Merge tag 'drm-misc-next-fixes-2018-04-11' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32         int feature_bit = 0;
33         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34
35         xstate_bv &= XFEATURE_MASK_EXTEND;
36         while (xstate_bv) {
37                 if (xstate_bv & 0x1) {
38                         u32 eax, ebx, ecx, edx, offset;
39                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40                         offset = compacted ? ret : ebx;
41                         ret = max(ret, offset + eax);
42                 }
43
44                 xstate_bv >>= 1;
45                 feature_bit++;
46         }
47
48         return ret;
49 }
50
51 bool kvm_mpx_supported(void)
52 {
53         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54                  && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57
58 u64 kvm_supported_xcr0(void)
59 {
60         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61
62         if (!kvm_mpx_supported())
63                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64
65         return xcr0;
66 }
67
68 #define F(x) bit(X86_FEATURE_##x)
69
70 /* For scattered features from cpufeatures.h; we currently expose none */
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
72
73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74 {
75         struct kvm_cpuid_entry2 *best;
76         struct kvm_lapic *apic = vcpu->arch.apic;
77
78         best = kvm_find_cpuid_entry(vcpu, 1, 0);
79         if (!best)
80                 return 0;
81
82         /* Update OSXSAVE bit */
83         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84                 best->ecx &= ~F(OSXSAVE);
85                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86                         best->ecx |= F(OSXSAVE);
87         }
88
89         best->edx &= ~F(APIC);
90         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91                 best->edx |= F(APIC);
92
93         if (apic) {
94                 if (best->ecx & F(TSC_DEADLINE_TIMER))
95                         apic->lapic_timer.timer_mode_mask = 3 << 17;
96                 else
97                         apic->lapic_timer.timer_mode_mask = 1 << 17;
98         }
99
100         best = kvm_find_cpuid_entry(vcpu, 7, 0);
101         if (best) {
102                 /* Update OSPKE bit */
103                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104                         best->ecx &= ~F(OSPKE);
105                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106                                 best->ecx |= F(OSPKE);
107                 }
108         }
109
110         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111         if (!best) {
112                 vcpu->arch.guest_supported_xcr0 = 0;
113                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114         } else {
115                 vcpu->arch.guest_supported_xcr0 =
116                         (best->eax | ((u64)best->edx << 32)) &
117                         kvm_supported_xcr0();
118                 vcpu->arch.guest_xstate_size = best->ebx =
119                         xstate_required_size(vcpu->arch.xcr0, false);
120         }
121
122         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125
126         /*
127          * The existing code assumes virtual address is 48-bit or 57-bit in the
128          * canonical address checks; exit if it is ever changed.
129          */
130         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131         if (best) {
132                 int vaddr_bits = (best->eax & 0xff00) >> 8;
133
134                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135                         return -EINVAL;
136         }
137
138         /* Update physical-address width */
139         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
140         kvm_mmu_reset_context(vcpu);
141
142         kvm_pmu_refresh(vcpu);
143         return 0;
144 }
145
146 static int is_efer_nx(void)
147 {
148         unsigned long long efer = 0;
149
150         rdmsrl_safe(MSR_EFER, &efer);
151         return efer & EFER_NX;
152 }
153
154 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
155 {
156         int i;
157         struct kvm_cpuid_entry2 *e, *entry;
158
159         entry = NULL;
160         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
161                 e = &vcpu->arch.cpuid_entries[i];
162                 if (e->function == 0x80000001) {
163                         entry = e;
164                         break;
165                 }
166         }
167         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
168                 entry->edx &= ~F(NX);
169                 printk(KERN_INFO "kvm: guest NX capability removed\n");
170         }
171 }
172
173 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
174 {
175         struct kvm_cpuid_entry2 *best;
176
177         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
178         if (!best || best->eax < 0x80000008)
179                 goto not_found;
180         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
181         if (best)
182                 return best->eax & 0xff;
183 not_found:
184         return 36;
185 }
186 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
187
188 /* when an old userspace process fills a new kernel module */
189 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
190                              struct kvm_cpuid *cpuid,
191                              struct kvm_cpuid_entry __user *entries)
192 {
193         int r, i;
194         struct kvm_cpuid_entry *cpuid_entries = NULL;
195
196         r = -E2BIG;
197         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
198                 goto out;
199         r = -ENOMEM;
200         if (cpuid->nent) {
201                 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
202                                         cpuid->nent);
203                 if (!cpuid_entries)
204                         goto out;
205                 r = -EFAULT;
206                 if (copy_from_user(cpuid_entries, entries,
207                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208                         goto out;
209         }
210         for (i = 0; i < cpuid->nent; i++) {
211                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216                 vcpu->arch.cpuid_entries[i].index = 0;
217                 vcpu->arch.cpuid_entries[i].flags = 0;
218                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
219                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
220                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
221         }
222         vcpu->arch.cpuid_nent = cpuid->nent;
223         cpuid_fix_nx_cap(vcpu);
224         kvm_apic_set_version(vcpu);
225         kvm_x86_ops->cpuid_update(vcpu);
226         r = kvm_update_cpuid(vcpu);
227
228 out:
229         vfree(cpuid_entries);
230         return r;
231 }
232
233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234                               struct kvm_cpuid2 *cpuid,
235                               struct kvm_cpuid_entry2 __user *entries)
236 {
237         int r;
238
239         r = -E2BIG;
240         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241                 goto out;
242         r = -EFAULT;
243         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245                 goto out;
246         vcpu->arch.cpuid_nent = cpuid->nent;
247         kvm_apic_set_version(vcpu);
248         kvm_x86_ops->cpuid_update(vcpu);
249         r = kvm_update_cpuid(vcpu);
250 out:
251         return r;
252 }
253
254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255                               struct kvm_cpuid2 *cpuid,
256                               struct kvm_cpuid_entry2 __user *entries)
257 {
258         int r;
259
260         r = -E2BIG;
261         if (cpuid->nent < vcpu->arch.cpuid_nent)
262                 goto out;
263         r = -EFAULT;
264         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266                 goto out;
267         return 0;
268
269 out:
270         cpuid->nent = vcpu->arch.cpuid_nent;
271         return r;
272 }
273
274 static void cpuid_mask(u32 *word, int wordnum)
275 {
276         *word &= boot_cpu_data.x86_capability[wordnum];
277 }
278
279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280                            u32 index)
281 {
282         entry->function = function;
283         entry->index = index;
284         cpuid_count(entry->function, entry->index,
285                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286         entry->flags = 0;
287 }
288
289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290                                    u32 func, u32 index, int *nent, int maxnent)
291 {
292         switch (func) {
293         case 0:
294                 entry->eax = 7;
295                 ++*nent;
296                 break;
297         case 1:
298                 entry->ecx = F(MOVBE);
299                 ++*nent;
300                 break;
301         case 7:
302                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303                 if (index == 0)
304                         entry->ecx = F(RDPID);
305                 ++*nent;
306         default:
307                 break;
308         }
309
310         entry->function = func;
311         entry->index = index;
312
313         return 0;
314 }
315
316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317                                  u32 index, int *nent, int maxnent)
318 {
319         int r;
320         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323                                 ? F(GBPAGES) : 0;
324         unsigned f_lm = F(LM);
325 #else
326         unsigned f_gbpages = 0;
327         unsigned f_lm = 0;
328 #endif
329         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
334
335         /* cpuid 1.edx */
336         const u32 kvm_cpuid_1_edx_x86_features =
337                 F(FPU) | F(VME) | F(DE) | F(PSE) |
338                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
339                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
340                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
341                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
342                 0 /* Reserved, DS, ACPI */ | F(MMX) |
343                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
344                 0 /* HTT, TM, Reserved, PBE */;
345         /* cpuid 0x80000001.edx */
346         const u32 kvm_cpuid_8000_0001_edx_x86_features =
347                 F(FPU) | F(VME) | F(DE) | F(PSE) |
348                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
349                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
350                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
351                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
352                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
353                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
354                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
355         /* cpuid 1.ecx */
356         const u32 kvm_cpuid_1_ecx_x86_features =
357                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
358                  * but *not* advertised to guests via CPUID ! */
359                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
360                 0 /* DS-CPL, VMX, SMX, EST */ |
361                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
362                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
363                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
364                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
365                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
366                 F(F16C) | F(RDRAND);
367         /* cpuid 0x80000001.ecx */
368         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
369                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
370                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
371                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
372                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
373                 F(TOPOEXT);
374
375         /* cpuid 0x80000008.ebx */
376         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
377                 F(IBPB) | F(IBRS);
378
379         /* cpuid 0xC0000001.edx */
380         const u32 kvm_cpuid_C000_0001_edx_x86_features =
381                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
382                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
383                 F(PMM) | F(PMM_EN);
384
385         /* cpuid 7.0.ebx */
386         const u32 kvm_cpuid_7_0_ebx_x86_features =
387                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
388                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
389                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
390                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
391                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
392
393         /* cpuid 0xD.1.eax */
394         const u32 kvm_cpuid_D_1_eax_x86_features =
395                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
396
397         /* cpuid 7.0.ecx*/
398         const u32 kvm_cpuid_7_0_ecx_x86_features =
399                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
400                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
401                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
402
403         /* cpuid 7.0.edx*/
404         const u32 kvm_cpuid_7_0_edx_x86_features =
405                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
406                 F(ARCH_CAPABILITIES);
407
408         /* all calls to cpuid_count() should be made on the same cpu */
409         get_cpu();
410
411         r = -E2BIG;
412
413         if (*nent >= maxnent)
414                 goto out;
415
416         do_cpuid_1_ent(entry, function, index);
417         ++*nent;
418
419         switch (function) {
420         case 0:
421                 entry->eax = min(entry->eax, (u32)0xd);
422                 break;
423         case 1:
424                 entry->edx &= kvm_cpuid_1_edx_x86_features;
425                 cpuid_mask(&entry->edx, CPUID_1_EDX);
426                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
427                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
428                 /* we support x2apic emulation even if host does not support
429                  * it since we emulate x2apic in software */
430                 entry->ecx |= F(X2APIC);
431                 break;
432         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
433          * may return different values. This forces us to get_cpu() before
434          * issuing the first command, and also to emulate this annoying behavior
435          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
436         case 2: {
437                 int t, times = entry->eax & 0xff;
438
439                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
440                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
441                 for (t = 1; t < times; ++t) {
442                         if (*nent >= maxnent)
443                                 goto out;
444
445                         do_cpuid_1_ent(&entry[t], function, 0);
446                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
447                         ++*nent;
448                 }
449                 break;
450         }
451         /* function 4 has additional index. */
452         case 4: {
453                 int i, cache_type;
454
455                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
456                 /* read more entries until cache_type is zero */
457                 for (i = 1; ; ++i) {
458                         if (*nent >= maxnent)
459                                 goto out;
460
461                         cache_type = entry[i - 1].eax & 0x1f;
462                         if (!cache_type)
463                                 break;
464                         do_cpuid_1_ent(&entry[i], function, i);
465                         entry[i].flags |=
466                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
467                         ++*nent;
468                 }
469                 break;
470         }
471         case 6: /* Thermal management */
472                 entry->eax = 0x4; /* allow ARAT */
473                 entry->ebx = 0;
474                 entry->ecx = 0;
475                 entry->edx = 0;
476                 break;
477         case 7: {
478                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
479                 /* Mask ebx against host capability word 9 */
480                 if (index == 0) {
481                         entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
482                         cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
483                         // TSC_ADJUST is emulated
484                         entry->ebx |= F(TSC_ADJUST);
485                         entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
486                         cpuid_mask(&entry->ecx, CPUID_7_ECX);
487                         entry->ecx |= f_umip;
488                         /* PKU is not yet implemented for shadow paging. */
489                         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
490                                 entry->ecx &= ~F(PKU);
491                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
492                         cpuid_mask(&entry->edx, CPUID_7_EDX);
493                 } else {
494                         entry->ebx = 0;
495                         entry->ecx = 0;
496                         entry->edx = 0;
497                 }
498                 entry->eax = 0;
499                 break;
500         }
501         case 9:
502                 break;
503         case 0xa: { /* Architectural Performance Monitoring */
504                 struct x86_pmu_capability cap;
505                 union cpuid10_eax eax;
506                 union cpuid10_edx edx;
507
508                 perf_get_x86_pmu_capability(&cap);
509
510                 /*
511                  * Only support guest architectural pmu on a host
512                  * with architectural pmu.
513                  */
514                 if (!cap.version)
515                         memset(&cap, 0, sizeof(cap));
516
517                 eax.split.version_id = min(cap.version, 2);
518                 eax.split.num_counters = cap.num_counters_gp;
519                 eax.split.bit_width = cap.bit_width_gp;
520                 eax.split.mask_length = cap.events_mask_len;
521
522                 edx.split.num_counters_fixed = cap.num_counters_fixed;
523                 edx.split.bit_width_fixed = cap.bit_width_fixed;
524                 edx.split.reserved = 0;
525
526                 entry->eax = eax.full;
527                 entry->ebx = cap.events_mask;
528                 entry->ecx = 0;
529                 entry->edx = edx.full;
530                 break;
531         }
532         /* function 0xb has additional index. */
533         case 0xb: {
534                 int i, level_type;
535
536                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
537                 /* read more entries until level_type is zero */
538                 for (i = 1; ; ++i) {
539                         if (*nent >= maxnent)
540                                 goto out;
541
542                         level_type = entry[i - 1].ecx & 0xff00;
543                         if (!level_type)
544                                 break;
545                         do_cpuid_1_ent(&entry[i], function, i);
546                         entry[i].flags |=
547                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
548                         ++*nent;
549                 }
550                 break;
551         }
552         case 0xd: {
553                 int idx, i;
554                 u64 supported = kvm_supported_xcr0();
555
556                 entry->eax &= supported;
557                 entry->ebx = xstate_required_size(supported, false);
558                 entry->ecx = entry->ebx;
559                 entry->edx &= supported >> 32;
560                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
561                 if (!supported)
562                         break;
563
564                 for (idx = 1, i = 1; idx < 64; ++idx) {
565                         u64 mask = ((u64)1 << idx);
566                         if (*nent >= maxnent)
567                                 goto out;
568
569                         do_cpuid_1_ent(&entry[i], function, idx);
570                         if (idx == 1) {
571                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
572                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
573                                 entry[i].ebx = 0;
574                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
575                                         entry[i].ebx =
576                                                 xstate_required_size(supported,
577                                                                      true);
578                         } else {
579                                 if (entry[i].eax == 0 || !(supported & mask))
580                                         continue;
581                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
582                                         continue;
583                         }
584                         entry[i].ecx = 0;
585                         entry[i].edx = 0;
586                         entry[i].flags |=
587                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
588                         ++*nent;
589                         ++i;
590                 }
591                 break;
592         }
593         case KVM_CPUID_SIGNATURE: {
594                 static const char signature[12] = "KVMKVMKVM\0\0";
595                 const u32 *sigptr = (const u32 *)signature;
596                 entry->eax = KVM_CPUID_FEATURES;
597                 entry->ebx = sigptr[0];
598                 entry->ecx = sigptr[1];
599                 entry->edx = sigptr[2];
600                 break;
601         }
602         case KVM_CPUID_FEATURES:
603                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
604                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
605                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
606                              (1 << KVM_FEATURE_ASYNC_PF) |
607                              (1 << KVM_FEATURE_PV_EOI) |
608                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
609                              (1 << KVM_FEATURE_PV_UNHALT) |
610                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
611                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT);
612
613                 if (sched_info_on())
614                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
615
616                 entry->ebx = 0;
617                 entry->ecx = 0;
618                 entry->edx = 0;
619                 break;
620         case 0x80000000:
621                 entry->eax = min(entry->eax, 0x8000001f);
622                 break;
623         case 0x80000001:
624                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
625                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
626                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
627                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
628                 break;
629         case 0x80000007: /* Advanced power management */
630                 /* invariant TSC is CPUID.80000007H:EDX[8] */
631                 entry->edx &= (1 << 8);
632                 /* mask against host */
633                 entry->edx &= boot_cpu_data.x86_power;
634                 entry->eax = entry->ebx = entry->ecx = 0;
635                 break;
636         case 0x80000008: {
637                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
638                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
639                 unsigned phys_as = entry->eax & 0xff;
640
641                 if (!g_phys_as)
642                         g_phys_as = phys_as;
643                 entry->eax = g_phys_as | (virt_as << 8);
644                 entry->edx = 0;
645                 /* IBRS and IBPB aren't necessarily present in hardware cpuid */
646                 if (boot_cpu_has(X86_FEATURE_IBPB))
647                         entry->ebx |= F(IBPB);
648                 if (boot_cpu_has(X86_FEATURE_IBRS))
649                         entry->ebx |= F(IBRS);
650                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
651                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
652                 break;
653         }
654         case 0x80000019:
655                 entry->ecx = entry->edx = 0;
656                 break;
657         case 0x8000001a:
658                 break;
659         case 0x8000001d:
660                 break;
661         /*Add support for Centaur's CPUID instruction*/
662         case 0xC0000000:
663                 /*Just support up to 0xC0000004 now*/
664                 entry->eax = min(entry->eax, 0xC0000004);
665                 break;
666         case 0xC0000001:
667                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
668                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
669                 break;
670         case 3: /* Processor serial number */
671         case 5: /* MONITOR/MWAIT */
672         case 0xC0000002:
673         case 0xC0000003:
674         case 0xC0000004:
675         default:
676                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
677                 break;
678         }
679
680         kvm_x86_ops->set_supported_cpuid(function, entry);
681
682         r = 0;
683
684 out:
685         put_cpu();
686
687         return r;
688 }
689
690 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
691                         u32 idx, int *nent, int maxnent, unsigned int type)
692 {
693         if (type == KVM_GET_EMULATED_CPUID)
694                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
695
696         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
697 }
698
699 #undef F
700
701 struct kvm_cpuid_param {
702         u32 func;
703         u32 idx;
704         bool has_leaf_count;
705         bool (*qualifier)(const struct kvm_cpuid_param *param);
706 };
707
708 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
709 {
710         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
711 }
712
713 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
714                                  __u32 num_entries, unsigned int ioctl_type)
715 {
716         int i;
717         __u32 pad[3];
718
719         if (ioctl_type != KVM_GET_EMULATED_CPUID)
720                 return false;
721
722         /*
723          * We want to make sure that ->padding is being passed clean from
724          * userspace in case we want to use it for something in the future.
725          *
726          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
727          * have to give ourselves satisfied only with the emulated side. /me
728          * sheds a tear.
729          */
730         for (i = 0; i < num_entries; i++) {
731                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
732                         return true;
733
734                 if (pad[0] || pad[1] || pad[2])
735                         return true;
736         }
737         return false;
738 }
739
740 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
741                             struct kvm_cpuid_entry2 __user *entries,
742                             unsigned int type)
743 {
744         struct kvm_cpuid_entry2 *cpuid_entries;
745         int limit, nent = 0, r = -E2BIG, i;
746         u32 func;
747         static const struct kvm_cpuid_param param[] = {
748                 { .func = 0, .has_leaf_count = true },
749                 { .func = 0x80000000, .has_leaf_count = true },
750                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
751                 { .func = KVM_CPUID_SIGNATURE },
752                 { .func = KVM_CPUID_FEATURES },
753         };
754
755         if (cpuid->nent < 1)
756                 goto out;
757         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
758                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
759
760         if (sanity_check_entries(entries, cpuid->nent, type))
761                 return -EINVAL;
762
763         r = -ENOMEM;
764         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
765         if (!cpuid_entries)
766                 goto out;
767
768         r = 0;
769         for (i = 0; i < ARRAY_SIZE(param); i++) {
770                 const struct kvm_cpuid_param *ent = &param[i];
771
772                 if (ent->qualifier && !ent->qualifier(ent))
773                         continue;
774
775                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
776                                 &nent, cpuid->nent, type);
777
778                 if (r)
779                         goto out_free;
780
781                 if (!ent->has_leaf_count)
782                         continue;
783
784                 limit = cpuid_entries[nent - 1].eax;
785                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
786                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
787                                      &nent, cpuid->nent, type);
788
789                 if (r)
790                         goto out_free;
791         }
792
793         r = -EFAULT;
794         if (copy_to_user(entries, cpuid_entries,
795                          nent * sizeof(struct kvm_cpuid_entry2)))
796                 goto out_free;
797         cpuid->nent = nent;
798         r = 0;
799
800 out_free:
801         vfree(cpuid_entries);
802 out:
803         return r;
804 }
805
806 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
807 {
808         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
809         struct kvm_cpuid_entry2 *ej;
810         int j = i;
811         int nent = vcpu->arch.cpuid_nent;
812
813         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
814         /* when no next entry is found, the current entry[i] is reselected */
815         do {
816                 j = (j + 1) % nent;
817                 ej = &vcpu->arch.cpuid_entries[j];
818         } while (ej->function != e->function);
819
820         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
821
822         return j;
823 }
824
825 /* find an entry with matching function, matching index (if needed), and that
826  * should be read next (if it's stateful) */
827 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
828         u32 function, u32 index)
829 {
830         if (e->function != function)
831                 return 0;
832         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
833                 return 0;
834         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
835             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
836                 return 0;
837         return 1;
838 }
839
840 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
841                                               u32 function, u32 index)
842 {
843         int i;
844         struct kvm_cpuid_entry2 *best = NULL;
845
846         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
847                 struct kvm_cpuid_entry2 *e;
848
849                 e = &vcpu->arch.cpuid_entries[i];
850                 if (is_matching_cpuid_entry(e, function, index)) {
851                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
852                                 move_to_next_stateful_cpuid_entry(vcpu, i);
853                         best = e;
854                         break;
855                 }
856         }
857         return best;
858 }
859 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
860
861 /*
862  * If no match is found, check whether we exceed the vCPU's limit
863  * and return the content of the highest valid _standard_ leaf instead.
864  * This is to satisfy the CPUID specification.
865  */
866 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
867                                                   u32 function, u32 index)
868 {
869         struct kvm_cpuid_entry2 *maxlevel;
870
871         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
872         if (!maxlevel || maxlevel->eax >= function)
873                 return NULL;
874         if (function & 0x80000000) {
875                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
876                 if (!maxlevel)
877                         return NULL;
878         }
879         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
880 }
881
882 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
883                u32 *ecx, u32 *edx, bool check_limit)
884 {
885         u32 function = *eax, index = *ecx;
886         struct kvm_cpuid_entry2 *best;
887         bool entry_found = true;
888
889         best = kvm_find_cpuid_entry(vcpu, function, index);
890
891         if (!best) {
892                 entry_found = false;
893                 if (!check_limit)
894                         goto out;
895
896                 best = check_cpuid_limit(vcpu, function, index);
897         }
898
899 out:
900         if (best) {
901                 *eax = best->eax;
902                 *ebx = best->ebx;
903                 *ecx = best->ecx;
904                 *edx = best->edx;
905         } else
906                 *eax = *ebx = *ecx = *edx = 0;
907         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
908         return entry_found;
909 }
910 EXPORT_SYMBOL_GPL(kvm_cpuid);
911
912 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
913 {
914         u32 eax, ebx, ecx, edx;
915
916         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
917                 return 1;
918
919         eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
920         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
921         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
922         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
923         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
924         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
925         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
926         return kvm_skip_emulated_instruction(vcpu);
927 }
928 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);