Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[sfrench/cifs-2.6.git] / arch / x86 / hyperv / hv_apic.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Hyper-V specific APIC code.
5  *
6  * Copyright (C) 2018, Microsoft, Inc.
7  *
8  * Author : K. Y. Srinivasan <kys@microsoft.com>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17  * NON INFRINGEMENT.  See the GNU General Public License for more
18  * details.
19  *
20  */
21
22 #include <linux/types.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/clockchips.h>
26 #include <linux/hyperv.h>
27 #include <linux/slab.h>
28 #include <linux/cpuhotplug.h>
29 #include <asm/hypervisor.h>
30 #include <asm/mshyperv.h>
31 #include <asm/apic.h>
32
33 #include <asm/trace/hyperv.h>
34
35 static struct apic orig_apic;
36
37 static u64 hv_apic_icr_read(void)
38 {
39         u64 reg_val;
40
41         rdmsrl(HV_X64_MSR_ICR, reg_val);
42         return reg_val;
43 }
44
45 static void hv_apic_icr_write(u32 low, u32 id)
46 {
47         u64 reg_val;
48
49         reg_val = SET_APIC_DEST_FIELD(id);
50         reg_val = reg_val << 32;
51         reg_val |= low;
52
53         wrmsrl(HV_X64_MSR_ICR, reg_val);
54 }
55
56 static u32 hv_apic_read(u32 reg)
57 {
58         u32 reg_val, hi;
59
60         switch (reg) {
61         case APIC_EOI:
62                 rdmsr(HV_X64_MSR_EOI, reg_val, hi);
63                 return reg_val;
64         case APIC_TASKPRI:
65                 rdmsr(HV_X64_MSR_TPR, reg_val, hi);
66                 return reg_val;
67
68         default:
69                 return native_apic_mem_read(reg);
70         }
71 }
72
73 static void hv_apic_write(u32 reg, u32 val)
74 {
75         switch (reg) {
76         case APIC_EOI:
77                 wrmsr(HV_X64_MSR_EOI, val, 0);
78                 break;
79         case APIC_TASKPRI:
80                 wrmsr(HV_X64_MSR_TPR, val, 0);
81                 break;
82         default:
83                 native_apic_mem_write(reg, val);
84         }
85 }
86
87 static void hv_apic_eoi_write(u32 reg, u32 val)
88 {
89         struct hv_vp_assist_page *hvp = hv_vp_assist_page[smp_processor_id()];
90
91         if (hvp && (xchg(&hvp->apic_assist, 0) & 0x1))
92                 return;
93
94         wrmsr(HV_X64_MSR_EOI, val, 0);
95 }
96
97 /*
98  * IPI implementation on Hyper-V.
99  */
100 static bool __send_ipi_mask_ex(const struct cpumask *mask, int vector)
101 {
102         struct hv_send_ipi_ex **arg;
103         struct hv_send_ipi_ex *ipi_arg;
104         unsigned long flags;
105         int nr_bank = 0;
106         int ret = 1;
107
108         if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
109                 return false;
110
111         local_irq_save(flags);
112         arg = (struct hv_send_ipi_ex **)this_cpu_ptr(hyperv_pcpu_input_arg);
113
114         ipi_arg = *arg;
115         if (unlikely(!ipi_arg))
116                 goto ipi_mask_ex_done;
117
118         ipi_arg->vector = vector;
119         ipi_arg->reserved = 0;
120         ipi_arg->vp_set.valid_bank_mask = 0;
121
122         if (!cpumask_equal(mask, cpu_present_mask)) {
123                 ipi_arg->vp_set.format = HV_GENERIC_SET_SPARSE_4K;
124                 nr_bank = cpumask_to_vpset(&(ipi_arg->vp_set), mask);
125         }
126         if (nr_bank < 0)
127                 goto ipi_mask_ex_done;
128         if (!nr_bank)
129                 ipi_arg->vp_set.format = HV_GENERIC_SET_ALL;
130
131         ret = hv_do_rep_hypercall(HVCALL_SEND_IPI_EX, 0, nr_bank,
132                               ipi_arg, NULL);
133
134 ipi_mask_ex_done:
135         local_irq_restore(flags);
136         return ((ret == 0) ? true : false);
137 }
138
139 static bool __send_ipi_mask(const struct cpumask *mask, int vector)
140 {
141         int cur_cpu, vcpu;
142         struct hv_send_ipi ipi_arg;
143         int ret = 1;
144
145         trace_hyperv_send_ipi_mask(mask, vector);
146
147         if (cpumask_empty(mask))
148                 return true;
149
150         if (!hv_hypercall_pg)
151                 return false;
152
153         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
154                 return false;
155
156         /*
157          * From the supplied CPU set we need to figure out if we can get away
158          * with cheaper HVCALL_SEND_IPI hypercall. This is possible when the
159          * highest VP number in the set is < 64. As VP numbers are usually in
160          * ascending order and match Linux CPU ids, here is an optimization:
161          * we check the VP number for the highest bit in the supplied set first
162          * so we can quickly find out if using HVCALL_SEND_IPI_EX hypercall is
163          * a must. We will also check all VP numbers when walking the supplied
164          * CPU set to remain correct in all cases.
165          */
166         if (hv_cpu_number_to_vp_number(cpumask_last(mask)) >= 64)
167                 goto do_ex_hypercall;
168
169         ipi_arg.vector = vector;
170         ipi_arg.cpu_mask = 0;
171
172         for_each_cpu(cur_cpu, mask) {
173                 vcpu = hv_cpu_number_to_vp_number(cur_cpu);
174                 if (vcpu == VP_INVAL)
175                         return false;
176
177                 /*
178                  * This particular version of the IPI hypercall can
179                  * only target upto 64 CPUs.
180                  */
181                 if (vcpu >= 64)
182                         goto do_ex_hypercall;
183
184                 __set_bit(vcpu, (unsigned long *)&ipi_arg.cpu_mask);
185         }
186
187         ret = hv_do_fast_hypercall16(HVCALL_SEND_IPI, ipi_arg.vector,
188                                      ipi_arg.cpu_mask);
189         return ((ret == 0) ? true : false);
190
191 do_ex_hypercall:
192         return __send_ipi_mask_ex(mask, vector);
193 }
194
195 static bool __send_ipi_one(int cpu, int vector)
196 {
197         int vp = hv_cpu_number_to_vp_number(cpu);
198
199         trace_hyperv_send_ipi_one(cpu, vector);
200
201         if (!hv_hypercall_pg || (vp == VP_INVAL))
202                 return false;
203
204         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
205                 return false;
206
207         if (vp >= 64)
208                 return __send_ipi_mask_ex(cpumask_of(cpu), vector);
209
210         return !hv_do_fast_hypercall16(HVCALL_SEND_IPI, vector, BIT_ULL(vp));
211 }
212
213 static void hv_send_ipi(int cpu, int vector)
214 {
215         if (!__send_ipi_one(cpu, vector))
216                 orig_apic.send_IPI(cpu, vector);
217 }
218
219 static void hv_send_ipi_mask(const struct cpumask *mask, int vector)
220 {
221         if (!__send_ipi_mask(mask, vector))
222                 orig_apic.send_IPI_mask(mask, vector);
223 }
224
225 static void hv_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
226 {
227         unsigned int this_cpu = smp_processor_id();
228         struct cpumask new_mask;
229         const struct cpumask *local_mask;
230
231         cpumask_copy(&new_mask, mask);
232         cpumask_clear_cpu(this_cpu, &new_mask);
233         local_mask = &new_mask;
234         if (!__send_ipi_mask(local_mask, vector))
235                 orig_apic.send_IPI_mask_allbutself(mask, vector);
236 }
237
238 static void hv_send_ipi_allbutself(int vector)
239 {
240         hv_send_ipi_mask_allbutself(cpu_online_mask, vector);
241 }
242
243 static void hv_send_ipi_all(int vector)
244 {
245         if (!__send_ipi_mask(cpu_online_mask, vector))
246                 orig_apic.send_IPI_all(vector);
247 }
248
249 static void hv_send_ipi_self(int vector)
250 {
251         if (!__send_ipi_one(smp_processor_id(), vector))
252                 orig_apic.send_IPI_self(vector);
253 }
254
255 void __init hv_apic_init(void)
256 {
257         if (ms_hyperv.hints & HV_X64_CLUSTER_IPI_RECOMMENDED) {
258                 pr_info("Hyper-V: Using IPI hypercalls\n");
259                 /*
260                  * Set the IPI entry points.
261                  */
262                 orig_apic = *apic;
263
264                 apic->send_IPI = hv_send_ipi;
265                 apic->send_IPI_mask = hv_send_ipi_mask;
266                 apic->send_IPI_mask_allbutself = hv_send_ipi_mask_allbutself;
267                 apic->send_IPI_allbutself = hv_send_ipi_allbutself;
268                 apic->send_IPI_all = hv_send_ipi_all;
269                 apic->send_IPI_self = hv_send_ipi_self;
270         }
271
272         if (ms_hyperv.hints & HV_X64_APIC_ACCESS_RECOMMENDED) {
273                 pr_info("Hyper-V: Using enlightened APIC (%s mode)",
274                         x2apic_enabled() ? "x2apic" : "xapic");
275                 /*
276                  * When in x2apic mode, don't use the Hyper-V specific APIC
277                  * accessors since the field layout in the ICR register is
278                  * different in x2apic mode. Furthermore, the architectural
279                  * x2apic MSRs function just as well as the Hyper-V
280                  * synthetic APIC MSRs, so there's no benefit in having
281                  * separate Hyper-V accessors for x2apic mode. The only
282                  * exception is hv_apic_eoi_write, because it benefits from
283                  * lazy EOI when available, but the same accessor works for
284                  * both xapic and x2apic because the field layout is the same.
285                  */
286                 apic_set_eoi_write(hv_apic_eoi_write);
287                 if (!x2apic_enabled()) {
288                         apic->read      = hv_apic_read;
289                         apic->write     = hv_apic_write;
290                         apic->icr_write = hv_apic_icr_write;
291                         apic->icr_read  = hv_apic_icr_read;
292                 }
293         }
294 }