418                  */
3419                 if (level > PT_DIRECTORY_LEVEL)
3420                         level = PT_DIRECTORY_LEVEL;
3421
3422                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3423         }
3424
3425         if (fast_page_fault(vcpu, v, level, error_code))
3426                 return RET_PF_RETRY;
3427
3428         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3429         smp_rmb();
3430
3431         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3432                 return RET_PF_RETRY;
3433
3434         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3435                 return r;
3436
3437         spin_lock(&vcpu->kvm->mmu_lock);
3438         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3439                 goto out_unlock;
3440         if (make_mmu_pages_available(vcpu) < 0)
3441                 goto out_unlock;
3442         if (likely(!force_pt_level))
3443                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3444         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3445         spin_unlock(&vcpu->kvm->mmu_lock);
3446
3447         return r;
3448
3449 out_unlock:
3450         spin_unlock(&vcpu->kvm->mmu_lock);
3451         kvm_release_pfn_clean(pfn);
3452         return RET_PF_RETRY;
3453 }
3454
3455 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3456                                struct list_head *invalid_list)
3457 {
3458         struct kvm_mmu_page *sp;
3459
3460         if (!VALID_PAGE(*root_hpa))
3461                 return;
3462
3463         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3464         --sp->root_count;
3465         if (!sp->root_count && sp->role.invalid)
3466                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3467
3468         *root_hpa = INVALID_PAGE;
3469 }
3470
3471 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3472 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3473 {
3474         int i;
3475         LIST_HEAD(invalid_list);
3476         struct kvm_mmu *mmu = &vcpu->arch.mmu;
3477         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3478
3479         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3480
3481         /* Before acquiring the MMU lock, see if we need to do any real work. */
3482         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3483                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3484                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3485                             VALID_PAGE(mmu->prev_roots[i].hpa))
3486                                 break;
3487
3488                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3489                         return;
3490         }
3491
3492         spin_lock(&vcpu->kvm->mmu_lock);
3493
3494         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3495                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3496                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3497                                            &invalid_list);
3498
3499         if (free_active_root) {
3500                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3501                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3502                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3503                                            &invalid_list);
3504                 } else {
3505                         for (i = 0; i < 4; ++i)
3506                                 if (mmu->pae_root[i] != 0)
3507                                         mmu_free_root_page(vcpu->kvm,
3508                                                            &mmu->pae_root[i],
3509                                                            &invalid_list);
3510                         mmu->root_hpa = INVALID_PAGE;
3511                 }
3512         }
3513
3514         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3515         spin_unlock(&vcpu->kvm->mmu_lock);
3516 }
3517 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3518
3519 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3520 {
3521         int ret = 0;
3522
3523         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3524                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3525                 ret = 1;
3526         }
3527
3528         return ret;
3529 }
3530
3531 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3532 {
3533         struct kvm_mmu_page *sp;
3534         unsigned i;
3535
3536         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3537                 spin_lock(&vcpu->kvm->mmu_lock);
3538                 if(make_mmu_pages_available(vcpu) < 0) {
3539                         spin_unlock(&vcpu->kvm->mmu_lock);
3540                         return -ENOSPC;
3541                 }
3542                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3543                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3544                 ++sp->root_count;
3545                 spin_unlock(&vcpu->kvm->mmu_lock);
3546                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3547         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3548                 for (i = 0; i < 4; ++i) {
3549                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3550
3551                         MMU_WARN_ON(VALID_PAGE(root));
3552                         spin_lock(&vcpu->kvm->mmu_lock);
3553                         if (make_mmu_pages_available(vcpu) < 0) {
3554                                 spin_unlock(&vcpu->kvm->mmu_lock);
3555                                 return -ENOSPC;
3556                         }
3557                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3558                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3559                         root = __pa(sp->spt);
3560                         ++sp->root_count;
3561                         spin_unlock(&vcpu->kvm->mmu_lock);
3562                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3563                 }
3564                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3565         } else
3566                 BUG();
3567
3568         return 0;
3569 }
3570
3571 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3572 {
3573         struct kvm_mmu_page *sp;
3574         u64 pdptr, pm_mask;
3575         gfn_t root_gfn;
3576         int i;
3577
3578         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3579
3580         if (mmu_check_root(vcpu, root_gfn))
3581                 return 1;
3582
3583         /*
3584          * Do we shadow a long mode page table? If so we need to
3585          * write-protect the guests page table root.
3586          */
3587         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3588                 hpa_t root = vcpu->arch.mmu.root_hpa;
3589
3590                 MMU_WARN_ON(VALID_PAGE(root));
3591
3592                 spin_lock(&vcpu->kvm->mmu_lock);
3593                 if (make_mmu_pages_available(vcpu) < 0) {
3594                         spin_unlock(&vcpu->kvm->mmu_lock);
3595                         return -ENOSPC;
3596                 }
3597                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3598                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3599                 root = __pa(sp->spt);
3600                 ++sp->root_count;
3601                 spin_unlock(&vcpu->kvm->mmu_lock);
3602                 vcpu->arch.mmu.root_hpa = root;
3603                 return 0;
3604         }
3605
3606         /*
3607          * We shadow a 32 bit page table. This may be a legacy 2-level
3608          * or a PAE 3-level page table. In either case we need to be aware that
3609          * the shadow page table may be a PAE or a long mode page table.
3610          */
3611         pm_mask = PT_PRESENT_MASK;
3612         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3613                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3614
3615         for (i = 0; i < 4; ++i) {
3616                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3617
3618                 MMU_WARN_ON(VALID_PAGE(root));
3619                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3620                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3621                         if (!(pdptr & PT_PRESENT_MASK)) {
3622                                 vcpu->arch.mmu.pae_root[i] = 0;
3623                                 continue;
3624                         }
3625                         root_gfn = pdptr >> PAGE_SHIFT;
3626                         if (mmu_check_root(vcpu, root_gfn))
3627                                 return 1;
3628                 }
3629                 spin_lock(&vcpu->kvm->mmu_lock);
3630                 if (make_mmu_pages_available(vcpu) < 0) {
3631                         spin_unlock(&vcpu->kvm->mmu_lock);
3632                         return -ENOSPC;
3633                 }
3634                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3635                                       0, ACC_ALL);
3636                 root = __pa(sp->spt);
3637                 ++sp->root_count;
3638                 spin_unlock(&vcpu->kvm->mmu_lock);
3639
3640                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3641         }
3642         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3643
3644         /*
3645          * If we shadow a 32 bit page table with a long mode page
3646          * table we enter this path.
3647          */
3648         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3649                 if (vcpu->arch.mmu.lm_root == NULL) {
3650                         /*
3651                          * The additional page necessary for this is only
3652                          * allocated on demand.
3653                          */
3654
3655                         u64 *lm_root;
3656
3657                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3658                         if (lm_root == NULL)
3659                                 return 1;
3660
3661                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3662
3663                         vcpu->arch.mmu.lm_root = lm_root;
3664                 }
3665
3666                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3667         }
3668
3669         return 0;
3670 }
3671
3672 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3673 {
3674         if (vcpu->arch.mmu.direct_map)
3675                 return mmu_alloc_direct_roots(vcpu);
3676         else
3677                 return mmu_alloc_shadow_roots(vcpu);
3678 }
3679
3680 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3681 {
3682         int i;
3683         struct kvm_mmu_page *sp;
3684
3685         if (vcpu->arch.mmu.direct_map)
3686                 return;
3687
3688         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3689                 return;
3690
3691         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3692
3693         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3694                 hpa_t root = vcpu->arch.mmu.root_hpa;
3695
3696                 sp = page_header(root);
3697
3698                 /*
3699                  * Even if another CPU was marking the SP as unsync-ed
3700                  * simultaneously, any guest page table changes are not
3701                  * guaranteed to be visible anyway until this VCPU issues a TLB
3702                  * flush strictly after those changes are made. We only need to
3703                  * ensure that the other CPU sets these flags before any actual
3704                  * changes to the page tables are made. The comments in
3705                  * mmu_need_write_protect() describe what could go wrong if this
3706                  * requirement isn't satisfied.
3707                  */
3708                 if (!smp_load_acquire(&sp->unsync) &&
3709                     !smp_load_acquire(&sp->unsync_children))
3710                         return;
3711
3712                 spin_lock(&vcpu->kvm->mmu_lock);
3713                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3714
3715                 mmu_sync_children(vcpu, sp);
3716
3717                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3718                 spin_unlock(&vcpu->kvm->mmu_lock);
3719                 return;
3720         }
3721
3722         spin_lock(&vcpu->kvm->mmu_lock);
3723         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3724
3725         for (i = 0; i < 4; ++i) {
3726                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3727
3728                 if (root && VALID_PAGE(root)) {
3729                         root &= PT64_BASE_ADDR_MASK;
3730                         sp = page_header(root);
3731                         mmu_sync_children(vcpu, sp);
3732                 }
3733         }
3734
3735         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3736         spin_unlock(&vcpu->kvm->mmu_lock);
3737 }
3738 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3739
3740 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3741                                   u32 access, struct x86_exception *exception)
3742 {
3743         if (exception)
3744                 exception->error_code = 0;
3745         return vaddr;
3746 }
3747
3748 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3749                                          u32 access,
3750                                          struct x86_exception *exception)
3751 {
3752         if (exception)
3753                 exception->error_code = 0;
3754         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3755 }
3756
3757 static bool
3758 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3759 {
3760         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3761
3762         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3763                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3764 }
3765
3766 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3767 {
3768         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3769 }
3770
3771 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3772 {
3773         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3774 }
3775
3776 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3777 {
3778         /*
3779          * A nested guest cannot use the MMIO cache if it is using nested
3780          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3781          */
3782         if (mmu_is_nested(vcpu))
3783                 return false;
3784
3785         if (direct)
3786                 return vcpu_match_mmio_gpa(vcpu, addr);
3787
3788         return vcpu_match_mmio_gva(vcpu, addr);
3789 }
3790
3791 /* return true if reserved bit is detected on spte. */
3792 static bool
3793 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3794 {
3795         struct kvm_shadow_walk_iterator iterator;
3796         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3797         int root, leaf;
3798         bool reserved = false;
3799
3800         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3801                 goto exit;
3802
3803         walk_shadow_page_lockless_begin(vcpu);
3804
3805         for (shadow_walk_init(&iterator, vcpu, addr),
3806                  leaf = root = iterator.level;
3807              shadow_walk_okay(&iterator);
3808              __shadow_walk_next(&iterator, spte)) {
3809                 spte = mmu_spte_get_lockless(iterator.sptep);
3810
3811                 sptes[leaf - 1] = spte;
3812                 leaf--;
3813
3814                 if (!is_shadow_present_pte(spte))
3815                         break;
3816
3817                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3818                                                     iterator.level);
3819         }
3820
3821         walk_shadow_page_lockless_end(vcpu);
3822
3823         if (reserved) {
3824                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3825                        __func__, addr);
3826                 while (root > leaf) {
3827                         pr_err("------ spte 0x%llx level %d.\n",
3828                                sptes[root - 1], root);
3829                         root--;
3830                 }
3831         }
3832 exit:
3833         *sptep = spte;
3834         return reserved;
3835 }
3836
3837 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3838 {
3839         u64 spte;
3840         bool reserved;
3841
3842         if (mmio_info_in_cache(vcpu, addr, direct))
3843                 return RET_PF_EMULATE;
3844
3845         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3846         if (WARN_ON(reserved))
3847                 return -EINVAL;
3848
3849         if (is_mmio_spte(spte)) {
3850                 gfn_t gfn = get_mmio_spte_gfn(spte);
3851                 unsigned access = get_mmio_spte_access(spte);
3852
3853                 if (!check_mmio_spte(vcpu, spte))
3854                         return RET_PF_INVALID;
3855
3856                 if (direct)
3857                         addr = 0;
3858
3859                 trace_handle_mmio_page_fault(addr, gfn, access);
3860                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3861                 return RET_PF_EMULATE;
3862         }
3863
3864         /*
3865          * If the page table is zapped by other cpus, let CPU fault again on
3866          * the address.
3867          */
3868         return RET_PF_RETRY;
3869 }
3870
3871 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3872                                          u32 error_code, gfn_t gfn)
3873 {
3874         if (unlikely(error_code & PFERR_RSVD_MASK))
3875                 return false;
3876
3877         if (!(error_code & PFERR_PRESENT_MASK) ||
3878               !(error_code & PFERR_WRITE_MASK))
3879                 return false;
3880
3881         /*
3882          * guest is writing the page which is write tracked which can
3883          * not be fixed by page fault handler.
3884          */
3885         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3886                 return true;
3887
3888         return false;
3889 }
3890
3891 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3892 {
3893         struct kvm_shadow_walk_iterator iterator;
3894         u64 spte;
3895
3896         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3897                 return;
3898
3899         walk_shadow_page_lockless_begin(vcpu);
3900         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3901                 clear_sp_write_flooding_count(iterator.sptep);
3902                 if (!is_shadow_present_pte(spte))
3903                         break;
3904         }
3905         walk_shadow_page_lockless_end(vcpu);
3906 }
3907
3908 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3909                                 u32 error_code, bool prefault)
3910 {
3911         gfn_t gfn = gva >> PAGE_SHIFT;
3912         int r;
3913
3914         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3915
3916         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3917                 return RET_PF_EMULATE;
3918
3919         r = mmu_topup_memory_caches(vcpu);
3920         if (r)
3921                 return r;
3922
3923         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3924
3925
3926         return nonpaging_map(vcpu, gva & PAGE_MASK,
3927                              error_code, gfn, prefault);
3928 }
3929
3930 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3931 {
3932         struct kvm_arch_async_pf arch;
3933
3934         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3935         arch.gfn = gfn;
3936         arch.direct_map = vcpu->arch.mmu.direct_map;
3937         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3938
3939         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3940 }
3941
3942 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3943 {
3944         if (unlikely(!lapic_in_kernel(vcpu) ||
3945                      kvm_event_needs_reinjection(vcpu) ||
3946                      vcpu->arch.exception.pending))
3947                 return false;
3948
3949         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3950                 return false;
3951
3952         return kvm_x86_ops->interrupt_allowed(vcpu);
3953 }
3954
3955 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3956                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3957 {
3958         struct kvm_memory_slot *slot;
3959         bool async;
3960
3961         /*
3962          * Don't expose private memslots to L2.
3963          */
3964         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3965                 *pfn = KVM_PFN_NOSLOT;
3966                 return false;
3967         }
3968
3969         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3970         async = false;
3971         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3972         if (!async)
3973                 return false; /* *pfn has correct page already */
3974
3975         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3976                 trace_kvm_try_async_get_page(gva, gfn);
3977                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3978                         trace_kvm_async_pf_doublefault(gva, gfn);
3979                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3980                         return true;
3981                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3982                         return true;
3983         }
3984
3985         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3986         return false;
3987 }
3988
3989 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3990                                 u64 fault_address, char *insn, int insn_len)
3991 {
3992         int r = 1;
3993
3994         vcpu->arch.l1tf_flush_l1d = true;
3995         switch (vcpu->arch.apf.host_apf_reason) {
3996         default:
3997                 trace_kvm_page_fault(fault_address, error_code);
3998
3999                 if (kvm_event_needs_reinjection(vcpu))
4000                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4001                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4002                                 insn_len);
4003                 break;
4004         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4005                 vcpu->arch.apf.host_apf_reason = 0;
4006                 local_irq_disable();
4007                 kvm_async_pf_task_wait(fault_address, 0);
4008                 local_irq_enable();
4009                 break;
4010         case KVM_PV_REASON_PAGE_READY:
4011                 vcpu->arch.apf.host_apf_reason = 0;
4012                 local_irq_disable();
4013                 kvm_async_pf_task_wake(fault_address);
4014                 local_irq_enable();
4015                 break;
4016         }
4017         return r;
4018 }
4019 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4020
4021 static bool
4022 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4023 {
4024         int page_num = KVM_PAGES_PER_HPAGE(level);
4025
4026         gfn &= ~(page_num - 1);
4027
4028         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4029 }
4030
4031 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4032                           bool prefault)
4033 {
4034         kvm_pfn_t pfn;
4035         int r;
4036         int level;
4037         bool force_pt_level;
4038         gfn_t gfn = gpa >> PAGE_SHIFT;
4039         unsigned long mmu_seq;
4040         int write = error_code & PFERR_WRITE_MASK;
4041         bool map_writable;
4042
4043         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4044
4045         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4046                 return RET_PF_EMULATE;
4047
4048         r = mmu_topup_memory_caches(vcpu);
4049         if (r)
4050                 return r;
4051
4052         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4053                                                            PT_DIRECTORY_LEVEL);
4054         level = mapping_level(vcpu, gfn, &force_pt_level);
4055         if (likely(!force_pt_level)) {
4056                 if (level > PT_DIRECTORY_LEVEL &&
4057                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4058                         level = PT_DIRECTORY_LEVEL;
4059                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4060         }
4061
4062         if (fast_page_fault(vcpu, gpa, level, error_code))
4063                 return RET_PF_RETRY;
4064
4065         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4066         smp_rmb();
4067
4068         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4069                 return RET_PF_RETRY;
4070
4071         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4072                 return r;
4073
4074         spin_lock(&vcpu->kvm->mmu_lock);
4075         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4076                 goto out_unlock;
4077         if (make_mmu_pages_available(vcpu) < 0)
4078                 goto out_unlock;
4079         if (likely(!force_pt_level))
4080                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4081         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4082         spin_unlock(&vcpu->kvm->mmu_lock);
4083
4084         return r;
4085
4086 out_unlock:
4087         spin_unlock(&vcpu->kvm->mmu_lock);
4088         kvm_release_pfn_clean(pfn);
4089         return RET_PF_RETRY;
4090 }
4091
4092 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4093                                    struct kvm_mmu *context)
4094 {
4095         context->page_fault = nonpaging_page_fault;
4096         context->gva_to_gpa = nonpaging_gva_to_gpa;
4097         context->sync_page = nonpaging_sync_page;
4098         context->invlpg = nonpaging_invlpg;
4099         context->update_pte = nonpaging_update_pte;
4100         context->root_level = 0;
4101         context->shadow_root_level = PT32E_ROOT_LEVEL;
4102         context->direct_map = true;
4103         context->nx = false;
4104 }
4105
4106 /*
4107  * Find out if a previously cached root matching the new CR3/role is available.
4108  * The current root is also inserted into the cache.
4109  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4110  * returned.
4111  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4112  * false is returned. This root should now be freed by the caller.
4113  */
4114 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4115                                   union kvm_mmu_page_role new_role)
4116 {
4117         uint i;
4118         struct kvm_mmu_root_info root;
4119         struct kvm_mmu *mmu = &vcpu->arch.mmu;
4120
4121         root.cr3 = mmu->get_cr3(vcpu);
4122         root.hpa = mmu->root_hpa;
4123
4124         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4125                 swap(root, mmu->prev_roots[i]);
4126
4127                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4128                     page_header(root.hpa) != NULL &&
4129                     new_role.word == page_header(root.hpa)->role.word)
4130                         break;
4131         }
4132
4133         mmu->root_hpa = root.hpa;
4134
4135         return i < KVM_MMU_NUM_PREV_ROOTS;
4136 }
4137
4138 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4139                             union kvm_mmu_page_role new_role,
4140                             bool skip_tlb_flush)
4141 {
4142         struct kvm_mmu *mmu = &vcpu->arch.mmu;
4143
4144         /*
4145          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4146          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4147          * later if necessary.
4148          */
4149         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4150             mmu->root_level >= PT64_ROOT_4LEVEL) {
4151                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4152                         return false;
4153
4154                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4155                         /*
4156                          * It is possible that the cached previous root page is
4157                          * obsolete because of a change in the MMU
4158                          * generation number. However, that is accompanied by
4159                          * KVM_REQ_MMU_RELOAD, which will free the root that we
4160                          * have set here and allocate a new one.
4161                          */
4162
4163                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4164                         if (!skip_tlb_flush) {
4165                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4166                                 kvm_x86_ops->tlb_flush(vcpu, true);
4167                         }
4168
4169                         /*
4170                          * The last MMIO access's GVA and GPA are cached in the
4171                          * VCPU. When switching to a new CR3, that GVA->GPA
4172                          * mapping may no longer be valid. So clear any cached
4173                          * MMIO info even when we don't need to sync the shadow
4174                          * page tables.
4175                          */
4176                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4177
4178                         __clear_sp_write_flooding_count(
4179                                 page_header(mmu->root_hpa));
4180
4181                         return true;
4182                 }
4183         }
4184
4185         return false;
4186 }
4187
4188 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4189                               union kvm_mmu_page_role new_role,
4190                               bool skip_tlb_flush)
4191 {
4192         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4193                 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
4194 }
4195
4196 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4197 {
4198         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4199                           skip_tlb_flush);
4200 }
4201 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4202
4203 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4204 {
4205         return kvm_read_cr3(vcpu);
4206 }
4207
4208 static void inject_page_fault(struct kvm_vcpu *vcpu,
4209                               struct x86_exception *fault)
4210 {
4211         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4212 }
4213
4214 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4215                            unsigned access, int *nr_present)
4216 {
4217         if (unlikely(is_mmio_spte(*sptep))) {
4218                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4219                         mmu_spte_clear_no_track(sptep);
4220                         return true;
4221                 }
4222
4223                 (*nr_present)++;
4224                 mark_mmio_spte(vcpu, sptep, gfn, access);
4225                 return true;
4226         }
4227
4228         return false;
4229 }
4230
4231 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4232                                 unsigned level, unsigned gpte)
4233 {
4234         /*
4235          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4236          * If it is clear, there are no large pages at this level, so clear
4237          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4238          */
4239         gpte &= level - mmu->last_nonleaf_level;
4240
4241         /*
4242          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4243          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4244          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4245          */
4246         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4247
4248         return gpte & PT_PAGE_SIZE_MASK;
4249 }
4250
4251 #define PTTYPE_EPT 18 /* arbitrary */
4252 #define PTTYPE PTTYPE_EPT
4253 #include "paging_tmpl.h"
4254 #undef PTTYPE
4255
4256 #define PTTYPE 64
4257 #include "paging_tmpl.h"
4258 #undef PTTYPE
4259
4260 #define PTTYPE 32
4261 #include "paging_tmpl.h"
4262 #undef PTTYPE
4263
4264 static void
4265 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4266                         struct rsvd_bits_validate *rsvd_check,
4267                         int maxphyaddr, int level, bool nx, bool gbpages,
4268                         bool pse, bool amd)
4269 {
4270         u64 exb_bit_rsvd = 0;
4271         u64 gbpages_bit_rsvd = 0;
4272         u64 nonleaf_bit8_rsvd = 0;
4273
4274         rsvd_check->bad_mt_xwr = 0;
4275
4276         if (!nx)
4277                 exb_bit_rsvd = rsvd_bits(63, 63);
4278         if (!gbpages)
4279                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4280
4281         /*
4282          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4283          * leaf entries) on AMD CPUs only.
4284          */
4285         if (amd)
4286                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4287
4288         switch (level) {
4289         case PT32_ROOT_LEVEL:
4290                 /* no rsvd bits for 2 level 4K page table entries */
4291                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4292                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4293                 rsvd_check->rsvd_bits_mask[1][0] =
4294                         rsvd_check->rsvd_bits_mask[0][0];
4295
4296                 if (!pse) {
4297                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4298                         break;
4299                 }
4300
4301                 if (is_cpuid_PSE36())
4302                         /* 36bits PSE 4MB page */
4303                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4304                 else
4305                         /* 32 bits PSE 4MB page */
4306                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4307                 break;
4308         case PT32E_ROOT_LEVEL:
4309                 rsvd_check->rsvd_bits_mask[0][2] =
4310                         rsvd_bits(maxphyaddr, 63) |
4311                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4312                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4313                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4314                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4315                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4316                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4317                         rsvd_bits(maxphyaddr, 62) |
4318                         rsvd_bits(13, 20);              /* large page */
4319                 rsvd_check->rsvd_bits_mask[1][0] =
4320                         rsvd_check->rsvd_bits_mask[0][0];
4321                 break;
4322         case PT64_ROOT_5LEVEL:
4323                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4324                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4325                         rsvd_bits(maxphyaddr, 51);
4326                 rsvd_check->rsvd_bits_mask[1][4] =
4327                         rsvd_check->rsvd_bits_mask[0][4];
4328         case PT64_ROOT_4LEVEL:
4329                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4330                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4331                         rsvd_bits(maxphyaddr, 51);
4332                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4333                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4334                         rsvd_bits(maxphyaddr, 51);
4335                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4336                         rsvd_bits(maxphyaddr, 51);
4337                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4338                         rsvd_bits(maxphyaddr, 51);
4339                 rsvd_check->rsvd_bits_mask[1][3] =
4340                         rsvd_check->rsvd_bits_mask[0][3];
4341                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4342                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4343                         rsvd_bits(13, 29);
4344                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4345                         rsvd_bits(maxphyaddr, 51) |
4346                         rsvd_bits(13, 20);              /* large page */
4347                 rsvd_check->rsvd_bits_mask[1][0] =
4348                         rsvd_check->rsvd_bits_mask[0][0];
4349                 break;
4350         }
4351 }
4352
4353 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4354                                   struct kvm_mmu *context)
4355 {
4356         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4357                                 cpuid_maxphyaddr(vcpu), context->root_level,
4358                                 context->nx,
4359                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4360                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4361 }
4362
4363 static void
4364 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4365                             int maxphyaddr, bool execonly)
4366 {
4367         u64 bad_mt_xwr;
4368
4369         rsvd_check->rsvd_bits_mask[0][4] =
4370                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4371         rsvd_check->rsvd_bits_mask[0][3] =
4372                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4373         rsvd_check->rsvd_bits_mask[0][2] =
4374                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4375         rsvd_check->rsvd_bits_mask[0][1] =
4376                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4377         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4378
4379         /* large page */
4380         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4381         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4382         rsvd_check->rsvd_bits_mask[1][2] =
4383                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4384         rsvd_check->rsvd_bits_mask[1][1] =
4385                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4386         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4387
4388         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4389         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4390         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4391         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4392         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4393         if (!execonly) {
4394                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4395                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4396         }
4397         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4398 }
4399
4400 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4401                 struct kvm_mmu *context, bool execonly)
4402 {
4403         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4404                                     cpuid_maxphyaddr(vcpu), execonly);
4405 }
4406
4407 /*
4408  * the page table on host is the shadow page table for the page
4409  * table in guest or amd nested guest, its mmu features completely
4410  * follow the features in guest.
4411  */
4412 void
4413 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4414 {
4415         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4416         struct rsvd_bits_validate *shadow_zero_check;
4417         int i;
4418
4419         /*
4420          * Passing "true" to the last argument is okay; it adds a check
4421          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4422          */
4423         shadow_zero_check = &context->shadow_zero_check;
4424         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4425                                 boot_cpu_data.x86_phys_bits,
4426                                 context->shadow_root_level, uses_nx,
4427                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4428                                 is_pse(vcpu), true);
4429
4430         if (!shadow_me_mask)
4431                 return;
4432
4433         for (i = context->shadow_root_level; --i >= 0;) {
4434                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4435                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4436         }
4437
4438 }
4439 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4440
4441 static inline bool boot_cpu_is_amd(void)
4442 {
4443         WARN_ON_ONCE(!tdp_enabled);
4444         return shadow_x_mask == 0;
4445 }
4446
4447 /*
4448  * the direct page table on host, use as much mmu features as
4449  * possible, however, kvm currently does not do execution-protection.
4450  */
4451 static void
4452 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4453                                 struct kvm_mmu *context)
4454 {
4455         struct rsvd_bits_validate *shadow_zero_check;
4456         int i;
4457
4458         shadow_zero_check = &context->shadow_zero_check;
4459
4460         if (boot_cpu_is_amd())
4461                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4462                                         boot_cpu_data.x86_phys_bits,
4463                                         context->shadow_root_level, false,
4464                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4465                                         true, true);
4466         else
4467                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4468                                             boot_cpu_data.x86_phys_bits,
4469                                             false);
4470
4471         if (!shadow_me_mask)
4472                 return;
4473
4474         for (i = context->shadow_root_level; --i >= 0;) {
4475                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4476                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4477         }
4478 }
4479
4480 /*
4481  * as the comments in reset_shadow_zero_bits_mask() except it
4482  * is the shadow page table for intel nested guest.
4483  */
4484 static void
4485 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4486                                 struct kvm_mmu *context, bool execonly)
4487 {
4488         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4489                                     boot_cpu_data.x86_phys_bits, execonly);
4490 }
4491
4492 #define BYTE_MASK(access) \
4493         ((1 & (access) ? 2 : 0) | \
4494          (2 & (access) ? 4 : 0) | \
4495          (3 & (access) ? 8 : 0) | \
4496          (4 & (access) ? 16 : 0) | \
4497          (5 & (access) ? 32 : 0) | \
4498          (6 & (access) ? 64 : 0) | \
4499          (7 & (access) ? 128 : 0))
4500
4501
4502 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4503                                       struct kvm_mmu *mmu, bool ept)
4504 {
4505         unsigned byte;
4506
4507         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4508         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4509         const u8 u = BYTE_MASK(ACC_USER_MASK);
4510
4511         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4512         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4513         bool cr0_wp = is_write_protection(vcpu);
4514
4515         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4516                 unsigned pfec = byte << 1;
4517
4518                 /*
4519                  * Each "*f" variable has a 1 bit for each UWX value
4520                  * that causes a fault with the given PFEC.
4521                  */
4522
4523                 /* Faults from writes to non-writable pages */
4524                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4525                 /* Faults from user mode accesses to supervisor pages */
4526                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4527                 /* Faults from fetches of non-executable pages*/
4528                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4529                 /* Faults from kernel mode fetches of user pages */
4530                 u8 smepf = 0;
4531                 /* Faults from kernel mode accesses of user pages */
4532                 u8 smapf = 0;
4533
4534                 if (!ept) {
4535                         /* Faults from kernel mode accesses to user pages */
4536                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4537
4538                         /* Not really needed: !nx will cause pte.nx to fault */
4539                         if (!mmu->nx)
4540                                 ff = 0;
4541
4542                         /* Allow supervisor writes if !cr0.wp */
4543                         if (!cr0_wp)
4544                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4545
4546                         /* Disallow supervisor fetches of user code if cr4.smep */
4547                         if (cr4_smep)
4548                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4549
4550                         /*
4551                          * SMAP:kernel-mode data accesses from user-mode
4552                          * mappings should fault. A fault is considered
4553                          * as a SMAP violation if all of the following
4554                          * conditions are ture:
4555                          *   - X86_CR4_SMAP is set in CR4
4556                          *   - A user page is accessed
4557                          *   - The access is not a fetch
4558                          *   - Page fault in kernel mode
4559                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4560                          *
4561                          * Here, we cover the first three conditions.
4562                          * The fourth is computed dynamically in permission_fault();
4563                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4564                          * *not* subject to SMAP restrictions.
4565                          */
4566                         if (cr4_smap)
4567                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4568                 }
4569
4570                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4571         }
4572 }
4573
4574 /*
4575 * PKU is an additional mechanism by which the paging controls access to
4576 * user-mode addresses based on the value in the PKRU register.  Protection
4577 * key violations are reported through a bit in the page fault error code.
4578 * Unlike other bits of the error code, the PK bit is not known at the
4579 * call site of e.g. gva_to_gpa; it must be computed directly in
4580 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4581 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4582 *
4583 * In particular the following conditions come from the error code, the
4584 * page tables and the machine state:
4585 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4586 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4587 * - PK is always zero if U=0 in the page tables
4588 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4589 *
4590 * The PKRU bitmask caches the result of these four conditions.  The error
4591 * code (minus the P bit) and the page table's U bit form an index into the
4592 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4593 * with the two bits of the PKRU register corresponding to the protection key.
4594 * For the first three conditions above the bits will be 00, thus masking
4595 * away both AD and WD.  For all reads or if the last condition holds, WD
4596 * only will be masked away.
4597 */
4598 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4599                                 bool ept)
4600 {
4601         unsigned bit;
4602         bool wp;
4603
4604         if (ept) {
4605                 mmu->pkru_mask = 0;
4606                 return;
4607         }
4608
4609         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4610         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4611                 mmu->pkru_mask = 0;
4612                 return;
4613         }
4614
4615         wp = is_write_protection(vcpu);
4616
4617         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4618                 unsigned pfec, pkey_bits;
4619                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4620
4621                 pfec = bit << 1;
4622                 ff = pfec & PFERR_FETCH_MASK;
4623                 uf = pfec & PFERR_USER_MASK;
4624                 wf = pfec & PFERR_WRITE_MASK;
4625
4626                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4627                 pte_user = pfec & PFERR_RSVD_MASK;
4628
4629                 /*
4630                  * Only need to check the access which is not an
4631                  * instruction fetch and is to a user page.
4632                  */
4633                 check_pkey = (!ff && pte_user);
4634                 /*
4635                  * write access is controlled by PKRU if it is a
4636                  * user access or CR0.WP = 1.
4637                  */
4638                 check_write = check_pkey && wf && (uf || wp);
4639
4640                 /* PKRU.AD stops both read and write access. */
4641                 pkey_bits = !!check_pkey;
4642                 /* PKRU.WD stops write access. */
4643                 pkey_bits |= (!!check_write) << 1;
4644
4645                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4646         }
4647 }
4648
4649 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4650 {
4651         unsigned root_level = mmu->root_level;
4652
4653         mmu->last_nonleaf_level = root_level;
4654         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4655                 mmu->last_nonleaf_level++;
4656 }
4657
4658 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4659                                          struct kvm_mmu *context,
4660                                          int level)
4661 {
4662         context->nx = is_nx(vcpu);
4663         context->root_level = level;
4664
4665         reset_rsvds_bits_mask(vcpu, context);
4666         update_permission_bitmask(vcpu, context, false);
4667         update_pkru_bitmask(vcpu, context, false);
4668         update_last_nonleaf_level(vcpu, context);
4669
4670         MMU_WARN_ON(!is_pae(vcpu));
4671         context->page_fault = paging64_page_fault;
4672         context->gva_to_gpa = paging64_gva_to_gpa;
4673         context->sync_page = paging64_sync_page;
4674         context->invlpg = paging64_invlpg;
4675         context->update_pte = paging64_update_pte;
4676         context->shadow_root_level = level;
4677         context->direct_map = false;
4678 }
4679
4680 static void paging64_init_context(struct kvm_vcpu *vcpu,
4681                                   struct kvm_mmu *context)
4682 {
4683         int root_level = is_la57_mode(vcpu) ?
4684                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4685
4686         paging64_init_context_common(vcpu, context, root_level);
4687 }
4688
4689 static void paging32_init_context(struct kvm_vcpu *vcpu,
4690                                   struct kvm_mmu *context)
4691 {
4692         context->nx = false;
4693         context->root_level = PT32_ROOT_LEVEL;
4694
4695         reset_rsvds_bits_mask(vcpu, context);
4696         update_permission_bitmask(vcpu, context, false);
4697         update_pkru_bitmask(vcpu, context, false);
4698         update_last_nonleaf_level(vcpu, context);
4699
4700         context->page_fault = paging32_page_fault;
4701         context->gva_to_gpa = paging32_gva_to_gpa;
4702         context->sync_page = paging32_sync_page;
4703         context->invlpg = paging32_invlpg;
4704         context->update_pte = paging32_update_pte;
4705         context->shadow_root_level = PT32E_ROOT_LEVEL;
4706         context->direct_map = false;
4707 }
4708
4709 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4710                                    struct kvm_mmu *context)
4711 {
4712         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4713 }
4714
4715 static union kvm_mmu_page_role
4716 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
4717 {
4718         union kvm_mmu_page_role role = {0};
4719
4720         role.guest_mode = is_guest_mode(vcpu);
4721         role.smm = is_smm(vcpu);
4722         role.ad_disabled = (shadow_accessed_mask == 0);
4723         role.level = kvm_x86_ops->get_tdp_level(vcpu);
4724         role.direct = true;
4725         role.access = ACC_ALL;
4726
4727         return role;
4728 }
4729
4730 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4731 {
4732         struct kvm_mmu *context = &vcpu->arch.mmu;
4733
4734         context->base_role.word = mmu_base_role_mask.word &
4735                                   kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4736         context->page_fault = tdp_page_fault;
4737         context->sync_page = nonpaging_sync_page;
4738         context->invlpg = nonpaging_invlpg;
4739         context->update_pte = nonpaging_update_pte;
4740         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4741         context->direct_map = true;
4742         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4743         context->get_cr3 = get_cr3;
4744         context->get_pdptr = kvm_pdptr_read;
4745         context->inject_page_fault = kvm_inject_page_fault;
4746
4747         if (!is_paging(vcpu)) {
4748                 context->nx = false;
4749                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4750                 context->root_level = 0;
4751         } else if (is_long_mode(vcpu)) {
4752                 context->nx = is_nx(vcpu);
4753                 context->root_level = is_la57_mode(vcpu) ?
4754                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4755                 reset_rsvds_bits_mask(vcpu, context);
4756                 context->gva_to_gpa = paging64_gva_to_gpa;
4757         } else if (is_pae(vcpu)) {
4758                 context->nx = is_nx(vcpu);
4759                 context->root_level = PT32E_ROOT_LEVEL;
4760                 reset_rsvds_bits_mask(vcpu, context);
4761                 context->gva_to_gpa = paging64_gva_to_gpa;
4762         } else {
4763                 context->nx = false;
4764                 context->root_level = PT32_ROOT_LEVEL;
4765                 reset_rsvds_bits_mask(vcpu, context);
4766                 context->gva_to_gpa = paging32_gva_to_gpa;
4767         }
4768
4769         update_permission_bitmask(vcpu, context, false);
4770         update_pkru_bitmask(vcpu, context, false);
4771         update_last_nonleaf_level(vcpu, context);
4772         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4773 }
4774
4775 static union kvm_mmu_page_role
4776 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
4777 {
4778         union kvm_mmu_page_role role = {0};
4779         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4780         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4781
4782         role.nxe = is_nx(vcpu);
4783         role.cr4_pae = !!is_pae(vcpu);
4784         role.cr0_wp  = is_write_protection(vcpu);
4785         role.smep_andnot_wp = smep && !is_write_protection(vcpu);
4786         role.smap_andnot_wp = smap && !is_write_protection(vcpu);
4787         role.guest_mode = is_guest_mode(vcpu);
4788         role.smm = is_smm(vcpu);
4789         role.direct = !is_paging(vcpu);
4790         role.access = ACC_ALL;
4791
4792         if (!is_long_mode(vcpu))
4793                 role.level = PT32E_ROOT_LEVEL;
4794         else if (is_la57_mode(vcpu))
4795                 role.level = PT64_ROOT_5LEVEL;
4796         else
4797                 role.level = PT64_ROOT_4LEVEL;
4798
4799         return role;
4800 }
4801
4802 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4803 {
4804         struct kvm_mmu *context = &vcpu->arch.mmu;
4805
4806         if (!is_paging(vcpu))
4807                 nonpaging_init_context(vcpu, context);
4808         else if (is_long_mode(vcpu))
4809                 paging64_init_context(vcpu, context);
4810         else if (is_pae(vcpu))
4811                 paging32E_init_context(vcpu, context);
4812         else
4813                 paging32_init_context(vcpu, context);
4814
4815         context->base_role.word = mmu_base_role_mask.word &
4816                                   kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4817         reset_shadow_zero_bits_mask(vcpu, context);
4818 }
4819 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4820
4821 static union kvm_mmu_page_role
4822 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
4823 {
4824         union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
4825
4826         role.level = PT64_ROOT_4LEVEL;
4827         role.direct = false;
4828         role.ad_disabled = !accessed_dirty;
4829         role.guest_mode = true;
4830         role.access = ACC_ALL;
4831
4832         return role;
4833 }
4834
4835 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4836                              bool accessed_dirty, gpa_t new_eptp)
4837 {
4838         struct kvm_mmu *context = &vcpu->arch.mmu;
4839         union kvm_mmu_page_role root_page_role =
4840                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4841
4842         __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4843         context->shadow_root_level = PT64_ROOT_4LEVEL;
4844
4845         context->nx = true;
4846         context->ept_ad = accessed_dirty;
4847         context->page_fault = ept_page_fault;
4848         context->gva_to_gpa = ept_gva_to_gpa;
4849         context->sync_page = ept_sync_page;
4850         context->invlpg = ept_invlpg;
4851         context->update_pte = ept_update_pte;
4852         context->root_level = PT64_ROOT_4LEVEL;
4853         context->direct_map = false;
4854         context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
4855         update_permission_bitmask(vcpu, context, true);
4856         update_pkru_bitmask(vcpu, context, true);
4857         update_last_nonleaf_level(vcpu, context);
4858         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4859         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4860 }
4861 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4862
4863 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4864 {
4865         struct kvm_mmu *context = &vcpu->arch.mmu;
4866
4867         kvm_init_shadow_mmu(vcpu);
4868         context->set_cr3           = kvm_x86_ops->set_cr3;
4869         context->get_cr3           = get_cr3;
4870         context->get_pdptr         = kvm_pdptr_read;
4871         context->inject_page_fault = kvm_inject_page_fault;
4872 }
4873
4874 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4875 {
4876         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4877
4878         g_context->get_cr3           = get_cr3;
4879         g_context->get_pdptr         = kvm_pdptr_read;
4880         g_context->inject_page_fault = kvm_inject_page_fault;
4881
4882         /*
4883          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4884          * L1's nested page tables (e.g. EPT12). The nested translation
4885          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4886          * L2's page tables as the first level of translation and L1's
4887          * nested page tables as the second level of translation. Basically
4888          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4889          */
4890         if (!is_paging(vcpu)) {
4891                 g_context->nx = false;
4892                 g_context->root_level = 0;
4893                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4894         } else if (is_long_mode(vcpu)) {
4895                 g_context->nx = is_nx(vcpu);
4896                 g_context->root_level = is_la57_mode(vcpu) ?
4897                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4898                 reset_rsvds_bits_mask(vcpu, g_context);
4899                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4900         } else if (is_pae(vcpu)) {
4901                 g_context->nx = is_nx(vcpu);
4902                 g_context->root_level = PT32E_ROOT_LEVEL;
4903                 reset_rsvds_bits_mask(vcpu, g_context);
4904                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4905         } else {
4906                 g_context->nx = false;
4907                 g_context->root_level = PT32_ROOT_LEVEL;
4908                 reset_rsvds_bits_mask(vcpu, g_context);
4909                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4910         }
4911
4912         update_permission_bitmask(vcpu, g_context, false);
4913         update_pkru_bitmask(vcpu, g_context, false);
4914         update_last_nonleaf_level(vcpu, g_context);
4915 }
4916
4917 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4918 {
4919         if (reset_roots) {
4920                 uint i;
4921
4922                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4923
4924                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4925                         vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4926         }
4927
4928         if (mmu_is_nested(vcpu))
4929                 init_kvm_nested_mmu(vcpu);
4930         else if (tdp_enabled)
4931                 init_kvm_tdp_mmu(vcpu);
4932         else
4933                 init_kvm_softmmu(vcpu);
4934 }
4935 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4936
4937 static union kvm_mmu_page_role
4938 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4939 {
4940         if (tdp_enabled)
4941                 return kvm_calc_tdp_mmu_root_page_role(vcpu);
4942         else
4943                 return kvm_calc_shadow_mmu_root_page_role(vcpu);
4944 }
4945
4946 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4947 {
4948         kvm_mmu_unload(vcpu);
4949         kvm_init_mmu(vcpu, true);
4950 }
4951 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4952
4953 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4954 {
4955         int r;
4956
4957         r = mmu_topup_memory_caches(vcpu);
4958         if (r)
4959                 goto out;
4960         r = mmu_alloc_roots(vcpu);
4961         kvm_mmu_sync_roots(vcpu);
4962         if (r)
4963                 goto out;
4964         kvm_mmu_load_cr3(vcpu);
4965         kvm_x86_ops->tlb_flush(vcpu, true);
4966 out:
4967         return r;
4968 }
4969 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4970
4971 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4972 {
4973         kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
4974         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4975 }
4976 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4977
4978 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4979                                   struct kvm_mmu_page *sp, u64 *spte,
4980                                   const void *new)
4981 {
4982         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4983                 ++vcpu->kvm->stat.mmu_pde_zapped;
4984                 return;
4985         }
4986
4987         ++vcpu->kvm->stat.mmu_pte_updated;
4988         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4989 }
4990
4991 static bool need_remote_flush(u64 old, u64 new)
4992 {
4993         if (!is_shadow_present_pte(old))
4994                 return false;
4995         if (!is_shadow_present_pte(new))
4996                 return true;
4997         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4998                 return true;
4999         old ^= shadow_nx_mask;
5000         new ^= shadow_nx_mask;
5001         return (old & ~new & PT64_PERM_MASK) != 0;
5002 }
5003
5004 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5005                                     const u8 *new, int *bytes)
5006 {
5007         u64 gentry;
5008         int r;
5009
5010         /*
5011          * Assume that the pte write on a page table of the same type
5012          * as the current vcpu paging mode since we update the sptes only
5013          * when they have the same mode.
5014          */
5015         if (is_pae(vcpu) && *bytes == 4) {
5016                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5017                 *gpa &= ~(gpa_t)7;
5018                 *bytes = 8;
5019                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
5020                 if (r)
5021                         gentry = 0;
5022                 new = (const u8 *)&gentry;
5023         }
5024
5025         switch (*bytes) {
5026         case 4:
5027                 gentry = *(const u32 *)new;
5028                 break;
5029         case 8:
5030                 gentry = *(const u64 *)new;
5031                 break;
5032         default:
5033                 gentry = 0;
5034                 break;
5035         }
5036
5037         return gentry;
5038 }
5039
5040 /*
5041  * If we're seeing too many writes to a page, it may no longer be a page table,
5042  * or we may be forking, in which case it is better to unmap the page.
5043  */
5044 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5045 {
5046         /*
5047          * Skip write-flooding detected for the sp whose level is 1, because
5048          * it can become unsync, then the guest page is not write-protected.
5049          */
5050         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5051                 return false;
5052
5053         atomic_inc(&sp->write_flooding_count);
5054         return atomic_read(&sp->write_flooding_count) >= 3;
5055 }
5056
5057 /*
5058  * Misaligned accesses are too much trouble to fix up; also, they usually
5059  * indicate a page is not used as a page table.
5060  */
5061 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5062                                     int bytes)
5063 {
5064         unsigned offset, pte_size, misaligned;
5065
5066         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5067                  gpa, bytes, sp->role.word);
5068
5069         offset = offset_in_page(gpa);
5070         pte_size = sp->role.cr4_pae ? 8 : 4;
5071
5072         /*
5073          * Sometimes, the OS only writes the last one bytes to update status
5074          * bits, for example, in linux, andb instruction is used in clear_bit().
5075          */
5076         if (!(offset & (pte_size - 1)) && bytes == 1)
5077                 return false;
5078
5079         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5080         misaligned |= bytes < 4;
5081
5082         return misaligned;
5083 }
5084
5085 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5086 {
5087         unsigned page_offset, quadrant;
5088         u64 *spte;
5089         int level;
5090
5091         page_offset = offset_in_page(gpa);
5092         level = sp->role.level;
5093         *nspte = 1;
5094         if (!sp->role.cr4_pae) {
5095                 page_offset <<= 1;      /* 32->64 */
5096                 /*
5097                  * A 32-bit pde maps 4MB while the shadow pdes map
5098                  * only 2MB.  So we need to double the offset again
5099                  * and zap two pdes instead of one.
5100                  */
5101                 if (level == PT32_ROOT_LEVEL) {
5102                         page_offset &= ~7; /* kill rounding error */
5103                         page_offset <<= 1;
5104                         *nspte = 2;
5105                 }
5106                 quadrant = page_offset >> PAGE_SHIFT;
5107                 page_offset &= ~PAGE_MASK;
5108                 if (quadrant != sp->role.quadrant)
5109                         return NULL;
5110         }
5111
5112         spte = &sp->spt[page_offset / sizeof(*spte)];
5113         return spte;
5114 }
5115
5116 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5117                               const u8 *new, int bytes,
5118                               struct kvm_page_track_notifier_node *node)
5119 {
5120         gfn_t gfn = gpa >> PAGE_SHIFT;
5121         struct kvm_mmu_page *sp;
5122         LIST_HEAD(invalid_list);
5123         u64 entry, gentry, *spte;
5124         int npte;
5125         bool remote_flush, local_flush;
5126
5127         /*
5128          * If we don't have indirect shadow pages, it means no page is
5129          * write-protected, so we can exit simply.
5130          */
5131         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5132                 return;
5133
5134         remote_flush = local_flush = false;
5135
5136         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5137
5138         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
5139
5140         /*
5141          * No need to care whether allocation memory is successful
5142          * or not since pte prefetch is skiped if it does not have
5143          * enough objects in the cache.
5144          */
5145         mmu_topup_memory_caches(vcpu);
5146
5147         spin_lock(&vcpu->kvm->mmu_lock);
5148         ++vcpu->kvm->stat.mmu_pte_write;
5149         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5150
5151         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5152                 if (detect_write_misaligned(sp, gpa, bytes) ||
5153                       detect_write_flooding(sp)) {
5154                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5155                         ++vcpu->kvm->stat.mmu_flooded;
5156                         continue;
5157                 }
5158
5159                 spte = get_written_sptes(sp, gpa, &npte);
5160                 if (!spte)
5161                         continue;
5162
5163                 local_flush = true;
5164                 while (npte--) {
5165                         entry = *spte;
5166                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5167                         if (gentry &&
5168                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5169                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5170                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5171                         if (need_remote_flush(entry, *spte))
5172                                 remote_flush = true;
5173                         ++spte;
5174                 }
5175         }
5176         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5177         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5178         spin_unlock(&vcpu->kvm->mmu_lock);
5179 }
5180
5181 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5182 {
5183         gpa_t gpa;
5184         int r;
5185
5186         if (vcpu->arch.mmu.direct_map)
5187                 return 0;
5188
5189         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5190
5191         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5192
5193         return r;
5194 }
5195 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5196
5197 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5198 {
5199         LIST_HEAD(invalid_list);
5200
5201         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5202                 return 0;
5203
5204         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5205                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5206                         break;
5207
5208                 ++vcpu->kvm->stat.mmu_recycled;
5209         }
5210         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5211
5212         if (!kvm_mmu_available_pages(vcpu->kvm))
5213                 return -ENOSPC;
5214         return 0;
5215 }
5216
5217 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5218                        void *insn, int insn_len)
5219 {
5220         int r, emulation_type = EMULTYPE_RETRY;
5221         enum emulation_result er;
5222         bool direct = vcpu->arch.mmu.direct_map;
5223
5224         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5225         if (vcpu->arch.mmu.direct_map) {
5226                 vcpu->arch.gpa_available = true;
5227                 vcpu->arch.gpa_val = cr2;
5228         }
5229
5230         r = RET_PF_INVALID;
5231         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5232                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5233                 if (r == RET_PF_EMULATE) {
5234                         emulation_type = 0;
5235                         goto emulate;
5236                 }
5237         }
5238
5239         if (r == RET_PF_INVALID) {
5240                 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
5241                                               false);
5242                 WARN_ON(r == RET_PF_INVALID);
5243         }
5244
5245         if (r == RET_PF_RETRY)
5246                 return 1;
5247         if (r < 0)
5248                 return r;
5249
5250         /*
5251          * Before emulating the instruction, check if the error code
5252          * was due to a RO violation while translating the guest page.
5253          * This can occur when using nested virtualization with nested
5254          * paging in both guests. If true, we simply unprotect the page
5255          * and resume the guest.
5256          */
5257         if (vcpu->arch.mmu.direct_map &&
5258             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5259                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5260                 return 1;
5261         }
5262
5263         if (mmio_info_in_cache(vcpu, cr2, direct))
5264                 emulation_type = 0;
5265 emulate:
5266         /*
5267          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5268          * This can happen if a guest gets a page-fault on data access but the HW
5269          * table walker is not able to read the instruction page (e.g instruction
5270          * page is not present in memory). In those cases we simply restart the
5271          * guest.
5272          */
5273         if (unlikely(insn && !insn_len))
5274                 return 1;
5275
5276         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5277
5278         switch (er) {
5279         case EMULATE_DONE:
5280                 return 1;
5281         case EMULATE_USER_EXIT:
5282                 ++vcpu->stat.mmio_exits;
5283                 /* fall through */
5284         case EMULATE_FAIL:
5285                 return 0;
5286         default:
5287                 BUG();
5288         }
5289 }
5290 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5291
5292 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5293 {
5294         struct kvm_mmu *mmu = &vcpu->arch.mmu;
5295         int i;
5296
5297         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5298         if (is_noncanonical_address(gva, vcpu))
5299                 return;
5300
5301         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5302
5303         /*
5304          * INVLPG is required to invalidate any global mappings for the VA,
5305          * irrespective of PCID. Since it would take us roughly similar amount
5306          * of work to determine whether any of the prev_root mappings of the VA
5307          * is marked global, or to just sync it blindly, so we might as well
5308          * just always sync it.
5309          *
5310          * Mappings not reachable via the current cr3 or the prev_roots will be
5311          * synced when switching to that cr3, so nothing needs to be done here
5312          * for them.
5313          */
5314         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5315                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5316                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5317
5318         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5319         ++vcpu->stat.invlpg;
5320 }
5321 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5322
5323 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5324 {
5325         struct kvm_mmu *mmu = &vcpu->arch.mmu;
5326         bool tlb_flush = false;
5327         uint i;
5328
5329         if (pcid == kvm_get_active_pcid(vcpu)) {
5330                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5331                 tlb_flush = true;
5332         }
5333
5334         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5335                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5336                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5337                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5338                         tlb_flush = true;
5339                 }
5340         }
5341
5342         if (tlb_flush)
5343                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5344
5345         ++vcpu->stat.invlpg;
5346
5347         /*
5348          * Mappings not reachable via the current cr3 or the prev_roots will be
5349          * synced when switching to that cr3, so nothing needs to be done here
5350          * for them.
5351          */
5352 }
5353 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5354
5355 void kvm_enable_tdp(void)
5356 {
5357         tdp_enabled = true;
5358 }
5359 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5360
5361 void kvm_disable_tdp(void)
5362 {
5363         tdp_enabled = false;
5364 }
5365 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5366
5367 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5368 {
5369         free_page((unsigned long)vcpu->arch.mmu.pae_root);
5370         free_page((unsigned long)vcpu->arch.mmu.lm_root);
5371 }
5372
5373 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5374 {
5375         struct page *page;
5376         int i;
5377
5378         if (tdp_enabled)
5379                 return 0;
5380
5381         /*
5382          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5383          * Therefore we need to allocate shadow page tables in the first
5384          * 4GB of memory, which happens to fit the DMA32 zone.
5385          */
5386         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5387         if (!page)
5388                 return -ENOMEM;
5389
5390         vcpu->arch.mmu.pae_root = page_address(page);
5391         for (i = 0; i < 4; ++i)
5392                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5393
5394         return 0;
5395 }
5396
5397 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5398 {
5399         uint i;
5400
5401         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5402         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5403         vcpu->arch.mmu.translate_gpa = translate_gpa;
5404         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5405
5406         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5407                 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5408
5409         return alloc_mmu_pages(vcpu);
5410 }
5411
5412 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5413 {
5414         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5415
5416         kvm_init_mmu(vcpu, true);
5417 }
5418
5419 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5420                         struct kvm_memory_slot *slot,
5421                         struct kvm_page_track_notifier_node *node)
5422 {
5423         kvm_mmu_invalidate_zap_all_pages(kvm);
5424 }
5425
5426 void kvm_mmu_init_vm(struct kvm *kvm)
5427 {
5428         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5429
5430         node->track_write = kvm_mmu_pte_write;
5431         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5432         kvm_page_track_register_notifier(kvm, node);
5433 }
5434
5435 void kvm_mmu_uninit_vm(struct kvm *kvm)
5436 {
5437         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5438
5439         kvm_page_track_unregister_notifier(kvm, node);
5440 }
5441
5442 /* The return value indicates if tlb flush on all vcpus is needed. */
5443 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5444
5445 /* The caller should hold mmu-lock before calling this function. */
5446 static __always_inline bool
5447 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5448                         slot_level_handler fn, int start_level, int end_level,
5449                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5450 {
5451         struct slot_rmap_walk_iterator iterator;
5452         bool flush = false;
5453
5454         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5455                         end_gfn, &iterator) {
5456                 if (iterator.rmap)
5457                         flush |= fn(kvm, iterator.rmap);
5458
5459                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5460                         if (flush && lock_flush_tlb) {
5461                                 kvm_flush_remote_tlbs(kvm);
5462                                 flush = false;
5463                         }
5464                         cond_resched_lock(&kvm->mmu_lock);
5465                 }
5466         }
5467
5468         if (flush && lock_flush_tlb) {
5469                 kvm_flush_remote_tlbs(kvm);
5470                 flush = false;
5471         }
5472
5473         return flush;
5474 }
5475
5476 static __always_inline bool
5477 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5478                   slot_level_handler fn, int start_level, int end_level,
5479                   bool lock_flush_tlb)
5480 {
5481         return slot_handle_level_range(kvm, memslot, fn, start_level,
5482                         end_level, memslot->base_gfn,
5483                         memslot->base_gfn + memslot->npages - 1,
5484                         lock_flush_tlb);
5485 }
5486
5487 static __always_inline bool
5488 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5489                       slot_level_handler fn, bool lock_flush_tlb)
5490 {
5491         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5492                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5493 }
5494
5495 static __always_inline bool
5496 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5497                         slot_level_handler fn, bool lock_flush_tlb)
5498 {
5499         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5500                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5501 }
5502
5503 static __always_inline bool
5504 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5505                  slot_level_handler fn, bool lock_flush_tlb)
5506 {
5507         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5508                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5509 }
5510
5511 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5512 {
5513         struct kvm_memslots *slots;
5514         struct kvm_memory_slot *memslot;
5515         int i;
5516
5517         spin_lock(&kvm->mmu_lock);
5518         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5519                 slots = __kvm_memslots(kvm, i);
5520                 kvm_for_each_memslot(memslot, slots) {
5521                         gfn_t start, end;
5522
5523                         start = max(gfn_start, memslot->base_gfn);
5524                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5525                         if (start >= end)
5526                                 continue;
5527
5528                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5529                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5530                                                 start, end - 1, true);
5531                 }
5532         }
5533
5534         spin_unlock(&kvm->mmu_lock);
5535 }
5536
5537 static bool slot_rmap_write_protect(struct kvm *kvm,
5538                                     struct kvm_rmap_head *rmap_head)
5539 {
5540         return __rmap_write_protect(kvm, rmap_head, false);
5541 }
5542
5543 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5544                                       struct kvm_memory_slot *memslot)
5545 {
5546         bool flush;
5547
5548         spin_lock(&kvm->mmu_lock);
5549         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5550                                       false);
5551         spin_unlock(&kvm->mmu_lock);
5552
5553         /*
5554          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5555          * which do tlb flush out of mmu-lock should be serialized by
5556          * kvm->slots_lock otherwise tlb flush would be missed.
5557          */
5558         lockdep_assert_held(&kvm->slots_lock);
5559
5560         /*
5561          * We can flush all the TLBs out of the mmu lock without TLB
5562          * corruption since we just change the spte from writable to
5563          * readonly so that we only need to care the case of changing
5564          * spte from present to present (changing the spte from present
5565          * to nonpresent will flush all the TLBs immediately), in other
5566          * words, the only case we care is mmu_spte_update() where we
5567          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5568          * instead of PT_WRITABLE_MASK, that means it does not depend
5569          * on PT_WRITABLE_MASK anymore.
5570          */
5571         if (flush)
5572                 kvm_flush_remote_tlbs(kvm);
5573 }
5574
5575 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5576                                          struct kvm_rmap_head *rmap_head)
5577 {
5578         u64 *sptep;
5579         struct rmap_iterator iter;
5580         int need_tlb_flush = 0;
5581         kvm_pfn_t pfn;
5582         struct kvm_mmu_page *sp;
5583
5584 restart:
5585         for_each_rmap_spte(rmap_head, &iter, sptep) {
5586                 sp = page_header(__pa(sptep));
5587                 pfn = spte_to_pfn(*sptep);
5588
5589                 /*
5590                  * We cannot do huge page mapping for indirect shadow pages,
5591                  * which are found on the last rmap (level = 1) when not using
5592                  * tdp; such shadow pages are synced with the page table in
5593                  * the guest, and the guest page table is using 4K page size
5594                  * mapping if the indirect sp has level = 1.
5595                  */
5596                 if (sp->role.direct &&
5597                         !kvm_is_reserved_pfn(pfn) &&
5598                         PageTransCompoundMap(pfn_to_page(pfn))) {
5599                         drop_spte(kvm, sptep);
5600                         need_tlb_flush = 1;
5601                         goto restart;
5602                 }
5603         }
5604
5605         return need_tlb_flush;
5606 }
5607
5608 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5609                                    const struct kvm_memory_slot *memslot)
5610 {
5611         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5612         spin_lock(&kvm->mmu_lock);
5613         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5614                          kvm_mmu_zap_collapsible_spte, true);
5615         spin_unlock(&kvm->mmu_lock);
5616 }
5617
5618 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5619                                    struct kvm_memory_slot *memslot)
5620 {
5621         bool flush;
5622
5623         spin_lock(&kvm->mmu_lock);
5624         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5625         spin_unlock(&kvm->mmu_lock);
5626
5627         lockdep_assert_held(&kvm->slots_lock);
5628
5629         /*
5630          * It's also safe to flush TLBs out of mmu lock here as currently this
5631          * function is only used for dirty logging, in which case flushing TLB
5632          * out of mmu lock also guarantees no dirty pages will be lost in
5633          * dirty_bitmap.
5634          */
5635         if (flush)
5636                 kvm_flush_remote_tlbs(kvm);
5637 }
5638 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5639
5640 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5641                                         struct kvm_memory_slot *memslot)
5642 {
5643         bool flush;
5644
5645         spin_lock(&kvm->mmu_lock);
5646         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5647                                         false);
5648         spin_unlock(&kvm->mmu_lock);
5649
5650         /* see kvm_mmu_slot_remove_write_access */
5651         lockdep_assert_held(&kvm->slots_lock);
5652
5653         if (flush)
5654                 kvm_flush_remote_tlbs(kvm);
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5657
5658 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5659                             struct kvm_memory_slot *memslot)
5660 {
5661         bool flush;
5662
5663         spin_lock(&kvm->mmu_lock);
5664         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5665         spin_unlock(&kvm->mmu_lock);
5666
5667         lockdep_assert_held(&kvm->slots_lock);
5668
5669         /* see kvm_mmu_slot_leaf_clear_dirty */
5670         if (flush)
5671                 kvm_flush_remote_tlbs(kvm);
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5674
5675 #define BATCH_ZAP_PAGES 10
5676 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5677 {
5678         struct kvm_mmu_page *sp, *node;
5679         int batch = 0;
5680
5681 restart:
5682         list_for_each_entry_safe_reverse(sp, node,
5683               &kvm->arch.active_mmu_pages, link) {
5684                 int ret;
5685
5686                 /*
5687                  * No obsolete page exists before new created page since
5688                  * active_mmu_pages is the FIFO list.
5689                  */
5690                 if (!is_obsolete_sp(kvm, sp))
5691                         break;
5692
5693                 /*
5694                  * Since we are reversely walking the list and the invalid
5695                  * list will be moved to the head, skip the invalid page
5696                  * can help us to avoid the infinity list walking.
5697                  */
5698                 if (sp->role.invalid)
5699                         continue;
5700
5701                 /*
5702                  * Need not flush tlb since we only zap the sp with invalid
5703                  * generation number.
5704                  */
5705                 if (batch >= BATCH_ZAP_PAGES &&
5706                       cond_resched_lock(&kvm->mmu_lock)) {
5707                         batch = 0;
5708                         goto restart;
5709                 }
5710
5711                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5712                                 &kvm->arch.zapped_obsolete_pages);
5713                 batch += ret;
5714
5715                 if (ret)
5716                         goto restart;
5717         }
5718
5719         /*
5720          * Should flush tlb before free page tables since lockless-walking
5721          * may use the pages.
5722          */
5723         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5724 }
5725
5726 /*
5727  * Fast invalidate all shadow pages and use lock-break technique
5728  * to zap obsolete pages.
5729  *
5730  * It's required when memslot is being deleted or VM is being
5731  * destroyed, in these cases, we should ensure that KVM MMU does
5732  * not use any resource of the being-deleted slot or all slots
5733  * after calling the function.
5734  */
5735 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5736 {
5737         spin_lock(&kvm->mmu_lock);
5738         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5739         kvm->arch.mmu_valid_gen++;
5740
5741         /*
5742          * Notify all vcpus to reload its shadow page table
5743          * and flush TLB. Then all vcpus will switch to new
5744          * shadow page table with the new mmu_valid_gen.
5745          *
5746          * Note: we should do this under the protection of
5747          * mmu-lock, otherwise, vcpu would purge shadow page
5748          * but miss tlb flush.
5749          */
5750         kvm_reload_remote_mmus(kvm);
5751
5752         kvm_zap_obsolete_pages(kvm);
5753         spin_unlock(&kvm->mmu_lock);
5754 }
5755
5756 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5757 {
5758         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5759 }
5760
5761 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5762 {
5763         /*
5764          * The very rare case: if the generation-number is round,
5765          * zap all shadow pages.
5766          */
5767         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5768                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5769                 kvm_mmu_invalidate_zap_all_pages(kvm);
5770         }
5771 }
5772
5773 static unsigned long
5774 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5775 {
5776         struct kvm *kvm;
5777         int nr_to_scan = sc->nr_to_scan;
5778         unsigned long freed = 0;
5779
5780         spin_lock(&kvm_lock);
5781
5782         list_for_each_entry(kvm, &vm_list, vm_list) {
5783                 int idx;
5784                 LIST_HEAD(invalid_list);
5785
5786                 /*
5787                  * Never scan more than sc->nr_to_scan VM instances.
5788                  * Will not hit this condition practically since we do not try
5789                  * to shrink more than one VM and it is very unlikely to see
5790                  * !n_used_mmu_pages so many times.
5791                  */
5792                 if (!nr_to_scan--)
5793                         break;
5794                 /*
5795                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5796                  * here. We may skip a VM instance errorneosly, but we do not
5797                  * want to shrink a VM that only started to populate its MMU
5798                  * anyway.
5799                  */
5800                 if (!kvm->arch.n_used_mmu_pages &&
5801                       !kvm_has_zapped_obsolete_pages(kvm))
5802                         continue;
5803
5804                 idx = srcu_read_lock(&kvm->srcu);
5805                 spin_lock(&kvm->mmu_lock);
5806
5807                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5808                         kvm_mmu_commit_zap_page(kvm,
5809                               &kvm->arch.zapped_obsolete_pages);
5810                         goto unlock;
5811                 }
5812
5813                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5814                         freed++;
5815                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5816
5817 unlock:
5818                 spin_unlock(&kvm->mmu_lock);
5819                 srcu_read_unlock(&kvm->srcu, idx);
5820
5821                 /*
5822                  * unfair on small ones
5823                  * per-vm shrinkers cry out
5824                  * sadness comes quickly
5825                  */
5826                 list_move_tail(&kvm->vm_list, &vm_list);
5827                 break;
5828         }
5829
5830         spin_unlock(&kvm_lock);
5831         return freed;
5832 }
5833
5834 static unsigned long
5835 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5836 {
5837         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5838 }
5839
5840 static struct shrinker mmu_shrinker = {
5841         .count_objects = mmu_shrink_count,
5842         .scan_objects = mmu_shrink_scan,
5843         .seeks = DEFAULT_SEEKS * 10,
5844 };
5845
5846 static void mmu_destroy_caches(void)
5847 {
5848         kmem_cache_destroy(pte_list_desc_cache);
5849         kmem_cache_destroy(mmu_page_header_cache);
5850 }
5851
5852 int kvm_mmu_module_init(void)
5853 {
5854         int ret = -ENOMEM;
5855
5856         kvm_mmu_reset_all_pte_masks();
5857
5858         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5859                                             sizeof(struct pte_list_desc),
5860                                             0, SLAB_ACCOUNT, NULL);
5861         if (!pte_list_desc_cache)
5862                 goto out;
5863
5864         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5865                                                   sizeof(struct kvm_mmu_page),
5866                                                   0, SLAB_ACCOUNT, NULL);
5867         if (!mmu_page_header_cache)
5868                 goto out;
5869
5870         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5871                 goto out;
5872
5873         ret = register_shrinker(&mmu_shrinker);
5874         if (ret)
5875                 goto out;
5876
5877         return 0;
5878
5879 out:
5880         mmu_destroy_caches();
5881         return ret;
5882 }
5883
5884 /*
5885  * Caculate mmu pages needed for kvm.
5886  */
5887 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5888 {
5889         unsigned int nr_mmu_pages;
5890         unsigned int  nr_pages = 0;
5891         struct kvm_memslots *slots;
5892         struct kvm_memory_slot *memslot;
5893         int i;
5894
5895         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5896                 slots = __kvm_memslots(kvm, i);
5897
5898                 kvm_for_each_memslot(memslot, slots)
5899                         nr_pages += memslot->npages;
5900         }
5901
5902         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5903         nr_mmu_pages = max(nr_mmu_pages,
5904                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5905
5906         return nr_mmu_pages;
5907 }
5908
5909 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5910 {
5911         kvm_mmu_unload(vcpu);
5912         free_mmu_pages(vcpu);
5913         mmu_free_memory_caches(vcpu);
5914 }
5915
5916 void kvm_mmu_module_exit(void)
5917 {
5918         mmu_destroy_caches();
5919         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5920         unregister_shrinker(&mmu_shrinker);
5921         mmu_audit_disable();
5922 }