Merge tag 'media/v4.18-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[sfrench/cifs-2.6.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(mem_ld_snb),
282         EVENT_PTR(mem_st_snb),
283         EVENT_PTR(td_slots_issued),
284         EVENT_PTR(td_slots_retired),
285         EVENT_PTR(td_fetch_bubbles),
286         EVENT_PTR(td_total_slots),
287         EVENT_PTR(td_total_slots_scale),
288         EVENT_PTR(td_recovery_bubbles),
289         EVENT_PTR(td_recovery_bubbles_scale),
290         NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
298         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307         /*
308          * When HT is off these events can only run on the bottom 4 counters
309          * When HT is on, they are impacted by the HT bug and require EXCL access
310          */
311         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316         EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
321         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
322         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
323         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
324         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325         /*
326          * when HT is off, these can only run on the bottom 4 counters
327          */
328         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
329         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
330         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
331         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
332         EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337         return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348
349 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
350 #define SKL_DEMAND_RFO                  BIT_ULL(1)
351 #define SKL_ANY_RESPONSE                BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
357 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
358                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT                     BIT_ULL(30)
362 #define SKL_SNOOP_NONE                  BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
364 #define SKL_SNOOP_MISS                  BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
367 #define SKL_SNOOP_HITM                  BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
369 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385                                 [PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_COUNT_HW_CACHE_OP_MAX]
387                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390         [ C(OP_READ) ] = {
391                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
392                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
393         },
394         [ C(OP_WRITE) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
396                 [ C(RESULT_MISS)   ] = 0x0,
397         },
398         [ C(OP_PREFETCH) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x0,
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402  },
403  [ C(L1I ) ] = {
404         [ C(OP_READ) ] = {
405                 [ C(RESULT_ACCESS) ] = 0x0,
406                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
407         },
408         [ C(OP_WRITE) ] = {
409                 [ C(RESULT_ACCESS) ] = -1,
410                 [ C(RESULT_MISS)   ] = -1,
411         },
412         [ C(OP_PREFETCH) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0,
414                 [ C(RESULT_MISS)   ] = 0x0,
415         },
416  },
417  [ C(LL  ) ] = {
418         [ C(OP_READ) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
420                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
421         },
422         [ C(OP_WRITE) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_PREFETCH) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x0,
428                 [ C(RESULT_MISS)   ] = 0x0,
429         },
430  },
431  [ C(DTLB) ] = {
432         [ C(OP_READ) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
434                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435         },
436         [ C(OP_WRITE) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
438                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_PREFETCH) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444  },
445  [ C(ITLB) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
448                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = -1,
452                 [ C(RESULT_MISS)   ] = -1,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458  },
459  [ C(BPU ) ] = {
460         [ C(OP_READ) ] = {
461                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
462                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
463         },
464         [ C(OP_WRITE) ] = {
465                 [ C(RESULT_ACCESS) ] = -1,
466                 [ C(RESULT_MISS)   ] = -1,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472  },
473  [ C(NODE) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
476                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_PREFETCH) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x0,
484                 [ C(RESULT_MISS)   ] = 0x0,
485         },
486  },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490                                 [PERF_COUNT_HW_CACHE_MAX]
491                                 [PERF_COUNT_HW_CACHE_OP_MAX]
492                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495         [ C(OP_READ) ] = {
496                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499                                        SKL_L3_MISS|SKL_ANY_SNOOP|
500                                        SKL_SUPPLIER_NONE,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506                                        SKL_L3_MISS|SKL_ANY_SNOOP|
507                                        SKL_SUPPLIER_NONE,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(NODE) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520         },
521         [ C(OP_WRITE) ] = {
522                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x0,
529                 [ C(RESULT_MISS)   ] = 0x0,
530         },
531  },
532 };
533
534 #define SNB_DMND_DATA_RD        (1ULL << 0)
535 #define SNB_DMND_RFO            (1ULL << 1)
536 #define SNB_DMND_IFETCH         (1ULL << 2)
537 #define SNB_DMND_WB             (1ULL << 3)
538 #define SNB_PF_DATA_RD          (1ULL << 4)
539 #define SNB_PF_RFO              (1ULL << 5)
540 #define SNB_PF_IFETCH           (1ULL << 6)
541 #define SNB_LLC_DATA_RD         (1ULL << 7)
542 #define SNB_LLC_RFO             (1ULL << 8)
543 #define SNB_LLC_IFETCH          (1ULL << 9)
544 #define SNB_BUS_LOCKS           (1ULL << 10)
545 #define SNB_STRM_ST             (1ULL << 11)
546 #define SNB_OTHER               (1ULL << 15)
547 #define SNB_RESP_ANY            (1ULL << 16)
548 #define SNB_NO_SUPP             (1ULL << 17)
549 #define SNB_LLC_HITM            (1ULL << 18)
550 #define SNB_LLC_HITE            (1ULL << 19)
551 #define SNB_LLC_HITS            (1ULL << 20)
552 #define SNB_LLC_HITF            (1ULL << 21)
553 #define SNB_LOCAL               (1ULL << 22)
554 #define SNB_REMOTE              (0xffULL << 23)
555 #define SNB_SNP_NONE            (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
557 #define SNB_SNP_MISS            (1ULL << 33)
558 #define SNB_NO_FWD              (1ULL << 34)
559 #define SNB_SNP_FWD             (1ULL << 35)
560 #define SNB_HITM                (1ULL << 36)
561 #define SNB_NON_DRAM            (1ULL << 37)
562
563 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569                                  SNB_HITM)
570
571 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS           SNB_RESP_ANY
575 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578                                 [PERF_COUNT_HW_CACHE_MAX]
579                                 [PERF_COUNT_HW_CACHE_OP_MAX]
580                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594         },
595  },
596  [ C(NODE) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608         },
609  },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_WRITE) ] = {
653                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660                 [ C(RESULT_ACCESS) ] = 0x01b7,
661                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662                 [ C(RESULT_MISS)   ] = 0x01b7,
663         },
664  },
665  [ C(DTLB) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(ITLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = -1,
686                 [ C(RESULT_MISS)   ] = -1,
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692  },
693  [ C(BPU ) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(NODE) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0x01b7,
710                 [ C(RESULT_MISS)   ] = 0x01b7,
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720  },
721
722 };
723
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732
733 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
734 #define HSW_DEMAND_RFO                  BIT_ULL(1)
735 #define HSW_ANY_RESPONSE                BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
741 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
742                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743                                          HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE                  BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
746 #define HSW_SNOOP_MISS                  BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
749 #define HSW_SNOOP_HITM                  BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
751 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
752                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
759                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL               BIT(26)
763 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
764                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765                                          HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769                                 [PERF_COUNT_HW_CACHE_MAX]
770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774         [ C(OP_READ) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
776                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
777         },
778         [ C(OP_WRITE) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
780                 [ C(RESULT_MISS)   ] = 0x0,
781         },
782         [ C(OP_PREFETCH) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x0,
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786  },
787  [ C(L1I ) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0,
790                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = -1,
794                 [ C(RESULT_MISS)   ] = -1,
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(LL  ) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
804                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x0,
812                 [ C(RESULT_MISS)   ] = 0x0,
813         },
814  },
815  [ C(DTLB) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
818                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
822                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828  },
829  [ C(ITLB) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
832                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = -1,
836                 [ C(RESULT_MISS)   ] = -1,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842  },
843  [ C(BPU ) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
846                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = -1,
850                 [ C(RESULT_MISS)   ] = -1,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856  },
857  [ C(NODE) ] = {
858         [ C(OP_READ) ] = {
859                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
860                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
861         },
862         [ C(OP_WRITE) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_PREFETCH) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x0,
868                 [ C(RESULT_MISS)   ] = 0x0,
869         },
870  },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874                                 [PERF_COUNT_HW_CACHE_MAX]
875                                 [PERF_COUNT_HW_CACHE_OP_MAX]
876                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881                                        HSW_LLC_ACCESS,
882                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883                                        HSW_L3_MISS|HSW_ANY_SNOOP,
884         },
885         [ C(OP_WRITE) ] = {
886                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887                                        HSW_LLC_ACCESS,
888                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889                                        HSW_L3_MISS|HSW_ANY_SNOOP,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = 0x0,
893                 [ C(RESULT_MISS)   ] = 0x0,
894         },
895  },
896  [ C(NODE) ] = {
897         [ C(OP_READ) ] = {
898                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899                                        HSW_L3_MISS_LOCAL_DRAM|
900                                        HSW_SNOOP_DRAM,
901                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902                                        HSW_L3_MISS_REMOTE|
903                                        HSW_SNOOP_DRAM,
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907                                        HSW_L3_MISS_LOCAL_DRAM|
908                                        HSW_SNOOP_DRAM,
909                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910                                        HSW_L3_MISS_REMOTE|
911                                        HSW_SNOOP_DRAM,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         /*
961          * Use RFO, not WRITEBACK, because a write miss would typically occur
962          * on RFO.
963          */
964         [ C(OP_WRITE) ] = {
965                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966                 [ C(RESULT_ACCESS) ] = 0x01b7,
967                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968                 [ C(RESULT_MISS)   ] = 0x01b7,
969         },
970         [ C(OP_PREFETCH) ] = {
971                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019  [ C(NODE) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032  },
1033 };
1034
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039
1040 #define NHM_DMND_DATA_RD        (1 << 0)
1041 #define NHM_DMND_RFO            (1 << 1)
1042 #define NHM_DMND_IFETCH         (1 << 2)
1043 #define NHM_DMND_WB             (1 << 3)
1044 #define NHM_PF_DATA_RD          (1 << 4)
1045 #define NHM_PF_DATA_RFO         (1 << 5)
1046 #define NHM_PF_IFETCH           (1 << 6)
1047 #define NHM_OFFCORE_OTHER       (1 << 7)
1048 #define NHM_UNCORE_HIT          (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050 #define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053 #define NHM_REMOTE_DRAM         (1 << 13)
1054 #define NHM_LOCAL_DRAM          (1 << 14)
1055 #define NHM_NON_DRAM            (1 << 15)
1056
1057 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074         [ C(OP_READ) ] = {
1075                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077         },
1078         [ C(OP_WRITE) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081         },
1082         [ C(OP_PREFETCH) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085         },
1086  },
1087  [ C(NODE) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099         },
1100  },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104                                 [PERF_COUNT_HW_CACHE_MAX]
1105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109         [ C(OP_READ) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120         },
1121  },
1122  [ C(L1I ) ] = {
1123         [ C(OP_READ) ] = {
1124                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126         },
1127         [ C(OP_WRITE) ] = {
1128                 [ C(RESULT_ACCESS) ] = -1,
1129                 [ C(RESULT_MISS)   ] = -1,
1130         },
1131         [ C(OP_PREFETCH) ] = {
1132                 [ C(RESULT_ACCESS) ] = 0x0,
1133                 [ C(RESULT_MISS)   ] = 0x0,
1134         },
1135  },
1136  [ C(LL  ) ] = {
1137         [ C(OP_READ) ] = {
1138                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                 [ C(RESULT_MISS)   ] = 0x01b7,
1142         },
1143         /*
1144          * Use RFO, not WRITEBACK, because a write miss would typically occur
1145          * on RFO.
1146          */
1147         [ C(OP_WRITE) ] = {
1148                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                 [ C(RESULT_ACCESS) ] = 0x01b7,
1150                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                 [ C(RESULT_MISS)   ] = 0x01b7,
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                 [ C(RESULT_ACCESS) ] = 0x01b7,
1156                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                 [ C(RESULT_MISS)   ] = 0x01b7,
1158         },
1159  },
1160  [ C(DTLB) ] = {
1161         [ C(OP_READ) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164         },
1165         [ C(OP_WRITE) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168         },
1169         [ C(OP_PREFETCH) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0,
1171                 [ C(RESULT_MISS)   ] = 0x0,
1172         },
1173  },
1174  [ C(ITLB) ] = {
1175         [ C(OP_READ) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178         },
1179         [ C(OP_WRITE) ] = {
1180                 [ C(RESULT_ACCESS) ] = -1,
1181                 [ C(RESULT_MISS)   ] = -1,
1182         },
1183         [ C(OP_PREFETCH) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187  },
1188  [ C(BPU ) ] = {
1189         [ C(OP_READ) ] = {
1190                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = -1,
1195                 [ C(RESULT_MISS)   ] = -1,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201  },
1202  [ C(NODE) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215  },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219                                 [PERF_COUNT_HW_CACHE_MAX]
1220                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                 [ C(RESULT_MISS)   ] = 0,
1235         },
1236  },
1237  [ C(L1I ) ] = {
1238         [ C(OP_READ) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241         },
1242         [ C(OP_WRITE) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246         [ C(OP_PREFETCH) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0,
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250  },
1251  [ C(LL  ) ] = {
1252         [ C(OP_READ) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255         },
1256         [ C(OP_WRITE) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259         },
1260         [ C(OP_PREFETCH) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0,
1262                 [ C(RESULT_MISS)   ] = 0,
1263         },
1264  },
1265  [ C(DTLB) ] = {
1266         [ C(OP_READ) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269         },
1270         [ C(OP_WRITE) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273         },
1274         [ C(OP_PREFETCH) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0,
1276                 [ C(RESULT_MISS)   ] = 0,
1277         },
1278  },
1279  [ C(ITLB) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = -1,
1286                 [ C(RESULT_MISS)   ] = -1,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292  },
1293  [ C(BPU ) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = -1,
1300                 [ C(RESULT_MISS)   ] = -1,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306  },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                 [ C(RESULT_MISS)   ] = 0,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x0,
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0,
1339                 [ C(RESULT_MISS)   ] = 0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346         },
1347         [ C(OP_WRITE) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350         },
1351         [ C(OP_PREFETCH) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0,
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355  },
1356  [ C(DTLB) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0,
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369  },
1370  [ C(ITLB) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383  },
1384  [ C(BPU ) ] = {
1385         [ C(OP_READ) ] = {
1386                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388         },
1389         [ C(OP_WRITE) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393         [ C(OP_PREFETCH) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397  },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404                "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408                "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411                "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414         EVENT_PTR(td_total_slots_slm),
1415         EVENT_PTR(td_total_slots_scale_slm),
1416         EVENT_PTR(td_fetch_bubbles_slm),
1417         EVENT_PTR(td_fetch_bubbles_scale_slm),
1418         EVENT_PTR(td_slots_issued_slm),
1419         EVENT_PTR(td_slots_retired_slm),
1420         NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428         EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE          SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1437 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440                                 [PERF_COUNT_HW_CACHE_MAX]
1441                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                 [ C(RESULT_MISS)   ] = 0,
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456         },
1457  },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461                                 [PERF_COUNT_HW_CACHE_MAX]
1462                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(L1I ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = -1,
1486                 [ C(RESULT_MISS)   ] = -1,
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(LL  ) ] = {
1494         [ C(OP_READ) ] = {
1495                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                 [ C(RESULT_ACCESS) ] = 0x01b7,
1497                 [ C(RESULT_MISS)   ] = 0,
1498         },
1499         [ C(OP_WRITE) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                 [ C(RESULT_MISS)   ] = 0x01b7,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                 [ C(RESULT_ACCESS) ] = 0x01b7,
1508                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                 [ C(RESULT_MISS)   ] = 0x01b7,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0,
1515                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567 static struct attribute *glm_events_attrs[] = {
1568         EVENT_PTR(td_total_slots_glm),
1569         EVENT_PTR(td_total_slots_scale_glm),
1570         EVENT_PTR(td_fetch_bubbles_glm),
1571         EVENT_PTR(td_recovery_bubbles_glm),
1572         EVENT_PTR(td_slots_issued_glm),
1573         EVENT_PTR(td_slots_retired_glm),
1574         NULL
1575 };
1576
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581         EVENT_EXTRA_END
1582 };
1583
1584 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1585 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1588 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595 static __initconst const u64 glm_hw_cache_event_ids
1596                                 [PERF_COUNT_HW_CACHE_MAX]
1597                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1598                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599         [C(L1D)] = {
1600                 [C(OP_READ)] = {
1601                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1602                         [C(RESULT_MISS)]        = 0x0,
1603                 },
1604                 [C(OP_WRITE)] = {
1605                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1606                         [C(RESULT_MISS)]        = 0x0,
1607                 },
1608                 [C(OP_PREFETCH)] = {
1609                         [C(RESULT_ACCESS)]      = 0x0,
1610                         [C(RESULT_MISS)]        = 0x0,
1611                 },
1612         },
1613         [C(L1I)] = {
1614                 [C(OP_READ)] = {
1615                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1616                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1617                 },
1618                 [C(OP_WRITE)] = {
1619                         [C(RESULT_ACCESS)]      = -1,
1620                         [C(RESULT_MISS)]        = -1,
1621                 },
1622                 [C(OP_PREFETCH)] = {
1623                         [C(RESULT_ACCESS)]      = 0x0,
1624                         [C(RESULT_MISS)]        = 0x0,
1625                 },
1626         },
1627         [C(LL)] = {
1628                 [C(OP_READ)] = {
1629                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1630                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1631                 },
1632                 [C(OP_WRITE)] = {
1633                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                 },
1636                 [C(OP_PREFETCH)] = {
1637                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                 },
1640         },
1641         [C(DTLB)] = {
1642                 [C(OP_READ)] = {
1643                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1644                         [C(RESULT_MISS)]        = 0x0,
1645                 },
1646                 [C(OP_WRITE)] = {
1647                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_PREFETCH)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0,
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654         },
1655         [C(ITLB)] = {
1656                 [C(OP_READ)] = {
1657                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1658                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1659                 },
1660                 [C(OP_WRITE)] = {
1661                         [C(RESULT_ACCESS)]      = -1,
1662                         [C(RESULT_MISS)]        = -1,
1663                 },
1664                 [C(OP_PREFETCH)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668         },
1669         [C(BPU)] = {
1670                 [C(OP_READ)] = {
1671                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1672                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1673                 },
1674                 [C(OP_WRITE)] = {
1675                         [C(RESULT_ACCESS)]      = -1,
1676                         [C(RESULT_MISS)]        = -1,
1677                 },
1678                 [C(OP_PREFETCH)] = {
1679                         [C(RESULT_ACCESS)]      = -1,
1680                         [C(RESULT_MISS)]        = -1,
1681                 },
1682         },
1683 };
1684
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686                                 [PERF_COUNT_HW_CACHE_MAX]
1687                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1688                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689         [C(LL)] = {
1690                 [C(OP_READ)] = {
1691                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1692                                                   GLM_LLC_ACCESS,
1693                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1694                                                   GLM_LLC_MISS,
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1698                                                   GLM_LLC_ACCESS,
1699                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1700                                                   GLM_LLC_MISS,
1701                 },
1702                 [C(OP_PREFETCH)] = {
1703                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1704                                                   GLM_LLC_ACCESS,
1705                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1706                                                   GLM_LLC_MISS,
1707                 },
1708         },
1709 };
1710
1711 static __initconst const u64 glp_hw_cache_event_ids
1712                                 [PERF_COUNT_HW_CACHE_MAX]
1713                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1714                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715         [C(L1D)] = {
1716                 [C(OP_READ)] = {
1717                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1718                         [C(RESULT_MISS)]        = 0x0,
1719                 },
1720                 [C(OP_WRITE)] = {
1721                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1722                         [C(RESULT_MISS)]        = 0x0,
1723                 },
1724                 [C(OP_PREFETCH)] = {
1725                         [C(RESULT_ACCESS)]      = 0x0,
1726                         [C(RESULT_MISS)]        = 0x0,
1727                 },
1728         },
1729         [C(L1I)] = {
1730                 [C(OP_READ)] = {
1731                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1732                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1733                 },
1734                 [C(OP_WRITE)] = {
1735                         [C(RESULT_ACCESS)]      = -1,
1736                         [C(RESULT_MISS)]        = -1,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = 0x0,
1740                         [C(RESULT_MISS)]        = 0x0,
1741                 },
1742         },
1743         [C(LL)] = {
1744                 [C(OP_READ)] = {
1745                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1746                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1747                 },
1748                 [C(OP_WRITE)] = {
1749                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1750                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1751                 },
1752                 [C(OP_PREFETCH)] = {
1753                         [C(RESULT_ACCESS)]      = 0x0,
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756         },
1757         [C(DTLB)] = {
1758                 [C(OP_READ)] = {
1759                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1760                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761                 },
1762                 [C(OP_WRITE)] = {
1763                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1764                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1765                 },
1766                 [C(OP_PREFETCH)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0,
1768                         [C(RESULT_MISS)]        = 0x0,
1769                 },
1770         },
1771         [C(ITLB)] = {
1772                 [C(OP_READ)] = {
1773                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1774                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1775                 },
1776                 [C(OP_WRITE)] = {
1777                         [C(RESULT_ACCESS)]      = -1,
1778                         [C(RESULT_MISS)]        = -1,
1779                 },
1780                 [C(OP_PREFETCH)] = {
1781                         [C(RESULT_ACCESS)]      = -1,
1782                         [C(RESULT_MISS)]        = -1,
1783                 },
1784         },
1785         [C(BPU)] = {
1786                 [C(OP_READ)] = {
1787                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1788                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1789                 },
1790                 [C(OP_WRITE)] = {
1791                         [C(RESULT_ACCESS)]      = -1,
1792                         [C(RESULT_MISS)]        = -1,
1793                 },
1794                 [C(OP_PREFETCH)] = {
1795                         [C(RESULT_ACCESS)]      = -1,
1796                         [C(RESULT_MISS)]        = -1,
1797                 },
1798         },
1799 };
1800
1801 static __initconst const u64 glp_hw_cache_extra_regs
1802                                 [PERF_COUNT_HW_CACHE_MAX]
1803                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1804                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805         [C(LL)] = {
1806                 [C(OP_READ)] = {
1807                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1808                                                   GLM_LLC_ACCESS,
1809                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1810                                                   GLM_LLC_MISS,
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1814                                                   GLM_LLC_ACCESS,
1815                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1816                                                   GLM_LLC_MISS,
1817                 },
1818                 [C(OP_PREFETCH)] = {
1819                         [C(RESULT_ACCESS)]      = 0x0,
1820                         [C(RESULT_MISS)]        = 0x0,
1821                 },
1822         },
1823 };
1824
1825 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1826 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1827 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1828 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1829 #define KNL_DDR_LOCAL           BIT_ULL(23)
1830 #define KNL_DDR_FAR             BIT_ULL(24)
1831 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1833 #define KNL_L2_READ             SLM_DMND_READ
1834 #define KNL_L2_WRITE            SLM_DMND_WRITE
1835 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1836 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1837 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1839                                                   SNB_NON_DRAM)
1840
1841 static __initconst const u64 knl_hw_cache_extra_regs
1842                                 [PERF_COUNT_HW_CACHE_MAX]
1843                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1844                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845         [C(LL)] = {
1846                 [C(OP_READ)] = {
1847                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848                         [C(RESULT_MISS)]   = 0,
1849                 },
1850                 [C(OP_WRITE)] = {
1851                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1857                 },
1858         },
1859 };
1860
1861 /*
1862  * Used from PMIs where the LBRs are already disabled.
1863  *
1864  * This function could be called consecutively. It is required to remain in
1865  * disabled state if called consecutively.
1866  *
1867  * During consecutive calls, the same disable value will be written to related
1868  * registers, so the PMU state remains unchanged.
1869  *
1870  * intel_bts events don't coexist with intel PMU's BTS events because of
1871  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1873  */
1874 static void __intel_pmu_disable_all(void)
1875 {
1876         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877
1878         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879
1880         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1881                 intel_pmu_disable_bts();
1882
1883         intel_pmu_pebs_disable_all();
1884 }
1885
1886 static void intel_pmu_disable_all(void)
1887 {
1888         __intel_pmu_disable_all();
1889         intel_pmu_lbr_disable_all();
1890 }
1891
1892 static void __intel_pmu_enable_all(int added, bool pmi)
1893 {
1894         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1895
1896         intel_pmu_pebs_enable_all();
1897         intel_pmu_lbr_enable_all(pmi);
1898         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1900
1901         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1902                 struct perf_event *event =
1903                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1904
1905                 if (WARN_ON_ONCE(!event))
1906                         return;
1907
1908                 intel_pmu_enable_bts(event->hw.config);
1909         }
1910 }
1911
1912 static void intel_pmu_enable_all(int added)
1913 {
1914         __intel_pmu_enable_all(added, false);
1915 }
1916
1917 /*
1918  * Workaround for:
1919  *   Intel Errata AAK100 (model 26)
1920  *   Intel Errata AAP53  (model 30)
1921  *   Intel Errata BD53   (model 44)
1922  *
1923  * The official story:
1924  *   These chips need to be 'reset' when adding counters by programming the
1925  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926  *   in sequence on the same PMC or on different PMCs.
1927  *
1928  * In practise it appears some of these events do in fact count, and
1929  * we need to programm all 4 events.
1930  */
1931 static void intel_pmu_nhm_workaround(void)
1932 {
1933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934         static const unsigned long nhm_magic[4] = {
1935                 0x4300B5,
1936                 0x4300D2,
1937                 0x4300B1,
1938                 0x4300B1
1939         };
1940         struct perf_event *event;
1941         int i;
1942
1943         /*
1944          * The Errata requires below steps:
1945          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947          *    the corresponding PMCx;
1948          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951          */
1952
1953         /*
1954          * The real steps we choose are a little different from above.
1955          * A) To reduce MSR operations, we don't run step 1) as they
1956          *    are already cleared before this function is called;
1957          * B) Call x86_perf_event_update to save PMCx before configuring
1958          *    PERFEVTSELx with magic number;
1959          * C) With step 5), we do clear only when the PERFEVTSELx is
1960          *    not used currently.
1961          * D) Call x86_perf_event_set_period to restore PMCx;
1962          */
1963
1964         /* We always operate 4 pairs of PERF Counters */
1965         for (i = 0; i < 4; i++) {
1966                 event = cpuc->events[i];
1967                 if (event)
1968                         x86_perf_event_update(event);
1969         }
1970
1971         for (i = 0; i < 4; i++) {
1972                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974         }
1975
1976         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1978
1979         for (i = 0; i < 4; i++) {
1980                 event = cpuc->events[i];
1981
1982                 if (event) {
1983                         x86_perf_event_set_period(event);
1984                         __x86_pmu_enable_event(&event->hw,
1985                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1986                 } else
1987                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1988         }
1989 }
1990
1991 static void intel_pmu_nhm_enable_all(int added)
1992 {
1993         if (added)
1994                 intel_pmu_nhm_workaround();
1995         intel_pmu_enable_all(added);
1996 }
1997
1998 static inline u64 intel_pmu_get_status(void)
1999 {
2000         u64 status;
2001
2002         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003
2004         return status;
2005 }
2006
2007 static inline void intel_pmu_ack_status(u64 ack)
2008 {
2009         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010 }
2011
2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2013 {
2014         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2015         u64 ctrl_val, mask;
2016
2017         mask = 0xfULL << (idx * 4);
2018
2019         rdmsrl(hwc->config_base, ctrl_val);
2020         ctrl_val &= ~mask;
2021         wrmsrl(hwc->config_base, ctrl_val);
2022 }
2023
2024 static inline bool event_is_checkpointed(struct perf_event *event)
2025 {
2026         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027 }
2028
2029 static void intel_pmu_disable_event(struct perf_event *event)
2030 {
2031         struct hw_perf_event *hwc = &event->hw;
2032         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2033
2034         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2035                 intel_pmu_disable_bts();
2036                 intel_pmu_drain_bts_buffer();
2037                 return;
2038         }
2039
2040         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2042         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2043
2044         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2045                 intel_pmu_disable_fixed(hwc);
2046                 return;
2047         }
2048
2049         x86_pmu_disable_event(event);
2050
2051         if (unlikely(event->attr.precise_ip))
2052                 intel_pmu_pebs_disable(event);
2053 }
2054
2055 static void intel_pmu_del_event(struct perf_event *event)
2056 {
2057         if (needs_branch_stack(event))
2058                 intel_pmu_lbr_del(event);
2059         if (event->attr.precise_ip)
2060                 intel_pmu_pebs_del(event);
2061 }
2062
2063 static void intel_pmu_read_event(struct perf_event *event)
2064 {
2065         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2066                 intel_pmu_auto_reload_read(event);
2067         else
2068                 x86_perf_event_update(event);
2069 }
2070
2071 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
2072 {
2073         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2074         u64 ctrl_val, bits, mask;
2075
2076         /*
2077          * Enable IRQ generation (0x8),
2078          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2079          * if requested:
2080          */
2081         bits = 0x8ULL;
2082         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2083                 bits |= 0x2;
2084         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2085                 bits |= 0x1;
2086
2087         /*
2088          * ANY bit is supported in v3 and up
2089          */
2090         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2091                 bits |= 0x4;
2092
2093         bits <<= (idx * 4);
2094         mask = 0xfULL << (idx * 4);
2095
2096         rdmsrl(hwc->config_base, ctrl_val);
2097         ctrl_val &= ~mask;
2098         ctrl_val |= bits;
2099         wrmsrl(hwc->config_base, ctrl_val);
2100 }
2101
2102 static void intel_pmu_enable_event(struct perf_event *event)
2103 {
2104         struct hw_perf_event *hwc = &event->hw;
2105         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2106
2107         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2108                 if (!__this_cpu_read(cpu_hw_events.enabled))
2109                         return;
2110
2111                 intel_pmu_enable_bts(hwc->config);
2112                 return;
2113         }
2114
2115         if (event->attr.exclude_host)
2116                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2117         if (event->attr.exclude_guest)
2118                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2119
2120         if (unlikely(event_is_checkpointed(event)))
2121                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2122
2123         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2124                 intel_pmu_enable_fixed(hwc);
2125                 return;
2126         }
2127
2128         if (unlikely(event->attr.precise_ip))
2129                 intel_pmu_pebs_enable(event);
2130
2131         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2132 }
2133
2134 static void intel_pmu_add_event(struct perf_event *event)
2135 {
2136         if (event->attr.precise_ip)
2137                 intel_pmu_pebs_add(event);
2138         if (needs_branch_stack(event))
2139                 intel_pmu_lbr_add(event);
2140 }
2141
2142 /*
2143  * Save and restart an expired event. Called by NMI contexts,
2144  * so it has to be careful about preempting normal event ops:
2145  */
2146 int intel_pmu_save_and_restart(struct perf_event *event)
2147 {
2148         x86_perf_event_update(event);
2149         /*
2150          * For a checkpointed counter always reset back to 0.  This
2151          * avoids a situation where the counter overflows, aborts the
2152          * transaction and is then set back to shortly before the
2153          * overflow, and overflows and aborts again.
2154          */
2155         if (unlikely(event_is_checkpointed(event))) {
2156                 /* No race with NMIs because the counter should not be armed */
2157                 wrmsrl(event->hw.event_base, 0);
2158                 local64_set(&event->hw.prev_count, 0);
2159         }
2160         return x86_perf_event_set_period(event);
2161 }
2162
2163 static void intel_pmu_reset(void)
2164 {
2165         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2166         unsigned long flags;
2167         int idx;
2168
2169         if (!x86_pmu.num_counters)
2170                 return;
2171
2172         local_irq_save(flags);
2173
2174         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2175
2176         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2177                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2178                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2179         }
2180         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2181                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2182
2183         if (ds)
2184                 ds->bts_index = ds->bts_buffer_base;
2185
2186         /* Ack all overflows and disable fixed counters */
2187         if (x86_pmu.version >= 2) {
2188                 intel_pmu_ack_status(intel_pmu_get_status());
2189                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2190         }
2191
2192         /* Reset LBRs and LBR freezing */
2193         if (x86_pmu.lbr_nr) {
2194                 update_debugctlmsr(get_debugctlmsr() &
2195                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2196         }
2197
2198         local_irq_restore(flags);
2199 }
2200
2201 /*
2202  * This handler is triggered by the local APIC, so the APIC IRQ handling
2203  * rules apply:
2204  */
2205 static int intel_pmu_handle_irq(struct pt_regs *regs)
2206 {
2207         struct perf_sample_data data;
2208         struct cpu_hw_events *cpuc;
2209         int bit, loops;
2210         u64 status;
2211         int handled;
2212         int pmu_enabled;
2213
2214         cpuc = this_cpu_ptr(&cpu_hw_events);
2215
2216         /*
2217          * Save the PMU state.
2218          * It needs to be restored when leaving the handler.
2219          */
2220         pmu_enabled = cpuc->enabled;
2221         /*
2222          * No known reason to not always do late ACK,
2223          * but just in case do it opt-in.
2224          */
2225         if (!x86_pmu.late_ack)
2226                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2227         intel_bts_disable_local();
2228         cpuc->enabled = 0;
2229         __intel_pmu_disable_all();
2230         handled = intel_pmu_drain_bts_buffer();
2231         handled += intel_bts_interrupt();
2232         status = intel_pmu_get_status();
2233         if (!status)
2234                 goto done;
2235
2236         loops = 0;
2237 again:
2238         intel_pmu_lbr_read();
2239         intel_pmu_ack_status(status);
2240         if (++loops > 100) {
2241                 static bool warned = false;
2242                 if (!warned) {
2243                         WARN(1, "perfevents: irq loop stuck!\n");
2244                         perf_event_print_debug();
2245                         warned = true;
2246                 }
2247                 intel_pmu_reset();
2248                 goto done;
2249         }
2250
2251         inc_irq_stat(apic_perf_irqs);
2252
2253
2254         /*
2255          * Ignore a range of extra bits in status that do not indicate
2256          * overflow by themselves.
2257          */
2258         status &= ~(GLOBAL_STATUS_COND_CHG |
2259                     GLOBAL_STATUS_ASIF |
2260                     GLOBAL_STATUS_LBRS_FROZEN);
2261         if (!status)
2262                 goto done;
2263         /*
2264          * In case multiple PEBS events are sampled at the same time,
2265          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2266          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2267          * having their bits set in the status register. This is a sign
2268          * that there was at least one PEBS record pending at the time
2269          * of the PMU interrupt. PEBS counters must only be processed
2270          * via the drain_pebs() calls and not via the regular sample
2271          * processing loop coming after that the function, otherwise
2272          * phony regular samples may be generated in the sampling buffer
2273          * not marked with the EXACT tag. Another possibility is to have
2274          * one PEBS event and at least one non-PEBS event whic hoverflows
2275          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2276          * not be set, yet the overflow status bit for the PEBS counter will
2277          * be on Skylake.
2278          *
2279          * To avoid this problem, we systematically ignore the PEBS-enabled
2280          * counters from the GLOBAL_STATUS mask and we always process PEBS
2281          * events via drain_pebs().
2282          */
2283         status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2284
2285         /*
2286          * PEBS overflow sets bit 62 in the global status register
2287          */
2288         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2289                 handled++;
2290                 x86_pmu.drain_pebs(regs);
2291                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2292         }
2293
2294         /*
2295          * Intel PT
2296          */
2297         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2298                 handled++;
2299                 intel_pt_interrupt();
2300         }
2301
2302         /*
2303          * Checkpointed counters can lead to 'spurious' PMIs because the
2304          * rollback caused by the PMI will have cleared the overflow status
2305          * bit. Therefore always force probe these counters.
2306          */
2307         status |= cpuc->intel_cp_status;
2308
2309         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2310                 struct perf_event *event = cpuc->events[bit];
2311
2312                 handled++;
2313
2314                 if (!test_bit(bit, cpuc->active_mask))
2315                         continue;
2316
2317                 if (!intel_pmu_save_and_restart(event))
2318                         continue;
2319
2320                 perf_sample_data_init(&data, 0, event->hw.last_period);
2321
2322                 if (has_branch_stack(event))
2323                         data.br_stack = &cpuc->lbr_stack;
2324
2325                 if (perf_event_overflow(event, &data, regs))
2326                         x86_pmu_stop(event, 0);
2327         }
2328
2329         /*
2330          * Repeat if there is more work to be done:
2331          */
2332         status = intel_pmu_get_status();
2333         if (status)
2334                 goto again;
2335
2336 done:
2337         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2338         cpuc->enabled = pmu_enabled;
2339         if (pmu_enabled)
2340                 __intel_pmu_enable_all(0, true);
2341         intel_bts_enable_local();
2342
2343         /*
2344          * Only unmask the NMI after the overflow counters
2345          * have been reset. This avoids spurious NMIs on
2346          * Haswell CPUs.
2347          */
2348         if (x86_pmu.late_ack)
2349                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2350         return handled;
2351 }
2352
2353 static struct event_constraint *
2354 intel_bts_constraints(struct perf_event *event)
2355 {
2356         struct hw_perf_event *hwc = &event->hw;
2357         unsigned int hw_event, bts_event;
2358
2359         if (event->attr.freq)
2360                 return NULL;
2361
2362         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2363         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2364
2365         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2366                 return &bts_constraint;
2367
2368         return NULL;
2369 }
2370
2371 static int intel_alt_er(int idx, u64 config)
2372 {
2373         int alt_idx = idx;
2374
2375         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2376                 return idx;
2377
2378         if (idx == EXTRA_REG_RSP_0)
2379                 alt_idx = EXTRA_REG_RSP_1;
2380
2381         if (idx == EXTRA_REG_RSP_1)
2382                 alt_idx = EXTRA_REG_RSP_0;
2383
2384         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2385                 return idx;
2386
2387         return alt_idx;
2388 }
2389
2390 static void intel_fixup_er(struct perf_event *event, int idx)
2391 {
2392         event->hw.extra_reg.idx = idx;
2393
2394         if (idx == EXTRA_REG_RSP_0) {
2395                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2396                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2397                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2398         } else if (idx == EXTRA_REG_RSP_1) {
2399                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2400                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2401                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2402         }
2403 }
2404
2405 /*
2406  * manage allocation of shared extra msr for certain events
2407  *
2408  * sharing can be:
2409  * per-cpu: to be shared between the various events on a single PMU
2410  * per-core: per-cpu + shared by HT threads
2411  */
2412 static struct event_constraint *
2413 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2414                                    struct perf_event *event,
2415                                    struct hw_perf_event_extra *reg)
2416 {
2417         struct event_constraint *c = &emptyconstraint;
2418         struct er_account *era;
2419         unsigned long flags;
2420         int idx = reg->idx;
2421
2422         /*
2423          * reg->alloc can be set due to existing state, so for fake cpuc we
2424          * need to ignore this, otherwise we might fail to allocate proper fake
2425          * state for this extra reg constraint. Also see the comment below.
2426          */
2427         if (reg->alloc && !cpuc->is_fake)
2428                 return NULL; /* call x86_get_event_constraint() */
2429
2430 again:
2431         era = &cpuc->shared_regs->regs[idx];
2432         /*
2433          * we use spin_lock_irqsave() to avoid lockdep issues when
2434          * passing a fake cpuc
2435          */
2436         raw_spin_lock_irqsave(&era->lock, flags);
2437
2438         if (!atomic_read(&era->ref) || era->config == reg->config) {
2439
2440                 /*
2441                  * If its a fake cpuc -- as per validate_{group,event}() we
2442                  * shouldn't touch event state and we can avoid doing so
2443                  * since both will only call get_event_constraints() once
2444                  * on each event, this avoids the need for reg->alloc.
2445                  *
2446                  * Not doing the ER fixup will only result in era->reg being
2447                  * wrong, but since we won't actually try and program hardware
2448                  * this isn't a problem either.
2449                  */
2450                 if (!cpuc->is_fake) {
2451                         if (idx != reg->idx)
2452                                 intel_fixup_er(event, idx);
2453
2454                         /*
2455                          * x86_schedule_events() can call get_event_constraints()
2456                          * multiple times on events in the case of incremental
2457                          * scheduling(). reg->alloc ensures we only do the ER
2458                          * allocation once.
2459                          */
2460                         reg->alloc = 1;
2461                 }
2462
2463                 /* lock in msr value */
2464                 era->config = reg->config;
2465                 era->reg = reg->reg;
2466
2467                 /* one more user */
2468                 atomic_inc(&era->ref);
2469
2470                 /*
2471                  * need to call x86_get_event_constraint()
2472                  * to check if associated event has constraints
2473                  */
2474                 c = NULL;
2475         } else {
2476                 idx = intel_alt_er(idx, reg->config);
2477                 if (idx != reg->idx) {
2478                         raw_spin_unlock_irqrestore(&era->lock, flags);
2479                         goto again;
2480                 }
2481         }
2482         raw_spin_unlock_irqrestore(&era->lock, flags);
2483
2484         return c;
2485 }
2486
2487 static void
2488 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2489                                    struct hw_perf_event_extra *reg)
2490 {
2491         struct er_account *era;
2492
2493         /*
2494          * Only put constraint if extra reg was actually allocated. Also takes
2495          * care of event which do not use an extra shared reg.
2496          *
2497          * Also, if this is a fake cpuc we shouldn't touch any event state
2498          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2499          * either since it'll be thrown out.
2500          */
2501         if (!reg->alloc || cpuc->is_fake)
2502                 return;
2503
2504         era = &cpuc->shared_regs->regs[reg->idx];
2505
2506         /* one fewer user */
2507         atomic_dec(&era->ref);
2508
2509         /* allocate again next time */
2510         reg->alloc = 0;
2511 }
2512
2513 static struct event_constraint *
2514 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2515                               struct perf_event *event)
2516 {
2517         struct event_constraint *c = NULL, *d;
2518         struct hw_perf_event_extra *xreg, *breg;
2519
2520         xreg = &event->hw.extra_reg;
2521         if (xreg->idx != EXTRA_REG_NONE) {
2522                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2523                 if (c == &emptyconstraint)
2524                         return c;
2525         }
2526         breg = &event->hw.branch_reg;
2527         if (breg->idx != EXTRA_REG_NONE) {
2528                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2529                 if (d == &emptyconstraint) {
2530                         __intel_shared_reg_put_constraints(cpuc, xreg);
2531                         c = d;
2532                 }
2533         }
2534         return c;
2535 }
2536
2537 struct event_constraint *
2538 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2539                           struct perf_event *event)
2540 {
2541         struct event_constraint *c;
2542
2543         if (x86_pmu.event_constraints) {
2544                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2545                         if ((event->hw.config & c->cmask) == c->code) {
2546                                 event->hw.flags |= c->flags;
2547                                 return c;
2548                         }
2549                 }
2550         }
2551
2552         return &unconstrained;
2553 }
2554
2555 static struct event_constraint *
2556 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2557                             struct perf_event *event)
2558 {
2559         struct event_constraint *c;
2560
2561         c = intel_bts_constraints(event);
2562         if (c)
2563                 return c;
2564
2565         c = intel_shared_regs_constraints(cpuc, event);
2566         if (c)
2567                 return c;
2568
2569         c = intel_pebs_constraints(event);
2570         if (c)
2571                 return c;
2572
2573         return x86_get_event_constraints(cpuc, idx, event);
2574 }
2575
2576 static void
2577 intel_start_scheduling(struct cpu_hw_events *cpuc)
2578 {
2579         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2580         struct intel_excl_states *xl;
2581         int tid = cpuc->excl_thread_id;
2582
2583         /*
2584          * nothing needed if in group validation mode
2585          */
2586         if (cpuc->is_fake || !is_ht_workaround_enabled())
2587                 return;
2588
2589         /*
2590          * no exclusion needed
2591          */
2592         if (WARN_ON_ONCE(!excl_cntrs))
2593                 return;
2594
2595         xl = &excl_cntrs->states[tid];
2596
2597         xl->sched_started = true;
2598         /*
2599          * lock shared state until we are done scheduling
2600          * in stop_event_scheduling()
2601          * makes scheduling appear as a transaction
2602          */
2603         raw_spin_lock(&excl_cntrs->lock);
2604 }
2605
2606 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2607 {
2608         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2609         struct event_constraint *c = cpuc->event_constraint[idx];
2610         struct intel_excl_states *xl;
2611         int tid = cpuc->excl_thread_id;
2612
2613         if (cpuc->is_fake || !is_ht_workaround_enabled())
2614                 return;
2615
2616         if (WARN_ON_ONCE(!excl_cntrs))
2617                 return;
2618
2619         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2620                 return;
2621
2622         xl = &excl_cntrs->states[tid];
2623
2624         lockdep_assert_held(&excl_cntrs->lock);
2625
2626         if (c->flags & PERF_X86_EVENT_EXCL)
2627                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2628         else
2629                 xl->state[cntr] = INTEL_EXCL_SHARED;
2630 }
2631
2632 static void
2633 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2634 {
2635         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2636         struct intel_excl_states *xl;
2637         int tid = cpuc->excl_thread_id;
2638
2639         /*
2640          * nothing needed if in group validation mode
2641          */
2642         if (cpuc->is_fake || !is_ht_workaround_enabled())
2643                 return;
2644         /*
2645          * no exclusion needed
2646          */
2647         if (WARN_ON_ONCE(!excl_cntrs))
2648                 return;
2649
2650         xl = &excl_cntrs->states[tid];
2651
2652         xl->sched_started = false;
2653         /*
2654          * release shared state lock (acquired in intel_start_scheduling())
2655          */
2656         raw_spin_unlock(&excl_cntrs->lock);
2657 }
2658
2659 static struct event_constraint *
2660 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2661                            int idx, struct event_constraint *c)
2662 {
2663         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2664         struct intel_excl_states *xlo;
2665         int tid = cpuc->excl_thread_id;
2666         int is_excl, i;
2667
2668         /*
2669          * validating a group does not require
2670          * enforcing cross-thread  exclusion
2671          */
2672         if (cpuc->is_fake || !is_ht_workaround_enabled())
2673                 return c;
2674
2675         /*
2676          * no exclusion needed
2677          */
2678         if (WARN_ON_ONCE(!excl_cntrs))
2679                 return c;
2680
2681         /*
2682          * because we modify the constraint, we need
2683          * to make a copy. Static constraints come
2684          * from static const tables.
2685          *
2686          * only needed when constraint has not yet
2687          * been cloned (marked dynamic)
2688          */
2689         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2690                 struct event_constraint *cx;
2691
2692                 /*
2693                  * grab pre-allocated constraint entry
2694                  */
2695                 cx = &cpuc->constraint_list[idx];
2696
2697                 /*
2698                  * initialize dynamic constraint
2699                  * with static constraint
2700                  */
2701                 *cx = *c;
2702
2703                 /*
2704                  * mark constraint as dynamic, so we
2705                  * can free it later on
2706                  */
2707                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2708                 c = cx;
2709         }
2710
2711         /*
2712          * From here on, the constraint is dynamic.
2713          * Either it was just allocated above, or it
2714          * was allocated during a earlier invocation
2715          * of this function
2716          */
2717
2718         /*
2719          * state of sibling HT
2720          */
2721         xlo = &excl_cntrs->states[tid ^ 1];
2722
2723         /*
2724          * event requires exclusive counter access
2725          * across HT threads
2726          */
2727         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2728         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2729                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2730                 if (!cpuc->n_excl++)
2731                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2732         }
2733
2734         /*
2735          * Modify static constraint with current dynamic
2736          * state of thread
2737          *
2738          * EXCLUSIVE: sibling counter measuring exclusive event
2739          * SHARED   : sibling counter measuring non-exclusive event
2740          * UNUSED   : sibling counter unused
2741          */
2742         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2743                 /*
2744                  * exclusive event in sibling counter
2745                  * our corresponding counter cannot be used
2746                  * regardless of our event
2747                  */
2748                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2749                         __clear_bit(i, c->idxmsk);
2750                 /*
2751                  * if measuring an exclusive event, sibling
2752                  * measuring non-exclusive, then counter cannot
2753                  * be used
2754                  */
2755                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2756                         __clear_bit(i, c->idxmsk);
2757         }
2758
2759         /*
2760          * recompute actual bit weight for scheduling algorithm
2761          */
2762         c->weight = hweight64(c->idxmsk64);
2763
2764         /*
2765          * if we return an empty mask, then switch
2766          * back to static empty constraint to avoid
2767          * the cost of freeing later on
2768          */
2769         if (c->weight == 0)
2770                 c = &emptyconstraint;
2771
2772         return c;
2773 }
2774
2775 static struct event_constraint *
2776 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2777                             struct perf_event *event)
2778 {
2779         struct event_constraint *c1 = NULL;
2780         struct event_constraint *c2;
2781
2782         if (idx >= 0) /* fake does < 0 */
2783                 c1 = cpuc->event_constraint[idx];
2784
2785         /*
2786          * first time only
2787          * - static constraint: no change across incremental scheduling calls
2788          * - dynamic constraint: handled by intel_get_excl_constraints()
2789          */
2790         c2 = __intel_get_event_constraints(cpuc, idx, event);
2791         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2792                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2793                 c1->weight = c2->weight;
2794                 c2 = c1;
2795         }
2796
2797         if (cpuc->excl_cntrs)
2798                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2799
2800         return c2;
2801 }
2802
2803 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2804                 struct perf_event *event)
2805 {
2806         struct hw_perf_event *hwc = &event->hw;
2807         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2808         int tid = cpuc->excl_thread_id;
2809         struct intel_excl_states *xl;
2810
2811         /*
2812          * nothing needed if in group validation mode
2813          */
2814         if (cpuc->is_fake)
2815                 return;
2816
2817         if (WARN_ON_ONCE(!excl_cntrs))
2818                 return;
2819
2820         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2821                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2822                 if (!--cpuc->n_excl)
2823                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2824         }
2825
2826         /*
2827          * If event was actually assigned, then mark the counter state as
2828          * unused now.
2829          */
2830         if (hwc->idx >= 0) {
2831                 xl = &excl_cntrs->states[tid];
2832
2833                 /*
2834                  * put_constraint may be called from x86_schedule_events()
2835                  * which already has the lock held so here make locking
2836                  * conditional.
2837                  */
2838                 if (!xl->sched_started)
2839                         raw_spin_lock(&excl_cntrs->lock);
2840
2841                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2842
2843                 if (!xl->sched_started)
2844                         raw_spin_unlock(&excl_cntrs->lock);
2845         }
2846 }
2847
2848 static void
2849 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2850                                         struct perf_event *event)
2851 {
2852         struct hw_perf_event_extra *reg;
2853
2854         reg = &event->hw.extra_reg;
2855         if (reg->idx != EXTRA_REG_NONE)
2856                 __intel_shared_reg_put_constraints(cpuc, reg);
2857
2858         reg = &event->hw.branch_reg;
2859         if (reg->idx != EXTRA_REG_NONE)
2860                 __intel_shared_reg_put_constraints(cpuc, reg);
2861 }
2862
2863 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2864                                         struct perf_event *event)
2865 {
2866         intel_put_shared_regs_event_constraints(cpuc, event);
2867
2868         /*
2869          * is PMU has exclusive counter restrictions, then
2870          * all events are subject to and must call the
2871          * put_excl_constraints() routine
2872          */
2873         if (cpuc->excl_cntrs)
2874                 intel_put_excl_constraints(cpuc, event);
2875 }
2876
2877 static void intel_pebs_aliases_core2(struct perf_event *event)
2878 {
2879         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2880                 /*
2881                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2882                  * (0x003c) so that we can use it with PEBS.
2883                  *
2884                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2885                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2886                  * (0x00c0), which is a PEBS capable event, to get the same
2887                  * count.
2888                  *
2889                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2890                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2891                  * larger than the maximum number of instructions that can be
2892                  * retired per cycle (4) and then inverting the condition, we
2893                  * count all cycles that retire 16 or less instructions, which
2894                  * is every cycle.
2895                  *
2896                  * Thereby we gain a PEBS capable cycle counter.
2897                  */
2898                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2899
2900                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2901                 event->hw.config = alt_config;
2902         }
2903 }
2904
2905 static void intel_pebs_aliases_snb(struct perf_event *event)
2906 {
2907         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2908                 /*
2909                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2910                  * (0x003c) so that we can use it with PEBS.
2911                  *
2912                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2913                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2914                  * (0x01c2), which is a PEBS capable event, to get the same
2915                  * count.
2916                  *
2917                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2918                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2919                  * larger than the maximum number of micro-ops that can be
2920                  * retired per cycle (4) and then inverting the condition, we
2921                  * count all cycles that retire 16 or less micro-ops, which
2922                  * is every cycle.
2923                  *
2924                  * Thereby we gain a PEBS capable cycle counter.
2925                  */
2926                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2927
2928                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2929                 event->hw.config = alt_config;
2930         }
2931 }
2932
2933 static void intel_pebs_aliases_precdist(struct perf_event *event)
2934 {
2935         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2936                 /*
2937                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2938                  * (0x003c) so that we can use it with PEBS.
2939                  *
2940                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2941                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2942                  * (0x01c0), which is a PEBS capable event, to get the same
2943                  * count.
2944                  *
2945                  * The PREC_DIST event has special support to minimize sample
2946                  * shadowing effects. One drawback is that it can be
2947                  * only programmed on counter 1, but that seems like an
2948                  * acceptable trade off.
2949                  */
2950                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2951
2952                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2953                 event->hw.config = alt_config;
2954         }
2955 }
2956
2957 static void intel_pebs_aliases_ivb(struct perf_event *event)
2958 {
2959         if (event->attr.precise_ip < 3)
2960                 return intel_pebs_aliases_snb(event);
2961         return intel_pebs_aliases_precdist(event);
2962 }
2963
2964 static void intel_pebs_aliases_skl(struct perf_event *event)
2965 {
2966         if (event->attr.precise_ip < 3)
2967                 return intel_pebs_aliases_core2(event);
2968         return intel_pebs_aliases_precdist(event);
2969 }
2970
2971 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
2972 {
2973         unsigned long flags = x86_pmu.large_pebs_flags;
2974
2975         if (event->attr.use_clockid)
2976                 flags &= ~PERF_SAMPLE_TIME;
2977         if (!event->attr.exclude_kernel)
2978                 flags &= ~PERF_SAMPLE_REGS_USER;
2979         if (event->attr.sample_regs_user & ~PEBS_REGS)
2980                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
2981         return flags;
2982 }
2983
2984 static int intel_pmu_hw_config(struct perf_event *event)
2985 {
2986         int ret = x86_pmu_hw_config(event);
2987
2988         if (ret)
2989                 return ret;
2990
2991         if (event->attr.precise_ip) {
2992                 if (!event->attr.freq) {
2993                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2994                         if (!(event->attr.sample_type &
2995                               ~intel_pmu_large_pebs_flags(event)))
2996                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
2997                 }
2998                 if (x86_pmu.pebs_aliases)
2999                         x86_pmu.pebs_aliases(event);
3000
3001                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3002                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3003         }
3004
3005         if (needs_branch_stack(event)) {
3006                 ret = intel_pmu_setup_lbr_filter(event);
3007                 if (ret)
3008                         return ret;
3009
3010                 /*
3011                  * BTS is set up earlier in this path, so don't account twice
3012                  */
3013                 if (!intel_pmu_has_bts(event)) {
3014                         /* disallow lbr if conflicting events are present */
3015                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3016                                 return -EBUSY;
3017
3018                         event->destroy = hw_perf_lbr_event_destroy;
3019                 }
3020         }
3021
3022         if (event->attr.type != PERF_TYPE_RAW)
3023                 return 0;
3024
3025         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3026                 return 0;
3027
3028         if (x86_pmu.version < 3)
3029                 return -EINVAL;
3030
3031         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3032                 return -EACCES;
3033
3034         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3035
3036         return 0;
3037 }
3038
3039 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3040 {
3041         if (x86_pmu.guest_get_msrs)
3042                 return x86_pmu.guest_get_msrs(nr);
3043         *nr = 0;
3044         return NULL;
3045 }
3046 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3047
3048 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3049 {
3050         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3051         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3052
3053         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3054         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3055         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3056         /*
3057          * If PMU counter has PEBS enabled it is not enough to disable counter
3058          * on a guest entry since PEBS memory write can overshoot guest entry
3059          * and corrupt guest memory. Disabling PEBS solves the problem.
3060          */
3061         arr[1].msr = MSR_IA32_PEBS_ENABLE;
3062         arr[1].host = cpuc->pebs_enabled;
3063         arr[1].guest = 0;
3064
3065         *nr = 2;
3066         return arr;
3067 }
3068
3069 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3070 {
3071         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3072         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3073         int idx;
3074
3075         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3076                 struct perf_event *event = cpuc->events[idx];
3077
3078                 arr[idx].msr = x86_pmu_config_addr(idx);
3079                 arr[idx].host = arr[idx].guest = 0;
3080
3081                 if (!test_bit(idx, cpuc->active_mask))
3082                         continue;
3083
3084                 arr[idx].host = arr[idx].guest =
3085                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3086
3087                 if (event->attr.exclude_host)
3088                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3089                 else if (event->attr.exclude_guest)
3090                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3091         }
3092
3093         *nr = x86_pmu.num_counters;
3094         return arr;
3095 }
3096
3097 static void core_pmu_enable_event(struct perf_event *event)
3098 {
3099         if (!event->attr.exclude_host)
3100                 x86_pmu_enable_event(event);
3101 }
3102
3103 static void core_pmu_enable_all(int added)
3104 {
3105         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3106         int idx;
3107
3108         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3109                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3110
3111                 if (!test_bit(idx, cpuc->active_mask) ||
3112                                 cpuc->events[idx]->attr.exclude_host)
3113                         continue;
3114
3115                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3116         }
3117 }
3118
3119 static int hsw_hw_config(struct perf_event *event)
3120 {
3121         int ret = intel_pmu_hw_config(event);
3122
3123         if (ret)
3124                 return ret;
3125         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3126                 return 0;
3127         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3128
3129         /*
3130          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3131          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3132          * this combination.
3133          */
3134         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3135              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3136               event->attr.precise_ip > 0))
3137                 return -EOPNOTSUPP;
3138
3139         if (event_is_checkpointed(event)) {
3140                 /*
3141                  * Sampling of checkpointed events can cause situations where
3142                  * the CPU constantly aborts because of a overflow, which is
3143                  * then checkpointed back and ignored. Forbid checkpointing
3144                  * for sampling.
3145                  *
3146                  * But still allow a long sampling period, so that perf stat
3147                  * from KVM works.
3148                  */
3149                 if (event->attr.sample_period > 0 &&
3150                     event->attr.sample_period < 0x7fffffff)
3151                         return -EOPNOTSUPP;
3152         }
3153         return 0;
3154 }
3155
3156 static struct event_constraint counter0_constraint =
3157                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3158
3159 static struct event_constraint counter2_constraint =
3160                         EVENT_CONSTRAINT(0, 0x4, 0);
3161
3162 static struct event_constraint *
3163 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3164                           struct perf_event *event)
3165 {
3166         struct event_constraint *c;
3167
3168         c = intel_get_event_constraints(cpuc, idx, event);
3169
3170         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3171         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3172                 if (c->idxmsk64 & (1U << 2))
3173                         return &counter2_constraint;
3174                 return &emptyconstraint;
3175         }
3176
3177         return c;
3178 }
3179
3180 static struct event_constraint *
3181 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3182                           struct perf_event *event)
3183 {
3184         struct event_constraint *c;
3185
3186         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3187         if (event->attr.precise_ip == 3)
3188                 return &counter0_constraint;
3189
3190         c = intel_get_event_constraints(cpuc, idx, event);
3191
3192         return c;
3193 }
3194
3195 /*
3196  * Broadwell:
3197  *
3198  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3199  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3200  * the two to enforce a minimum period of 128 (the smallest value that has bits
3201  * 0-5 cleared and >= 100).
3202  *
3203  * Because of how the code in x86_perf_event_set_period() works, the truncation
3204  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3205  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3206  *
3207  * Therefore the effective (average) period matches the requested period,
3208  * despite coarser hardware granularity.
3209  */
3210 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3211 {
3212         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3213                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3214                 if (left < 128)
3215                         left = 128;
3216                 left &= ~0x3fULL;
3217         }
3218         return left;
3219 }
3220
3221 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3222 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3223 PMU_FORMAT_ATTR(edge,   "config:18"     );
3224 PMU_FORMAT_ATTR(pc,     "config:19"     );
3225 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3226 PMU_FORMAT_ATTR(inv,    "config:23"     );
3227 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3228 PMU_FORMAT_ATTR(in_tx,  "config:32");
3229 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3230
3231 static struct attribute *intel_arch_formats_attr[] = {
3232         &format_attr_event.attr,
3233         &format_attr_umask.attr,
3234         &format_attr_edge.attr,
3235         &format_attr_pc.attr,
3236         &format_attr_inv.attr,
3237         &format_attr_cmask.attr,
3238         NULL,
3239 };
3240
3241 ssize_t intel_event_sysfs_show(char *page, u64 config)
3242 {
3243         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3244
3245         return x86_event_sysfs_show(page, config, event);
3246 }
3247
3248 struct intel_shared_regs *allocate_shared_regs(int cpu)
3249 {
3250         struct intel_shared_regs *regs;
3251         int i;
3252
3253         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3254                             GFP_KERNEL, cpu_to_node(cpu));
3255         if (regs) {
3256                 /*
3257                  * initialize the locks to keep lockdep happy
3258                  */
3259                 for (i = 0; i < EXTRA_REG_MAX; i++)
3260                         raw_spin_lock_init(&regs->regs[i].lock);
3261
3262                 regs->core_id = -1;
3263         }
3264         return regs;
3265 }
3266
3267 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3268 {
3269         struct intel_excl_cntrs *c;
3270
3271         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3272                          GFP_KERNEL, cpu_to_node(cpu));
3273         if (c) {
3274                 raw_spin_lock_init(&c->lock);
3275                 c->core_id = -1;
3276         }
3277         return c;
3278 }
3279
3280 static int intel_pmu_cpu_prepare(int cpu)
3281 {
3282         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3283
3284         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3285                 cpuc->shared_regs = allocate_shared_regs(cpu);
3286                 if (!cpuc->shared_regs)
3287                         goto err;
3288         }
3289
3290         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3291                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3292
3293                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3294                 if (!cpuc->constraint_list)
3295                         goto err_shared_regs;
3296
3297                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3298                 if (!cpuc->excl_cntrs)
3299                         goto err_constraint_list;
3300
3301                 cpuc->excl_thread_id = 0;
3302         }
3303
3304         return 0;
3305
3306 err_constraint_list:
3307         kfree(cpuc->constraint_list);
3308         cpuc->constraint_list = NULL;
3309
3310 err_shared_regs:
3311         kfree(cpuc->shared_regs);
3312         cpuc->shared_regs = NULL;
3313
3314 err:
3315         return -ENOMEM;
3316 }
3317
3318 static void flip_smm_bit(void *data)
3319 {
3320         unsigned long set = *(unsigned long *)data;
3321
3322         if (set > 0) {
3323                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3324                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3325         } else {
3326                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3327                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3328         }
3329 }
3330
3331 static void intel_pmu_cpu_starting(int cpu)
3332 {
3333         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3334         int core_id = topology_core_id(cpu);
3335         int i;
3336
3337         init_debug_store_on_cpu(cpu);
3338         /*
3339          * Deal with CPUs that don't clear their LBRs on power-up.
3340          */
3341         intel_pmu_lbr_reset();
3342
3343         cpuc->lbr_sel = NULL;
3344
3345         if (x86_pmu.version > 1)
3346                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3347
3348         if (!cpuc->shared_regs)
3349                 return;
3350
3351         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3352                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3353                         struct intel_shared_regs *pc;
3354
3355                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3356                         if (pc && pc->core_id == core_id) {
3357                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3358                                 cpuc->shared_regs = pc;
3359                                 break;
3360                         }
3361                 }
3362                 cpuc->shared_regs->core_id = core_id;
3363                 cpuc->shared_regs->refcnt++;
3364         }
3365
3366         if (x86_pmu.lbr_sel_map)
3367                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3368
3369         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3370                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3371                         struct cpu_hw_events *sibling;
3372                         struct intel_excl_cntrs *c;
3373
3374                         sibling = &per_cpu(cpu_hw_events, i);
3375                         c = sibling->excl_cntrs;
3376                         if (c && c->core_id == core_id) {
3377                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3378                                 cpuc->excl_cntrs = c;
3379                                 if (!sibling->excl_thread_id)
3380                                         cpuc->excl_thread_id = 1;
3381                                 break;
3382                         }
3383                 }
3384                 cpuc->excl_cntrs->core_id = core_id;
3385                 cpuc->excl_cntrs->refcnt++;
3386         }
3387 }
3388
3389 static void free_excl_cntrs(int cpu)
3390 {
3391         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3392         struct intel_excl_cntrs *c;
3393
3394         c = cpuc->excl_cntrs;
3395         if (c) {
3396                 if (c->core_id == -1 || --c->refcnt == 0)
3397                         kfree(c);
3398                 cpuc->excl_cntrs = NULL;
3399                 kfree(cpuc->constraint_list);
3400                 cpuc->constraint_list = NULL;
3401         }
3402 }
3403
3404 static void intel_pmu_cpu_dying(int cpu)
3405 {
3406         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3407         struct intel_shared_regs *pc;
3408
3409         pc = cpuc->shared_regs;
3410         if (pc) {
3411                 if (pc->core_id == -1 || --pc->refcnt == 0)
3412                         kfree(pc);
3413                 cpuc->shared_regs = NULL;
3414         }
3415
3416         free_excl_cntrs(cpu);
3417
3418         fini_debug_store_on_cpu(cpu);
3419 }
3420
3421 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3422                                  bool sched_in)
3423 {
3424         intel_pmu_pebs_sched_task(ctx, sched_in);
3425         intel_pmu_lbr_sched_task(ctx, sched_in);
3426 }
3427
3428 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3429
3430 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3431
3432 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3433
3434 static struct attribute *intel_arch3_formats_attr[] = {
3435         &format_attr_event.attr,
3436         &format_attr_umask.attr,
3437         &format_attr_edge.attr,
3438         &format_attr_pc.attr,
3439         &format_attr_any.attr,
3440         &format_attr_inv.attr,
3441         &format_attr_cmask.attr,
3442         NULL,
3443 };
3444
3445 static struct attribute *hsw_format_attr[] = {
3446         &format_attr_in_tx.attr,
3447         &format_attr_in_tx_cp.attr,
3448         &format_attr_offcore_rsp.attr,
3449         &format_attr_ldlat.attr,
3450         NULL
3451 };
3452
3453 static struct attribute *nhm_format_attr[] = {
3454         &format_attr_offcore_rsp.attr,
3455         &format_attr_ldlat.attr,
3456         NULL
3457 };
3458
3459 static struct attribute *slm_format_attr[] = {
3460         &format_attr_offcore_rsp.attr,
3461         NULL
3462 };
3463
3464 static struct attribute *skl_format_attr[] = {
3465         &format_attr_frontend.attr,
3466         NULL,
3467 };
3468
3469 static __initconst const struct x86_pmu core_pmu = {
3470         .name                   = "core",
3471         .handle_irq             = x86_pmu_handle_irq,
3472         .disable_all            = x86_pmu_disable_all,
3473         .enable_all             = core_pmu_enable_all,
3474         .enable                 = core_pmu_enable_event,
3475         .disable                = x86_pmu_disable_event,
3476         .hw_config              = x86_pmu_hw_config,
3477         .schedule_events        = x86_schedule_events,
3478         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3479         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3480         .event_map              = intel_pmu_event_map,
3481         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3482         .apic                   = 1,
3483         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3484
3485         /*
3486          * Intel PMCs cannot be accessed sanely above 32-bit width,
3487          * so we install an artificial 1<<31 period regardless of
3488          * the generic event period:
3489          */
3490         .max_period             = (1ULL<<31) - 1,
3491         .get_event_constraints  = intel_get_event_constraints,
3492         .put_event_constraints  = intel_put_event_constraints,
3493         .event_constraints      = intel_core_event_constraints,
3494         .guest_get_msrs         = core_guest_get_msrs,
3495         .format_attrs           = intel_arch_formats_attr,
3496         .events_sysfs_show      = intel_event_sysfs_show,
3497
3498         /*
3499          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3500          * together with PMU version 1 and thus be using core_pmu with
3501          * shared_regs. We need following callbacks here to allocate
3502          * it properly.
3503          */
3504         .cpu_prepare            = intel_pmu_cpu_prepare,
3505         .cpu_starting           = intel_pmu_cpu_starting,
3506         .cpu_dying              = intel_pmu_cpu_dying,
3507 };
3508
3509 static struct attribute *intel_pmu_attrs[];
3510
3511 static __initconst const struct x86_pmu intel_pmu = {
3512         .name                   = "Intel",
3513         .handle_irq             = intel_pmu_handle_irq,
3514         .disable_all            = intel_pmu_disable_all,
3515         .enable_all             = intel_pmu_enable_all,
3516         .enable                 = intel_pmu_enable_event,
3517         .disable                = intel_pmu_disable_event,
3518         .add                    = intel_pmu_add_event,
3519         .del                    = intel_pmu_del_event,
3520         .read                   = intel_pmu_read_event,
3521         .hw_config              = intel_pmu_hw_config,
3522         .schedule_events        = x86_schedule_events,
3523         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3524         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3525         .event_map              = intel_pmu_event_map,
3526         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3527         .apic                   = 1,
3528         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3529         /*
3530          * Intel PMCs cannot be accessed sanely above 32 bit width,
3531          * so we install an artificial 1<<31 period regardless of
3532          * the generic event period:
3533          */
3534         .max_period             = (1ULL << 31) - 1,
3535         .get_event_constraints  = intel_get_event_constraints,
3536         .put_event_constraints  = intel_put_event_constraints,
3537         .pebs_aliases           = intel_pebs_aliases_core2,
3538
3539         .format_attrs           = intel_arch3_formats_attr,
3540         .events_sysfs_show      = intel_event_sysfs_show,
3541
3542         .attrs                  = intel_pmu_attrs,
3543
3544         .cpu_prepare            = intel_pmu_cpu_prepare,
3545         .cpu_starting           = intel_pmu_cpu_starting,
3546         .cpu_dying              = intel_pmu_cpu_dying,
3547         .guest_get_msrs         = intel_guest_get_msrs,
3548         .sched_task             = intel_pmu_sched_task,
3549 };
3550
3551 static __init void intel_clovertown_quirk(void)
3552 {
3553         /*
3554          * PEBS is unreliable due to:
3555          *
3556          *   AJ67  - PEBS may experience CPL leaks
3557          *   AJ68  - PEBS PMI may be delayed by one event
3558          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3559          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3560          *
3561          * AJ67 could be worked around by restricting the OS/USR flags.
3562          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3563          *
3564          * AJ106 could possibly be worked around by not allowing LBR
3565          *       usage from PEBS, including the fixup.
3566          * AJ68  could possibly be worked around by always programming
3567          *       a pebs_event_reset[0] value and coping with the lost events.
3568          *
3569          * But taken together it might just make sense to not enable PEBS on
3570          * these chips.
3571          */
3572         pr_warn("PEBS disabled due to CPU errata\n");
3573         x86_pmu.pebs = 0;
3574         x86_pmu.pebs_constraints = NULL;
3575 }
3576
3577 static int intel_snb_pebs_broken(int cpu)
3578 {
3579         u32 rev = UINT_MAX; /* default to broken for unknown models */
3580
3581         switch (cpu_data(cpu).x86_model) {
3582         case INTEL_FAM6_SANDYBRIDGE:
3583                 rev = 0x28;
3584                 break;
3585
3586         case INTEL_FAM6_SANDYBRIDGE_X:
3587                 switch (cpu_data(cpu).x86_stepping) {
3588                 case 6: rev = 0x618; break;
3589                 case 7: rev = 0x70c; break;
3590                 }
3591         }
3592
3593         return (cpu_data(cpu).microcode < rev);
3594 }
3595
3596 static void intel_snb_check_microcode(void)
3597 {
3598         int pebs_broken = 0;
3599         int cpu;
3600
3601         for_each_online_cpu(cpu) {
3602                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3603                         break;
3604         }
3605
3606         if (pebs_broken == x86_pmu.pebs_broken)
3607                 return;
3608
3609         /*
3610          * Serialized by the microcode lock..
3611          */
3612         if (x86_pmu.pebs_broken) {
3613                 pr_info("PEBS enabled due to microcode update\n");
3614                 x86_pmu.pebs_broken = 0;
3615         } else {
3616                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3617                 x86_pmu.pebs_broken = 1;
3618         }
3619 }
3620
3621 static bool is_lbr_from(unsigned long msr)
3622 {
3623         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3624
3625         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3626 }
3627
3628 /*
3629  * Under certain circumstances, access certain MSR may cause #GP.
3630  * The function tests if the input MSR can be safely accessed.
3631  */
3632 static bool check_msr(unsigned long msr, u64 mask)
3633 {
3634         u64 val_old, val_new, val_tmp;
3635
3636         /*
3637          * Read the current value, change it and read it back to see if it
3638          * matches, this is needed to detect certain hardware emulators
3639          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3640          */
3641         if (rdmsrl_safe(msr, &val_old))
3642                 return false;
3643
3644         /*
3645          * Only change the bits which can be updated by wrmsrl.
3646          */
3647         val_tmp = val_old ^ mask;
3648
3649         if (is_lbr_from(msr))
3650                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3651
3652         if (wrmsrl_safe(msr, val_tmp) ||
3653             rdmsrl_safe(msr, &val_new))
3654                 return false;
3655
3656         /*
3657          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3658          * should equal rdmsrl()'s even with the quirk.
3659          */
3660         if (val_new != val_tmp)
3661                 return false;
3662
3663         if (is_lbr_from(msr))
3664                 val_old = lbr_from_signext_quirk_wr(val_old);
3665
3666         /* Here it's sure that the MSR can be safely accessed.
3667          * Restore the old value and return.
3668          */
3669         wrmsrl(msr, val_old);
3670
3671         return true;
3672 }
3673
3674 static __init void intel_sandybridge_quirk(void)
3675 {
3676         x86_pmu.check_microcode = intel_snb_check_microcode;
3677         cpus_read_lock();
3678         intel_snb_check_microcode();
3679         cpus_read_unlock();
3680 }
3681
3682 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3683         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3684         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3685         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3686         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3687         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3688         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3689         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3690 };
3691
3692 static __init void intel_arch_events_quirk(void)
3693 {
3694         int bit;
3695
3696         /* disable event that reported as not presend by cpuid */
3697         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3698                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3699                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3700                         intel_arch_events_map[bit].name);
3701         }
3702 }
3703
3704 static __init void intel_nehalem_quirk(void)
3705 {
3706         union cpuid10_ebx ebx;
3707
3708         ebx.full = x86_pmu.events_maskl;
3709         if (ebx.split.no_branch_misses_retired) {
3710                 /*
3711                  * Erratum AAJ80 detected, we work it around by using
3712                  * the BR_MISP_EXEC.ANY event. This will over-count
3713                  * branch-misses, but it's still much better than the
3714                  * architectural event which is often completely bogus:
3715                  */
3716                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3717                 ebx.split.no_branch_misses_retired = 0;
3718                 x86_pmu.events_maskl = ebx.full;
3719                 pr_info("CPU erratum AAJ80 worked around\n");
3720         }
3721 }
3722
3723 /*
3724  * enable software workaround for errata:
3725  * SNB: BJ122
3726  * IVB: BV98
3727  * HSW: HSD29
3728  *
3729  * Only needed when HT is enabled. However detecting
3730  * if HT is enabled is difficult (model specific). So instead,
3731  * we enable the workaround in the early boot, and verify if
3732  * it is needed in a later initcall phase once we have valid
3733  * topology information to check if HT is actually enabled
3734  */
3735 static __init void intel_ht_bug(void)
3736 {
3737         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3738
3739         x86_pmu.start_scheduling = intel_start_scheduling;
3740         x86_pmu.commit_scheduling = intel_commit_scheduling;
3741         x86_pmu.stop_scheduling = intel_stop_scheduling;
3742 }
3743
3744 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3745 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3746
3747 /* Haswell special events */
3748 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3749 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3750 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3751 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3752 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3753 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3754 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3755 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3756 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3757 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3758 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3759 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3760
3761 static struct attribute *hsw_events_attrs[] = {
3762         EVENT_PTR(mem_ld_hsw),
3763         EVENT_PTR(mem_st_hsw),
3764         EVENT_PTR(td_slots_issued),
3765         EVENT_PTR(td_slots_retired),
3766         EVENT_PTR(td_fetch_bubbles),
3767         EVENT_PTR(td_total_slots),
3768         EVENT_PTR(td_total_slots_scale),
3769         EVENT_PTR(td_recovery_bubbles),
3770         EVENT_PTR(td_recovery_bubbles_scale),
3771         NULL
3772 };
3773
3774 static struct attribute *hsw_tsx_events_attrs[] = {
3775         EVENT_PTR(tx_start),
3776         EVENT_PTR(tx_commit),
3777         EVENT_PTR(tx_abort),
3778         EVENT_PTR(tx_capacity),
3779         EVENT_PTR(tx_conflict),
3780         EVENT_PTR(el_start),
3781         EVENT_PTR(el_commit),
3782         EVENT_PTR(el_abort),
3783         EVENT_PTR(el_capacity),
3784         EVENT_PTR(el_conflict),
3785         EVENT_PTR(cycles_t),
3786         EVENT_PTR(cycles_ct),
3787         NULL
3788 };
3789
3790 static __init struct attribute **get_hsw_events_attrs(void)
3791 {
3792         return boot_cpu_has(X86_FEATURE_RTM) ?
3793                 merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) :
3794                 hsw_events_attrs;
3795 }
3796
3797 static ssize_t freeze_on_smi_show(struct device *cdev,
3798                                   struct device_attribute *attr,
3799                                   char *buf)
3800 {
3801         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3802 }
3803
3804 static DEFINE_MUTEX(freeze_on_smi_mutex);
3805
3806 static ssize_t freeze_on_smi_store(struct device *cdev,
3807                                    struct device_attribute *attr,
3808                                    const char *buf, size_t count)
3809 {
3810         unsigned long val;
3811         ssize_t ret;
3812
3813         ret = kstrtoul(buf, 0, &val);
3814         if (ret)
3815                 return ret;
3816
3817         if (val > 1)
3818                 return -EINVAL;
3819
3820         mutex_lock(&freeze_on_smi_mutex);
3821
3822         if (x86_pmu.attr_freeze_on_smi == val)
3823                 goto done;
3824
3825         x86_pmu.attr_freeze_on_smi = val;
3826
3827         get_online_cpus();
3828         on_each_cpu(flip_smm_bit, &val, 1);
3829         put_online_cpus();
3830 done:
3831         mutex_unlock(&freeze_on_smi_mutex);
3832
3833         return count;
3834 }
3835
3836 static DEVICE_ATTR_RW(freeze_on_smi);
3837
3838 static ssize_t branches_show(struct device *cdev,
3839                              struct device_attribute *attr,
3840                              char *buf)
3841 {
3842         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3843 }
3844
3845 static DEVICE_ATTR_RO(branches);
3846
3847 static struct attribute *lbr_attrs[] = {
3848         &dev_attr_branches.attr,
3849         NULL
3850 };
3851
3852 static char pmu_name_str[30];
3853
3854 static ssize_t pmu_name_show(struct device *cdev,
3855                              struct device_attribute *attr,
3856                              char *buf)
3857 {
3858         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
3859 }
3860
3861 static DEVICE_ATTR_RO(pmu_name);
3862
3863 static struct attribute *intel_pmu_caps_attrs[] = {
3864        &dev_attr_pmu_name.attr,
3865        NULL
3866 };
3867
3868 static struct attribute *intel_pmu_attrs[] = {
3869         &dev_attr_freeze_on_smi.attr,
3870         NULL,
3871 };
3872
3873 __init int intel_pmu_init(void)
3874 {
3875         struct attribute **extra_attr = NULL;
3876         struct attribute **to_free = NULL;
3877         union cpuid10_edx edx;
3878         union cpuid10_eax eax;
3879         union cpuid10_ebx ebx;
3880         struct event_constraint *c;
3881         unsigned int unused;
3882         struct extra_reg *er;
3883         int version, i;
3884         char *name;
3885
3886         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3887                 switch (boot_cpu_data.x86) {
3888                 case 0x6:
3889                         return p6_pmu_init();
3890                 case 0xb:
3891                         return knc_pmu_init();
3892                 case 0xf:
3893                         return p4_pmu_init();
3894                 }
3895                 return -ENODEV;
3896         }
3897
3898         /*
3899          * Check whether the Architectural PerfMon supports
3900          * Branch Misses Retired hw_event or not.
3901          */
3902         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3903         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3904                 return -ENODEV;
3905
3906         version = eax.split.version_id;
3907         if (version < 2)
3908                 x86_pmu = core_pmu;
3909         else
3910                 x86_pmu = intel_pmu;
3911
3912         x86_pmu.version                 = version;
3913         x86_pmu.num_counters            = eax.split.num_counters;
3914         x86_pmu.cntval_bits             = eax.split.bit_width;
3915         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3916
3917         x86_pmu.events_maskl            = ebx.full;
3918         x86_pmu.events_mask_len         = eax.split.mask_length;
3919
3920         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3921
3922         /*
3923          * Quirk: v2 perfmon does not report fixed-purpose events, so
3924          * assume at least 3 events, when not running in a hypervisor:
3925          */
3926         if (version > 1) {
3927                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3928
3929                 x86_pmu.num_counters_fixed =
3930                         max((int)edx.split.num_counters_fixed, assume);
3931         }
3932
3933         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3934                 u64 capabilities;
3935
3936                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3937                 x86_pmu.intel_cap.capabilities = capabilities;
3938         }
3939
3940         intel_ds_init();
3941
3942         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3943
3944         /*
3945          * Install the hw-cache-events table:
3946          */
3947         switch (boot_cpu_data.x86_model) {
3948         case INTEL_FAM6_CORE_YONAH:
3949                 pr_cont("Core events, ");
3950                 name = "core";
3951                 break;
3952
3953         case INTEL_FAM6_CORE2_MEROM:
3954                 x86_add_quirk(intel_clovertown_quirk);
3955         case INTEL_FAM6_CORE2_MEROM_L:
3956         case INTEL_FAM6_CORE2_PENRYN:
3957         case INTEL_FAM6_CORE2_DUNNINGTON:
3958                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3959                        sizeof(hw_cache_event_ids));
3960
3961                 intel_pmu_lbr_init_core();
3962
3963                 x86_pmu.event_constraints = intel_core2_event_constraints;
3964                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3965                 pr_cont("Core2 events, ");
3966                 name = "core2";
3967                 break;
3968
3969         case INTEL_FAM6_NEHALEM:
3970         case INTEL_FAM6_NEHALEM_EP:
3971         case INTEL_FAM6_NEHALEM_EX:
3972                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3973                        sizeof(hw_cache_event_ids));
3974                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3975                        sizeof(hw_cache_extra_regs));
3976
3977                 intel_pmu_lbr_init_nhm();
3978
3979                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3980                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3981                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3982                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3983
3984                 x86_pmu.cpu_events = nhm_events_attrs;
3985
3986                 /* UOPS_ISSUED.STALLED_CYCLES */
3987                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3988                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3989                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3990                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3991                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3992
3993                 intel_pmu_pebs_data_source_nhm();
3994                 x86_add_quirk(intel_nehalem_quirk);
3995                 x86_pmu.pebs_no_tlb = 1;
3996                 extra_attr = nhm_format_attr;
3997
3998                 pr_cont("Nehalem events, ");
3999                 name = "nehalem";
4000                 break;
4001
4002         case INTEL_FAM6_ATOM_PINEVIEW:
4003         case INTEL_FAM6_ATOM_LINCROFT:
4004         case INTEL_FAM6_ATOM_PENWELL:
4005         case INTEL_FAM6_ATOM_CLOVERVIEW:
4006         case INTEL_FAM6_ATOM_CEDARVIEW:
4007                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4008                        sizeof(hw_cache_event_ids));
4009
4010                 intel_pmu_lbr_init_atom();
4011
4012                 x86_pmu.event_constraints = intel_gen_event_constraints;
4013                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4014                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4015                 pr_cont("Atom events, ");
4016                 name = "bonnell";
4017                 break;
4018
4019         case INTEL_FAM6_ATOM_SILVERMONT1:
4020         case INTEL_FAM6_ATOM_SILVERMONT2:
4021         case INTEL_FAM6_ATOM_AIRMONT:
4022                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4023                         sizeof(hw_cache_event_ids));
4024                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4025                        sizeof(hw_cache_extra_regs));
4026
4027                 intel_pmu_lbr_init_slm();
4028
4029                 x86_pmu.event_constraints = intel_slm_event_constraints;
4030                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4031                 x86_pmu.extra_regs = intel_slm_extra_regs;
4032                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4033                 x86_pmu.cpu_events = slm_events_attrs;
4034                 extra_attr = slm_format_attr;
4035                 pr_cont("Silvermont events, ");
4036                 name = "silvermont";
4037                 break;
4038
4039         case INTEL_FAM6_ATOM_GOLDMONT:
4040         case INTEL_FAM6_ATOM_DENVERTON:
4041                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4042                        sizeof(hw_cache_event_ids));
4043                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4044                        sizeof(hw_cache_extra_regs));
4045
4046                 intel_pmu_lbr_init_skl();
4047
4048                 x86_pmu.event_constraints = intel_slm_event_constraints;
4049                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4050                 x86_pmu.extra_regs = intel_glm_extra_regs;
4051                 /*
4052                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4053                  * for precise cycles.
4054                  * :pp is identical to :ppp
4055                  */
4056                 x86_pmu.pebs_aliases = NULL;
4057                 x86_pmu.pebs_prec_dist = true;
4058                 x86_pmu.lbr_pt_coexist = true;
4059                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4060                 x86_pmu.cpu_events = glm_events_attrs;
4061                 extra_attr = slm_format_attr;
4062                 pr_cont("Goldmont events, ");
4063                 name = "goldmont";
4064                 break;
4065
4066         case INTEL_FAM6_ATOM_GEMINI_LAKE:
4067                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4068                        sizeof(hw_cache_event_ids));
4069                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4070                        sizeof(hw_cache_extra_regs));
4071
4072                 intel_pmu_lbr_init_skl();
4073
4074                 x86_pmu.event_constraints = intel_slm_event_constraints;
4075                 x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints;
4076                 x86_pmu.extra_regs = intel_glm_extra_regs;
4077                 /*
4078                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4079                  * for precise cycles.
4080                  */
4081                 x86_pmu.pebs_aliases = NULL;
4082                 x86_pmu.pebs_prec_dist = true;
4083                 x86_pmu.lbr_pt_coexist = true;
4084                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4085                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4086                 x86_pmu.cpu_events = glm_events_attrs;
4087                 /* Goldmont Plus has 4-wide pipeline */
4088                 event_attr_td_total_slots_scale_glm.event_str = "4";
4089                 extra_attr = slm_format_attr;
4090                 pr_cont("Goldmont plus events, ");
4091                 name = "goldmont_plus";
4092                 break;
4093
4094         case INTEL_FAM6_WESTMERE:
4095         case INTEL_FAM6_WESTMERE_EP:
4096         case INTEL_FAM6_WESTMERE_EX:
4097                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4098                        sizeof(hw_cache_event_ids));
4099                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4100                        sizeof(hw_cache_extra_regs));
4101
4102                 intel_pmu_lbr_init_nhm();
4103
4104                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4105                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4106                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4107                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4108                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4109
4110                 x86_pmu.cpu_events = nhm_events_attrs;
4111
4112                 /* UOPS_ISSUED.STALLED_CYCLES */
4113                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4114                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4115                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4116                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4117                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4118
4119                 intel_pmu_pebs_data_source_nhm();
4120                 extra_attr = nhm_format_attr;
4121                 pr_cont("Westmere events, ");
4122                 name = "westmere";
4123                 break;
4124
4125         case INTEL_FAM6_SANDYBRIDGE:
4126         case INTEL_FAM6_SANDYBRIDGE_X:
4127                 x86_add_quirk(intel_sandybridge_quirk);
4128                 x86_add_quirk(intel_ht_bug);
4129                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4130                        sizeof(hw_cache_event_ids));
4131                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4132                        sizeof(hw_cache_extra_regs));
4133
4134                 intel_pmu_lbr_init_snb();
4135
4136                 x86_pmu.event_constraints = intel_snb_event_constraints;
4137                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4138                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4139                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4140                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4141                 else
4142                         x86_pmu.extra_regs = intel_snb_extra_regs;
4143
4144
4145                 /* all extra regs are per-cpu when HT is on */
4146                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4147                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4148
4149                 x86_pmu.cpu_events = snb_events_attrs;
4150
4151                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4152                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4153                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4154                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4155                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4156                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4157
4158                 extra_attr = nhm_format_attr;
4159
4160                 pr_cont("SandyBridge events, ");
4161                 name = "sandybridge";
4162                 break;
4163
4164         case INTEL_FAM6_IVYBRIDGE:
4165         case INTEL_FAM6_IVYBRIDGE_X:
4166                 x86_add_quirk(intel_ht_bug);
4167                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4168                        sizeof(hw_cache_event_ids));
4169                 /* dTLB-load-misses on IVB is different than SNB */
4170                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4171
4172                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4173                        sizeof(hw_cache_extra_regs));
4174
4175                 intel_pmu_lbr_init_snb();
4176
4177                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4178                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4179                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4180                 x86_pmu.pebs_prec_dist = true;
4181                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4182                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4183                 else
4184                         x86_pmu.extra_regs = intel_snb_extra_regs;
4185                 /* all extra regs are per-cpu when HT is on */
4186                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4187                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4188
4189                 x86_pmu.cpu_events = snb_events_attrs;
4190
4191                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4192                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4193                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4194
4195                 extra_attr = nhm_format_attr;
4196
4197                 pr_cont("IvyBridge events, ");
4198                 name = "ivybridge";
4199                 break;
4200
4201
4202         case INTEL_FAM6_HASWELL_CORE:
4203         case INTEL_FAM6_HASWELL_X:
4204         case INTEL_FAM6_HASWELL_ULT:
4205         case INTEL_FAM6_HASWELL_GT3E:
4206                 x86_add_quirk(intel_ht_bug);
4207                 x86_pmu.late_ack = true;
4208                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4209                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4210
4211                 intel_pmu_lbr_init_hsw();
4212
4213                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4214                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4215                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4216                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4217                 x86_pmu.pebs_prec_dist = true;
4218                 /* all extra regs are per-cpu when HT is on */
4219                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4220                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4221
4222                 x86_pmu.hw_config = hsw_hw_config;
4223                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4224                 x86_pmu.cpu_events = get_hsw_events_attrs();
4225                 x86_pmu.lbr_double_abort = true;
4226                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4227                         hsw_format_attr : nhm_format_attr;
4228                 pr_cont("Haswell events, ");
4229                 name = "haswell";
4230                 break;
4231
4232         case INTEL_FAM6_BROADWELL_CORE:
4233         case INTEL_FAM6_BROADWELL_XEON_D:
4234         case INTEL_FAM6_BROADWELL_GT3E:
4235         case INTEL_FAM6_BROADWELL_X:
4236                 x86_pmu.late_ack = true;
4237                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4238                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4239
4240                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4241                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4242                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4243                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4244                                                                           HSW_SNOOP_DRAM;
4245                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4246                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4247                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4248                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4249
4250                 intel_pmu_lbr_init_hsw();
4251
4252                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4253                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4254                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4255                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4256                 x86_pmu.pebs_prec_dist = true;
4257                 /* all extra regs are per-cpu when HT is on */
4258                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4259                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4260
4261                 x86_pmu.hw_config = hsw_hw_config;
4262                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4263                 x86_pmu.cpu_events = get_hsw_events_attrs();
4264                 x86_pmu.limit_period = bdw_limit_period;
4265                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4266                         hsw_format_attr : nhm_format_attr;
4267                 pr_cont("Broadwell events, ");
4268                 name = "broadwell";
4269                 break;
4270
4271         case INTEL_FAM6_XEON_PHI_KNL:
4272         case INTEL_FAM6_XEON_PHI_KNM:
4273                 memcpy(hw_cache_event_ids,
4274                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4275                 memcpy(hw_cache_extra_regs,
4276                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4277                 intel_pmu_lbr_init_knl();
4278
4279                 x86_pmu.event_constraints = intel_slm_event_constraints;
4280                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4281                 x86_pmu.extra_regs = intel_knl_extra_regs;
4282
4283                 /* all extra regs are per-cpu when HT is on */
4284                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4285                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4286                 extra_attr = slm_format_attr;
4287                 pr_cont("Knights Landing/Mill events, ");
4288                 name = "knights-landing";
4289                 break;
4290
4291         case INTEL_FAM6_SKYLAKE_MOBILE:
4292         case INTEL_FAM6_SKYLAKE_DESKTOP:
4293         case INTEL_FAM6_SKYLAKE_X:
4294         case INTEL_FAM6_KABYLAKE_MOBILE:
4295         case INTEL_FAM6_KABYLAKE_DESKTOP:
4296                 x86_pmu.late_ack = true;
4297                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4298                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4299                 intel_pmu_lbr_init_skl();
4300
4301                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4302                 event_attr_td_recovery_bubbles.event_str_noht =
4303                         "event=0xd,umask=0x1,cmask=1";
4304                 event_attr_td_recovery_bubbles.event_str_ht =
4305                         "event=0xd,umask=0x1,cmask=1,any=1";
4306
4307                 x86_pmu.event_constraints = intel_skl_event_constraints;
4308                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4309                 x86_pmu.extra_regs = intel_skl_extra_regs;
4310                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4311                 x86_pmu.pebs_prec_dist = true;
4312                 /* all extra regs are per-cpu when HT is on */
4313                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4314                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4315
4316                 x86_pmu.hw_config = hsw_hw_config;
4317                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4318                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4319                         hsw_format_attr : nhm_format_attr;
4320                 extra_attr = merge_attr(extra_attr, skl_format_attr);
4321                 to_free = extra_attr;
4322                 x86_pmu.cpu_events = get_hsw_events_attrs();
4323                 intel_pmu_pebs_data_source_skl(
4324                         boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4325                 pr_cont("Skylake events, ");
4326                 name = "skylake";
4327                 break;
4328
4329         default:
4330                 switch (x86_pmu.version) {
4331                 case 1:
4332                         x86_pmu.event_constraints = intel_v1_event_constraints;
4333                         pr_cont("generic architected perfmon v1, ");
4334                         name = "generic_arch_v1";
4335                         break;
4336                 default:
4337                         /*
4338                          * default constraints for v2 and up
4339                          */
4340                         x86_pmu.event_constraints = intel_gen_event_constraints;
4341                         pr_cont("generic architected perfmon, ");
4342                         name = "generic_arch_v2+";
4343                         break;
4344                 }
4345         }
4346
4347         snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name);
4348
4349         if (version >= 2 && extra_attr) {
4350                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4351                                                   extra_attr);
4352                 WARN_ON(!x86_pmu.format_attrs);
4353         }
4354
4355         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4356                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4357                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4358                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4359         }
4360         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4361
4362         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4363                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4364                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4365                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4366         }
4367
4368         x86_pmu.intel_ctrl |=
4369                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4370
4371         if (x86_pmu.event_constraints) {
4372                 /*
4373                  * event on fixed counter2 (REF_CYCLES) only works on this
4374                  * counter, so do not extend mask to generic counters
4375                  */
4376                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4377                         if (c->cmask == FIXED_EVENT_FLAGS
4378                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4379                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4380                         }
4381                         c->idxmsk64 &=
4382                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4383                         c->weight = hweight64(c->idxmsk64);
4384                 }
4385         }
4386
4387         /*
4388          * Access LBR MSR may cause #GP under certain circumstances.
4389          * E.g. KVM doesn't support LBR MSR
4390          * Check all LBT MSR here.
4391          * Disable LBR access if any LBR MSRs can not be accessed.
4392          */
4393         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4394                 x86_pmu.lbr_nr = 0;
4395         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4396                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4397                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4398                         x86_pmu.lbr_nr = 0;
4399         }
4400
4401         x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4402
4403         if (x86_pmu.lbr_nr) {
4404                 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4405                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4406         }
4407
4408         /*
4409          * Access extra MSR may cause #GP under certain circumstances.
4410          * E.g. KVM doesn't support offcore event
4411          * Check all extra_regs here.
4412          */
4413         if (x86_pmu.extra_regs) {
4414                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4415                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4416                         /* Disable LBR select mapping */
4417                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4418                                 x86_pmu.lbr_sel_map = NULL;
4419                 }
4420         }
4421
4422         /* Support full width counters using alternative MSR range */
4423         if (x86_pmu.intel_cap.full_width_write) {
4424                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4425                 x86_pmu.perfctr = MSR_IA32_PMC0;
4426                 pr_cont("full-width counters, ");
4427         }
4428
4429         kfree(to_free);
4430         return 0;
4431 }
4432
4433 /*
4434  * HT bug: phase 2 init
4435  * Called once we have valid topology information to check
4436  * whether or not HT is enabled
4437  * If HT is off, then we disable the workaround
4438  */
4439 static __init int fixup_ht_bug(void)
4440 {
4441         int c;
4442         /*
4443          * problem not present on this CPU model, nothing to do
4444          */
4445         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4446                 return 0;
4447
4448         if (topology_max_smt_threads() > 1) {
4449                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4450                 return 0;
4451         }
4452
4453         cpus_read_lock();
4454
4455         hardlockup_detector_perf_stop();
4456
4457         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4458
4459         x86_pmu.start_scheduling = NULL;
4460         x86_pmu.commit_scheduling = NULL;
4461         x86_pmu.stop_scheduling = NULL;
4462
4463         hardlockup_detector_perf_restart();
4464
4465         for_each_online_cpu(c)
4466                 free_excl_cntrs(c);
4467
4468         cpus_read_unlock();
4469         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4470         return 0;
4471 }
4472 subsys_initcall(fixup_ht_bug)