ARM: dts: vf610-zii-scu4-aib: Configure IRQ line for GPIO expander
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40
41 #include <asm/page.h>
42 #include <asm/pat.h>
43 #include <asm/cmpxchg.h>
44 #include <asm/e820/api.h>
45 #include <asm/io.h>
46 #include <asm/vmx.h>
47 #include <asm/kvm_page_track.h>
48 #include "trace.h"
49
50 /*
51  * When setting this variable to true it enables Two-Dimensional-Paging
52  * where the hardware walks 2 page tables:
53  * 1. the guest-virtual to guest-physical
54  * 2. while doing 1. it walks guest-physical to host-physical
55  * If the hardware supports that we don't need to do shadow paging.
56  */
57 bool tdp_enabled = false;
58
59 enum {
60         AUDIT_PRE_PAGE_FAULT,
61         AUDIT_POST_PAGE_FAULT,
62         AUDIT_PRE_PTE_WRITE,
63         AUDIT_POST_PTE_WRITE,
64         AUDIT_PRE_SYNC,
65         AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM                8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104                                                 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
111 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
112 #else
113 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
114 #endif
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
144 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
145
146 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
147
148 /* make pte_list_desc fit well in cache line */
149 #define PTE_LIST_EXT 3
150
151 /*
152  * Return values of handle_mmio_page_fault and mmu.page_fault:
153  * RET_PF_RETRY: let CPU fault again on the address.
154  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
155  *
156  * For handle_mmio_page_fault only:
157  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
158  */
159 enum {
160         RET_PF_RETRY = 0,
161         RET_PF_EMULATE = 1,
162         RET_PF_INVALID = 2,
163 };
164
165 struct pte_list_desc {
166         u64 *sptes[PTE_LIST_EXT];
167         struct pte_list_desc *more;
168 };
169
170 struct kvm_shadow_walk_iterator {
171         u64 addr;
172         hpa_t shadow_addr;
173         u64 *sptep;
174         int level;
175         unsigned index;
176 };
177
178 static const union kvm_mmu_page_role mmu_base_role_mask = {
179         .cr0_wp = 1,
180         .gpte_is_8_bytes = 1,
181         .nxe = 1,
182         .smep_andnot_wp = 1,
183         .smap_andnot_wp = 1,
184         .smm = 1,
185         .guest_mode = 1,
186         .ad_disabled = 1,
187 };
188
189 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
190         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
191                                          (_root), (_addr));                \
192              shadow_walk_okay(&(_walker));                                 \
193              shadow_walk_next(&(_walker)))
194
195 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
196         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
197              shadow_walk_okay(&(_walker));                      \
198              shadow_walk_next(&(_walker)))
199
200 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
201         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
202              shadow_walk_okay(&(_walker)) &&                            \
203                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
204              __shadow_walk_next(&(_walker), spte))
205
206 static struct kmem_cache *pte_list_desc_cache;
207 static struct kmem_cache *mmu_page_header_cache;
208 static struct percpu_counter kvm_total_used_mmu_pages;
209
210 static u64 __read_mostly shadow_nx_mask;
211 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
212 static u64 __read_mostly shadow_user_mask;
213 static u64 __read_mostly shadow_accessed_mask;
214 static u64 __read_mostly shadow_dirty_mask;
215 static u64 __read_mostly shadow_mmio_mask;
216 static u64 __read_mostly shadow_mmio_value;
217 static u64 __read_mostly shadow_present_mask;
218 static u64 __read_mostly shadow_me_mask;
219
220 /*
221  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
222  * Non-present SPTEs with shadow_acc_track_value set are in place for access
223  * tracking.
224  */
225 static u64 __read_mostly shadow_acc_track_mask;
226 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
227
228 /*
229  * The mask/shift to use for saving the original R/X bits when marking the PTE
230  * as not-present for access tracking purposes. We do not save the W bit as the
231  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
232  * restored only when a write is attempted to the page.
233  */
234 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
235                                                     PT64_EPT_EXECUTABLE_MASK;
236 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
237
238 /*
239  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
240  * to guard against L1TF attacks.
241  */
242 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
243
244 /*
245  * The number of high-order 1 bits to use in the mask above.
246  */
247 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
248
249 /*
250  * In some cases, we need to preserve the GFN of a non-present or reserved
251  * SPTE when we usurp the upper five bits of the physical address space to
252  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
253  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
254  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
255  * high and low parts.  This mask covers the lower bits of the GFN.
256  */
257 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
258
259 /*
260  * The number of non-reserved physical address bits irrespective of features
261  * that repurpose legal bits, e.g. MKTME.
262  */
263 static u8 __read_mostly shadow_phys_bits;
264
265 static void mmu_spte_set(u64 *sptep, u64 spte);
266 static bool is_executable_pte(u64 spte);
267 static union kvm_mmu_page_role
268 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
269
270 #define CREATE_TRACE_POINTS
271 #include "mmutrace.h"
272
273
274 static inline bool kvm_available_flush_tlb_with_range(void)
275 {
276         return kvm_x86_ops->tlb_remote_flush_with_range;
277 }
278
279 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
280                 struct kvm_tlb_range *range)
281 {
282         int ret = -ENOTSUPP;
283
284         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
285                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
286
287         if (ret)
288                 kvm_flush_remote_tlbs(kvm);
289 }
290
291 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
292                 u64 start_gfn, u64 pages)
293 {
294         struct kvm_tlb_range range;
295
296         range.start_gfn = start_gfn;
297         range.pages = pages;
298
299         kvm_flush_remote_tlbs_with_range(kvm, &range);
300 }
301
302 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
303 {
304         BUG_ON((mmio_mask & mmio_value) != mmio_value);
305         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
306         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
307 }
308 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
309
310 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
311 {
312         return sp->role.ad_disabled;
313 }
314
315 static inline bool spte_ad_enabled(u64 spte)
316 {
317         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
318         return !(spte & shadow_acc_track_value);
319 }
320
321 static inline u64 spte_shadow_accessed_mask(u64 spte)
322 {
323         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
324         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
325 }
326
327 static inline u64 spte_shadow_dirty_mask(u64 spte)
328 {
329         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
330         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
331 }
332
333 static inline bool is_access_track_spte(u64 spte)
334 {
335         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
336 }
337
338 /*
339  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
340  * the memslots generation and is derived as follows:
341  *
342  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
343  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
344  *
345  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
346  * the MMIO generation number, as doing so would require stealing a bit from
347  * the "real" generation number and thus effectively halve the maximum number
348  * of MMIO generations that can be handled before encountering a wrap (which
349  * requires a full MMU zap).  The flag is instead explicitly queried when
350  * checking for MMIO spte cache hits.
351  */
352 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
353
354 #define MMIO_SPTE_GEN_LOW_START         3
355 #define MMIO_SPTE_GEN_LOW_END           11
356 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
357                                                     MMIO_SPTE_GEN_LOW_START)
358
359 #define MMIO_SPTE_GEN_HIGH_START        52
360 #define MMIO_SPTE_GEN_HIGH_END          61
361 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
362                                                     MMIO_SPTE_GEN_HIGH_START)
363 static u64 generation_mmio_spte_mask(u64 gen)
364 {
365         u64 mask;
366
367         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
368
369         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
370         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
371         return mask;
372 }
373
374 static u64 get_mmio_spte_generation(u64 spte)
375 {
376         u64 gen;
377
378         spte &= ~shadow_mmio_mask;
379
380         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
381         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
382         return gen;
383 }
384
385 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
386                            unsigned access)
387 {
388         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
389         u64 mask = generation_mmio_spte_mask(gen);
390         u64 gpa = gfn << PAGE_SHIFT;
391
392         access &= ACC_WRITE_MASK | ACC_USER_MASK;
393         mask |= shadow_mmio_value | access;
394         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
395         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
396                 << shadow_nonpresent_or_rsvd_mask_len;
397
398         page_header(__pa(sptep))->mmio_cached = true;
399
400         trace_mark_mmio_spte(sptep, gfn, access, gen);
401         mmu_spte_set(sptep, mask);
402 }
403
404 static bool is_mmio_spte(u64 spte)
405 {
406         return (spte & shadow_mmio_mask) == shadow_mmio_value;
407 }
408
409 static gfn_t get_mmio_spte_gfn(u64 spte)
410 {
411         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
412
413         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
414                & shadow_nonpresent_or_rsvd_mask;
415
416         return gpa >> PAGE_SHIFT;
417 }
418
419 static unsigned get_mmio_spte_access(u64 spte)
420 {
421         u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
422         return (spte & ~mask) & ~PAGE_MASK;
423 }
424
425 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
426                           kvm_pfn_t pfn, unsigned access)
427 {
428         if (unlikely(is_noslot_pfn(pfn))) {
429                 mark_mmio_spte(vcpu, sptep, gfn, access);
430                 return true;
431         }
432
433         return false;
434 }
435
436 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
437 {
438         u64 kvm_gen, spte_gen, gen;
439
440         gen = kvm_vcpu_memslots(vcpu)->generation;
441         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
442                 return false;
443
444         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
445         spte_gen = get_mmio_spte_generation(spte);
446
447         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
448         return likely(kvm_gen == spte_gen);
449 }
450
451 /*
452  * Sets the shadow PTE masks used by the MMU.
453  *
454  * Assumptions:
455  *  - Setting either @accessed_mask or @dirty_mask requires setting both
456  *  - At least one of @accessed_mask or @acc_track_mask must be set
457  */
458 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
459                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
460                 u64 acc_track_mask, u64 me_mask)
461 {
462         BUG_ON(!dirty_mask != !accessed_mask);
463         BUG_ON(!accessed_mask && !acc_track_mask);
464         BUG_ON(acc_track_mask & shadow_acc_track_value);
465
466         shadow_user_mask = user_mask;
467         shadow_accessed_mask = accessed_mask;
468         shadow_dirty_mask = dirty_mask;
469         shadow_nx_mask = nx_mask;
470         shadow_x_mask = x_mask;
471         shadow_present_mask = p_mask;
472         shadow_acc_track_mask = acc_track_mask;
473         shadow_me_mask = me_mask;
474 }
475 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
476
477 static u8 kvm_get_shadow_phys_bits(void)
478 {
479         /*
480          * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
481          * in CPU detection code, but MKTME treats those reduced bits as
482          * 'keyID' thus they are not reserved bits. Therefore for MKTME
483          * we should still return physical address bits reported by CPUID.
484          */
485         if (!boot_cpu_has(X86_FEATURE_TME) ||
486             WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
487                 return boot_cpu_data.x86_phys_bits;
488
489         return cpuid_eax(0x80000008) & 0xff;
490 }
491
492 static void kvm_mmu_reset_all_pte_masks(void)
493 {
494         u8 low_phys_bits;
495
496         shadow_user_mask = 0;
497         shadow_accessed_mask = 0;
498         shadow_dirty_mask = 0;
499         shadow_nx_mask = 0;
500         shadow_x_mask = 0;
501         shadow_mmio_mask = 0;
502         shadow_present_mask = 0;
503         shadow_acc_track_mask = 0;
504
505         shadow_phys_bits = kvm_get_shadow_phys_bits();
506
507         /*
508          * If the CPU has 46 or less physical address bits, then set an
509          * appropriate mask to guard against L1TF attacks. Otherwise, it is
510          * assumed that the CPU is not vulnerable to L1TF.
511          *
512          * Some Intel CPUs address the L1 cache using more PA bits than are
513          * reported by CPUID. Use the PA width of the L1 cache when possible
514          * to achieve more effective mitigation, e.g. if system RAM overlaps
515          * the most significant bits of legal physical address space.
516          */
517         shadow_nonpresent_or_rsvd_mask = 0;
518         low_phys_bits = boot_cpu_data.x86_cache_bits;
519         if (boot_cpu_data.x86_cache_bits <
520             52 - shadow_nonpresent_or_rsvd_mask_len) {
521                 shadow_nonpresent_or_rsvd_mask =
522                         rsvd_bits(boot_cpu_data.x86_cache_bits -
523                                   shadow_nonpresent_or_rsvd_mask_len,
524                                   boot_cpu_data.x86_cache_bits - 1);
525                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
526         } else
527                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
528
529         shadow_nonpresent_or_rsvd_lower_gfn_mask =
530                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
531 }
532
533 static int is_cpuid_PSE36(void)
534 {
535         return 1;
536 }
537
538 static int is_nx(struct kvm_vcpu *vcpu)
539 {
540         return vcpu->arch.efer & EFER_NX;
541 }
542
543 static int is_shadow_present_pte(u64 pte)
544 {
545         return (pte != 0) && !is_mmio_spte(pte);
546 }
547
548 static int is_large_pte(u64 pte)
549 {
550         return pte & PT_PAGE_SIZE_MASK;
551 }
552
553 static int is_last_spte(u64 pte, int level)
554 {
555         if (level == PT_PAGE_TABLE_LEVEL)
556                 return 1;
557         if (is_large_pte(pte))
558                 return 1;
559         return 0;
560 }
561
562 static bool is_executable_pte(u64 spte)
563 {
564         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
565 }
566
567 static kvm_pfn_t spte_to_pfn(u64 pte)
568 {
569         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
570 }
571
572 static gfn_t pse36_gfn_delta(u32 gpte)
573 {
574         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
575
576         return (gpte & PT32_DIR_PSE36_MASK) << shift;
577 }
578
579 #ifdef CONFIG_X86_64
580 static void __set_spte(u64 *sptep, u64 spte)
581 {
582         WRITE_ONCE(*sptep, spte);
583 }
584
585 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
586 {
587         WRITE_ONCE(*sptep, spte);
588 }
589
590 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
591 {
592         return xchg(sptep, spte);
593 }
594
595 static u64 __get_spte_lockless(u64 *sptep)
596 {
597         return READ_ONCE(*sptep);
598 }
599 #else
600 union split_spte {
601         struct {
602                 u32 spte_low;
603                 u32 spte_high;
604         };
605         u64 spte;
606 };
607
608 static void count_spte_clear(u64 *sptep, u64 spte)
609 {
610         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
611
612         if (is_shadow_present_pte(spte))
613                 return;
614
615         /* Ensure the spte is completely set before we increase the count */
616         smp_wmb();
617         sp->clear_spte_count++;
618 }
619
620 static void __set_spte(u64 *sptep, u64 spte)
621 {
622         union split_spte *ssptep, sspte;
623
624         ssptep = (union split_spte *)sptep;
625         sspte = (union split_spte)spte;
626
627         ssptep->spte_high = sspte.spte_high;
628
629         /*
630          * If we map the spte from nonpresent to present, We should store
631          * the high bits firstly, then set present bit, so cpu can not
632          * fetch this spte while we are setting the spte.
633          */
634         smp_wmb();
635
636         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
637 }
638
639 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
640 {
641         union split_spte *ssptep, sspte;
642
643         ssptep = (union split_spte *)sptep;
644         sspte = (union split_spte)spte;
645
646         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
647
648         /*
649          * If we map the spte from present to nonpresent, we should clear
650          * present bit firstly to avoid vcpu fetch the old high bits.
651          */
652         smp_wmb();
653
654         ssptep->spte_high = sspte.spte_high;
655         count_spte_clear(sptep, spte);
656 }
657
658 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659 {
660         union split_spte *ssptep, sspte, orig;
661
662         ssptep = (union split_spte *)sptep;
663         sspte = (union split_spte)spte;
664
665         /* xchg acts as a barrier before the setting of the high bits */
666         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
667         orig.spte_high = ssptep->spte_high;
668         ssptep->spte_high = sspte.spte_high;
669         count_spte_clear(sptep, spte);
670
671         return orig.spte;
672 }
673
674 /*
675  * The idea using the light way get the spte on x86_32 guest is from
676  * gup_get_pte (mm/gup.c).
677  *
678  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
679  * coalesces them and we are running out of the MMU lock.  Therefore
680  * we need to protect against in-progress updates of the spte.
681  *
682  * Reading the spte while an update is in progress may get the old value
683  * for the high part of the spte.  The race is fine for a present->non-present
684  * change (because the high part of the spte is ignored for non-present spte),
685  * but for a present->present change we must reread the spte.
686  *
687  * All such changes are done in two steps (present->non-present and
688  * non-present->present), hence it is enough to count the number of
689  * present->non-present updates: if it changed while reading the spte,
690  * we might have hit the race.  This is done using clear_spte_count.
691  */
692 static u64 __get_spte_lockless(u64 *sptep)
693 {
694         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
695         union split_spte spte, *orig = (union split_spte *)sptep;
696         int count;
697
698 retry:
699         count = sp->clear_spte_count;
700         smp_rmb();
701
702         spte.spte_low = orig->spte_low;
703         smp_rmb();
704
705         spte.spte_high = orig->spte_high;
706         smp_rmb();
707
708         if (unlikely(spte.spte_low != orig->spte_low ||
709               count != sp->clear_spte_count))
710                 goto retry;
711
712         return spte.spte;
713 }
714 #endif
715
716 static bool spte_can_locklessly_be_made_writable(u64 spte)
717 {
718         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
719                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
720 }
721
722 static bool spte_has_volatile_bits(u64 spte)
723 {
724         if (!is_shadow_present_pte(spte))
725                 return false;
726
727         /*
728          * Always atomically update spte if it can be updated
729          * out of mmu-lock, it can ensure dirty bit is not lost,
730          * also, it can help us to get a stable is_writable_pte()
731          * to ensure tlb flush is not missed.
732          */
733         if (spte_can_locklessly_be_made_writable(spte) ||
734             is_access_track_spte(spte))
735                 return true;
736
737         if (spte_ad_enabled(spte)) {
738                 if ((spte & shadow_accessed_mask) == 0 ||
739                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
740                         return true;
741         }
742
743         return false;
744 }
745
746 static bool is_accessed_spte(u64 spte)
747 {
748         u64 accessed_mask = spte_shadow_accessed_mask(spte);
749
750         return accessed_mask ? spte & accessed_mask
751                              : !is_access_track_spte(spte);
752 }
753
754 static bool is_dirty_spte(u64 spte)
755 {
756         u64 dirty_mask = spte_shadow_dirty_mask(spte);
757
758         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
759 }
760
761 /* Rules for using mmu_spte_set:
762  * Set the sptep from nonpresent to present.
763  * Note: the sptep being assigned *must* be either not present
764  * or in a state where the hardware will not attempt to update
765  * the spte.
766  */
767 static void mmu_spte_set(u64 *sptep, u64 new_spte)
768 {
769         WARN_ON(is_shadow_present_pte(*sptep));
770         __set_spte(sptep, new_spte);
771 }
772
773 /*
774  * Update the SPTE (excluding the PFN), but do not track changes in its
775  * accessed/dirty status.
776  */
777 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
778 {
779         u64 old_spte = *sptep;
780
781         WARN_ON(!is_shadow_present_pte(new_spte));
782
783         if (!is_shadow_present_pte(old_spte)) {
784                 mmu_spte_set(sptep, new_spte);
785                 return old_spte;
786         }
787
788         if (!spte_has_volatile_bits(old_spte))
789                 __update_clear_spte_fast(sptep, new_spte);
790         else
791                 old_spte = __update_clear_spte_slow(sptep, new_spte);
792
793         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
794
795         return old_spte;
796 }
797
798 /* Rules for using mmu_spte_update:
799  * Update the state bits, it means the mapped pfn is not changed.
800  *
801  * Whenever we overwrite a writable spte with a read-only one we
802  * should flush remote TLBs. Otherwise rmap_write_protect
803  * will find a read-only spte, even though the writable spte
804  * might be cached on a CPU's TLB, the return value indicates this
805  * case.
806  *
807  * Returns true if the TLB needs to be flushed
808  */
809 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
810 {
811         bool flush = false;
812         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
813
814         if (!is_shadow_present_pte(old_spte))
815                 return false;
816
817         /*
818          * For the spte updated out of mmu-lock is safe, since
819          * we always atomically update it, see the comments in
820          * spte_has_volatile_bits().
821          */
822         if (spte_can_locklessly_be_made_writable(old_spte) &&
823               !is_writable_pte(new_spte))
824                 flush = true;
825
826         /*
827          * Flush TLB when accessed/dirty states are changed in the page tables,
828          * to guarantee consistency between TLB and page tables.
829          */
830
831         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
832                 flush = true;
833                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
834         }
835
836         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
837                 flush = true;
838                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
839         }
840
841         return flush;
842 }
843
844 /*
845  * Rules for using mmu_spte_clear_track_bits:
846  * It sets the sptep from present to nonpresent, and track the
847  * state bits, it is used to clear the last level sptep.
848  * Returns non-zero if the PTE was previously valid.
849  */
850 static int mmu_spte_clear_track_bits(u64 *sptep)
851 {
852         kvm_pfn_t pfn;
853         u64 old_spte = *sptep;
854
855         if (!spte_has_volatile_bits(old_spte))
856                 __update_clear_spte_fast(sptep, 0ull);
857         else
858                 old_spte = __update_clear_spte_slow(sptep, 0ull);
859
860         if (!is_shadow_present_pte(old_spte))
861                 return 0;
862
863         pfn = spte_to_pfn(old_spte);
864
865         /*
866          * KVM does not hold the refcount of the page used by
867          * kvm mmu, before reclaiming the page, we should
868          * unmap it from mmu first.
869          */
870         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
871
872         if (is_accessed_spte(old_spte))
873                 kvm_set_pfn_accessed(pfn);
874
875         if (is_dirty_spte(old_spte))
876                 kvm_set_pfn_dirty(pfn);
877
878         return 1;
879 }
880
881 /*
882  * Rules for using mmu_spte_clear_no_track:
883  * Directly clear spte without caring the state bits of sptep,
884  * it is used to set the upper level spte.
885  */
886 static void mmu_spte_clear_no_track(u64 *sptep)
887 {
888         __update_clear_spte_fast(sptep, 0ull);
889 }
890
891 static u64 mmu_spte_get_lockless(u64 *sptep)
892 {
893         return __get_spte_lockless(sptep);
894 }
895
896 static u64 mark_spte_for_access_track(u64 spte)
897 {
898         if (spte_ad_enabled(spte))
899                 return spte & ~shadow_accessed_mask;
900
901         if (is_access_track_spte(spte))
902                 return spte;
903
904         /*
905          * Making an Access Tracking PTE will result in removal of write access
906          * from the PTE. So, verify that we will be able to restore the write
907          * access in the fast page fault path later on.
908          */
909         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
910                   !spte_can_locklessly_be_made_writable(spte),
911                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
912
913         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
914                           shadow_acc_track_saved_bits_shift),
915                   "kvm: Access Tracking saved bit locations are not zero\n");
916
917         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
918                 shadow_acc_track_saved_bits_shift;
919         spte &= ~shadow_acc_track_mask;
920
921         return spte;
922 }
923
924 /* Restore an acc-track PTE back to a regular PTE */
925 static u64 restore_acc_track_spte(u64 spte)
926 {
927         u64 new_spte = spte;
928         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
929                          & shadow_acc_track_saved_bits_mask;
930
931         WARN_ON_ONCE(spte_ad_enabled(spte));
932         WARN_ON_ONCE(!is_access_track_spte(spte));
933
934         new_spte &= ~shadow_acc_track_mask;
935         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
936                       shadow_acc_track_saved_bits_shift);
937         new_spte |= saved_bits;
938
939         return new_spte;
940 }
941
942 /* Returns the Accessed status of the PTE and resets it at the same time. */
943 static bool mmu_spte_age(u64 *sptep)
944 {
945         u64 spte = mmu_spte_get_lockless(sptep);
946
947         if (!is_accessed_spte(spte))
948                 return false;
949
950         if (spte_ad_enabled(spte)) {
951                 clear_bit((ffs(shadow_accessed_mask) - 1),
952                           (unsigned long *)sptep);
953         } else {
954                 /*
955                  * Capture the dirty status of the page, so that it doesn't get
956                  * lost when the SPTE is marked for access tracking.
957                  */
958                 if (is_writable_pte(spte))
959                         kvm_set_pfn_dirty(spte_to_pfn(spte));
960
961                 spte = mark_spte_for_access_track(spte);
962                 mmu_spte_update_no_track(sptep, spte);
963         }
964
965         return true;
966 }
967
968 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
969 {
970         /*
971          * Prevent page table teardown by making any free-er wait during
972          * kvm_flush_remote_tlbs() IPI to all active vcpus.
973          */
974         local_irq_disable();
975
976         /*
977          * Make sure a following spte read is not reordered ahead of the write
978          * to vcpu->mode.
979          */
980         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
981 }
982
983 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
984 {
985         /*
986          * Make sure the write to vcpu->mode is not reordered in front of
987          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
988          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
989          */
990         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
991         local_irq_enable();
992 }
993
994 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
995                                   struct kmem_cache *base_cache, int min)
996 {
997         void *obj;
998
999         if (cache->nobjs >= min)
1000                 return 0;
1001         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1002                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1003                 if (!obj)
1004                         return cache->nobjs >= min ? 0 : -ENOMEM;
1005                 cache->objects[cache->nobjs++] = obj;
1006         }
1007         return 0;
1008 }
1009
1010 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1011 {
1012         return cache->nobjs;
1013 }
1014
1015 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1016                                   struct kmem_cache *cache)
1017 {
1018         while (mc->nobjs)
1019                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1020 }
1021
1022 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1023                                        int min)
1024 {
1025         void *page;
1026
1027         if (cache->nobjs >= min)
1028                 return 0;
1029         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1030                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1031                 if (!page)
1032                         return cache->nobjs >= min ? 0 : -ENOMEM;
1033                 cache->objects[cache->nobjs++] = page;
1034         }
1035         return 0;
1036 }
1037
1038 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1039 {
1040         while (mc->nobjs)
1041                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1042 }
1043
1044 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1045 {
1046         int r;
1047
1048         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1049                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1050         if (r)
1051                 goto out;
1052         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1053         if (r)
1054                 goto out;
1055         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1056                                    mmu_page_header_cache, 4);
1057 out:
1058         return r;
1059 }
1060
1061 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1062 {
1063         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1064                                 pte_list_desc_cache);
1065         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1066         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1067                                 mmu_page_header_cache);
1068 }
1069
1070 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1071 {
1072         void *p;
1073
1074         BUG_ON(!mc->nobjs);
1075         p = mc->objects[--mc->nobjs];
1076         return p;
1077 }
1078
1079 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1080 {
1081         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1082 }
1083
1084 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1085 {
1086         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1087 }
1088
1089 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1090 {
1091         if (!sp->role.direct)
1092                 return sp->gfns[index];
1093
1094         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1095 }
1096
1097 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1098 {
1099         if (!sp->role.direct) {
1100                 sp->gfns[index] = gfn;
1101                 return;
1102         }
1103
1104         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1105                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1106                                    "(expected %llx, got %llx)\n",
1107                                    sp->gfn,
1108                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1109 }
1110
1111 /*
1112  * Return the pointer to the large page information for a given gfn,
1113  * handling slots that are not large page aligned.
1114  */
1115 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1116                                               struct kvm_memory_slot *slot,
1117                                               int level)
1118 {
1119         unsigned long idx;
1120
1121         idx = gfn_to_index(gfn, slot->base_gfn, level);
1122         return &slot->arch.lpage_info[level - 2][idx];
1123 }
1124
1125 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1126                                             gfn_t gfn, int count)
1127 {
1128         struct kvm_lpage_info *linfo;
1129         int i;
1130
1131         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1132                 linfo = lpage_info_slot(gfn, slot, i);
1133                 linfo->disallow_lpage += count;
1134                 WARN_ON(linfo->disallow_lpage < 0);
1135         }
1136 }
1137
1138 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1139 {
1140         update_gfn_disallow_lpage_count(slot, gfn, 1);
1141 }
1142
1143 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1144 {
1145         update_gfn_disallow_lpage_count(slot, gfn, -1);
1146 }
1147
1148 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1149 {
1150         struct kvm_memslots *slots;
1151         struct kvm_memory_slot *slot;
1152         gfn_t gfn;
1153
1154         kvm->arch.indirect_shadow_pages++;
1155         gfn = sp->gfn;
1156         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1157         slot = __gfn_to_memslot(slots, gfn);
1158
1159         /* the non-leaf shadow pages are keeping readonly. */
1160         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1161                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1162                                                     KVM_PAGE_TRACK_WRITE);
1163
1164         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1165 }
1166
1167 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1168 {
1169         struct kvm_memslots *slots;
1170         struct kvm_memory_slot *slot;
1171         gfn_t gfn;
1172
1173         kvm->arch.indirect_shadow_pages--;
1174         gfn = sp->gfn;
1175         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1176         slot = __gfn_to_memslot(slots, gfn);
1177         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1178                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1179                                                        KVM_PAGE_TRACK_WRITE);
1180
1181         kvm_mmu_gfn_allow_lpage(slot, gfn);
1182 }
1183
1184 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1185                                           struct kvm_memory_slot *slot)
1186 {
1187         struct kvm_lpage_info *linfo;
1188
1189         if (slot) {
1190                 linfo = lpage_info_slot(gfn, slot, level);
1191                 return !!linfo->disallow_lpage;
1192         }
1193
1194         return true;
1195 }
1196
1197 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1198                                         int level)
1199 {
1200         struct kvm_memory_slot *slot;
1201
1202         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1203         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1204 }
1205
1206 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1207 {
1208         unsigned long page_size;
1209         int i, ret = 0;
1210
1211         page_size = kvm_host_page_size(kvm, gfn);
1212
1213         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1214                 if (page_size >= KVM_HPAGE_SIZE(i))
1215                         ret = i;
1216                 else
1217                         break;
1218         }
1219
1220         return ret;
1221 }
1222
1223 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1224                                           bool no_dirty_log)
1225 {
1226         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1227                 return false;
1228         if (no_dirty_log && slot->dirty_bitmap)
1229                 return false;
1230
1231         return true;
1232 }
1233
1234 static struct kvm_memory_slot *
1235 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1236                             bool no_dirty_log)
1237 {
1238         struct kvm_memory_slot *slot;
1239
1240         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1241         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1242                 slot = NULL;
1243
1244         return slot;
1245 }
1246
1247 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1248                          bool *force_pt_level)
1249 {
1250         int host_level, level, max_level;
1251         struct kvm_memory_slot *slot;
1252
1253         if (unlikely(*force_pt_level))
1254                 return PT_PAGE_TABLE_LEVEL;
1255
1256         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1257         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1258         if (unlikely(*force_pt_level))
1259                 return PT_PAGE_TABLE_LEVEL;
1260
1261         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1262
1263         if (host_level == PT_PAGE_TABLE_LEVEL)
1264                 return host_level;
1265
1266         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1267
1268         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1269                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1270                         break;
1271
1272         return level - 1;
1273 }
1274
1275 /*
1276  * About rmap_head encoding:
1277  *
1278  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1279  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1280  * pte_list_desc containing more mappings.
1281  */
1282
1283 /*
1284  * Returns the number of pointers in the rmap chain, not counting the new one.
1285  */
1286 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1287                         struct kvm_rmap_head *rmap_head)
1288 {
1289         struct pte_list_desc *desc;
1290         int i, count = 0;
1291
1292         if (!rmap_head->val) {
1293                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1294                 rmap_head->val = (unsigned long)spte;
1295         } else if (!(rmap_head->val & 1)) {
1296                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1297                 desc = mmu_alloc_pte_list_desc(vcpu);
1298                 desc->sptes[0] = (u64 *)rmap_head->val;
1299                 desc->sptes[1] = spte;
1300                 rmap_head->val = (unsigned long)desc | 1;
1301                 ++count;
1302         } else {
1303                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1304                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1305                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1306                         desc = desc->more;
1307                         count += PTE_LIST_EXT;
1308                 }
1309                 if (desc->sptes[PTE_LIST_EXT-1]) {
1310                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1311                         desc = desc->more;
1312                 }
1313                 for (i = 0; desc->sptes[i]; ++i)
1314                         ++count;
1315                 desc->sptes[i] = spte;
1316         }
1317         return count;
1318 }
1319
1320 static void
1321 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1322                            struct pte_list_desc *desc, int i,
1323                            struct pte_list_desc *prev_desc)
1324 {
1325         int j;
1326
1327         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1328                 ;
1329         desc->sptes[i] = desc->sptes[j];
1330         desc->sptes[j] = NULL;
1331         if (j != 0)
1332                 return;
1333         if (!prev_desc && !desc->more)
1334                 rmap_head->val = (unsigned long)desc->sptes[0];
1335         else
1336                 if (prev_desc)
1337                         prev_desc->more = desc->more;
1338                 else
1339                         rmap_head->val = (unsigned long)desc->more | 1;
1340         mmu_free_pte_list_desc(desc);
1341 }
1342
1343 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1344 {
1345         struct pte_list_desc *desc;
1346         struct pte_list_desc *prev_desc;
1347         int i;
1348
1349         if (!rmap_head->val) {
1350                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1351                 BUG();
1352         } else if (!(rmap_head->val & 1)) {
1353                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1354                 if ((u64 *)rmap_head->val != spte) {
1355                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1356                         BUG();
1357                 }
1358                 rmap_head->val = 0;
1359         } else {
1360                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1361                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1362                 prev_desc = NULL;
1363                 while (desc) {
1364                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1365                                 if (desc->sptes[i] == spte) {
1366                                         pte_list_desc_remove_entry(rmap_head,
1367                                                         desc, i, prev_desc);
1368                                         return;
1369                                 }
1370                         }
1371                         prev_desc = desc;
1372                         desc = desc->more;
1373                 }
1374                 pr_err("%s: %p many->many\n", __func__, spte);
1375                 BUG();
1376         }
1377 }
1378
1379 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1380 {
1381         mmu_spte_clear_track_bits(sptep);
1382         __pte_list_remove(sptep, rmap_head);
1383 }
1384
1385 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1386                                            struct kvm_memory_slot *slot)
1387 {
1388         unsigned long idx;
1389
1390         idx = gfn_to_index(gfn, slot->base_gfn, level);
1391         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1392 }
1393
1394 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1395                                          struct kvm_mmu_page *sp)
1396 {
1397         struct kvm_memslots *slots;
1398         struct kvm_memory_slot *slot;
1399
1400         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1401         slot = __gfn_to_memslot(slots, gfn);
1402         return __gfn_to_rmap(gfn, sp->role.level, slot);
1403 }
1404
1405 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1406 {
1407         struct kvm_mmu_memory_cache *cache;
1408
1409         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1410         return mmu_memory_cache_free_objects(cache);
1411 }
1412
1413 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1414 {
1415         struct kvm_mmu_page *sp;
1416         struct kvm_rmap_head *rmap_head;
1417
1418         sp = page_header(__pa(spte));
1419         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1420         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1421         return pte_list_add(vcpu, spte, rmap_head);
1422 }
1423
1424 static void rmap_remove(struct kvm *kvm, u64 *spte)
1425 {
1426         struct kvm_mmu_page *sp;
1427         gfn_t gfn;
1428         struct kvm_rmap_head *rmap_head;
1429
1430         sp = page_header(__pa(spte));
1431         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1432         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1433         __pte_list_remove(spte, rmap_head);
1434 }
1435
1436 /*
1437  * Used by the following functions to iterate through the sptes linked by a
1438  * rmap.  All fields are private and not assumed to be used outside.
1439  */
1440 struct rmap_iterator {
1441         /* private fields */
1442         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1443         int pos;                        /* index of the sptep */
1444 };
1445
1446 /*
1447  * Iteration must be started by this function.  This should also be used after
1448  * removing/dropping sptes from the rmap link because in such cases the
1449  * information in the itererator may not be valid.
1450  *
1451  * Returns sptep if found, NULL otherwise.
1452  */
1453 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1454                            struct rmap_iterator *iter)
1455 {
1456         u64 *sptep;
1457
1458         if (!rmap_head->val)
1459                 return NULL;
1460
1461         if (!(rmap_head->val & 1)) {
1462                 iter->desc = NULL;
1463                 sptep = (u64 *)rmap_head->val;
1464                 goto out;
1465         }
1466
1467         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1468         iter->pos = 0;
1469         sptep = iter->desc->sptes[iter->pos];
1470 out:
1471         BUG_ON(!is_shadow_present_pte(*sptep));
1472         return sptep;
1473 }
1474
1475 /*
1476  * Must be used with a valid iterator: e.g. after rmap_get_first().
1477  *
1478  * Returns sptep if found, NULL otherwise.
1479  */
1480 static u64 *rmap_get_next(struct rmap_iterator *iter)
1481 {
1482         u64 *sptep;
1483
1484         if (iter->desc) {
1485                 if (iter->pos < PTE_LIST_EXT - 1) {
1486                         ++iter->pos;
1487                         sptep = iter->desc->sptes[iter->pos];
1488                         if (sptep)
1489                                 goto out;
1490                 }
1491
1492                 iter->desc = iter->desc->more;
1493
1494                 if (iter->desc) {
1495                         iter->pos = 0;
1496                         /* desc->sptes[0] cannot be NULL */
1497                         sptep = iter->desc->sptes[iter->pos];
1498                         goto out;
1499                 }
1500         }
1501
1502         return NULL;
1503 out:
1504         BUG_ON(!is_shadow_present_pte(*sptep));
1505         return sptep;
1506 }
1507
1508 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1509         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1510              _spte_; _spte_ = rmap_get_next(_iter_))
1511
1512 static void drop_spte(struct kvm *kvm, u64 *sptep)
1513 {
1514         if (mmu_spte_clear_track_bits(sptep))
1515                 rmap_remove(kvm, sptep);
1516 }
1517
1518
1519 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1520 {
1521         if (is_large_pte(*sptep)) {
1522                 WARN_ON(page_header(__pa(sptep))->role.level ==
1523                         PT_PAGE_TABLE_LEVEL);
1524                 drop_spte(kvm, sptep);
1525                 --kvm->stat.lpages;
1526                 return true;
1527         }
1528
1529         return false;
1530 }
1531
1532 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1533 {
1534         if (__drop_large_spte(vcpu->kvm, sptep)) {
1535                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1536
1537                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1538                         KVM_PAGES_PER_HPAGE(sp->role.level));
1539         }
1540 }
1541
1542 /*
1543  * Write-protect on the specified @sptep, @pt_protect indicates whether
1544  * spte write-protection is caused by protecting shadow page table.
1545  *
1546  * Note: write protection is difference between dirty logging and spte
1547  * protection:
1548  * - for dirty logging, the spte can be set to writable at anytime if
1549  *   its dirty bitmap is properly set.
1550  * - for spte protection, the spte can be writable only after unsync-ing
1551  *   shadow page.
1552  *
1553  * Return true if tlb need be flushed.
1554  */
1555 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1556 {
1557         u64 spte = *sptep;
1558
1559         if (!is_writable_pte(spte) &&
1560               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1561                 return false;
1562
1563         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1564
1565         if (pt_protect)
1566                 spte &= ~SPTE_MMU_WRITEABLE;
1567         spte = spte & ~PT_WRITABLE_MASK;
1568
1569         return mmu_spte_update(sptep, spte);
1570 }
1571
1572 static bool __rmap_write_protect(struct kvm *kvm,
1573                                  struct kvm_rmap_head *rmap_head,
1574                                  bool pt_protect)
1575 {
1576         u64 *sptep;
1577         struct rmap_iterator iter;
1578         bool flush = false;
1579
1580         for_each_rmap_spte(rmap_head, &iter, sptep)
1581                 flush |= spte_write_protect(sptep, pt_protect);
1582
1583         return flush;
1584 }
1585
1586 static bool spte_clear_dirty(u64 *sptep)
1587 {
1588         u64 spte = *sptep;
1589
1590         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1591
1592         spte &= ~shadow_dirty_mask;
1593
1594         return mmu_spte_update(sptep, spte);
1595 }
1596
1597 static bool wrprot_ad_disabled_spte(u64 *sptep)
1598 {
1599         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1600                                                (unsigned long *)sptep);
1601         if (was_writable)
1602                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1603
1604         return was_writable;
1605 }
1606
1607 /*
1608  * Gets the GFN ready for another round of dirty logging by clearing the
1609  *      - D bit on ad-enabled SPTEs, and
1610  *      - W bit on ad-disabled SPTEs.
1611  * Returns true iff any D or W bits were cleared.
1612  */
1613 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1614 {
1615         u64 *sptep;
1616         struct rmap_iterator iter;
1617         bool flush = false;
1618
1619         for_each_rmap_spte(rmap_head, &iter, sptep)
1620                 if (spte_ad_enabled(*sptep))
1621                         flush |= spte_clear_dirty(sptep);
1622                 else
1623                         flush |= wrprot_ad_disabled_spte(sptep);
1624
1625         return flush;
1626 }
1627
1628 static bool spte_set_dirty(u64 *sptep)
1629 {
1630         u64 spte = *sptep;
1631
1632         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1633
1634         spte |= shadow_dirty_mask;
1635
1636         return mmu_spte_update(sptep, spte);
1637 }
1638
1639 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1640 {
1641         u64 *sptep;
1642         struct rmap_iterator iter;
1643         bool flush = false;
1644
1645         for_each_rmap_spte(rmap_head, &iter, sptep)
1646                 if (spte_ad_enabled(*sptep))
1647                         flush |= spte_set_dirty(sptep);
1648
1649         return flush;
1650 }
1651
1652 /**
1653  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1654  * @kvm: kvm instance
1655  * @slot: slot to protect
1656  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1657  * @mask: indicates which pages we should protect
1658  *
1659  * Used when we do not need to care about huge page mappings: e.g. during dirty
1660  * logging we do not have any such mappings.
1661  */
1662 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1663                                      struct kvm_memory_slot *slot,
1664                                      gfn_t gfn_offset, unsigned long mask)
1665 {
1666         struct kvm_rmap_head *rmap_head;
1667
1668         while (mask) {
1669                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1670                                           PT_PAGE_TABLE_LEVEL, slot);
1671                 __rmap_write_protect(kvm, rmap_head, false);
1672
1673                 /* clear the first set bit */
1674                 mask &= mask - 1;
1675         }
1676 }
1677
1678 /**
1679  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1680  * protect the page if the D-bit isn't supported.
1681  * @kvm: kvm instance
1682  * @slot: slot to clear D-bit
1683  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1684  * @mask: indicates which pages we should clear D-bit
1685  *
1686  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1687  */
1688 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1689                                      struct kvm_memory_slot *slot,
1690                                      gfn_t gfn_offset, unsigned long mask)
1691 {
1692         struct kvm_rmap_head *rmap_head;
1693
1694         while (mask) {
1695                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1696                                           PT_PAGE_TABLE_LEVEL, slot);
1697                 __rmap_clear_dirty(kvm, rmap_head);
1698
1699                 /* clear the first set bit */
1700                 mask &= mask - 1;
1701         }
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1704
1705 /**
1706  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1707  * PT level pages.
1708  *
1709  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1710  * enable dirty logging for them.
1711  *
1712  * Used when we do not need to care about huge page mappings: e.g. during dirty
1713  * logging we do not have any such mappings.
1714  */
1715 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1716                                 struct kvm_memory_slot *slot,
1717                                 gfn_t gfn_offset, unsigned long mask)
1718 {
1719         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1720                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1721                                 mask);
1722         else
1723                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1724 }
1725
1726 /**
1727  * kvm_arch_write_log_dirty - emulate dirty page logging
1728  * @vcpu: Guest mode vcpu
1729  *
1730  * Emulate arch specific page modification logging for the
1731  * nested hypervisor
1732  */
1733 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1734 {
1735         if (kvm_x86_ops->write_log_dirty)
1736                 return kvm_x86_ops->write_log_dirty(vcpu);
1737
1738         return 0;
1739 }
1740
1741 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1742                                     struct kvm_memory_slot *slot, u64 gfn)
1743 {
1744         struct kvm_rmap_head *rmap_head;
1745         int i;
1746         bool write_protected = false;
1747
1748         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1749                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1750                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1751         }
1752
1753         return write_protected;
1754 }
1755
1756 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1757 {
1758         struct kvm_memory_slot *slot;
1759
1760         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1761         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1762 }
1763
1764 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1765 {
1766         u64 *sptep;
1767         struct rmap_iterator iter;
1768         bool flush = false;
1769
1770         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1771                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1772
1773                 pte_list_remove(rmap_head, sptep);
1774                 flush = true;
1775         }
1776
1777         return flush;
1778 }
1779
1780 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1781                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1782                            unsigned long data)
1783 {
1784         return kvm_zap_rmapp(kvm, rmap_head);
1785 }
1786
1787 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1788                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1789                              unsigned long data)
1790 {
1791         u64 *sptep;
1792         struct rmap_iterator iter;
1793         int need_flush = 0;
1794         u64 new_spte;
1795         pte_t *ptep = (pte_t *)data;
1796         kvm_pfn_t new_pfn;
1797
1798         WARN_ON(pte_huge(*ptep));
1799         new_pfn = pte_pfn(*ptep);
1800
1801 restart:
1802         for_each_rmap_spte(rmap_head, &iter, sptep) {
1803                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1804                             sptep, *sptep, gfn, level);
1805
1806                 need_flush = 1;
1807
1808                 if (pte_write(*ptep)) {
1809                         pte_list_remove(rmap_head, sptep);
1810                         goto restart;
1811                 } else {
1812                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1813                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1814
1815                         new_spte &= ~PT_WRITABLE_MASK;
1816                         new_spte &= ~SPTE_HOST_WRITEABLE;
1817
1818                         new_spte = mark_spte_for_access_track(new_spte);
1819
1820                         mmu_spte_clear_track_bits(sptep);
1821                         mmu_spte_set(sptep, new_spte);
1822                 }
1823         }
1824
1825         if (need_flush && kvm_available_flush_tlb_with_range()) {
1826                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1827                 return 0;
1828         }
1829
1830         return need_flush;
1831 }
1832
1833 struct slot_rmap_walk_iterator {
1834         /* input fields. */
1835         struct kvm_memory_slot *slot;
1836         gfn_t start_gfn;
1837         gfn_t end_gfn;
1838         int start_level;
1839         int end_level;
1840
1841         /* output fields. */
1842         gfn_t gfn;
1843         struct kvm_rmap_head *rmap;
1844         int level;
1845
1846         /* private field. */
1847         struct kvm_rmap_head *end_rmap;
1848 };
1849
1850 static void
1851 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1852 {
1853         iterator->level = level;
1854         iterator->gfn = iterator->start_gfn;
1855         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1856         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1857                                            iterator->slot);
1858 }
1859
1860 static void
1861 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1862                     struct kvm_memory_slot *slot, int start_level,
1863                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1864 {
1865         iterator->slot = slot;
1866         iterator->start_level = start_level;
1867         iterator->end_level = end_level;
1868         iterator->start_gfn = start_gfn;
1869         iterator->end_gfn = end_gfn;
1870
1871         rmap_walk_init_level(iterator, iterator->start_level);
1872 }
1873
1874 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1875 {
1876         return !!iterator->rmap;
1877 }
1878
1879 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1880 {
1881         if (++iterator->rmap <= iterator->end_rmap) {
1882                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1883                 return;
1884         }
1885
1886         if (++iterator->level > iterator->end_level) {
1887                 iterator->rmap = NULL;
1888                 return;
1889         }
1890
1891         rmap_walk_init_level(iterator, iterator->level);
1892 }
1893
1894 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1895            _start_gfn, _end_gfn, _iter_)                                \
1896         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1897                                  _end_level_, _start_gfn, _end_gfn);    \
1898              slot_rmap_walk_okay(_iter_);                               \
1899              slot_rmap_walk_next(_iter_))
1900
1901 static int kvm_handle_hva_range(struct kvm *kvm,
1902                                 unsigned long start,
1903                                 unsigned long end,
1904                                 unsigned long data,
1905                                 int (*handler)(struct kvm *kvm,
1906                                                struct kvm_rmap_head *rmap_head,
1907                                                struct kvm_memory_slot *slot,
1908                                                gfn_t gfn,
1909                                                int level,
1910                                                unsigned long data))
1911 {
1912         struct kvm_memslots *slots;
1913         struct kvm_memory_slot *memslot;
1914         struct slot_rmap_walk_iterator iterator;
1915         int ret = 0;
1916         int i;
1917
1918         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1919                 slots = __kvm_memslots(kvm, i);
1920                 kvm_for_each_memslot(memslot, slots) {
1921                         unsigned long hva_start, hva_end;
1922                         gfn_t gfn_start, gfn_end;
1923
1924                         hva_start = max(start, memslot->userspace_addr);
1925                         hva_end = min(end, memslot->userspace_addr +
1926                                       (memslot->npages << PAGE_SHIFT));
1927                         if (hva_start >= hva_end)
1928                                 continue;
1929                         /*
1930                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1931                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1932                          */
1933                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1934                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1935
1936                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1937                                                  PT_MAX_HUGEPAGE_LEVEL,
1938                                                  gfn_start, gfn_end - 1,
1939                                                  &iterator)
1940                                 ret |= handler(kvm, iterator.rmap, memslot,
1941                                                iterator.gfn, iterator.level, data);
1942                 }
1943         }
1944
1945         return ret;
1946 }
1947
1948 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1949                           unsigned long data,
1950                           int (*handler)(struct kvm *kvm,
1951                                          struct kvm_rmap_head *rmap_head,
1952                                          struct kvm_memory_slot *slot,
1953                                          gfn_t gfn, int level,
1954                                          unsigned long data))
1955 {
1956         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1957 }
1958
1959 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1960 {
1961         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1962 }
1963
1964 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1965 {
1966         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1967 }
1968
1969 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1970                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1971                          unsigned long data)
1972 {
1973         u64 *sptep;
1974         struct rmap_iterator uninitialized_var(iter);
1975         int young = 0;
1976
1977         for_each_rmap_spte(rmap_head, &iter, sptep)
1978                 young |= mmu_spte_age(sptep);
1979
1980         trace_kvm_age_page(gfn, level, slot, young);
1981         return young;
1982 }
1983
1984 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985                               struct kvm_memory_slot *slot, gfn_t gfn,
1986                               int level, unsigned long data)
1987 {
1988         u64 *sptep;
1989         struct rmap_iterator iter;
1990
1991         for_each_rmap_spte(rmap_head, &iter, sptep)
1992                 if (is_accessed_spte(*sptep))
1993                         return 1;
1994         return 0;
1995 }
1996
1997 #define RMAP_RECYCLE_THRESHOLD 1000
1998
1999 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2000 {
2001         struct kvm_rmap_head *rmap_head;
2002         struct kvm_mmu_page *sp;
2003
2004         sp = page_header(__pa(spte));
2005
2006         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2007
2008         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2009         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2010                         KVM_PAGES_PER_HPAGE(sp->role.level));
2011 }
2012
2013 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2014 {
2015         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2016 }
2017
2018 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2019 {
2020         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2021 }
2022
2023 #ifdef MMU_DEBUG
2024 static int is_empty_shadow_page(u64 *spt)
2025 {
2026         u64 *pos;
2027         u64 *end;
2028
2029         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2030                 if (is_shadow_present_pte(*pos)) {
2031                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2032                                pos, *pos);
2033                         return 0;
2034                 }
2035         return 1;
2036 }
2037 #endif
2038
2039 /*
2040  * This value is the sum of all of the kvm instances's
2041  * kvm->arch.n_used_mmu_pages values.  We need a global,
2042  * aggregate version in order to make the slab shrinker
2043  * faster
2044  */
2045 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2046 {
2047         kvm->arch.n_used_mmu_pages += nr;
2048         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2049 }
2050
2051 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2052 {
2053         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2054         hlist_del(&sp->hash_link);
2055         list_del(&sp->link);
2056         free_page((unsigned long)sp->spt);
2057         if (!sp->role.direct)
2058                 free_page((unsigned long)sp->gfns);
2059         kmem_cache_free(mmu_page_header_cache, sp);
2060 }
2061
2062 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2063 {
2064         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2065 }
2066
2067 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2068                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2069 {
2070         if (!parent_pte)
2071                 return;
2072
2073         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2074 }
2075
2076 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2077                                        u64 *parent_pte)
2078 {
2079         __pte_list_remove(parent_pte, &sp->parent_ptes);
2080 }
2081
2082 static void drop_parent_pte(struct kvm_mmu_page *sp,
2083                             u64 *parent_pte)
2084 {
2085         mmu_page_remove_parent_pte(sp, parent_pte);
2086         mmu_spte_clear_no_track(parent_pte);
2087 }
2088
2089 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2090 {
2091         struct kvm_mmu_page *sp;
2092
2093         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2094         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2095         if (!direct)
2096                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2097         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2098         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2099         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2100         return sp;
2101 }
2102
2103 static void mark_unsync(u64 *spte);
2104 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2105 {
2106         u64 *sptep;
2107         struct rmap_iterator iter;
2108
2109         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2110                 mark_unsync(sptep);
2111         }
2112 }
2113
2114 static void mark_unsync(u64 *spte)
2115 {
2116         struct kvm_mmu_page *sp;
2117         unsigned int index;
2118
2119         sp = page_header(__pa(spte));
2120         index = spte - sp->spt;
2121         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2122                 return;
2123         if (sp->unsync_children++)
2124                 return;
2125         kvm_mmu_mark_parents_unsync(sp);
2126 }
2127
2128 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2129                                struct kvm_mmu_page *sp)
2130 {
2131         return 0;
2132 }
2133
2134 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2135 {
2136 }
2137
2138 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2139                                  struct kvm_mmu_page *sp, u64 *spte,
2140                                  const void *pte)
2141 {
2142         WARN_ON(1);
2143 }
2144
2145 #define KVM_PAGE_ARRAY_NR 16
2146
2147 struct kvm_mmu_pages {
2148         struct mmu_page_and_offset {
2149                 struct kvm_mmu_page *sp;
2150                 unsigned int idx;
2151         } page[KVM_PAGE_ARRAY_NR];
2152         unsigned int nr;
2153 };
2154
2155 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2156                          int idx)
2157 {
2158         int i;
2159
2160         if (sp->unsync)
2161                 for (i=0; i < pvec->nr; i++)
2162                         if (pvec->page[i].sp == sp)
2163                                 return 0;
2164
2165         pvec->page[pvec->nr].sp = sp;
2166         pvec->page[pvec->nr].idx = idx;
2167         pvec->nr++;
2168         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2169 }
2170
2171 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2172 {
2173         --sp->unsync_children;
2174         WARN_ON((int)sp->unsync_children < 0);
2175         __clear_bit(idx, sp->unsync_child_bitmap);
2176 }
2177
2178 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2179                            struct kvm_mmu_pages *pvec)
2180 {
2181         int i, ret, nr_unsync_leaf = 0;
2182
2183         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2184                 struct kvm_mmu_page *child;
2185                 u64 ent = sp->spt[i];
2186
2187                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2188                         clear_unsync_child_bit(sp, i);
2189                         continue;
2190                 }
2191
2192                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2193
2194                 if (child->unsync_children) {
2195                         if (mmu_pages_add(pvec, child, i))
2196                                 return -ENOSPC;
2197
2198                         ret = __mmu_unsync_walk(child, pvec);
2199                         if (!ret) {
2200                                 clear_unsync_child_bit(sp, i);
2201                                 continue;
2202                         } else if (ret > 0) {
2203                                 nr_unsync_leaf += ret;
2204                         } else
2205                                 return ret;
2206                 } else if (child->unsync) {
2207                         nr_unsync_leaf++;
2208                         if (mmu_pages_add(pvec, child, i))
2209                                 return -ENOSPC;
2210                 } else
2211                         clear_unsync_child_bit(sp, i);
2212         }
2213
2214         return nr_unsync_leaf;
2215 }
2216
2217 #define INVALID_INDEX (-1)
2218
2219 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2220                            struct kvm_mmu_pages *pvec)
2221 {
2222         pvec->nr = 0;
2223         if (!sp->unsync_children)
2224                 return 0;
2225
2226         mmu_pages_add(pvec, sp, INVALID_INDEX);
2227         return __mmu_unsync_walk(sp, pvec);
2228 }
2229
2230 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2231 {
2232         WARN_ON(!sp->unsync);
2233         trace_kvm_mmu_sync_page(sp);
2234         sp->unsync = 0;
2235         --kvm->stat.mmu_unsync;
2236 }
2237
2238 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2239                                      struct list_head *invalid_list);
2240 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2241                                     struct list_head *invalid_list);
2242
2243
2244 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2245         hlist_for_each_entry(_sp,                                       \
2246           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2247                 if ((_sp)->role.invalid) {    \
2248                 } else
2249
2250 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2251         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2252                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2253
2254 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2255 {
2256         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2257 }
2258
2259 /* @sp->gfn should be write-protected at the call site */
2260 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2261                             struct list_head *invalid_list)
2262 {
2263         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2264             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2265                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2266                 return false;
2267         }
2268
2269         return true;
2270 }
2271
2272 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2273                                         struct list_head *invalid_list,
2274                                         bool remote_flush)
2275 {
2276         if (!remote_flush && list_empty(invalid_list))
2277                 return false;
2278
2279         if (!list_empty(invalid_list))
2280                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2281         else
2282                 kvm_flush_remote_tlbs(kvm);
2283         return true;
2284 }
2285
2286 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2287                                  struct list_head *invalid_list,
2288                                  bool remote_flush, bool local_flush)
2289 {
2290         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2291                 return;
2292
2293         if (local_flush)
2294                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2295 }
2296
2297 #ifdef CONFIG_KVM_MMU_AUDIT
2298 #include "mmu_audit.c"
2299 #else
2300 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2301 static void mmu_audit_disable(void) { }
2302 #endif
2303
2304 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2305                          struct list_head *invalid_list)
2306 {
2307         kvm_unlink_unsync_page(vcpu->kvm, sp);
2308         return __kvm_sync_page(vcpu, sp, invalid_list);
2309 }
2310
2311 /* @gfn should be write-protected at the call site */
2312 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2313                            struct list_head *invalid_list)
2314 {
2315         struct kvm_mmu_page *s;
2316         bool ret = false;
2317
2318         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2319                 if (!s->unsync)
2320                         continue;
2321
2322                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2323                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2324         }
2325
2326         return ret;
2327 }
2328
2329 struct mmu_page_path {
2330         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2331         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2332 };
2333
2334 #define for_each_sp(pvec, sp, parents, i)                       \
2335                 for (i = mmu_pages_first(&pvec, &parents);      \
2336                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2337                         i = mmu_pages_next(&pvec, &parents, i))
2338
2339 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2340                           struct mmu_page_path *parents,
2341                           int i)
2342 {
2343         int n;
2344
2345         for (n = i+1; n < pvec->nr; n++) {
2346                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2347                 unsigned idx = pvec->page[n].idx;
2348                 int level = sp->role.level;
2349
2350                 parents->idx[level-1] = idx;
2351                 if (level == PT_PAGE_TABLE_LEVEL)
2352                         break;
2353
2354                 parents->parent[level-2] = sp;
2355         }
2356
2357         return n;
2358 }
2359
2360 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2361                            struct mmu_page_path *parents)
2362 {
2363         struct kvm_mmu_page *sp;
2364         int level;
2365
2366         if (pvec->nr == 0)
2367                 return 0;
2368
2369         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2370
2371         sp = pvec->page[0].sp;
2372         level = sp->role.level;
2373         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2374
2375         parents->parent[level-2] = sp;
2376
2377         /* Also set up a sentinel.  Further entries in pvec are all
2378          * children of sp, so this element is never overwritten.
2379          */
2380         parents->parent[level-1] = NULL;
2381         return mmu_pages_next(pvec, parents, 0);
2382 }
2383
2384 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2385 {
2386         struct kvm_mmu_page *sp;
2387         unsigned int level = 0;
2388
2389         do {
2390                 unsigned int idx = parents->idx[level];
2391                 sp = parents->parent[level];
2392                 if (!sp)
2393                         return;
2394
2395                 WARN_ON(idx == INVALID_INDEX);
2396                 clear_unsync_child_bit(sp, idx);
2397                 level++;
2398         } while (!sp->unsync_children);
2399 }
2400
2401 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2402                               struct kvm_mmu_page *parent)
2403 {
2404         int i;
2405         struct kvm_mmu_page *sp;
2406         struct mmu_page_path parents;
2407         struct kvm_mmu_pages pages;
2408         LIST_HEAD(invalid_list);
2409         bool flush = false;
2410
2411         while (mmu_unsync_walk(parent, &pages)) {
2412                 bool protected = false;
2413
2414                 for_each_sp(pages, sp, parents, i)
2415                         protected |= rmap_write_protect(vcpu, sp->gfn);
2416
2417                 if (protected) {
2418                         kvm_flush_remote_tlbs(vcpu->kvm);
2419                         flush = false;
2420                 }
2421
2422                 for_each_sp(pages, sp, parents, i) {
2423                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2424                         mmu_pages_clear_parents(&parents);
2425                 }
2426                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2427                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2428                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2429                         flush = false;
2430                 }
2431         }
2432
2433         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2434 }
2435
2436 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2437 {
2438         atomic_set(&sp->write_flooding_count,  0);
2439 }
2440
2441 static void clear_sp_write_flooding_count(u64 *spte)
2442 {
2443         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2444
2445         __clear_sp_write_flooding_count(sp);
2446 }
2447
2448 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2449                                              gfn_t gfn,
2450                                              gva_t gaddr,
2451                                              unsigned level,
2452                                              int direct,
2453                                              unsigned access)
2454 {
2455         union kvm_mmu_page_role role;
2456         unsigned quadrant;
2457         struct kvm_mmu_page *sp;
2458         bool need_sync = false;
2459         bool flush = false;
2460         int collisions = 0;
2461         LIST_HEAD(invalid_list);
2462
2463         role = vcpu->arch.mmu->mmu_role.base;
2464         role.level = level;
2465         role.direct = direct;
2466         if (role.direct)
2467                 role.gpte_is_8_bytes = true;
2468         role.access = access;
2469         if (!vcpu->arch.mmu->direct_map
2470             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2471                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2472                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2473                 role.quadrant = quadrant;
2474         }
2475         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2476                 if (sp->gfn != gfn) {
2477                         collisions++;
2478                         continue;
2479                 }
2480
2481                 if (!need_sync && sp->unsync)
2482                         need_sync = true;
2483
2484                 if (sp->role.word != role.word)
2485                         continue;
2486
2487                 if (sp->unsync) {
2488                         /* The page is good, but __kvm_sync_page might still end
2489                          * up zapping it.  If so, break in order to rebuild it.
2490                          */
2491                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2492                                 break;
2493
2494                         WARN_ON(!list_empty(&invalid_list));
2495                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2496                 }
2497
2498                 if (sp->unsync_children)
2499                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2500
2501                 __clear_sp_write_flooding_count(sp);
2502                 trace_kvm_mmu_get_page(sp, false);
2503                 goto out;
2504         }
2505
2506         ++vcpu->kvm->stat.mmu_cache_miss;
2507
2508         sp = kvm_mmu_alloc_page(vcpu, direct);
2509
2510         sp->gfn = gfn;
2511         sp->role = role;
2512         hlist_add_head(&sp->hash_link,
2513                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2514         if (!direct) {
2515                 /*
2516                  * we should do write protection before syncing pages
2517                  * otherwise the content of the synced shadow page may
2518                  * be inconsistent with guest page table.
2519                  */
2520                 account_shadowed(vcpu->kvm, sp);
2521                 if (level == PT_PAGE_TABLE_LEVEL &&
2522                       rmap_write_protect(vcpu, gfn))
2523                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2524
2525                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2526                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2527         }
2528         clear_page(sp->spt);
2529         trace_kvm_mmu_get_page(sp, true);
2530
2531         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2532 out:
2533         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2534                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2535         return sp;
2536 }
2537
2538 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2539                                         struct kvm_vcpu *vcpu, hpa_t root,
2540                                         u64 addr)
2541 {
2542         iterator->addr = addr;
2543         iterator->shadow_addr = root;
2544         iterator->level = vcpu->arch.mmu->shadow_root_level;
2545
2546         if (iterator->level == PT64_ROOT_4LEVEL &&
2547             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2548             !vcpu->arch.mmu->direct_map)
2549                 --iterator->level;
2550
2551         if (iterator->level == PT32E_ROOT_LEVEL) {
2552                 /*
2553                  * prev_root is currently only used for 64-bit hosts. So only
2554                  * the active root_hpa is valid here.
2555                  */
2556                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2557
2558                 iterator->shadow_addr
2559                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2560                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2561                 --iterator->level;
2562                 if (!iterator->shadow_addr)
2563                         iterator->level = 0;
2564         }
2565 }
2566
2567 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2568                              struct kvm_vcpu *vcpu, u64 addr)
2569 {
2570         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2571                                     addr);
2572 }
2573
2574 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2575 {
2576         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2577                 return false;
2578
2579         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2580         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2581         return true;
2582 }
2583
2584 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2585                                u64 spte)
2586 {
2587         if (is_last_spte(spte, iterator->level)) {
2588                 iterator->level = 0;
2589                 return;
2590         }
2591
2592         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2593         --iterator->level;
2594 }
2595
2596 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2597 {
2598         __shadow_walk_next(iterator, *iterator->sptep);
2599 }
2600
2601 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2602                              struct kvm_mmu_page *sp)
2603 {
2604         u64 spte;
2605
2606         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2607
2608         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2609                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2610
2611         if (sp_ad_disabled(sp))
2612                 spte |= shadow_acc_track_value;
2613         else
2614                 spte |= shadow_accessed_mask;
2615
2616         mmu_spte_set(sptep, spte);
2617
2618         mmu_page_add_parent_pte(vcpu, sp, sptep);
2619
2620         if (sp->unsync_children || sp->unsync)
2621                 mark_unsync(sptep);
2622 }
2623
2624 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2625                                    unsigned direct_access)
2626 {
2627         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2628                 struct kvm_mmu_page *child;
2629
2630                 /*
2631                  * For the direct sp, if the guest pte's dirty bit
2632                  * changed form clean to dirty, it will corrupt the
2633                  * sp's access: allow writable in the read-only sp,
2634                  * so we should update the spte at this point to get
2635                  * a new sp with the correct access.
2636                  */
2637                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2638                 if (child->role.access == direct_access)
2639                         return;
2640
2641                 drop_parent_pte(child, sptep);
2642                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2643         }
2644 }
2645
2646 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2647                              u64 *spte)
2648 {
2649         u64 pte;
2650         struct kvm_mmu_page *child;
2651
2652         pte = *spte;
2653         if (is_shadow_present_pte(pte)) {
2654                 if (is_last_spte(pte, sp->role.level)) {
2655                         drop_spte(kvm, spte);
2656                         if (is_large_pte(pte))
2657                                 --kvm->stat.lpages;
2658                 } else {
2659                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2660                         drop_parent_pte(child, spte);
2661                 }
2662                 return true;
2663         }
2664
2665         if (is_mmio_spte(pte))
2666                 mmu_spte_clear_no_track(spte);
2667
2668         return false;
2669 }
2670
2671 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2672                                          struct kvm_mmu_page *sp)
2673 {
2674         unsigned i;
2675
2676         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2677                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2678 }
2679
2680 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2681 {
2682         u64 *sptep;
2683         struct rmap_iterator iter;
2684
2685         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2686                 drop_parent_pte(sp, sptep);
2687 }
2688
2689 static int mmu_zap_unsync_children(struct kvm *kvm,
2690                                    struct kvm_mmu_page *parent,
2691                                    struct list_head *invalid_list)
2692 {
2693         int i, zapped = 0;
2694         struct mmu_page_path parents;
2695         struct kvm_mmu_pages pages;
2696
2697         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2698                 return 0;
2699
2700         while (mmu_unsync_walk(parent, &pages)) {
2701                 struct kvm_mmu_page *sp;
2702
2703                 for_each_sp(pages, sp, parents, i) {
2704                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2705                         mmu_pages_clear_parents(&parents);
2706                         zapped++;
2707                 }
2708         }
2709
2710         return zapped;
2711 }
2712
2713 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2714                                        struct kvm_mmu_page *sp,
2715                                        struct list_head *invalid_list,
2716                                        int *nr_zapped)
2717 {
2718         bool list_unstable;
2719
2720         trace_kvm_mmu_prepare_zap_page(sp);
2721         ++kvm->stat.mmu_shadow_zapped;
2722         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2723         kvm_mmu_page_unlink_children(kvm, sp);
2724         kvm_mmu_unlink_parents(kvm, sp);
2725
2726         /* Zapping children means active_mmu_pages has become unstable. */
2727         list_unstable = *nr_zapped;
2728
2729         if (!sp->role.invalid && !sp->role.direct)
2730                 unaccount_shadowed(kvm, sp);
2731
2732         if (sp->unsync)
2733                 kvm_unlink_unsync_page(kvm, sp);
2734         if (!sp->root_count) {
2735                 /* Count self */
2736                 (*nr_zapped)++;
2737                 list_move(&sp->link, invalid_list);
2738                 kvm_mod_used_mmu_pages(kvm, -1);
2739         } else {
2740                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2741
2742                 if (!sp->role.invalid)
2743                         kvm_reload_remote_mmus(kvm);
2744         }
2745
2746         sp->role.invalid = 1;
2747         return list_unstable;
2748 }
2749
2750 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2751                                      struct list_head *invalid_list)
2752 {
2753         int nr_zapped;
2754
2755         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2756         return nr_zapped;
2757 }
2758
2759 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2760                                     struct list_head *invalid_list)
2761 {
2762         struct kvm_mmu_page *sp, *nsp;
2763
2764         if (list_empty(invalid_list))
2765                 return;
2766
2767         /*
2768          * We need to make sure everyone sees our modifications to
2769          * the page tables and see changes to vcpu->mode here. The barrier
2770          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2771          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2772          *
2773          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2774          * guest mode and/or lockless shadow page table walks.
2775          */
2776         kvm_flush_remote_tlbs(kvm);
2777
2778         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2779                 WARN_ON(!sp->role.invalid || sp->root_count);
2780                 kvm_mmu_free_page(sp);
2781         }
2782 }
2783
2784 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2785                                         struct list_head *invalid_list)
2786 {
2787         struct kvm_mmu_page *sp;
2788
2789         if (list_empty(&kvm->arch.active_mmu_pages))
2790                 return false;
2791
2792         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2793                              struct kvm_mmu_page, link);
2794         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2795 }
2796
2797 /*
2798  * Changing the number of mmu pages allocated to the vm
2799  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2800  */
2801 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2802 {
2803         LIST_HEAD(invalid_list);
2804
2805         spin_lock(&kvm->mmu_lock);
2806
2807         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2808                 /* Need to free some mmu pages to achieve the goal. */
2809                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2810                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2811                                 break;
2812
2813                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2814                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2815         }
2816
2817         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2818
2819         spin_unlock(&kvm->mmu_lock);
2820 }
2821
2822 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2823 {
2824         struct kvm_mmu_page *sp;
2825         LIST_HEAD(invalid_list);
2826         int r;
2827
2828         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2829         r = 0;
2830         spin_lock(&kvm->mmu_lock);
2831         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2832                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2833                          sp->role.word);
2834                 r = 1;
2835                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2836         }
2837         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2838         spin_unlock(&kvm->mmu_lock);
2839
2840         return r;
2841 }
2842 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2843
2844 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2845 {
2846         trace_kvm_mmu_unsync_page(sp);
2847         ++vcpu->kvm->stat.mmu_unsync;
2848         sp->unsync = 1;
2849
2850         kvm_mmu_mark_parents_unsync(sp);
2851 }
2852
2853 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2854                                    bool can_unsync)
2855 {
2856         struct kvm_mmu_page *sp;
2857
2858         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2859                 return true;
2860
2861         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2862                 if (!can_unsync)
2863                         return true;
2864
2865                 if (sp->unsync)
2866                         continue;
2867
2868                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2869                 kvm_unsync_page(vcpu, sp);
2870         }
2871
2872         /*
2873          * We need to ensure that the marking of unsync pages is visible
2874          * before the SPTE is updated to allow writes because
2875          * kvm_mmu_sync_roots() checks the unsync flags without holding
2876          * the MMU lock and so can race with this. If the SPTE was updated
2877          * before the page had been marked as unsync-ed, something like the
2878          * following could happen:
2879          *
2880          * CPU 1                    CPU 2
2881          * ---------------------------------------------------------------------
2882          * 1.2 Host updates SPTE
2883          *     to be writable
2884          *                      2.1 Guest writes a GPTE for GVA X.
2885          *                          (GPTE being in the guest page table shadowed
2886          *                           by the SP from CPU 1.)
2887          *                          This reads SPTE during the page table walk.
2888          *                          Since SPTE.W is read as 1, there is no
2889          *                          fault.
2890          *
2891          *                      2.2 Guest issues TLB flush.
2892          *                          That causes a VM Exit.
2893          *
2894          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2895          *                          Since it is false, so it just returns.
2896          *
2897          *                      2.4 Guest accesses GVA X.
2898          *                          Since the mapping in the SP was not updated,
2899          *                          so the old mapping for GVA X incorrectly
2900          *                          gets used.
2901          * 1.1 Host marks SP
2902          *     as unsync
2903          *     (sp->unsync = true)
2904          *
2905          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2906          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2907          * pairs with this write barrier.
2908          */
2909         smp_wmb();
2910
2911         return false;
2912 }
2913
2914 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2915 {
2916         if (pfn_valid(pfn))
2917                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2918                         /*
2919                          * Some reserved pages, such as those from NVDIMM
2920                          * DAX devices, are not for MMIO, and can be mapped
2921                          * with cached memory type for better performance.
2922                          * However, the above check misconceives those pages
2923                          * as MMIO, and results in KVM mapping them with UC
2924                          * memory type, which would hurt the performance.
2925                          * Therefore, we check the host memory type in addition
2926                          * and only treat UC/UC-/WC pages as MMIO.
2927                          */
2928                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2929
2930         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2931                                      pfn_to_hpa(pfn + 1) - 1,
2932                                      E820_TYPE_RAM);
2933 }
2934
2935 /* Bits which may be returned by set_spte() */
2936 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2937 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2938
2939 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2940                     unsigned pte_access, int level,
2941                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2942                     bool can_unsync, bool host_writable)
2943 {
2944         u64 spte = 0;
2945         int ret = 0;
2946         struct kvm_mmu_page *sp;
2947
2948         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2949                 return 0;
2950
2951         sp = page_header(__pa(sptep));
2952         if (sp_ad_disabled(sp))
2953                 spte |= shadow_acc_track_value;
2954
2955         /*
2956          * For the EPT case, shadow_present_mask is 0 if hardware
2957          * supports exec-only page table entries.  In that case,
2958          * ACC_USER_MASK and shadow_user_mask are used to represent
2959          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2960          */
2961         spte |= shadow_present_mask;
2962         if (!speculative)
2963                 spte |= spte_shadow_accessed_mask(spte);
2964
2965         if (pte_access & ACC_EXEC_MASK)
2966                 spte |= shadow_x_mask;
2967         else
2968                 spte |= shadow_nx_mask;
2969
2970         if (pte_access & ACC_USER_MASK)
2971                 spte |= shadow_user_mask;
2972
2973         if (level > PT_PAGE_TABLE_LEVEL)
2974                 spte |= PT_PAGE_SIZE_MASK;
2975         if (tdp_enabled)
2976                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2977                         kvm_is_mmio_pfn(pfn));
2978
2979         if (host_writable)
2980                 spte |= SPTE_HOST_WRITEABLE;
2981         else
2982                 pte_access &= ~ACC_WRITE_MASK;
2983
2984         if (!kvm_is_mmio_pfn(pfn))
2985                 spte |= shadow_me_mask;
2986
2987         spte |= (u64)pfn << PAGE_SHIFT;
2988
2989         if (pte_access & ACC_WRITE_MASK) {
2990
2991                 /*
2992                  * Other vcpu creates new sp in the window between
2993                  * mapping_level() and acquiring mmu-lock. We can
2994                  * allow guest to retry the access, the mapping can
2995                  * be fixed if guest refault.
2996                  */
2997                 if (level > PT_PAGE_TABLE_LEVEL &&
2998                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2999                         goto done;
3000
3001                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3002
3003                 /*
3004                  * Optimization: for pte sync, if spte was writable the hash
3005                  * lookup is unnecessary (and expensive). Write protection
3006                  * is responsibility of mmu_get_page / kvm_sync_page.
3007                  * Same reasoning can be applied to dirty page accounting.
3008                  */
3009                 if (!can_unsync && is_writable_pte(*sptep))
3010                         goto set_pte;
3011
3012                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3013                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3014                                  __func__, gfn);
3015                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3016                         pte_access &= ~ACC_WRITE_MASK;
3017                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3018                 }
3019         }
3020
3021         if (pte_access & ACC_WRITE_MASK) {
3022                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023                 spte |= spte_shadow_dirty_mask(spte);
3024         }
3025
3026         if (speculative)
3027                 spte = mark_spte_for_access_track(spte);
3028
3029 set_pte:
3030         if (mmu_spte_update(sptep, spte))
3031                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3032 done:
3033         return ret;
3034 }
3035
3036 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3037                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3038                         bool speculative, bool host_writable)
3039 {
3040         int was_rmapped = 0;
3041         int rmap_count;
3042         int set_spte_ret;
3043         int ret = RET_PF_RETRY;
3044         bool flush = false;
3045
3046         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3047                  *sptep, write_fault, gfn);
3048
3049         if (is_shadow_present_pte(*sptep)) {
3050                 /*
3051                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3052                  * the parent of the now unreachable PTE.
3053                  */
3054                 if (level > PT_PAGE_TABLE_LEVEL &&
3055                     !is_large_pte(*sptep)) {
3056                         struct kvm_mmu_page *child;
3057                         u64 pte = *sptep;
3058
3059                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3060                         drop_parent_pte(child, sptep);
3061                         flush = true;
3062                 } else if (pfn != spte_to_pfn(*sptep)) {
3063                         pgprintk("hfn old %llx new %llx\n",
3064                                  spte_to_pfn(*sptep), pfn);
3065                         drop_spte(vcpu->kvm, sptep);
3066                         flush = true;
3067                 } else
3068                         was_rmapped = 1;
3069         }
3070
3071         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3072                                 speculative, true, host_writable);
3073         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3074                 if (write_fault)
3075                         ret = RET_PF_EMULATE;
3076                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3077         }
3078
3079         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3080                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3081                                 KVM_PAGES_PER_HPAGE(level));
3082
3083         if (unlikely(is_mmio_spte(*sptep)))
3084                 ret = RET_PF_EMULATE;
3085
3086         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3087         trace_kvm_mmu_set_spte(level, gfn, sptep);
3088         if (!was_rmapped && is_large_pte(*sptep))
3089                 ++vcpu->kvm->stat.lpages;
3090
3091         if (is_shadow_present_pte(*sptep)) {
3092                 if (!was_rmapped) {
3093                         rmap_count = rmap_add(vcpu, sptep, gfn);
3094                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3095                                 rmap_recycle(vcpu, sptep, gfn);
3096                 }
3097         }
3098
3099         return ret;
3100 }
3101
3102 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3103                                      bool no_dirty_log)
3104 {
3105         struct kvm_memory_slot *slot;
3106
3107         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3108         if (!slot)
3109                 return KVM_PFN_ERR_FAULT;
3110
3111         return gfn_to_pfn_memslot_atomic(slot, gfn);
3112 }
3113
3114 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3115                                     struct kvm_mmu_page *sp,
3116                                     u64 *start, u64 *end)
3117 {
3118         struct page *pages[PTE_PREFETCH_NUM];
3119         struct kvm_memory_slot *slot;
3120         unsigned access = sp->role.access;
3121         int i, ret;
3122         gfn_t gfn;
3123
3124         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3125         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3126         if (!slot)
3127                 return -1;
3128
3129         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3130         if (ret <= 0)
3131                 return -1;
3132
3133         for (i = 0; i < ret; i++, gfn++, start++) {
3134                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3135                              page_to_pfn(pages[i]), true, true);
3136                 put_page(pages[i]);
3137         }
3138
3139         return 0;
3140 }
3141
3142 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3143                                   struct kvm_mmu_page *sp, u64 *sptep)
3144 {
3145         u64 *spte, *start = NULL;
3146         int i;
3147
3148         WARN_ON(!sp->role.direct);
3149
3150         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3151         spte = sp->spt + i;
3152
3153         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3154                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3155                         if (!start)
3156                                 continue;
3157                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3158                                 break;
3159                         start = NULL;
3160                 } else if (!start)
3161                         start = spte;
3162         }
3163 }
3164
3165 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3166 {
3167         struct kvm_mmu_page *sp;
3168
3169         sp = page_header(__pa(sptep));
3170
3171         /*
3172          * Without accessed bits, there's no way to distinguish between
3173          * actually accessed translations and prefetched, so disable pte
3174          * prefetch if accessed bits aren't available.
3175          */
3176         if (sp_ad_disabled(sp))
3177                 return;
3178
3179         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3180                 return;
3181
3182         __direct_pte_prefetch(vcpu, sp, sptep);
3183 }
3184
3185 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3186                         int map_writable, int level, kvm_pfn_t pfn,
3187                         bool prefault)
3188 {
3189         struct kvm_shadow_walk_iterator it;
3190         struct kvm_mmu_page *sp;
3191         int ret;
3192         gfn_t gfn = gpa >> PAGE_SHIFT;
3193         gfn_t base_gfn = gfn;
3194
3195         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3196                 return RET_PF_RETRY;
3197
3198         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3199         for_each_shadow_entry(vcpu, gpa, it) {
3200                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3201                 if (it.level == level)
3202                         break;
3203
3204                 drop_large_spte(vcpu, it.sptep);
3205                 if (!is_shadow_present_pte(*it.sptep)) {
3206                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3207                                               it.level - 1, true, ACC_ALL);
3208
3209                         link_shadow_page(vcpu, it.sptep, sp);
3210                 }
3211         }
3212
3213         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3214                            write, level, base_gfn, pfn, prefault,
3215                            map_writable);
3216         direct_pte_prefetch(vcpu, it.sptep);
3217         ++vcpu->stat.pf_fixed;
3218         return ret;
3219 }
3220
3221 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3222 {
3223         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3224 }
3225
3226 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3227 {
3228         /*
3229          * Do not cache the mmio info caused by writing the readonly gfn
3230          * into the spte otherwise read access on readonly gfn also can
3231          * caused mmio page fault and treat it as mmio access.
3232          */
3233         if (pfn == KVM_PFN_ERR_RO_FAULT)
3234                 return RET_PF_EMULATE;
3235
3236         if (pfn == KVM_PFN_ERR_HWPOISON) {
3237                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3238                 return RET_PF_RETRY;
3239         }
3240
3241         return -EFAULT;
3242 }
3243
3244 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3245                                         gfn_t gfn, kvm_pfn_t *pfnp,
3246                                         int *levelp)
3247 {
3248         kvm_pfn_t pfn = *pfnp;
3249         int level = *levelp;
3250
3251         /*
3252          * Check if it's a transparent hugepage. If this would be an
3253          * hugetlbfs page, level wouldn't be set to
3254          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3255          * here.
3256          */
3257         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3258             level == PT_PAGE_TABLE_LEVEL &&
3259             PageTransCompoundMap(pfn_to_page(pfn)) &&
3260             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3261                 unsigned long mask;
3262                 /*
3263                  * mmu_notifier_retry was successful and we hold the
3264                  * mmu_lock here, so the pmd can't become splitting
3265                  * from under us, and in turn
3266                  * __split_huge_page_refcount() can't run from under
3267                  * us and we can safely transfer the refcount from
3268                  * PG_tail to PG_head as we switch the pfn to tail to
3269                  * head.
3270                  */
3271                 *levelp = level = PT_DIRECTORY_LEVEL;
3272                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3273                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3274                 if (pfn & mask) {
3275                         kvm_release_pfn_clean(pfn);
3276                         pfn &= ~mask;
3277                         kvm_get_pfn(pfn);
3278                         *pfnp = pfn;
3279                 }
3280         }
3281 }
3282
3283 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3284                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3285 {
3286         /* The pfn is invalid, report the error! */
3287         if (unlikely(is_error_pfn(pfn))) {
3288                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3289                 return true;
3290         }
3291
3292         if (unlikely(is_noslot_pfn(pfn)))
3293                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3294
3295         return false;
3296 }
3297
3298 static bool page_fault_can_be_fast(u32 error_code)
3299 {
3300         /*
3301          * Do not fix the mmio spte with invalid generation number which
3302          * need to be updated by slow page fault path.
3303          */
3304         if (unlikely(error_code & PFERR_RSVD_MASK))
3305                 return false;
3306
3307         /* See if the page fault is due to an NX violation */
3308         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3309                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3310                 return false;
3311
3312         /*
3313          * #PF can be fast if:
3314          * 1. The shadow page table entry is not present, which could mean that
3315          *    the fault is potentially caused by access tracking (if enabled).
3316          * 2. The shadow page table entry is present and the fault
3317          *    is caused by write-protect, that means we just need change the W
3318          *    bit of the spte which can be done out of mmu-lock.
3319          *
3320          * However, if access tracking is disabled we know that a non-present
3321          * page must be a genuine page fault where we have to create a new SPTE.
3322          * So, if access tracking is disabled, we return true only for write
3323          * accesses to a present page.
3324          */
3325
3326         return shadow_acc_track_mask != 0 ||
3327                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3328                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3329 }
3330
3331 /*
3332  * Returns true if the SPTE was fixed successfully. Otherwise,
3333  * someone else modified the SPTE from its original value.
3334  */
3335 static bool
3336 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3337                         u64 *sptep, u64 old_spte, u64 new_spte)
3338 {
3339         gfn_t gfn;
3340
3341         WARN_ON(!sp->role.direct);
3342
3343         /*
3344          * Theoretically we could also set dirty bit (and flush TLB) here in
3345          * order to eliminate unnecessary PML logging. See comments in
3346          * set_spte. But fast_page_fault is very unlikely to happen with PML
3347          * enabled, so we do not do this. This might result in the same GPA
3348          * to be logged in PML buffer again when the write really happens, and
3349          * eventually to be called by mark_page_dirty twice. But it's also no
3350          * harm. This also avoids the TLB flush needed after setting dirty bit
3351          * so non-PML cases won't be impacted.
3352          *
3353          * Compare with set_spte where instead shadow_dirty_mask is set.
3354          */
3355         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3356                 return false;
3357
3358         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3359                 /*
3360                  * The gfn of direct spte is stable since it is
3361                  * calculated by sp->gfn.
3362                  */
3363                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3364                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3365         }
3366
3367         return true;
3368 }
3369
3370 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3371 {
3372         if (fault_err_code & PFERR_FETCH_MASK)
3373                 return is_executable_pte(spte);
3374
3375         if (fault_err_code & PFERR_WRITE_MASK)
3376                 return is_writable_pte(spte);
3377
3378         /* Fault was on Read access */
3379         return spte & PT_PRESENT_MASK;
3380 }
3381
3382 /*
3383  * Return value:
3384  * - true: let the vcpu to access on the same address again.
3385  * - false: let the real page fault path to fix it.
3386  */
3387 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3388                             u32 error_code)
3389 {
3390         struct kvm_shadow_walk_iterator iterator;
3391         struct kvm_mmu_page *sp;
3392         bool fault_handled = false;
3393         u64 spte = 0ull;
3394         uint retry_count = 0;
3395
3396         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3397                 return false;
3398
3399         if (!page_fault_can_be_fast(error_code))
3400                 return false;
3401
3402         walk_shadow_page_lockless_begin(vcpu);
3403
3404         do {
3405                 u64 new_spte;
3406
3407                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3408                         if (!is_shadow_present_pte(spte) ||
3409                             iterator.level < level)
3410                                 break;
3411
3412                 sp = page_header(__pa(iterator.sptep));
3413                 if (!is_last_spte(spte, sp->role.level))
3414                         break;
3415
3416                 /*
3417                  * Check whether the memory access that caused the fault would
3418                  * still cause it if it were to be performed right now. If not,
3419                  * then this is a spurious fault caused by TLB lazily flushed,
3420                  * or some other CPU has already fixed the PTE after the
3421                  * current CPU took the fault.
3422                  *
3423                  * Need not check the access of upper level table entries since
3424                  * they are always ACC_ALL.
3425                  */
3426                 if (is_access_allowed(error_code, spte)) {
3427                         fault_handled = true;
3428                         break;
3429                 }
3430
3431                 new_spte = spte;
3432
3433                 if (is_access_track_spte(spte))
3434                         new_spte = restore_acc_track_spte(new_spte);
3435
3436                 /*
3437                  * Currently, to simplify the code, write-protection can
3438                  * be removed in the fast path only if the SPTE was
3439                  * write-protected for dirty-logging or access tracking.
3440                  */
3441                 if ((error_code & PFERR_WRITE_MASK) &&
3442                     spte_can_locklessly_be_made_writable(spte))
3443                 {
3444                         new_spte |= PT_WRITABLE_MASK;
3445
3446                         /*
3447                          * Do not fix write-permission on the large spte.  Since
3448                          * we only dirty the first page into the dirty-bitmap in
3449                          * fast_pf_fix_direct_spte(), other pages are missed
3450                          * if its slot has dirty logging enabled.
3451                          *
3452                          * Instead, we let the slow page fault path create a
3453                          * normal spte to fix the access.
3454                          *
3455                          * See the comments in kvm_arch_commit_memory_region().
3456                          */
3457                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3458                                 break;
3459                 }
3460
3461                 /* Verify that the fault can be handled in the fast path */
3462                 if (new_spte == spte ||
3463                     !is_access_allowed(error_code, new_spte))
3464                         break;
3465
3466                 /*
3467                  * Currently, fast page fault only works for direct mapping
3468                  * since the gfn is not stable for indirect shadow page. See
3469                  * Documentation/virtual/kvm/locking.txt to get more detail.
3470                  */
3471                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3472                                                         iterator.sptep, spte,
3473                                                         new_spte);
3474                 if (fault_handled)
3475                         break;
3476
3477                 if (++retry_count > 4) {
3478                         printk_once(KERN_WARNING
3479                                 "kvm: Fast #PF retrying more than 4 times.\n");
3480                         break;
3481                 }
3482
3483         } while (true);
3484
3485         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3486                               spte, fault_handled);
3487         walk_shadow_page_lockless_end(vcpu);
3488
3489         return fault_handled;
3490 }
3491
3492 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3493                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3494 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3495
3496 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3497                          gfn_t gfn, bool prefault)
3498 {
3499         int r;
3500         int level;
3501         bool force_pt_level = false;
3502         kvm_pfn_t pfn;
3503         unsigned long mmu_seq;
3504         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3505
3506         level = mapping_level(vcpu, gfn, &force_pt_level);
3507         if (likely(!force_pt_level)) {
3508                 /*
3509                  * This path builds a PAE pagetable - so we can map
3510                  * 2mb pages at maximum. Therefore check if the level
3511                  * is larger than that.
3512                  */
3513                 if (level > PT_DIRECTORY_LEVEL)
3514                         level = PT_DIRECTORY_LEVEL;
3515
3516                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3517         }
3518
3519         if (fast_page_fault(vcpu, v, level, error_code))
3520                 return RET_PF_RETRY;
3521
3522         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3523         smp_rmb();
3524
3525         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3526                 return RET_PF_RETRY;
3527
3528         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3529                 return r;
3530
3531         r = RET_PF_RETRY;
3532         spin_lock(&vcpu->kvm->mmu_lock);
3533         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3534                 goto out_unlock;
3535         if (make_mmu_pages_available(vcpu) < 0)
3536                 goto out_unlock;
3537         if (likely(!force_pt_level))
3538                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3539         r = __direct_map(vcpu, v, write, map_writable, level, pfn, prefault);
3540 out_unlock:
3541         spin_unlock(&vcpu->kvm->mmu_lock);
3542         kvm_release_pfn_clean(pfn);
3543         return r;
3544 }
3545
3546 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3547                                struct list_head *invalid_list)
3548 {
3549         struct kvm_mmu_page *sp;
3550
3551         if (!VALID_PAGE(*root_hpa))
3552                 return;
3553
3554         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3555         --sp->root_count;
3556         if (!sp->root_count && sp->role.invalid)
3557                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3558
3559         *root_hpa = INVALID_PAGE;
3560 }
3561
3562 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3563 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3564                         ulong roots_to_free)
3565 {
3566         int i;
3567         LIST_HEAD(invalid_list);
3568         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3569
3570         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3571
3572         /* Before acquiring the MMU lock, see if we need to do any real work. */
3573         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3574                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3575                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3576                             VALID_PAGE(mmu->prev_roots[i].hpa))
3577                                 break;
3578
3579                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3580                         return;
3581         }
3582
3583         spin_lock(&vcpu->kvm->mmu_lock);
3584
3585         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3586                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3587                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3588                                            &invalid_list);
3589
3590         if (free_active_root) {
3591                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3592                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3593                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3594                                            &invalid_list);
3595                 } else {
3596                         for (i = 0; i < 4; ++i)
3597                                 if (mmu->pae_root[i] != 0)
3598                                         mmu_free_root_page(vcpu->kvm,
3599                                                            &mmu->pae_root[i],
3600                                                            &invalid_list);
3601                         mmu->root_hpa = INVALID_PAGE;
3602                 }
3603                 mmu->root_cr3 = 0;
3604         }
3605
3606         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3607         spin_unlock(&vcpu->kvm->mmu_lock);
3608 }
3609 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3610
3611 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3612 {
3613         int ret = 0;
3614
3615         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3616                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3617                 ret = 1;
3618         }
3619
3620         return ret;
3621 }
3622
3623 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3624 {
3625         struct kvm_mmu_page *sp;
3626         unsigned i;
3627
3628         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3629                 spin_lock(&vcpu->kvm->mmu_lock);
3630                 if(make_mmu_pages_available(vcpu) < 0) {
3631                         spin_unlock(&vcpu->kvm->mmu_lock);
3632                         return -ENOSPC;
3633                 }
3634                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3635                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3636                 ++sp->root_count;
3637                 spin_unlock(&vcpu->kvm->mmu_lock);
3638                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3639         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3640                 for (i = 0; i < 4; ++i) {
3641                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3642
3643                         MMU_WARN_ON(VALID_PAGE(root));
3644                         spin_lock(&vcpu->kvm->mmu_lock);
3645                         if (make_mmu_pages_available(vcpu) < 0) {
3646                                 spin_unlock(&vcpu->kvm->mmu_lock);
3647                                 return -ENOSPC;
3648                         }
3649                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3650                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3651                         root = __pa(sp->spt);
3652                         ++sp->root_count;
3653                         spin_unlock(&vcpu->kvm->mmu_lock);
3654                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3655                 }
3656                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3657         } else
3658                 BUG();
3659         vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3660
3661         return 0;
3662 }
3663
3664 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3665 {
3666         struct kvm_mmu_page *sp;
3667         u64 pdptr, pm_mask;
3668         gfn_t root_gfn, root_cr3;
3669         int i;
3670
3671         root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3672         root_gfn = root_cr3 >> PAGE_SHIFT;
3673
3674         if (mmu_check_root(vcpu, root_gfn))
3675                 return 1;
3676
3677         /*
3678          * Do we shadow a long mode page table? If so we need to
3679          * write-protect the guests page table root.
3680          */
3681         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3682                 hpa_t root = vcpu->arch.mmu->root_hpa;
3683
3684                 MMU_WARN_ON(VALID_PAGE(root));
3685
3686                 spin_lock(&vcpu->kvm->mmu_lock);
3687                 if (make_mmu_pages_available(vcpu) < 0) {
3688                         spin_unlock(&vcpu->kvm->mmu_lock);
3689                         return -ENOSPC;
3690                 }
3691                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3692                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3693                 root = __pa(sp->spt);
3694                 ++sp->root_count;
3695                 spin_unlock(&vcpu->kvm->mmu_lock);
3696                 vcpu->arch.mmu->root_hpa = root;
3697                 goto set_root_cr3;
3698         }
3699
3700         /*
3701          * We shadow a 32 bit page table. This may be a legacy 2-level
3702          * or a PAE 3-level page table. In either case we need to be aware that
3703          * the shadow page table may be a PAE or a long mode page table.
3704          */
3705         pm_mask = PT_PRESENT_MASK;
3706         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3707                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3708
3709         for (i = 0; i < 4; ++i) {
3710                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3711
3712                 MMU_WARN_ON(VALID_PAGE(root));
3713                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3714                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3715                         if (!(pdptr & PT_PRESENT_MASK)) {
3716                                 vcpu->arch.mmu->pae_root[i] = 0;
3717                                 continue;
3718                         }
3719                         root_gfn = pdptr >> PAGE_SHIFT;
3720                         if (mmu_check_root(vcpu, root_gfn))
3721                                 return 1;
3722                 }
3723                 spin_lock(&vcpu->kvm->mmu_lock);
3724                 if (make_mmu_pages_available(vcpu) < 0) {
3725                         spin_unlock(&vcpu->kvm->mmu_lock);
3726                         return -ENOSPC;
3727                 }
3728                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3729                                       0, ACC_ALL);
3730                 root = __pa(sp->spt);
3731                 ++sp->root_count;
3732                 spin_unlock(&vcpu->kvm->mmu_lock);
3733
3734                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3735         }
3736         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3737
3738         /*
3739          * If we shadow a 32 bit page table with a long mode page
3740          * table we enter this path.
3741          */
3742         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3743                 if (vcpu->arch.mmu->lm_root == NULL) {
3744                         /*
3745                          * The additional page necessary for this is only
3746                          * allocated on demand.
3747                          */
3748
3749                         u64 *lm_root;
3750
3751                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3752                         if (lm_root == NULL)
3753                                 return 1;
3754
3755                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3756
3757                         vcpu->arch.mmu->lm_root = lm_root;
3758                 }
3759
3760                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3761         }
3762
3763 set_root_cr3:
3764         vcpu->arch.mmu->root_cr3 = root_cr3;
3765
3766         return 0;
3767 }
3768
3769 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3770 {
3771         if (vcpu->arch.mmu->direct_map)
3772                 return mmu_alloc_direct_roots(vcpu);
3773         else
3774                 return mmu_alloc_shadow_roots(vcpu);
3775 }
3776
3777 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3778 {
3779         int i;
3780         struct kvm_mmu_page *sp;
3781
3782         if (vcpu->arch.mmu->direct_map)
3783                 return;
3784
3785         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3786                 return;
3787
3788         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3789
3790         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3791                 hpa_t root = vcpu->arch.mmu->root_hpa;
3792                 sp = page_header(root);
3793
3794                 /*
3795                  * Even if another CPU was marking the SP as unsync-ed
3796                  * simultaneously, any guest page table changes are not
3797                  * guaranteed to be visible anyway until this VCPU issues a TLB
3798                  * flush strictly after those changes are made. We only need to
3799                  * ensure that the other CPU sets these flags before any actual
3800                  * changes to the page tables are made. The comments in
3801                  * mmu_need_write_protect() describe what could go wrong if this
3802                  * requirement isn't satisfied.
3803                  */
3804                 if (!smp_load_acquire(&sp->unsync) &&
3805                     !smp_load_acquire(&sp->unsync_children))
3806                         return;
3807
3808                 spin_lock(&vcpu->kvm->mmu_lock);
3809                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3810
3811                 mmu_sync_children(vcpu, sp);
3812
3813                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3814                 spin_unlock(&vcpu->kvm->mmu_lock);
3815                 return;
3816         }
3817
3818         spin_lock(&vcpu->kvm->mmu_lock);
3819         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3820
3821         for (i = 0; i < 4; ++i) {
3822                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3823
3824                 if (root && VALID_PAGE(root)) {
3825                         root &= PT64_BASE_ADDR_MASK;
3826                         sp = page_header(root);
3827                         mmu_sync_children(vcpu, sp);
3828                 }
3829         }
3830
3831         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3832         spin_unlock(&vcpu->kvm->mmu_lock);
3833 }
3834 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3835
3836 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3837                                   u32 access, struct x86_exception *exception)
3838 {
3839         if (exception)
3840                 exception->error_code = 0;
3841         return vaddr;
3842 }
3843
3844 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3845                                          u32 access,
3846                                          struct x86_exception *exception)
3847 {
3848         if (exception)
3849                 exception->error_code = 0;
3850         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3851 }
3852
3853 static bool
3854 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3855 {
3856         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3857
3858         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3859                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3860 }
3861
3862 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3863 {
3864         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3865 }
3866
3867 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3868 {
3869         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3870 }
3871
3872 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3873 {
3874         /*
3875          * A nested guest cannot use the MMIO cache if it is using nested
3876          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3877          */
3878         if (mmu_is_nested(vcpu))
3879                 return false;
3880
3881         if (direct)
3882                 return vcpu_match_mmio_gpa(vcpu, addr);
3883
3884         return vcpu_match_mmio_gva(vcpu, addr);
3885 }
3886
3887 /* return true if reserved bit is detected on spte. */
3888 static bool
3889 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3890 {
3891         struct kvm_shadow_walk_iterator iterator;
3892         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3893         int root, leaf;
3894         bool reserved = false;
3895
3896         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3897                 goto exit;
3898
3899         walk_shadow_page_lockless_begin(vcpu);
3900
3901         for (shadow_walk_init(&iterator, vcpu, addr),
3902                  leaf = root = iterator.level;
3903              shadow_walk_okay(&iterator);
3904              __shadow_walk_next(&iterator, spte)) {
3905                 spte = mmu_spte_get_lockless(iterator.sptep);
3906
3907                 sptes[leaf - 1] = spte;
3908                 leaf--;
3909
3910                 if (!is_shadow_present_pte(spte))
3911                         break;
3912
3913                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3914                                                     iterator.level);
3915         }
3916
3917         walk_shadow_page_lockless_end(vcpu);
3918
3919         if (reserved) {
3920                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3921                        __func__, addr);
3922                 while (root > leaf) {
3923                         pr_err("------ spte 0x%llx level %d.\n",
3924                                sptes[root - 1], root);
3925                         root--;
3926                 }
3927         }
3928 exit:
3929         *sptep = spte;
3930         return reserved;
3931 }
3932
3933 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3934 {
3935         u64 spte;
3936         bool reserved;
3937
3938         if (mmio_info_in_cache(vcpu, addr, direct))
3939                 return RET_PF_EMULATE;
3940
3941         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3942         if (WARN_ON(reserved))
3943                 return -EINVAL;
3944
3945         if (is_mmio_spte(spte)) {
3946                 gfn_t gfn = get_mmio_spte_gfn(spte);
3947                 unsigned access = get_mmio_spte_access(spte);
3948
3949                 if (!check_mmio_spte(vcpu, spte))
3950                         return RET_PF_INVALID;
3951
3952                 if (direct)
3953                         addr = 0;
3954
3955                 trace_handle_mmio_page_fault(addr, gfn, access);
3956                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3957                 return RET_PF_EMULATE;
3958         }
3959
3960         /*
3961          * If the page table is zapped by other cpus, let CPU fault again on
3962          * the address.
3963          */
3964         return RET_PF_RETRY;
3965 }
3966
3967 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3968                                          u32 error_code, gfn_t gfn)
3969 {
3970         if (unlikely(error_code & PFERR_RSVD_MASK))
3971                 return false;
3972
3973         if (!(error_code & PFERR_PRESENT_MASK) ||
3974               !(error_code & PFERR_WRITE_MASK))
3975                 return false;
3976
3977         /*
3978          * guest is writing the page which is write tracked which can
3979          * not be fixed by page fault handler.
3980          */
3981         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3982                 return true;
3983
3984         return false;
3985 }
3986
3987 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3988 {
3989         struct kvm_shadow_walk_iterator iterator;
3990         u64 spte;
3991
3992         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3993                 return;
3994
3995         walk_shadow_page_lockless_begin(vcpu);
3996         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3997                 clear_sp_write_flooding_count(iterator.sptep);
3998                 if (!is_shadow_present_pte(spte))
3999                         break;
4000         }
4001         walk_shadow_page_lockless_end(vcpu);
4002 }
4003
4004 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
4005                                 u32 error_code, bool prefault)
4006 {
4007         gfn_t gfn = gva >> PAGE_SHIFT;
4008         int r;
4009
4010         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
4011
4012         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4013                 return RET_PF_EMULATE;
4014
4015         r = mmu_topup_memory_caches(vcpu);
4016         if (r)
4017                 return r;
4018
4019         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4020
4021
4022         return nonpaging_map(vcpu, gva & PAGE_MASK,
4023                              error_code, gfn, prefault);
4024 }
4025
4026 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
4027 {
4028         struct kvm_arch_async_pf arch;
4029
4030         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4031         arch.gfn = gfn;
4032         arch.direct_map = vcpu->arch.mmu->direct_map;
4033         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4034
4035         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4036 }
4037
4038 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4039                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4040 {
4041         struct kvm_memory_slot *slot;
4042         bool async;
4043
4044         /*
4045          * Don't expose private memslots to L2.
4046          */
4047         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4048                 *pfn = KVM_PFN_NOSLOT;
4049                 return false;
4050         }
4051
4052         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4053         async = false;
4054         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4055         if (!async)
4056                 return false; /* *pfn has correct page already */
4057
4058         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4059                 trace_kvm_try_async_get_page(gva, gfn);
4060                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4061                         trace_kvm_async_pf_doublefault(gva, gfn);
4062                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4063                         return true;
4064                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4065                         return true;
4066         }
4067
4068         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4069         return false;
4070 }
4071
4072 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4073                                 u64 fault_address, char *insn, int insn_len)
4074 {
4075         int r = 1;
4076
4077         vcpu->arch.l1tf_flush_l1d = true;
4078         switch (vcpu->arch.apf.host_apf_reason) {
4079         default:
4080                 trace_kvm_page_fault(fault_address, error_code);
4081
4082                 if (kvm_event_needs_reinjection(vcpu))
4083                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4084                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4085                                 insn_len);
4086                 break;
4087         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4088                 vcpu->arch.apf.host_apf_reason = 0;
4089                 local_irq_disable();
4090                 kvm_async_pf_task_wait(fault_address, 0);
4091                 local_irq_enable();
4092                 break;
4093         case KVM_PV_REASON_PAGE_READY:
4094                 vcpu->arch.apf.host_apf_reason = 0;
4095                 local_irq_disable();
4096                 kvm_async_pf_task_wake(fault_address);
4097                 local_irq_enable();
4098                 break;
4099         }
4100         return r;
4101 }
4102 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4103
4104 static bool
4105 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4106 {
4107         int page_num = KVM_PAGES_PER_HPAGE(level);
4108
4109         gfn &= ~(page_num - 1);
4110
4111         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4112 }
4113
4114 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4115                           bool prefault)
4116 {
4117         kvm_pfn_t pfn;
4118         int r;
4119         int level;
4120         bool force_pt_level;
4121         gfn_t gfn = gpa >> PAGE_SHIFT;
4122         unsigned long mmu_seq;
4123         int write = error_code & PFERR_WRITE_MASK;
4124         bool map_writable;
4125
4126         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4127
4128         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4129                 return RET_PF_EMULATE;
4130
4131         r = mmu_topup_memory_caches(vcpu);
4132         if (r)
4133                 return r;
4134
4135         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4136                                                            PT_DIRECTORY_LEVEL);
4137         level = mapping_level(vcpu, gfn, &force_pt_level);
4138         if (likely(!force_pt_level)) {
4139                 if (level > PT_DIRECTORY_LEVEL &&
4140                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4141                         level = PT_DIRECTORY_LEVEL;
4142                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4143         }
4144
4145         if (fast_page_fault(vcpu, gpa, level, error_code))
4146                 return RET_PF_RETRY;
4147
4148         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4149         smp_rmb();
4150
4151         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4152                 return RET_PF_RETRY;
4153
4154         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4155                 return r;
4156
4157         r = RET_PF_RETRY;
4158         spin_lock(&vcpu->kvm->mmu_lock);
4159         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4160                 goto out_unlock;
4161         if (make_mmu_pages_available(vcpu) < 0)
4162                 goto out_unlock;
4163         if (likely(!force_pt_level))
4164                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4165         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, prefault);
4166 out_unlock:
4167         spin_unlock(&vcpu->kvm->mmu_lock);
4168         kvm_release_pfn_clean(pfn);
4169         return r;
4170 }
4171
4172 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4173                                    struct kvm_mmu *context)
4174 {
4175         context->page_fault = nonpaging_page_fault;
4176         context->gva_to_gpa = nonpaging_gva_to_gpa;
4177         context->sync_page = nonpaging_sync_page;
4178         context->invlpg = nonpaging_invlpg;
4179         context->update_pte = nonpaging_update_pte;
4180         context->root_level = 0;
4181         context->shadow_root_level = PT32E_ROOT_LEVEL;
4182         context->direct_map = true;
4183         context->nx = false;
4184 }
4185
4186 /*
4187  * Find out if a previously cached root matching the new CR3/role is available.
4188  * The current root is also inserted into the cache.
4189  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4190  * returned.
4191  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4192  * false is returned. This root should now be freed by the caller.
4193  */
4194 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4195                                   union kvm_mmu_page_role new_role)
4196 {
4197         uint i;
4198         struct kvm_mmu_root_info root;
4199         struct kvm_mmu *mmu = vcpu->arch.mmu;
4200
4201         root.cr3 = mmu->root_cr3;
4202         root.hpa = mmu->root_hpa;
4203
4204         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4205                 swap(root, mmu->prev_roots[i]);
4206
4207                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4208                     page_header(root.hpa) != NULL &&
4209                     new_role.word == page_header(root.hpa)->role.word)
4210                         break;
4211         }
4212
4213         mmu->root_hpa = root.hpa;
4214         mmu->root_cr3 = root.cr3;
4215
4216         return i < KVM_MMU_NUM_PREV_ROOTS;
4217 }
4218
4219 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4220                             union kvm_mmu_page_role new_role,
4221                             bool skip_tlb_flush)
4222 {
4223         struct kvm_mmu *mmu = vcpu->arch.mmu;
4224
4225         /*
4226          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4227          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4228          * later if necessary.
4229          */
4230         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4231             mmu->root_level >= PT64_ROOT_4LEVEL) {
4232                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4233                         return false;
4234
4235                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4236                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4237                         if (!skip_tlb_flush) {
4238                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4239                                 kvm_x86_ops->tlb_flush(vcpu, true);
4240                         }
4241
4242                         /*
4243                          * The last MMIO access's GVA and GPA are cached in the
4244                          * VCPU. When switching to a new CR3, that GVA->GPA
4245                          * mapping may no longer be valid. So clear any cached
4246                          * MMIO info even when we don't need to sync the shadow
4247                          * page tables.
4248                          */
4249                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4250
4251                         __clear_sp_write_flooding_count(
4252                                 page_header(mmu->root_hpa));
4253
4254                         return true;
4255                 }
4256         }
4257
4258         return false;
4259 }
4260
4261 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4262                               union kvm_mmu_page_role new_role,
4263                               bool skip_tlb_flush)
4264 {
4265         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4266                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4267                                    KVM_MMU_ROOT_CURRENT);
4268 }
4269
4270 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4271 {
4272         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4273                           skip_tlb_flush);
4274 }
4275 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4276
4277 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4278 {
4279         return kvm_read_cr3(vcpu);
4280 }
4281
4282 static void inject_page_fault(struct kvm_vcpu *vcpu,
4283                               struct x86_exception *fault)
4284 {
4285         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4286 }
4287
4288 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4289                            unsigned access, int *nr_present)
4290 {
4291         if (unlikely(is_mmio_spte(*sptep))) {
4292                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4293                         mmu_spte_clear_no_track(sptep);
4294                         return true;
4295                 }
4296
4297                 (*nr_present)++;
4298                 mark_mmio_spte(vcpu, sptep, gfn, access);
4299                 return true;
4300         }
4301
4302         return false;
4303 }
4304
4305 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4306                                 unsigned level, unsigned gpte)
4307 {
4308         /*
4309          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4310          * If it is clear, there are no large pages at this level, so clear
4311          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4312          */
4313         gpte &= level - mmu->last_nonleaf_level;
4314
4315         /*
4316          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4317          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4318          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4319          */
4320         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4321
4322         return gpte & PT_PAGE_SIZE_MASK;
4323 }
4324
4325 #define PTTYPE_EPT 18 /* arbitrary */
4326 #define PTTYPE PTTYPE_EPT
4327 #include "paging_tmpl.h"
4328 #undef PTTYPE
4329
4330 #define PTTYPE 64
4331 #include "paging_tmpl.h"
4332 #undef PTTYPE
4333
4334 #define PTTYPE 32
4335 #include "paging_tmpl.h"
4336 #undef PTTYPE
4337
4338 static void
4339 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4340                         struct rsvd_bits_validate *rsvd_check,
4341                         int maxphyaddr, int level, bool nx, bool gbpages,
4342                         bool pse, bool amd)
4343 {
4344         u64 exb_bit_rsvd = 0;
4345         u64 gbpages_bit_rsvd = 0;
4346         u64 nonleaf_bit8_rsvd = 0;
4347
4348         rsvd_check->bad_mt_xwr = 0;
4349
4350         if (!nx)
4351                 exb_bit_rsvd = rsvd_bits(63, 63);
4352         if (!gbpages)
4353                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4354
4355         /*
4356          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4357          * leaf entries) on AMD CPUs only.
4358          */
4359         if (amd)
4360                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4361
4362         switch (level) {
4363         case PT32_ROOT_LEVEL:
4364                 /* no rsvd bits for 2 level 4K page table entries */
4365                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4366                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4367                 rsvd_check->rsvd_bits_mask[1][0] =
4368                         rsvd_check->rsvd_bits_mask[0][0];
4369
4370                 if (!pse) {
4371                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4372                         break;
4373                 }
4374
4375                 if (is_cpuid_PSE36())
4376                         /* 36bits PSE 4MB page */
4377                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4378                 else
4379                         /* 32 bits PSE 4MB page */
4380                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4381                 break;
4382         case PT32E_ROOT_LEVEL:
4383                 rsvd_check->rsvd_bits_mask[0][2] =
4384                         rsvd_bits(maxphyaddr, 63) |
4385                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4386                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4387                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4388                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4389                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4390                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4391                         rsvd_bits(maxphyaddr, 62) |
4392                         rsvd_bits(13, 20);              /* large page */
4393                 rsvd_check->rsvd_bits_mask[1][0] =
4394                         rsvd_check->rsvd_bits_mask[0][0];
4395                 break;
4396         case PT64_ROOT_5LEVEL:
4397                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4398                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4399                         rsvd_bits(maxphyaddr, 51);
4400                 rsvd_check->rsvd_bits_mask[1][4] =
4401                         rsvd_check->rsvd_bits_mask[0][4];
4402                 /* fall through */
4403         case PT64_ROOT_4LEVEL:
4404                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4405                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4406                         rsvd_bits(maxphyaddr, 51);
4407                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4408                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4409                         rsvd_bits(maxphyaddr, 51);
4410                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4411                         rsvd_bits(maxphyaddr, 51);
4412                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4413                         rsvd_bits(maxphyaddr, 51);
4414                 rsvd_check->rsvd_bits_mask[1][3] =
4415                         rsvd_check->rsvd_bits_mask[0][3];
4416                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4417                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4418                         rsvd_bits(13, 29);
4419                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4420                         rsvd_bits(maxphyaddr, 51) |
4421                         rsvd_bits(13, 20);              /* large page */
4422                 rsvd_check->rsvd_bits_mask[1][0] =
4423                         rsvd_check->rsvd_bits_mask[0][0];
4424                 break;
4425         }
4426 }
4427
4428 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4429                                   struct kvm_mmu *context)
4430 {
4431         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4432                                 cpuid_maxphyaddr(vcpu), context->root_level,
4433                                 context->nx,
4434                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4435                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4436 }
4437
4438 static void
4439 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4440                             int maxphyaddr, bool execonly)
4441 {
4442         u64 bad_mt_xwr;
4443
4444         rsvd_check->rsvd_bits_mask[0][4] =
4445                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4446         rsvd_check->rsvd_bits_mask[0][3] =
4447                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4448         rsvd_check->rsvd_bits_mask[0][2] =
4449                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4450         rsvd_check->rsvd_bits_mask[0][1] =
4451                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4452         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4453
4454         /* large page */
4455         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4456         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4457         rsvd_check->rsvd_bits_mask[1][2] =
4458                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4459         rsvd_check->rsvd_bits_mask[1][1] =
4460                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4461         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4462
4463         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4464         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4465         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4466         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4467         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4468         if (!execonly) {
4469                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4470                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4471         }
4472         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4473 }
4474
4475 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4476                 struct kvm_mmu *context, bool execonly)
4477 {
4478         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4479                                     cpuid_maxphyaddr(vcpu), execonly);
4480 }
4481
4482 /*
4483  * the page table on host is the shadow page table for the page
4484  * table in guest or amd nested guest, its mmu features completely
4485  * follow the features in guest.
4486  */
4487 void
4488 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4489 {
4490         bool uses_nx = context->nx ||
4491                 context->mmu_role.base.smep_andnot_wp;
4492         struct rsvd_bits_validate *shadow_zero_check;
4493         int i;
4494
4495         /*
4496          * Passing "true" to the last argument is okay; it adds a check
4497          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4498          */
4499         shadow_zero_check = &context->shadow_zero_check;
4500         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4501                                 shadow_phys_bits,
4502                                 context->shadow_root_level, uses_nx,
4503                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4504                                 is_pse(vcpu), true);
4505
4506         if (!shadow_me_mask)
4507                 return;
4508
4509         for (i = context->shadow_root_level; --i >= 0;) {
4510                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4511                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4512         }
4513
4514 }
4515 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4516
4517 static inline bool boot_cpu_is_amd(void)
4518 {
4519         WARN_ON_ONCE(!tdp_enabled);
4520         return shadow_x_mask == 0;
4521 }
4522
4523 /*
4524  * the direct page table on host, use as much mmu features as
4525  * possible, however, kvm currently does not do execution-protection.
4526  */
4527 static void
4528 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4529                                 struct kvm_mmu *context)
4530 {
4531         struct rsvd_bits_validate *shadow_zero_check;
4532         int i;
4533
4534         shadow_zero_check = &context->shadow_zero_check;
4535
4536         if (boot_cpu_is_amd())
4537                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4538                                         shadow_phys_bits,
4539                                         context->shadow_root_level, false,
4540                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4541                                         true, true);
4542         else
4543                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4544                                             shadow_phys_bits,
4545                                             false);
4546
4547         if (!shadow_me_mask)
4548                 return;
4549
4550         for (i = context->shadow_root_level; --i >= 0;) {
4551                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4552                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4553         }
4554 }
4555
4556 /*
4557  * as the comments in reset_shadow_zero_bits_mask() except it
4558  * is the shadow page table for intel nested guest.
4559  */
4560 static void
4561 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4562                                 struct kvm_mmu *context, bool execonly)
4563 {
4564         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4565                                     shadow_phys_bits, execonly);
4566 }
4567
4568 #define BYTE_MASK(access) \
4569         ((1 & (access) ? 2 : 0) | \
4570          (2 & (access) ? 4 : 0) | \
4571          (3 & (access) ? 8 : 0) | \
4572          (4 & (access) ? 16 : 0) | \
4573          (5 & (access) ? 32 : 0) | \
4574          (6 & (access) ? 64 : 0) | \
4575          (7 & (access) ? 128 : 0))
4576
4577
4578 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4579                                       struct kvm_mmu *mmu, bool ept)
4580 {
4581         unsigned byte;
4582
4583         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4584         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4585         const u8 u = BYTE_MASK(ACC_USER_MASK);
4586
4587         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4588         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4589         bool cr0_wp = is_write_protection(vcpu);
4590
4591         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4592                 unsigned pfec = byte << 1;
4593
4594                 /*
4595                  * Each "*f" variable has a 1 bit for each UWX value
4596                  * that causes a fault with the given PFEC.
4597                  */
4598
4599                 /* Faults from writes to non-writable pages */
4600                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4601                 /* Faults from user mode accesses to supervisor pages */
4602                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4603                 /* Faults from fetches of non-executable pages*/
4604                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4605                 /* Faults from kernel mode fetches of user pages */
4606                 u8 smepf = 0;
4607                 /* Faults from kernel mode accesses of user pages */
4608                 u8 smapf = 0;
4609
4610                 if (!ept) {
4611                         /* Faults from kernel mode accesses to user pages */
4612                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4613
4614                         /* Not really needed: !nx will cause pte.nx to fault */
4615                         if (!mmu->nx)
4616                                 ff = 0;
4617
4618                         /* Allow supervisor writes if !cr0.wp */
4619                         if (!cr0_wp)
4620                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4621
4622                         /* Disallow supervisor fetches of user code if cr4.smep */
4623                         if (cr4_smep)
4624                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4625
4626                         /*
4627                          * SMAP:kernel-mode data accesses from user-mode
4628                          * mappings should fault. A fault is considered
4629                          * as a SMAP violation if all of the following
4630                          * conditions are true:
4631                          *   - X86_CR4_SMAP is set in CR4
4632                          *   - A user page is accessed
4633                          *   - The access is not a fetch
4634                          *   - Page fault in kernel mode
4635                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4636                          *
4637                          * Here, we cover the first three conditions.
4638                          * The fourth is computed dynamically in permission_fault();
4639                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4640                          * *not* subject to SMAP restrictions.
4641                          */
4642                         if (cr4_smap)
4643                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4644                 }
4645
4646                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4647         }
4648 }
4649
4650 /*
4651 * PKU is an additional mechanism by which the paging controls access to
4652 * user-mode addresses based on the value in the PKRU register.  Protection
4653 * key violations are reported through a bit in the page fault error code.
4654 * Unlike other bits of the error code, the PK bit is not known at the
4655 * call site of e.g. gva_to_gpa; it must be computed directly in
4656 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4657 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4658 *
4659 * In particular the following conditions come from the error code, the
4660 * page tables and the machine state:
4661 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4662 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4663 * - PK is always zero if U=0 in the page tables
4664 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4665 *
4666 * The PKRU bitmask caches the result of these four conditions.  The error
4667 * code (minus the P bit) and the page table's U bit form an index into the
4668 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4669 * with the two bits of the PKRU register corresponding to the protection key.
4670 * For the first three conditions above the bits will be 00, thus masking
4671 * away both AD and WD.  For all reads or if the last condition holds, WD
4672 * only will be masked away.
4673 */
4674 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4675                                 bool ept)
4676 {
4677         unsigned bit;
4678         bool wp;
4679
4680         if (ept) {
4681                 mmu->pkru_mask = 0;
4682                 return;
4683         }
4684
4685         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4686         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4687                 mmu->pkru_mask = 0;
4688                 return;
4689         }
4690
4691         wp = is_write_protection(vcpu);
4692
4693         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4694                 unsigned pfec, pkey_bits;
4695                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4696
4697                 pfec = bit << 1;
4698                 ff = pfec & PFERR_FETCH_MASK;
4699                 uf = pfec & PFERR_USER_MASK;
4700                 wf = pfec & PFERR_WRITE_MASK;
4701
4702                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4703                 pte_user = pfec & PFERR_RSVD_MASK;
4704
4705                 /*
4706                  * Only need to check the access which is not an
4707                  * instruction fetch and is to a user page.
4708                  */
4709                 check_pkey = (!ff && pte_user);
4710                 /*
4711                  * write access is controlled by PKRU if it is a
4712                  * user access or CR0.WP = 1.
4713                  */
4714                 check_write = check_pkey && wf && (uf || wp);
4715
4716                 /* PKRU.AD stops both read and write access. */
4717                 pkey_bits = !!check_pkey;
4718                 /* PKRU.WD stops write access. */
4719                 pkey_bits |= (!!check_write) << 1;
4720
4721                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4722         }
4723 }
4724
4725 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4726 {
4727         unsigned root_level = mmu->root_level;
4728
4729         mmu->last_nonleaf_level = root_level;
4730         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4731                 mmu->last_nonleaf_level++;
4732 }
4733
4734 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4735                                          struct kvm_mmu *context,
4736                                          int level)
4737 {
4738         context->nx = is_nx(vcpu);
4739         context->root_level = level;
4740
4741         reset_rsvds_bits_mask(vcpu, context);
4742         update_permission_bitmask(vcpu, context, false);
4743         update_pkru_bitmask(vcpu, context, false);
4744         update_last_nonleaf_level(vcpu, context);
4745
4746         MMU_WARN_ON(!is_pae(vcpu));
4747         context->page_fault = paging64_page_fault;
4748         context->gva_to_gpa = paging64_gva_to_gpa;
4749         context->sync_page = paging64_sync_page;
4750         context->invlpg = paging64_invlpg;
4751         context->update_pte = paging64_update_pte;
4752         context->shadow_root_level = level;
4753         context->direct_map = false;
4754 }
4755
4756 static void paging64_init_context(struct kvm_vcpu *vcpu,
4757                                   struct kvm_mmu *context)
4758 {
4759         int root_level = is_la57_mode(vcpu) ?
4760                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4761
4762         paging64_init_context_common(vcpu, context, root_level);
4763 }
4764
4765 static void paging32_init_context(struct kvm_vcpu *vcpu,
4766                                   struct kvm_mmu *context)
4767 {
4768         context->nx = false;
4769         context->root_level = PT32_ROOT_LEVEL;
4770
4771         reset_rsvds_bits_mask(vcpu, context);
4772         update_permission_bitmask(vcpu, context, false);
4773         update_pkru_bitmask(vcpu, context, false);
4774         update_last_nonleaf_level(vcpu, context);
4775
4776         context->page_fault = paging32_page_fault;
4777         context->gva_to_gpa = paging32_gva_to_gpa;
4778         context->sync_page = paging32_sync_page;
4779         context->invlpg = paging32_invlpg;
4780         context->update_pte = paging32_update_pte;
4781         context->shadow_root_level = PT32E_ROOT_LEVEL;
4782         context->direct_map = false;
4783 }
4784
4785 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4786                                    struct kvm_mmu *context)
4787 {
4788         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4789 }
4790
4791 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4792 {
4793         union kvm_mmu_extended_role ext = {0};
4794
4795         ext.cr0_pg = !!is_paging(vcpu);
4796         ext.cr4_pae = !!is_pae(vcpu);
4797         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4798         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4799         ext.cr4_pse = !!is_pse(vcpu);
4800         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4801         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4802         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4803
4804         ext.valid = 1;
4805
4806         return ext;
4807 }
4808
4809 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4810                                                    bool base_only)
4811 {
4812         union kvm_mmu_role role = {0};
4813
4814         role.base.access = ACC_ALL;
4815         role.base.nxe = !!is_nx(vcpu);
4816         role.base.cr0_wp = is_write_protection(vcpu);
4817         role.base.smm = is_smm(vcpu);
4818         role.base.guest_mode = is_guest_mode(vcpu);
4819
4820         if (base_only)
4821                 return role;
4822
4823         role.ext = kvm_calc_mmu_role_ext(vcpu);
4824
4825         return role;
4826 }
4827
4828 static union kvm_mmu_role
4829 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4830 {
4831         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4832
4833         role.base.ad_disabled = (shadow_accessed_mask == 0);
4834         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4835         role.base.direct = true;
4836         role.base.gpte_is_8_bytes = true;
4837
4838         return role;
4839 }
4840
4841 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4842 {
4843         struct kvm_mmu *context = vcpu->arch.mmu;
4844         union kvm_mmu_role new_role =
4845                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4846
4847         new_role.base.word &= mmu_base_role_mask.word;
4848         if (new_role.as_u64 == context->mmu_role.as_u64)
4849                 return;
4850
4851         context->mmu_role.as_u64 = new_role.as_u64;
4852         context->page_fault = tdp_page_fault;
4853         context->sync_page = nonpaging_sync_page;
4854         context->invlpg = nonpaging_invlpg;
4855         context->update_pte = nonpaging_update_pte;
4856         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4857         context->direct_map = true;
4858         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4859         context->get_cr3 = get_cr3;
4860         context->get_pdptr = kvm_pdptr_read;
4861         context->inject_page_fault = kvm_inject_page_fault;
4862
4863         if (!is_paging(vcpu)) {
4864                 context->nx = false;
4865                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4866                 context->root_level = 0;
4867         } else if (is_long_mode(vcpu)) {
4868                 context->nx = is_nx(vcpu);
4869                 context->root_level = is_la57_mode(vcpu) ?
4870                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4871                 reset_rsvds_bits_mask(vcpu, context);
4872                 context->gva_to_gpa = paging64_gva_to_gpa;
4873         } else if (is_pae(vcpu)) {
4874                 context->nx = is_nx(vcpu);
4875                 context->root_level = PT32E_ROOT_LEVEL;
4876                 reset_rsvds_bits_mask(vcpu, context);
4877                 context->gva_to_gpa = paging64_gva_to_gpa;
4878         } else {
4879                 context->nx = false;
4880                 context->root_level = PT32_ROOT_LEVEL;
4881                 reset_rsvds_bits_mask(vcpu, context);
4882                 context->gva_to_gpa = paging32_gva_to_gpa;
4883         }
4884
4885         update_permission_bitmask(vcpu, context, false);
4886         update_pkru_bitmask(vcpu, context, false);
4887         update_last_nonleaf_level(vcpu, context);
4888         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4889 }
4890
4891 static union kvm_mmu_role
4892 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4893 {
4894         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4895
4896         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4897                 !is_write_protection(vcpu);
4898         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4899                 !is_write_protection(vcpu);
4900         role.base.direct = !is_paging(vcpu);
4901         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4902
4903         if (!is_long_mode(vcpu))
4904                 role.base.level = PT32E_ROOT_LEVEL;
4905         else if (is_la57_mode(vcpu))
4906                 role.base.level = PT64_ROOT_5LEVEL;
4907         else
4908                 role.base.level = PT64_ROOT_4LEVEL;
4909
4910         return role;
4911 }
4912
4913 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4914 {
4915         struct kvm_mmu *context = vcpu->arch.mmu;
4916         union kvm_mmu_role new_role =
4917                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4918
4919         new_role.base.word &= mmu_base_role_mask.word;
4920         if (new_role.as_u64 == context->mmu_role.as_u64)
4921                 return;
4922
4923         if (!is_paging(vcpu))
4924                 nonpaging_init_context(vcpu, context);
4925         else if (is_long_mode(vcpu))
4926                 paging64_init_context(vcpu, context);
4927         else if (is_pae(vcpu))
4928                 paging32E_init_context(vcpu, context);
4929         else
4930                 paging32_init_context(vcpu, context);
4931
4932         context->mmu_role.as_u64 = new_role.as_u64;
4933         reset_shadow_zero_bits_mask(vcpu, context);
4934 }
4935 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4936
4937 static union kvm_mmu_role
4938 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4939                                    bool execonly)
4940 {
4941         union kvm_mmu_role role = {0};
4942
4943         /* SMM flag is inherited from root_mmu */
4944         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4945
4946         role.base.level = PT64_ROOT_4LEVEL;
4947         role.base.gpte_is_8_bytes = true;
4948         role.base.direct = false;
4949         role.base.ad_disabled = !accessed_dirty;
4950         role.base.guest_mode = true;
4951         role.base.access = ACC_ALL;
4952
4953         /*
4954          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4955          * SMAP variation to denote shadow EPT entries.
4956          */
4957         role.base.cr0_wp = true;
4958         role.base.smap_andnot_wp = true;
4959
4960         role.ext = kvm_calc_mmu_role_ext(vcpu);
4961         role.ext.execonly = execonly;
4962
4963         return role;
4964 }
4965
4966 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4967                              bool accessed_dirty, gpa_t new_eptp)
4968 {
4969         struct kvm_mmu *context = vcpu->arch.mmu;
4970         union kvm_mmu_role new_role =
4971                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4972                                                    execonly);
4973
4974         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4975
4976         new_role.base.word &= mmu_base_role_mask.word;
4977         if (new_role.as_u64 == context->mmu_role.as_u64)
4978                 return;
4979
4980         context->shadow_root_level = PT64_ROOT_4LEVEL;
4981
4982         context->nx = true;
4983         context->ept_ad = accessed_dirty;
4984         context->page_fault = ept_page_fault;
4985         context->gva_to_gpa = ept_gva_to_gpa;
4986         context->sync_page = ept_sync_page;
4987         context->invlpg = ept_invlpg;
4988         context->update_pte = ept_update_pte;
4989         context->root_level = PT64_ROOT_4LEVEL;
4990         context->direct_map = false;
4991         context->mmu_role.as_u64 = new_role.as_u64;
4992
4993         update_permission_bitmask(vcpu, context, true);
4994         update_pkru_bitmask(vcpu, context, true);
4995         update_last_nonleaf_level(vcpu, context);
4996         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4997         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4998 }
4999 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5000
5001 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5002 {
5003         struct kvm_mmu *context = vcpu->arch.mmu;
5004
5005         kvm_init_shadow_mmu(vcpu);
5006         context->set_cr3           = kvm_x86_ops->set_cr3;
5007         context->get_cr3           = get_cr3;
5008         context->get_pdptr         = kvm_pdptr_read;
5009         context->inject_page_fault = kvm_inject_page_fault;
5010 }
5011
5012 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5013 {
5014         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5015         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5016
5017         new_role.base.word &= mmu_base_role_mask.word;
5018         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5019                 return;
5020
5021         g_context->mmu_role.as_u64 = new_role.as_u64;
5022         g_context->get_cr3           = get_cr3;
5023         g_context->get_pdptr         = kvm_pdptr_read;
5024         g_context->inject_page_fault = kvm_inject_page_fault;
5025
5026         /*
5027          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5028          * L1's nested page tables (e.g. EPT12). The nested translation
5029          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5030          * L2's page tables as the first level of translation and L1's
5031          * nested page tables as the second level of translation. Basically
5032          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5033          */
5034         if (!is_paging(vcpu)) {
5035                 g_context->nx = false;
5036                 g_context->root_level = 0;
5037                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5038         } else if (is_long_mode(vcpu)) {
5039                 g_context->nx = is_nx(vcpu);
5040                 g_context->root_level = is_la57_mode(vcpu) ?
5041                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5042                 reset_rsvds_bits_mask(vcpu, g_context);
5043                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5044         } else if (is_pae(vcpu)) {
5045                 g_context->nx = is_nx(vcpu);
5046                 g_context->root_level = PT32E_ROOT_LEVEL;
5047                 reset_rsvds_bits_mask(vcpu, g_context);
5048                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5049         } else {
5050                 g_context->nx = false;
5051                 g_context->root_level = PT32_ROOT_LEVEL;
5052                 reset_rsvds_bits_mask(vcpu, g_context);
5053                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5054         }
5055
5056         update_permission_bitmask(vcpu, g_context, false);
5057         update_pkru_bitmask(vcpu, g_context, false);
5058         update_last_nonleaf_level(vcpu, g_context);
5059 }
5060
5061 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5062 {
5063         if (reset_roots) {
5064                 uint i;
5065
5066                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5067
5068                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5069                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5070         }
5071
5072         if (mmu_is_nested(vcpu))
5073                 init_kvm_nested_mmu(vcpu);
5074         else if (tdp_enabled)
5075                 init_kvm_tdp_mmu(vcpu);
5076         else
5077                 init_kvm_softmmu(vcpu);
5078 }
5079 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5080
5081 static union kvm_mmu_page_role
5082 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5083 {
5084         union kvm_mmu_role role;
5085
5086         if (tdp_enabled)
5087                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5088         else
5089                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5090
5091         return role.base;
5092 }
5093
5094 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5095 {
5096         kvm_mmu_unload(vcpu);
5097         kvm_init_mmu(vcpu, true);
5098 }
5099 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5100
5101 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5102 {
5103         int r;
5104
5105         r = mmu_topup_memory_caches(vcpu);
5106         if (r)
5107                 goto out;
5108         r = mmu_alloc_roots(vcpu);
5109         kvm_mmu_sync_roots(vcpu);
5110         if (r)
5111                 goto out;
5112         kvm_mmu_load_cr3(vcpu);
5113         kvm_x86_ops->tlb_flush(vcpu, true);
5114 out:
5115         return r;
5116 }
5117 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5118
5119 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5120 {
5121         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5122         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5123         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5124         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5125 }
5126 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5127
5128 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5129                                   struct kvm_mmu_page *sp, u64 *spte,
5130                                   const void *new)
5131 {
5132         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5133                 ++vcpu->kvm->stat.mmu_pde_zapped;
5134                 return;
5135         }
5136
5137         ++vcpu->kvm->stat.mmu_pte_updated;
5138         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5139 }
5140
5141 static bool need_remote_flush(u64 old, u64 new)
5142 {
5143         if (!is_shadow_present_pte(old))
5144                 return false;
5145         if (!is_shadow_present_pte(new))
5146                 return true;
5147         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5148                 return true;
5149         old ^= shadow_nx_mask;
5150         new ^= shadow_nx_mask;
5151         return (old & ~new & PT64_PERM_MASK) != 0;
5152 }
5153
5154 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5155                                     int *bytes)
5156 {
5157         u64 gentry = 0;
5158         int r;
5159
5160         /*
5161          * Assume that the pte write on a page table of the same type
5162          * as the current vcpu paging mode since we update the sptes only
5163          * when they have the same mode.
5164          */
5165         if (is_pae(vcpu) && *bytes == 4) {
5166                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5167                 *gpa &= ~(gpa_t)7;
5168                 *bytes = 8;
5169         }
5170
5171         if (*bytes == 4 || *bytes == 8) {
5172                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5173                 if (r)
5174                         gentry = 0;
5175         }
5176
5177         return gentry;
5178 }
5179
5180 /*
5181  * If we're seeing too many writes to a page, it may no longer be a page table,
5182  * or we may be forking, in which case it is better to unmap the page.
5183  */
5184 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5185 {
5186         /*
5187          * Skip write-flooding detected for the sp whose level is 1, because
5188          * it can become unsync, then the guest page is not write-protected.
5189          */
5190         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5191                 return false;
5192
5193         atomic_inc(&sp->write_flooding_count);
5194         return atomic_read(&sp->write_flooding_count) >= 3;
5195 }
5196
5197 /*
5198  * Misaligned accesses are too much trouble to fix up; also, they usually
5199  * indicate a page is not used as a page table.
5200  */
5201 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5202                                     int bytes)
5203 {
5204         unsigned offset, pte_size, misaligned;
5205
5206         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5207                  gpa, bytes, sp->role.word);
5208
5209         offset = offset_in_page(gpa);
5210         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5211
5212         /*
5213          * Sometimes, the OS only writes the last one bytes to update status
5214          * bits, for example, in linux, andb instruction is used in clear_bit().
5215          */
5216         if (!(offset & (pte_size - 1)) && bytes == 1)
5217                 return false;
5218
5219         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5220         misaligned |= bytes < 4;
5221
5222         return misaligned;
5223 }
5224
5225 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5226 {
5227         unsigned page_offset, quadrant;
5228         u64 *spte;
5229         int level;
5230
5231         page_offset = offset_in_page(gpa);
5232         level = sp->role.level;
5233         *nspte = 1;
5234         if (!sp->role.gpte_is_8_bytes) {
5235                 page_offset <<= 1;      /* 32->64 */
5236                 /*
5237                  * A 32-bit pde maps 4MB while the shadow pdes map
5238                  * only 2MB.  So we need to double the offset again
5239                  * and zap two pdes instead of one.
5240                  */
5241                 if (level == PT32_ROOT_LEVEL) {
5242                         page_offset &= ~7; /* kill rounding error */
5243                         page_offset <<= 1;
5244                         *nspte = 2;
5245                 }
5246                 quadrant = page_offset >> PAGE_SHIFT;
5247                 page_offset &= ~PAGE_MASK;
5248                 if (quadrant != sp->role.quadrant)
5249                         return NULL;
5250         }
5251
5252         spte = &sp->spt[page_offset / sizeof(*spte)];
5253         return spte;
5254 }
5255
5256 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5257                               const u8 *new, int bytes,
5258                               struct kvm_page_track_notifier_node *node)
5259 {
5260         gfn_t gfn = gpa >> PAGE_SHIFT;
5261         struct kvm_mmu_page *sp;
5262         LIST_HEAD(invalid_list);
5263         u64 entry, gentry, *spte;
5264         int npte;
5265         bool remote_flush, local_flush;
5266
5267         /*
5268          * If we don't have indirect shadow pages, it means no page is
5269          * write-protected, so we can exit simply.
5270          */
5271         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5272                 return;
5273
5274         remote_flush = local_flush = false;
5275
5276         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5277
5278         /*
5279          * No need to care whether allocation memory is successful
5280          * or not since pte prefetch is skiped if it does not have
5281          * enough objects in the cache.
5282          */
5283         mmu_topup_memory_caches(vcpu);
5284
5285         spin_lock(&vcpu->kvm->mmu_lock);
5286
5287         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5288
5289         ++vcpu->kvm->stat.mmu_pte_write;
5290         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5291
5292         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5293                 if (detect_write_misaligned(sp, gpa, bytes) ||
5294                       detect_write_flooding(sp)) {
5295                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5296                         ++vcpu->kvm->stat.mmu_flooded;
5297                         continue;
5298                 }
5299
5300                 spte = get_written_sptes(sp, gpa, &npte);
5301                 if (!spte)
5302                         continue;
5303
5304                 local_flush = true;
5305                 while (npte--) {
5306                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5307
5308                         entry = *spte;
5309                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5310                         if (gentry &&
5311                               !((sp->role.word ^ base_role)
5312                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5313                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5314                         if (need_remote_flush(entry, *spte))
5315                                 remote_flush = true;
5316                         ++spte;
5317                 }
5318         }
5319         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5320         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5321         spin_unlock(&vcpu->kvm->mmu_lock);
5322 }
5323
5324 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5325 {
5326         gpa_t gpa;
5327         int r;
5328
5329         if (vcpu->arch.mmu->direct_map)
5330                 return 0;
5331
5332         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5333
5334         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5335
5336         return r;
5337 }
5338 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5339
5340 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5341 {
5342         LIST_HEAD(invalid_list);
5343
5344         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5345                 return 0;
5346
5347         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5348                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5349                         break;
5350
5351                 ++vcpu->kvm->stat.mmu_recycled;
5352         }
5353         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5354
5355         if (!kvm_mmu_available_pages(vcpu->kvm))
5356                 return -ENOSPC;
5357         return 0;
5358 }
5359
5360 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5361                        void *insn, int insn_len)
5362 {
5363         int r, emulation_type = 0;
5364         enum emulation_result er;
5365         bool direct = vcpu->arch.mmu->direct_map;
5366
5367         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5368         if (vcpu->arch.mmu->direct_map) {
5369                 vcpu->arch.gpa_available = true;
5370                 vcpu->arch.gpa_val = cr2;
5371         }
5372
5373         r = RET_PF_INVALID;
5374         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5375                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5376                 if (r == RET_PF_EMULATE)
5377                         goto emulate;
5378         }
5379
5380         if (r == RET_PF_INVALID) {
5381                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5382                                                lower_32_bits(error_code),
5383                                                false);
5384                 WARN_ON(r == RET_PF_INVALID);
5385         }
5386
5387         if (r == RET_PF_RETRY)
5388                 return 1;
5389         if (r < 0)
5390                 return r;
5391
5392         /*
5393          * Before emulating the instruction, check if the error code
5394          * was due to a RO violation while translating the guest page.
5395          * This can occur when using nested virtualization with nested
5396          * paging in both guests. If true, we simply unprotect the page
5397          * and resume the guest.
5398          */
5399         if (vcpu->arch.mmu->direct_map &&
5400             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5401                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5402                 return 1;
5403         }
5404
5405         /*
5406          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5407          * optimistically try to just unprotect the page and let the processor
5408          * re-execute the instruction that caused the page fault.  Do not allow
5409          * retrying MMIO emulation, as it's not only pointless but could also
5410          * cause us to enter an infinite loop because the processor will keep
5411          * faulting on the non-existent MMIO address.  Retrying an instruction
5412          * from a nested guest is also pointless and dangerous as we are only
5413          * explicitly shadowing L1's page tables, i.e. unprotecting something
5414          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5415          */
5416         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5417                 emulation_type = EMULTYPE_ALLOW_RETRY;
5418 emulate:
5419         /*
5420          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5421          * This can happen if a guest gets a page-fault on data access but the HW
5422          * table walker is not able to read the instruction page (e.g instruction
5423          * page is not present in memory). In those cases we simply restart the
5424          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5425          */
5426         if (unlikely(insn && !insn_len)) {
5427                 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5428                         return 1;
5429         }
5430
5431         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5432
5433         switch (er) {
5434         case EMULATE_DONE:
5435                 return 1;
5436         case EMULATE_USER_EXIT:
5437                 ++vcpu->stat.mmio_exits;
5438                 /* fall through */
5439         case EMULATE_FAIL:
5440                 return 0;
5441         default:
5442                 BUG();
5443         }
5444 }
5445 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5446
5447 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5448 {
5449         struct kvm_mmu *mmu = vcpu->arch.mmu;
5450         int i;
5451
5452         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5453         if (is_noncanonical_address(gva, vcpu))
5454                 return;
5455
5456         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5457
5458         /*
5459          * INVLPG is required to invalidate any global mappings for the VA,
5460          * irrespective of PCID. Since it would take us roughly similar amount
5461          * of work to determine whether any of the prev_root mappings of the VA
5462          * is marked global, or to just sync it blindly, so we might as well
5463          * just always sync it.
5464          *
5465          * Mappings not reachable via the current cr3 or the prev_roots will be
5466          * synced when switching to that cr3, so nothing needs to be done here
5467          * for them.
5468          */
5469         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5470                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5471                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5472
5473         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5474         ++vcpu->stat.invlpg;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5477
5478 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5479 {
5480         struct kvm_mmu *mmu = vcpu->arch.mmu;
5481         bool tlb_flush = false;
5482         uint i;
5483
5484         if (pcid == kvm_get_active_pcid(vcpu)) {
5485                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5486                 tlb_flush = true;
5487         }
5488
5489         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5490                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5491                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5492                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5493                         tlb_flush = true;
5494                 }
5495         }
5496
5497         if (tlb_flush)
5498                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5499
5500         ++vcpu->stat.invlpg;
5501
5502         /*
5503          * Mappings not reachable via the current cr3 or the prev_roots will be
5504          * synced when switching to that cr3, so nothing needs to be done here
5505          * for them.
5506          */
5507 }
5508 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5509
5510 void kvm_enable_tdp(void)
5511 {
5512         tdp_enabled = true;
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5515
5516 void kvm_disable_tdp(void)
5517 {
5518         tdp_enabled = false;
5519 }
5520 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5521
5522
5523 /* The return value indicates if tlb flush on all vcpus is needed. */
5524 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5525
5526 /* The caller should hold mmu-lock before calling this function. */
5527 static __always_inline bool
5528 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5529                         slot_level_handler fn, int start_level, int end_level,
5530                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5531 {
5532         struct slot_rmap_walk_iterator iterator;
5533         bool flush = false;
5534
5535         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5536                         end_gfn, &iterator) {
5537                 if (iterator.rmap)
5538                         flush |= fn(kvm, iterator.rmap);
5539
5540                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5541                         if (flush && lock_flush_tlb) {
5542                                 kvm_flush_remote_tlbs_with_address(kvm,
5543                                                 start_gfn,
5544                                                 iterator.gfn - start_gfn + 1);
5545                                 flush = false;
5546                         }
5547                         cond_resched_lock(&kvm->mmu_lock);
5548                 }
5549         }
5550
5551         if (flush && lock_flush_tlb) {
5552                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5553                                                    end_gfn - start_gfn + 1);
5554                 flush = false;
5555         }
5556
5557         return flush;
5558 }
5559
5560 static __always_inline bool
5561 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5562                   slot_level_handler fn, int start_level, int end_level,
5563                   bool lock_flush_tlb)
5564 {
5565         return slot_handle_level_range(kvm, memslot, fn, start_level,
5566                         end_level, memslot->base_gfn,
5567                         memslot->base_gfn + memslot->npages - 1,
5568                         lock_flush_tlb);
5569 }
5570
5571 static __always_inline bool
5572 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5573                       slot_level_handler fn, bool lock_flush_tlb)
5574 {
5575         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5576                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5577 }
5578
5579 static __always_inline bool
5580 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5581                         slot_level_handler fn, bool lock_flush_tlb)
5582 {
5583         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5584                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5585 }
5586
5587 static __always_inline bool
5588 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5589                  slot_level_handler fn, bool lock_flush_tlb)
5590 {
5591         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5592                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5593 }
5594
5595 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5596 {
5597         free_page((unsigned long)vcpu->arch.mmu->pae_root);
5598         free_page((unsigned long)vcpu->arch.mmu->lm_root);
5599 }
5600
5601 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5602 {
5603         struct page *page;
5604         int i;
5605
5606         /*
5607          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5608          * while the PDP table is a per-vCPU construct that's allocated at MMU
5609          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5610          * x86_64.  Therefore we need to allocate the PDP table in the first
5611          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5612          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5613          * skip allocating the PDP table.
5614          */
5615         if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5616                 return 0;
5617
5618         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5619         if (!page)
5620                 return -ENOMEM;
5621
5622         vcpu->arch.mmu->pae_root = page_address(page);
5623         for (i = 0; i < 4; ++i)
5624                 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5625
5626         return 0;
5627 }
5628
5629 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5630 {
5631         uint i;
5632
5633         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5634         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5635
5636         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5637         vcpu->arch.root_mmu.root_cr3 = 0;
5638         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5639         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5640                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5641
5642         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5643         vcpu->arch.guest_mmu.root_cr3 = 0;
5644         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5645         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5646                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5647
5648         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5649         return alloc_mmu_pages(vcpu);
5650 }
5651
5652 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5653                         struct kvm_memory_slot *slot,
5654                         struct kvm_page_track_notifier_node *node)
5655 {
5656         struct kvm_mmu_page *sp;
5657         LIST_HEAD(invalid_list);
5658         unsigned long i;
5659         bool flush;
5660         gfn_t gfn;
5661
5662         spin_lock(&kvm->mmu_lock);
5663
5664         if (list_empty(&kvm->arch.active_mmu_pages))
5665                 goto out_unlock;
5666
5667         flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
5668
5669         for (i = 0; i < slot->npages; i++) {
5670                 gfn = slot->base_gfn + i;
5671
5672                 for_each_valid_sp(kvm, sp, gfn) {
5673                         if (sp->gfn != gfn)
5674                                 continue;
5675
5676                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5677                 }
5678                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5679                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5680                         flush = false;
5681                         cond_resched_lock(&kvm->mmu_lock);
5682                 }
5683         }
5684         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5685
5686 out_unlock:
5687         spin_unlock(&kvm->mmu_lock);
5688 }
5689
5690 void kvm_mmu_init_vm(struct kvm *kvm)
5691 {
5692         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5693
5694         node->track_write = kvm_mmu_pte_write;
5695         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5696         kvm_page_track_register_notifier(kvm, node);
5697 }
5698
5699 void kvm_mmu_uninit_vm(struct kvm *kvm)
5700 {
5701         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5702
5703         kvm_page_track_unregister_notifier(kvm, node);
5704 }
5705
5706 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5707 {
5708         struct kvm_memslots *slots;
5709         struct kvm_memory_slot *memslot;
5710         int i;
5711
5712         spin_lock(&kvm->mmu_lock);
5713         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5714                 slots = __kvm_memslots(kvm, i);
5715                 kvm_for_each_memslot(memslot, slots) {
5716                         gfn_t start, end;
5717
5718                         start = max(gfn_start, memslot->base_gfn);
5719                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5720                         if (start >= end)
5721                                 continue;
5722
5723                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5724                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5725                                                 start, end - 1, true);
5726                 }
5727         }
5728
5729         spin_unlock(&kvm->mmu_lock);
5730 }
5731
5732 static bool slot_rmap_write_protect(struct kvm *kvm,
5733                                     struct kvm_rmap_head *rmap_head)
5734 {
5735         return __rmap_write_protect(kvm, rmap_head, false);
5736 }
5737
5738 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5739                                       struct kvm_memory_slot *memslot)
5740 {
5741         bool flush;
5742
5743         spin_lock(&kvm->mmu_lock);
5744         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5745                                       false);
5746         spin_unlock(&kvm->mmu_lock);
5747
5748         /*
5749          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5750          * which do tlb flush out of mmu-lock should be serialized by
5751          * kvm->slots_lock otherwise tlb flush would be missed.
5752          */
5753         lockdep_assert_held(&kvm->slots_lock);
5754
5755         /*
5756          * We can flush all the TLBs out of the mmu lock without TLB
5757          * corruption since we just change the spte from writable to
5758          * readonly so that we only need to care the case of changing
5759          * spte from present to present (changing the spte from present
5760          * to nonpresent will flush all the TLBs immediately), in other
5761          * words, the only case we care is mmu_spte_update() where we
5762          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5763          * instead of PT_WRITABLE_MASK, that means it does not depend
5764          * on PT_WRITABLE_MASK anymore.
5765          */
5766         if (flush)
5767                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5768                         memslot->npages);
5769 }
5770
5771 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5772                                          struct kvm_rmap_head *rmap_head)
5773 {
5774         u64 *sptep;
5775         struct rmap_iterator iter;
5776         int need_tlb_flush = 0;
5777         kvm_pfn_t pfn;
5778         struct kvm_mmu_page *sp;
5779
5780 restart:
5781         for_each_rmap_spte(rmap_head, &iter, sptep) {
5782                 sp = page_header(__pa(sptep));
5783                 pfn = spte_to_pfn(*sptep);
5784
5785                 /*
5786                  * We cannot do huge page mapping for indirect shadow pages,
5787                  * which are found on the last rmap (level = 1) when not using
5788                  * tdp; such shadow pages are synced with the page table in
5789                  * the guest, and the guest page table is using 4K page size
5790                  * mapping if the indirect sp has level = 1.
5791                  */
5792                 if (sp->role.direct &&
5793                         !kvm_is_reserved_pfn(pfn) &&
5794                         PageTransCompoundMap(pfn_to_page(pfn))) {
5795                         pte_list_remove(rmap_head, sptep);
5796
5797                         if (kvm_available_flush_tlb_with_range())
5798                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5799                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5800                         else
5801                                 need_tlb_flush = 1;
5802
5803                         goto restart;
5804                 }
5805         }
5806
5807         return need_tlb_flush;
5808 }
5809
5810 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5811                                    const struct kvm_memory_slot *memslot)
5812 {
5813         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5814         spin_lock(&kvm->mmu_lock);
5815         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5816                          kvm_mmu_zap_collapsible_spte, true);
5817         spin_unlock(&kvm->mmu_lock);
5818 }
5819
5820 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5821                                    struct kvm_memory_slot *memslot)
5822 {
5823         bool flush;
5824
5825         spin_lock(&kvm->mmu_lock);
5826         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5827         spin_unlock(&kvm->mmu_lock);
5828
5829         lockdep_assert_held(&kvm->slots_lock);
5830
5831         /*
5832          * It's also safe to flush TLBs out of mmu lock here as currently this
5833          * function is only used for dirty logging, in which case flushing TLB
5834          * out of mmu lock also guarantees no dirty pages will be lost in
5835          * dirty_bitmap.
5836          */
5837         if (flush)
5838                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5839                                 memslot->npages);
5840 }
5841 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5842
5843 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5844                                         struct kvm_memory_slot *memslot)
5845 {
5846         bool flush;
5847
5848         spin_lock(&kvm->mmu_lock);
5849         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5850                                         false);
5851         spin_unlock(&kvm->mmu_lock);
5852
5853         /* see kvm_mmu_slot_remove_write_access */
5854         lockdep_assert_held(&kvm->slots_lock);
5855
5856         if (flush)
5857                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5858                                 memslot->npages);
5859 }
5860 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5861
5862 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5863                             struct kvm_memory_slot *memslot)
5864 {
5865         bool flush;
5866
5867         spin_lock(&kvm->mmu_lock);
5868         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5869         spin_unlock(&kvm->mmu_lock);
5870
5871         lockdep_assert_held(&kvm->slots_lock);
5872
5873         /* see kvm_mmu_slot_leaf_clear_dirty */
5874         if (flush)
5875                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5876                                 memslot->npages);
5877 }
5878 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5879
5880 static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5881 {
5882         struct kvm_mmu_page *sp, *node;
5883         LIST_HEAD(invalid_list);
5884         int ign;
5885
5886         spin_lock(&kvm->mmu_lock);
5887 restart:
5888         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5889                 if (mmio_only && !sp->mmio_cached)
5890                         continue;
5891                 if (sp->role.invalid && sp->root_count)
5892                         continue;
5893                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
5894                         WARN_ON_ONCE(mmio_only);
5895                         goto restart;
5896                 }
5897                 if (cond_resched_lock(&kvm->mmu_lock))
5898                         goto restart;
5899         }
5900
5901         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5902         spin_unlock(&kvm->mmu_lock);
5903 }
5904
5905 void kvm_mmu_zap_all(struct kvm *kvm)
5906 {
5907         return __kvm_mmu_zap_all(kvm, false);
5908 }
5909
5910 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5911 {
5912         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5913
5914         gen &= MMIO_SPTE_GEN_MASK;
5915
5916         /*
5917          * Generation numbers are incremented in multiples of the number of
5918          * address spaces in order to provide unique generations across all
5919          * address spaces.  Strip what is effectively the address space
5920          * modifier prior to checking for a wrap of the MMIO generation so
5921          * that a wrap in any address space is detected.
5922          */
5923         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5924
5925         /*
5926          * The very rare case: if the MMIO generation number has wrapped,
5927          * zap all shadow pages.
5928          */
5929         if (unlikely(gen == 0)) {
5930                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5931                 __kvm_mmu_zap_all(kvm, true);
5932         }
5933 }
5934
5935 static unsigned long
5936 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5937 {
5938         struct kvm *kvm;
5939         int nr_to_scan = sc->nr_to_scan;
5940         unsigned long freed = 0;
5941
5942         mutex_lock(&kvm_lock);
5943
5944         list_for_each_entry(kvm, &vm_list, vm_list) {
5945                 int idx;
5946                 LIST_HEAD(invalid_list);
5947
5948                 /*
5949                  * Never scan more than sc->nr_to_scan VM instances.
5950                  * Will not hit this condition practically since we do not try
5951                  * to shrink more than one VM and it is very unlikely to see
5952                  * !n_used_mmu_pages so many times.
5953                  */
5954                 if (!nr_to_scan--)
5955                         break;
5956                 /*
5957                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5958                  * here. We may skip a VM instance errorneosly, but we do not
5959                  * want to shrink a VM that only started to populate its MMU
5960                  * anyway.
5961                  */
5962                 if (!kvm->arch.n_used_mmu_pages)
5963                         continue;
5964
5965                 idx = srcu_read_lock(&kvm->srcu);
5966                 spin_lock(&kvm->mmu_lock);
5967
5968                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5969                         freed++;
5970                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5971
5972                 spin_unlock(&kvm->mmu_lock);
5973                 srcu_read_unlock(&kvm->srcu, idx);
5974
5975                 /*
5976                  * unfair on small ones
5977                  * per-vm shrinkers cry out
5978                  * sadness comes quickly
5979                  */
5980                 list_move_tail(&kvm->vm_list, &vm_list);
5981                 break;
5982         }
5983
5984         mutex_unlock(&kvm_lock);
5985         return freed;
5986 }
5987
5988 static unsigned long
5989 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5990 {
5991         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5992 }
5993
5994 static struct shrinker mmu_shrinker = {
5995         .count_objects = mmu_shrink_count,
5996         .scan_objects = mmu_shrink_scan,
5997         .seeks = DEFAULT_SEEKS * 10,
5998 };
5999
6000 static void mmu_destroy_caches(void)
6001 {
6002         kmem_cache_destroy(pte_list_desc_cache);
6003         kmem_cache_destroy(mmu_page_header_cache);
6004 }
6005
6006 static void kvm_set_mmio_spte_mask(void)
6007 {
6008         u64 mask;
6009
6010         /*
6011          * Set the reserved bits and the present bit of an paging-structure
6012          * entry to generate page fault with PFER.RSV = 1.
6013          */
6014
6015         /*
6016          * Mask the uppermost physical address bit, which would be reserved as
6017          * long as the supported physical address width is less than 52.
6018          */
6019         mask = 1ull << 51;
6020
6021         /* Set the present bit. */
6022         mask |= 1ull;
6023
6024         /*
6025          * If reserved bit is not supported, clear the present bit to disable
6026          * mmio page fault.
6027          */
6028         if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6029                 mask &= ~1ull;
6030
6031         kvm_mmu_set_mmio_spte_mask(mask, mask);
6032 }
6033
6034 int kvm_mmu_module_init(void)
6035 {
6036         int ret = -ENOMEM;
6037
6038         /*
6039          * MMU roles use union aliasing which is, generally speaking, an
6040          * undefined behavior. However, we supposedly know how compilers behave
6041          * and the current status quo is unlikely to change. Guardians below are
6042          * supposed to let us know if the assumption becomes false.
6043          */
6044         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6045         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6046         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6047
6048         kvm_mmu_reset_all_pte_masks();
6049
6050         kvm_set_mmio_spte_mask();
6051
6052         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6053                                             sizeof(struct pte_list_desc),
6054                                             0, SLAB_ACCOUNT, NULL);
6055         if (!pte_list_desc_cache)
6056                 goto out;
6057
6058         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6059                                                   sizeof(struct kvm_mmu_page),
6060                                                   0, SLAB_ACCOUNT, NULL);
6061         if (!mmu_page_header_cache)
6062                 goto out;
6063
6064         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6065                 goto out;
6066
6067         ret = register_shrinker(&mmu_shrinker);
6068         if (ret)
6069                 goto out;
6070
6071         return 0;
6072
6073 out:
6074         mmu_destroy_caches();
6075         return ret;
6076 }
6077
6078 /*
6079  * Calculate mmu pages needed for kvm.
6080  */
6081 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6082 {
6083         unsigned long nr_mmu_pages;
6084         unsigned long nr_pages = 0;
6085         struct kvm_memslots *slots;
6086         struct kvm_memory_slot *memslot;
6087         int i;
6088
6089         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6090                 slots = __kvm_memslots(kvm, i);
6091
6092                 kvm_for_each_memslot(memslot, slots)
6093                         nr_pages += memslot->npages;
6094         }
6095
6096         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6097         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6098
6099         return nr_mmu_pages;
6100 }
6101
6102 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6103 {
6104         kvm_mmu_unload(vcpu);
6105         free_mmu_pages(vcpu);
6106         mmu_free_memory_caches(vcpu);
6107 }
6108
6109 void kvm_mmu_module_exit(void)
6110 {
6111         mmu_destroy_caches();
6112         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6113         unregister_shrinker(&mmu_shrinker);
6114         mmu_audit_disable();
6115 }