Merge branches 'acpi-tables', 'acpi-osl', 'acpi-misc' and 'acpi-tools'
[sfrench/cifs-2.6.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19
20 #include <asm/init.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/io_apic.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27 #include <asm/setup.h>
28 #include <asm/set_memory.h>
29
30 #ifdef CONFIG_KEXEC_FILE
31 const struct kexec_file_ops * const kexec_file_loaders[] = {
32                 &kexec_bzImage64_ops,
33                 NULL
34 };
35 #endif
36
37 static void free_transition_pgtable(struct kimage *image)
38 {
39         free_page((unsigned long)image->arch.p4d);
40         image->arch.p4d = NULL;
41         free_page((unsigned long)image->arch.pud);
42         image->arch.pud = NULL;
43         free_page((unsigned long)image->arch.pmd);
44         image->arch.pmd = NULL;
45         free_page((unsigned long)image->arch.pte);
46         image->arch.pte = NULL;
47 }
48
49 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
50 {
51         p4d_t *p4d;
52         pud_t *pud;
53         pmd_t *pmd;
54         pte_t *pte;
55         unsigned long vaddr, paddr;
56         int result = -ENOMEM;
57
58         vaddr = (unsigned long)relocate_kernel;
59         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
60         pgd += pgd_index(vaddr);
61         if (!pgd_present(*pgd)) {
62                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
63                 if (!p4d)
64                         goto err;
65                 image->arch.p4d = p4d;
66                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
67         }
68         p4d = p4d_offset(pgd, vaddr);
69         if (!p4d_present(*p4d)) {
70                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
71                 if (!pud)
72                         goto err;
73                 image->arch.pud = pud;
74                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
75         }
76         pud = pud_offset(p4d, vaddr);
77         if (!pud_present(*pud)) {
78                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
79                 if (!pmd)
80                         goto err;
81                 image->arch.pmd = pmd;
82                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
83         }
84         pmd = pmd_offset(pud, vaddr);
85         if (!pmd_present(*pmd)) {
86                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
87                 if (!pte)
88                         goto err;
89                 image->arch.pte = pte;
90                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
91         }
92         pte = pte_offset_kernel(pmd, vaddr);
93         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
94         return 0;
95 err:
96         return result;
97 }
98
99 static void *alloc_pgt_page(void *data)
100 {
101         struct kimage *image = (struct kimage *)data;
102         struct page *page;
103         void *p = NULL;
104
105         page = kimage_alloc_control_pages(image, 0);
106         if (page) {
107                 p = page_address(page);
108                 clear_page(p);
109         }
110
111         return p;
112 }
113
114 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
115 {
116         struct x86_mapping_info info = {
117                 .alloc_pgt_page = alloc_pgt_page,
118                 .context        = image,
119                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
120                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
121         };
122         unsigned long mstart, mend;
123         pgd_t *level4p;
124         int result;
125         int i;
126
127         level4p = (pgd_t *)__va(start_pgtable);
128         clear_page(level4p);
129
130         if (direct_gbpages)
131                 info.direct_gbpages = true;
132
133         for (i = 0; i < nr_pfn_mapped; i++) {
134                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
135                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
136
137                 result = kernel_ident_mapping_init(&info,
138                                                  level4p, mstart, mend);
139                 if (result)
140                         return result;
141         }
142
143         /*
144          * segments's mem ranges could be outside 0 ~ max_pfn,
145          * for example when jump back to original kernel from kexeced kernel.
146          * or first kernel is booted with user mem map, and second kernel
147          * could be loaded out of that range.
148          */
149         for (i = 0; i < image->nr_segments; i++) {
150                 mstart = image->segment[i].mem;
151                 mend   = mstart + image->segment[i].memsz;
152
153                 result = kernel_ident_mapping_init(&info,
154                                                  level4p, mstart, mend);
155
156                 if (result)
157                         return result;
158         }
159
160         return init_transition_pgtable(image, level4p);
161 }
162
163 static void set_idt(void *newidt, u16 limit)
164 {
165         struct desc_ptr curidt;
166
167         /* x86-64 supports unaliged loads & stores */
168         curidt.size    = limit;
169         curidt.address = (unsigned long)newidt;
170
171         __asm__ __volatile__ (
172                 "lidtq %0\n"
173                 : : "m" (curidt)
174                 );
175 };
176
177
178 static void set_gdt(void *newgdt, u16 limit)
179 {
180         struct desc_ptr curgdt;
181
182         /* x86-64 supports unaligned loads & stores */
183         curgdt.size    = limit;
184         curgdt.address = (unsigned long)newgdt;
185
186         __asm__ __volatile__ (
187                 "lgdtq %0\n"
188                 : : "m" (curgdt)
189                 );
190 };
191
192 static void load_segments(void)
193 {
194         __asm__ __volatile__ (
195                 "\tmovl %0,%%ds\n"
196                 "\tmovl %0,%%es\n"
197                 "\tmovl %0,%%ss\n"
198                 "\tmovl %0,%%fs\n"
199                 "\tmovl %0,%%gs\n"
200                 : : "a" (__KERNEL_DS) : "memory"
201                 );
202 }
203
204 #ifdef CONFIG_KEXEC_FILE
205 /* Update purgatory as needed after various image segments have been prepared */
206 static int arch_update_purgatory(struct kimage *image)
207 {
208         int ret = 0;
209
210         if (!image->file_mode)
211                 return 0;
212
213         /* Setup copying of backup region */
214         if (image->type == KEXEC_TYPE_CRASH) {
215                 ret = kexec_purgatory_get_set_symbol(image,
216                                 "purgatory_backup_dest",
217                                 &image->arch.backup_load_addr,
218                                 sizeof(image->arch.backup_load_addr), 0);
219                 if (ret)
220                         return ret;
221
222                 ret = kexec_purgatory_get_set_symbol(image,
223                                 "purgatory_backup_src",
224                                 &image->arch.backup_src_start,
225                                 sizeof(image->arch.backup_src_start), 0);
226                 if (ret)
227                         return ret;
228
229                 ret = kexec_purgatory_get_set_symbol(image,
230                                 "purgatory_backup_sz",
231                                 &image->arch.backup_src_sz,
232                                 sizeof(image->arch.backup_src_sz), 0);
233                 if (ret)
234                         return ret;
235         }
236
237         return ret;
238 }
239 #else /* !CONFIG_KEXEC_FILE */
240 static inline int arch_update_purgatory(struct kimage *image)
241 {
242         return 0;
243 }
244 #endif /* CONFIG_KEXEC_FILE */
245
246 int machine_kexec_prepare(struct kimage *image)
247 {
248         unsigned long start_pgtable;
249         int result;
250
251         /* Calculate the offsets */
252         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
253
254         /* Setup the identity mapped 64bit page table */
255         result = init_pgtable(image, start_pgtable);
256         if (result)
257                 return result;
258
259         /* update purgatory as needed */
260         result = arch_update_purgatory(image);
261         if (result)
262                 return result;
263
264         return 0;
265 }
266
267 void machine_kexec_cleanup(struct kimage *image)
268 {
269         free_transition_pgtable(image);
270 }
271
272 /*
273  * Do not allocate memory (or fail in any way) in machine_kexec().
274  * We are past the point of no return, committed to rebooting now.
275  */
276 void machine_kexec(struct kimage *image)
277 {
278         unsigned long page_list[PAGES_NR];
279         void *control_page;
280         int save_ftrace_enabled;
281
282 #ifdef CONFIG_KEXEC_JUMP
283         if (image->preserve_context)
284                 save_processor_state();
285 #endif
286
287         save_ftrace_enabled = __ftrace_enabled_save();
288
289         /* Interrupts aren't acceptable while we reboot */
290         local_irq_disable();
291         hw_breakpoint_disable();
292
293         if (image->preserve_context) {
294 #ifdef CONFIG_X86_IO_APIC
295                 /*
296                  * We need to put APICs in legacy mode so that we can
297                  * get timer interrupts in second kernel. kexec/kdump
298                  * paths already have calls to restore_boot_irq_mode()
299                  * in one form or other. kexec jump path also need one.
300                  */
301                 clear_IO_APIC();
302                 restore_boot_irq_mode();
303 #endif
304         }
305
306         control_page = page_address(image->control_code_page) + PAGE_SIZE;
307         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
308
309         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
310         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
311         page_list[PA_TABLE_PAGE] =
312           (unsigned long)__pa(page_address(image->control_code_page));
313
314         if (image->type == KEXEC_TYPE_DEFAULT)
315                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
316                                                 << PAGE_SHIFT);
317
318         /*
319          * The segment registers are funny things, they have both a
320          * visible and an invisible part.  Whenever the visible part is
321          * set to a specific selector, the invisible part is loaded
322          * with from a table in memory.  At no other time is the
323          * descriptor table in memory accessed.
324          *
325          * I take advantage of this here by force loading the
326          * segments, before I zap the gdt with an invalid value.
327          */
328         load_segments();
329         /*
330          * The gdt & idt are now invalid.
331          * If you want to load them you must set up your own idt & gdt.
332          */
333         set_gdt(phys_to_virt(0), 0);
334         set_idt(phys_to_virt(0), 0);
335
336         /* now call it */
337         image->start = relocate_kernel((unsigned long)image->head,
338                                        (unsigned long)page_list,
339                                        image->start,
340                                        image->preserve_context,
341                                        sme_active());
342
343 #ifdef CONFIG_KEXEC_JUMP
344         if (image->preserve_context)
345                 restore_processor_state();
346 #endif
347
348         __ftrace_enabled_restore(save_ftrace_enabled);
349 }
350
351 void arch_crash_save_vmcoreinfo(void)
352 {
353         u64 sme_mask = sme_me_mask;
354
355         VMCOREINFO_NUMBER(phys_base);
356         VMCOREINFO_SYMBOL(init_top_pgt);
357         vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
358                         pgtable_l5_enabled());
359
360 #ifdef CONFIG_NUMA
361         VMCOREINFO_SYMBOL(node_data);
362         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
363 #endif
364         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
365                               kaslr_offset());
366         VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
367         VMCOREINFO_NUMBER(sme_mask);
368 }
369
370 /* arch-dependent functionality related to kexec file-based syscall */
371
372 #ifdef CONFIG_KEXEC_FILE
373 void *arch_kexec_kernel_image_load(struct kimage *image)
374 {
375         vfree(image->arch.elf_headers);
376         image->arch.elf_headers = NULL;
377
378         if (!image->fops || !image->fops->load)
379                 return ERR_PTR(-ENOEXEC);
380
381         return image->fops->load(image, image->kernel_buf,
382                                  image->kernel_buf_len, image->initrd_buf,
383                                  image->initrd_buf_len, image->cmdline_buf,
384                                  image->cmdline_buf_len);
385 }
386
387 /*
388  * Apply purgatory relocations.
389  *
390  * @pi:         Purgatory to be relocated.
391  * @section:    Section relocations applying to.
392  * @relsec:     Section containing RELAs.
393  * @symtabsec:  Corresponding symtab.
394  *
395  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
396  */
397 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
398                                      Elf_Shdr *section, const Elf_Shdr *relsec,
399                                      const Elf_Shdr *symtabsec)
400 {
401         unsigned int i;
402         Elf64_Rela *rel;
403         Elf64_Sym *sym;
404         void *location;
405         unsigned long address, sec_base, value;
406         const char *strtab, *name, *shstrtab;
407         const Elf_Shdr *sechdrs;
408
409         /* String & section header string table */
410         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
411         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
412         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
413
414         rel = (void *)pi->ehdr + relsec->sh_offset;
415
416         pr_debug("Applying relocate section %s to %u\n",
417                  shstrtab + relsec->sh_name, relsec->sh_info);
418
419         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
420
421                 /*
422                  * rel[i].r_offset contains byte offset from beginning
423                  * of section to the storage unit affected.
424                  *
425                  * This is location to update. This is temporary buffer
426                  * where section is currently loaded. This will finally be
427                  * loaded to a different address later, pointed to by
428                  * ->sh_addr. kexec takes care of moving it
429                  *  (kexec_load_segment()).
430                  */
431                 location = pi->purgatory_buf;
432                 location += section->sh_offset;
433                 location += rel[i].r_offset;
434
435                 /* Final address of the location */
436                 address = section->sh_addr + rel[i].r_offset;
437
438                 /*
439                  * rel[i].r_info contains information about symbol table index
440                  * w.r.t which relocation must be made and type of relocation
441                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
442                  * these respectively.
443                  */
444                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
445                 sym += ELF64_R_SYM(rel[i].r_info);
446
447                 if (sym->st_name)
448                         name = strtab + sym->st_name;
449                 else
450                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
451
452                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
453                          name, sym->st_info, sym->st_shndx, sym->st_value,
454                          sym->st_size);
455
456                 if (sym->st_shndx == SHN_UNDEF) {
457                         pr_err("Undefined symbol: %s\n", name);
458                         return -ENOEXEC;
459                 }
460
461                 if (sym->st_shndx == SHN_COMMON) {
462                         pr_err("symbol '%s' in common section\n", name);
463                         return -ENOEXEC;
464                 }
465
466                 if (sym->st_shndx == SHN_ABS)
467                         sec_base = 0;
468                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
469                         pr_err("Invalid section %d for symbol %s\n",
470                                sym->st_shndx, name);
471                         return -ENOEXEC;
472                 } else
473                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
474
475                 value = sym->st_value;
476                 value += sec_base;
477                 value += rel[i].r_addend;
478
479                 switch (ELF64_R_TYPE(rel[i].r_info)) {
480                 case R_X86_64_NONE:
481                         break;
482                 case R_X86_64_64:
483                         *(u64 *)location = value;
484                         break;
485                 case R_X86_64_32:
486                         *(u32 *)location = value;
487                         if (value != *(u32 *)location)
488                                 goto overflow;
489                         break;
490                 case R_X86_64_32S:
491                         *(s32 *)location = value;
492                         if ((s64)value != *(s32 *)location)
493                                 goto overflow;
494                         break;
495                 case R_X86_64_PC32:
496                 case R_X86_64_PLT32:
497                         value -= (u64)address;
498                         *(u32 *)location = value;
499                         break;
500                 default:
501                         pr_err("Unknown rela relocation: %llu\n",
502                                ELF64_R_TYPE(rel[i].r_info));
503                         return -ENOEXEC;
504                 }
505         }
506         return 0;
507
508 overflow:
509         pr_err("Overflow in relocation type %d value 0x%lx\n",
510                (int)ELF64_R_TYPE(rel[i].r_info), value);
511         return -ENOEXEC;
512 }
513 #endif /* CONFIG_KEXEC_FILE */
514
515 static int
516 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
517 {
518         struct page *page;
519         unsigned int nr_pages;
520
521         /*
522          * For physical range: [start, end]. We must skip the unassigned
523          * crashk resource with zero-valued "end" member.
524          */
525         if (!end || start > end)
526                 return 0;
527
528         page = pfn_to_page(start >> PAGE_SHIFT);
529         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
530         if (protect)
531                 return set_pages_ro(page, nr_pages);
532         else
533                 return set_pages_rw(page, nr_pages);
534 }
535
536 static void kexec_mark_crashkres(bool protect)
537 {
538         unsigned long control;
539
540         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
541
542         /* Don't touch the control code page used in crash_kexec().*/
543         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
544         /* Control code page is located in the 2nd page. */
545         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
546         control += KEXEC_CONTROL_PAGE_SIZE;
547         kexec_mark_range(control, crashk_res.end, protect);
548 }
549
550 void arch_kexec_protect_crashkres(void)
551 {
552         kexec_mark_crashkres(true);
553 }
554
555 void arch_kexec_unprotect_crashkres(void)
556 {
557         kexec_mark_crashkres(false);
558 }
559
560 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
561 {
562         /*
563          * If SME is active we need to be sure that kexec pages are
564          * not encrypted because when we boot to the new kernel the
565          * pages won't be accessed encrypted (initially).
566          */
567         return set_memory_decrypted((unsigned long)vaddr, pages);
568 }
569
570 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
571 {
572         /*
573          * If SME is active we need to reset the pages back to being
574          * an encrypted mapping before freeing them.
575          */
576         set_memory_encrypted((unsigned long)vaddr, pages);
577 }