Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         u64 delta;
75
76         if (idx == INTEL_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 mutex_unlock(&pmc_reserve_mutex);
362         }
363 }
364
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371         int i;
372
373         /*
374          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375          * LBR and BTS are still mutually exclusive.
376          */
377         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378                 return 0;
379
380         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384                                 goto fail_unlock;
385                 }
386                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389
390         atomic_inc(&active_events);
391         return 0;
392
393 fail_unlock:
394         mutex_unlock(&pmc_reserve_mutex);
395         return -EBUSY;
396 }
397
398 void x86_del_exclusive(unsigned int what)
399 {
400         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401                 return;
402
403         atomic_dec(&x86_pmu.lbr_exclusive[what]);
404         atomic_dec(&active_events);
405 }
406
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409         struct perf_event_attr *attr = &event->attr;
410         struct hw_perf_event *hwc = &event->hw;
411         u64 config;
412
413         if (!is_sampling_event(event)) {
414                 hwc->sample_period = x86_pmu.max_period;
415                 hwc->last_period = hwc->sample_period;
416                 local64_set(&hwc->period_left, hwc->sample_period);
417         }
418
419         if (attr->type == PERF_TYPE_RAW)
420                 return x86_pmu_extra_regs(event->attr.config, event);
421
422         if (attr->type == PERF_TYPE_HW_CACHE)
423                 return set_ext_hw_attr(hwc, event);
424
425         if (attr->config >= x86_pmu.max_events)
426                 return -EINVAL;
427
428         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
430         /*
431          * The generic map:
432          */
433         config = x86_pmu.event_map(attr->config);
434
435         if (config == 0)
436                 return -ENOENT;
437
438         if (config == -1LL)
439                 return -EINVAL;
440
441         hwc->config |= config;
442
443         return 0;
444 }
445
446 /*
447  * check that branch_sample_type is compatible with
448  * settings needed for precise_ip > 1 which implies
449  * using the LBR to capture ALL taken branches at the
450  * priv levels of the measurement
451  */
452 static inline int precise_br_compat(struct perf_event *event)
453 {
454         u64 m = event->attr.branch_sample_type;
455         u64 b = 0;
456
457         /* must capture all branches */
458         if (!(m & PERF_SAMPLE_BRANCH_ANY))
459                 return 0;
460
461         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462
463         if (!event->attr.exclude_user)
464                 b |= PERF_SAMPLE_BRANCH_USER;
465
466         if (!event->attr.exclude_kernel)
467                 b |= PERF_SAMPLE_BRANCH_KERNEL;
468
469         /*
470          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471          */
472
473         return m == b;
474 }
475
476 int x86_pmu_max_precise(void)
477 {
478         int precise = 0;
479
480         /* Support for constant skid */
481         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482                 precise++;
483
484                 /* Support for IP fixup */
485                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486                         precise++;
487
488                 if (x86_pmu.pebs_prec_dist)
489                         precise++;
490         }
491         return precise;
492 }
493
494 int x86_pmu_hw_config(struct perf_event *event)
495 {
496         if (event->attr.precise_ip) {
497                 int precise = x86_pmu_max_precise();
498
499                 if (event->attr.precise_ip > precise)
500                         return -EOPNOTSUPP;
501
502                 /* There's no sense in having PEBS for non sampling events: */
503                 if (!is_sampling_event(event))
504                         return -EINVAL;
505         }
506         /*
507          * check that PEBS LBR correction does not conflict with
508          * whatever the user is asking with attr->branch_sample_type
509          */
510         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511                 u64 *br_type = &event->attr.branch_sample_type;
512
513                 if (has_branch_stack(event)) {
514                         if (!precise_br_compat(event))
515                                 return -EOPNOTSUPP;
516
517                         /* branch_sample_type is compatible */
518
519                 } else {
520                         /*
521                          * user did not specify  branch_sample_type
522                          *
523                          * For PEBS fixups, we capture all
524                          * the branches at the priv level of the
525                          * event.
526                          */
527                         *br_type = PERF_SAMPLE_BRANCH_ANY;
528
529                         if (!event->attr.exclude_user)
530                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
531
532                         if (!event->attr.exclude_kernel)
533                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
534                 }
535         }
536
537         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538                 event->attach_state |= PERF_ATTACH_TASK_DATA;
539
540         /*
541          * Generate PMC IRQs:
542          * (keep 'enabled' bit clear for now)
543          */
544         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
545
546         /*
547          * Count user and OS events unless requested not to
548          */
549         if (!event->attr.exclude_user)
550                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551         if (!event->attr.exclude_kernel)
552                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
553
554         if (event->attr.type == PERF_TYPE_RAW)
555                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
556
557         if (event->attr.sample_period && x86_pmu.limit_period) {
558                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559                                 event->attr.sample_period)
560                         return -EINVAL;
561         }
562
563         /* sample_regs_user never support XMM registers */
564         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
565                 return -EINVAL;
566         /*
567          * Besides the general purpose registers, XMM registers may
568          * be collected in PEBS on some platforms, e.g. Icelake
569          */
570         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
571                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
572                         return -EINVAL;
573
574                 if (!event->attr.precise_ip)
575                         return -EINVAL;
576         }
577
578         return x86_setup_perfctr(event);
579 }
580
581 /*
582  * Setup the hardware configuration for a given attr_type
583  */
584 static int __x86_pmu_event_init(struct perf_event *event)
585 {
586         int err;
587
588         if (!x86_pmu_initialized())
589                 return -ENODEV;
590
591         err = x86_reserve_hardware();
592         if (err)
593                 return err;
594
595         atomic_inc(&active_events);
596         event->destroy = hw_perf_event_destroy;
597
598         event->hw.idx = -1;
599         event->hw.last_cpu = -1;
600         event->hw.last_tag = ~0ULL;
601
602         /* mark unused */
603         event->hw.extra_reg.idx = EXTRA_REG_NONE;
604         event->hw.branch_reg.idx = EXTRA_REG_NONE;
605
606         return x86_pmu.hw_config(event);
607 }
608
609 void x86_pmu_disable_all(void)
610 {
611         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
612         int idx;
613
614         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
615                 u64 val;
616
617                 if (!test_bit(idx, cpuc->active_mask))
618                         continue;
619                 rdmsrl(x86_pmu_config_addr(idx), val);
620                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
621                         continue;
622                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
623                 wrmsrl(x86_pmu_config_addr(idx), val);
624         }
625 }
626
627 /*
628  * There may be PMI landing after enabled=0. The PMI hitting could be before or
629  * after disable_all.
630  *
631  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
632  * It will not be re-enabled in the NMI handler again, because enabled=0. After
633  * handling the NMI, disable_all will be called, which will not change the
634  * state either. If PMI hits after disable_all, the PMU is already disabled
635  * before entering NMI handler. The NMI handler will not change the state
636  * either.
637  *
638  * So either situation is harmless.
639  */
640 static void x86_pmu_disable(struct pmu *pmu)
641 {
642         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
643
644         if (!x86_pmu_initialized())
645                 return;
646
647         if (!cpuc->enabled)
648                 return;
649
650         cpuc->n_added = 0;
651         cpuc->enabled = 0;
652         barrier();
653
654         x86_pmu.disable_all();
655 }
656
657 void x86_pmu_enable_all(int added)
658 {
659         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
660         int idx;
661
662         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
663                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
664
665                 if (!test_bit(idx, cpuc->active_mask))
666                         continue;
667
668                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
669         }
670 }
671
672 static struct pmu pmu;
673
674 static inline int is_x86_event(struct perf_event *event)
675 {
676         return event->pmu == &pmu;
677 }
678
679 struct pmu *x86_get_pmu(void)
680 {
681         return &pmu;
682 }
683 /*
684  * Event scheduler state:
685  *
686  * Assign events iterating over all events and counters, beginning
687  * with events with least weights first. Keep the current iterator
688  * state in struct sched_state.
689  */
690 struct sched_state {
691         int     weight;
692         int     event;          /* event index */
693         int     counter;        /* counter index */
694         int     unassigned;     /* number of events to be assigned left */
695         int     nr_gp;          /* number of GP counters used */
696         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
697 };
698
699 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
700 #define SCHED_STATES_MAX        2
701
702 struct perf_sched {
703         int                     max_weight;
704         int                     max_events;
705         int                     max_gp;
706         int                     saved_states;
707         struct event_constraint **constraints;
708         struct sched_state      state;
709         struct sched_state      saved[SCHED_STATES_MAX];
710 };
711
712 /*
713  * Initialize interator that runs through all events and counters.
714  */
715 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
716                             int num, int wmin, int wmax, int gpmax)
717 {
718         int idx;
719
720         memset(sched, 0, sizeof(*sched));
721         sched->max_events       = num;
722         sched->max_weight       = wmax;
723         sched->max_gp           = gpmax;
724         sched->constraints      = constraints;
725
726         for (idx = 0; idx < num; idx++) {
727                 if (constraints[idx]->weight == wmin)
728                         break;
729         }
730
731         sched->state.event      = idx;          /* start with min weight */
732         sched->state.weight     = wmin;
733         sched->state.unassigned = num;
734 }
735
736 static void perf_sched_save_state(struct perf_sched *sched)
737 {
738         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
739                 return;
740
741         sched->saved[sched->saved_states] = sched->state;
742         sched->saved_states++;
743 }
744
745 static bool perf_sched_restore_state(struct perf_sched *sched)
746 {
747         if (!sched->saved_states)
748                 return false;
749
750         sched->saved_states--;
751         sched->state = sched->saved[sched->saved_states];
752
753         /* continue with next counter: */
754         clear_bit(sched->state.counter++, sched->state.used);
755
756         return true;
757 }
758
759 /*
760  * Select a counter for the current event to schedule. Return true on
761  * success.
762  */
763 static bool __perf_sched_find_counter(struct perf_sched *sched)
764 {
765         struct event_constraint *c;
766         int idx;
767
768         if (!sched->state.unassigned)
769                 return false;
770
771         if (sched->state.event >= sched->max_events)
772                 return false;
773
774         c = sched->constraints[sched->state.event];
775         /* Prefer fixed purpose counters */
776         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
777                 idx = INTEL_PMC_IDX_FIXED;
778                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
779                         if (!__test_and_set_bit(idx, sched->state.used))
780                                 goto done;
781                 }
782         }
783
784         /* Grab the first unused counter starting with idx */
785         idx = sched->state.counter;
786         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
787                 if (!__test_and_set_bit(idx, sched->state.used)) {
788                         if (sched->state.nr_gp++ >= sched->max_gp)
789                                 return false;
790
791                         goto done;
792                 }
793         }
794
795         return false;
796
797 done:
798         sched->state.counter = idx;
799
800         if (c->overlap)
801                 perf_sched_save_state(sched);
802
803         return true;
804 }
805
806 static bool perf_sched_find_counter(struct perf_sched *sched)
807 {
808         while (!__perf_sched_find_counter(sched)) {
809                 if (!perf_sched_restore_state(sched))
810                         return false;
811         }
812
813         return true;
814 }
815
816 /*
817  * Go through all unassigned events and find the next one to schedule.
818  * Take events with the least weight first. Return true on success.
819  */
820 static bool perf_sched_next_event(struct perf_sched *sched)
821 {
822         struct event_constraint *c;
823
824         if (!sched->state.unassigned || !--sched->state.unassigned)
825                 return false;
826
827         do {
828                 /* next event */
829                 sched->state.event++;
830                 if (sched->state.event >= sched->max_events) {
831                         /* next weight */
832                         sched->state.event = 0;
833                         sched->state.weight++;
834                         if (sched->state.weight > sched->max_weight)
835                                 return false;
836                 }
837                 c = sched->constraints[sched->state.event];
838         } while (c->weight != sched->state.weight);
839
840         sched->state.counter = 0;       /* start with first counter */
841
842         return true;
843 }
844
845 /*
846  * Assign a counter for each event.
847  */
848 int perf_assign_events(struct event_constraint **constraints, int n,
849                         int wmin, int wmax, int gpmax, int *assign)
850 {
851         struct perf_sched sched;
852
853         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
854
855         do {
856                 if (!perf_sched_find_counter(&sched))
857                         break;  /* failed */
858                 if (assign)
859                         assign[sched.state.event] = sched.state.counter;
860         } while (perf_sched_next_event(&sched));
861
862         return sched.state.unassigned;
863 }
864 EXPORT_SYMBOL_GPL(perf_assign_events);
865
866 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
867 {
868         struct event_constraint *c;
869         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
870         struct perf_event *e;
871         int n0, i, wmin, wmax, unsched = 0;
872         struct hw_perf_event *hwc;
873
874         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
875
876         /*
877          * Compute the number of events already present; see x86_pmu_add(),
878          * validate_group() and x86_pmu_commit_txn(). For the former two
879          * cpuc->n_events hasn't been updated yet, while for the latter
880          * cpuc->n_txn contains the number of events added in the current
881          * transaction.
882          */
883         n0 = cpuc->n_events;
884         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
885                 n0 -= cpuc->n_txn;
886
887         if (x86_pmu.start_scheduling)
888                 x86_pmu.start_scheduling(cpuc);
889
890         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
891                 c = cpuc->event_constraint[i];
892
893                 /*
894                  * Previously scheduled events should have a cached constraint,
895                  * while new events should not have one.
896                  */
897                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
898
899                 /*
900                  * Request constraints for new events; or for those events that
901                  * have a dynamic constraint -- for those the constraint can
902                  * change due to external factors (sibling state, allow_tfa).
903                  */
904                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
905                         c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
906                         cpuc->event_constraint[i] = c;
907                 }
908
909                 wmin = min(wmin, c->weight);
910                 wmax = max(wmax, c->weight);
911         }
912
913         /*
914          * fastpath, try to reuse previous register
915          */
916         for (i = 0; i < n; i++) {
917                 hwc = &cpuc->event_list[i]->hw;
918                 c = cpuc->event_constraint[i];
919
920                 /* never assigned */
921                 if (hwc->idx == -1)
922                         break;
923
924                 /* constraint still honored */
925                 if (!test_bit(hwc->idx, c->idxmsk))
926                         break;
927
928                 /* not already used */
929                 if (test_bit(hwc->idx, used_mask))
930                         break;
931
932                 __set_bit(hwc->idx, used_mask);
933                 if (assign)
934                         assign[i] = hwc->idx;
935         }
936
937         /* slow path */
938         if (i != n) {
939                 int gpmax = x86_pmu.num_counters;
940
941                 /*
942                  * Do not allow scheduling of more than half the available
943                  * generic counters.
944                  *
945                  * This helps avoid counter starvation of sibling thread by
946                  * ensuring at most half the counters cannot be in exclusive
947                  * mode. There is no designated counters for the limits. Any
948                  * N/2 counters can be used. This helps with events with
949                  * specific counter constraints.
950                  */
951                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
952                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
953                         gpmax /= 2;
954
955                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
956                                              wmax, gpmax, assign);
957         }
958
959         /*
960          * In case of success (unsched = 0), mark events as committed,
961          * so we do not put_constraint() in case new events are added
962          * and fail to be scheduled
963          *
964          * We invoke the lower level commit callback to lock the resource
965          *
966          * We do not need to do all of this in case we are called to
967          * validate an event group (assign == NULL)
968          */
969         if (!unsched && assign) {
970                 for (i = 0; i < n; i++) {
971                         e = cpuc->event_list[i];
972                         if (x86_pmu.commit_scheduling)
973                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
974                 }
975         } else {
976                 for (i = n0; i < n; i++) {
977                         e = cpuc->event_list[i];
978
979                         /*
980                          * release events that failed scheduling
981                          */
982                         if (x86_pmu.put_event_constraints)
983                                 x86_pmu.put_event_constraints(cpuc, e);
984
985                         cpuc->event_constraint[i] = NULL;
986                 }
987         }
988
989         if (x86_pmu.stop_scheduling)
990                 x86_pmu.stop_scheduling(cpuc);
991
992         return unsched ? -EINVAL : 0;
993 }
994
995 /*
996  * dogrp: true if must collect siblings events (group)
997  * returns total number of events and error code
998  */
999 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1000 {
1001         struct perf_event *event;
1002         int n, max_count;
1003
1004         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1005
1006         /* current number of events already accepted */
1007         n = cpuc->n_events;
1008         if (!cpuc->n_events)
1009                 cpuc->pebs_output = 0;
1010
1011         if (!cpuc->is_fake && leader->attr.precise_ip) {
1012                 /*
1013                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1014                  * away, the group was broken down and this singleton event
1015                  * can't schedule any more.
1016                  */
1017                 if (is_pebs_pt(leader) && !leader->aux_event)
1018                         return -EINVAL;
1019
1020                 /*
1021                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1022                  */
1023                 if (cpuc->pebs_output &&
1024                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1025                         return -EINVAL;
1026
1027                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1028         }
1029
1030         if (is_x86_event(leader)) {
1031                 if (n >= max_count)
1032                         return -EINVAL;
1033                 cpuc->event_list[n] = leader;
1034                 n++;
1035         }
1036         if (!dogrp)
1037                 return n;
1038
1039         for_each_sibling_event(event, leader) {
1040                 if (!is_x86_event(event) ||
1041                     event->state <= PERF_EVENT_STATE_OFF)
1042                         continue;
1043
1044                 if (n >= max_count)
1045                         return -EINVAL;
1046
1047                 cpuc->event_list[n] = event;
1048                 n++;
1049         }
1050         return n;
1051 }
1052
1053 static inline void x86_assign_hw_event(struct perf_event *event,
1054                                 struct cpu_hw_events *cpuc, int i)
1055 {
1056         struct hw_perf_event *hwc = &event->hw;
1057
1058         hwc->idx = cpuc->assign[i];
1059         hwc->last_cpu = smp_processor_id();
1060         hwc->last_tag = ++cpuc->tags[i];
1061
1062         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1063                 hwc->config_base = 0;
1064                 hwc->event_base = 0;
1065         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1066                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1067                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1068                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1069         } else {
1070                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1071                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1072                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1073         }
1074 }
1075
1076 /**
1077  * x86_perf_rdpmc_index - Return PMC counter used for event
1078  * @event: the perf_event to which the PMC counter was assigned
1079  *
1080  * The counter assigned to this performance event may change if interrupts
1081  * are enabled. This counter should thus never be used while interrupts are
1082  * enabled. Before this function is used to obtain the assigned counter the
1083  * event should be checked for validity using, for example,
1084  * perf_event_read_local(), within the same interrupt disabled section in
1085  * which this counter is planned to be used.
1086  *
1087  * Return: The index of the performance monitoring counter assigned to
1088  * @perf_event.
1089  */
1090 int x86_perf_rdpmc_index(struct perf_event *event)
1091 {
1092         lockdep_assert_irqs_disabled();
1093
1094         return event->hw.event_base_rdpmc;
1095 }
1096
1097 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1098                                         struct cpu_hw_events *cpuc,
1099                                         int i)
1100 {
1101         return hwc->idx == cpuc->assign[i] &&
1102                 hwc->last_cpu == smp_processor_id() &&
1103                 hwc->last_tag == cpuc->tags[i];
1104 }
1105
1106 static void x86_pmu_start(struct perf_event *event, int flags);
1107
1108 static void x86_pmu_enable(struct pmu *pmu)
1109 {
1110         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1111         struct perf_event *event;
1112         struct hw_perf_event *hwc;
1113         int i, added = cpuc->n_added;
1114
1115         if (!x86_pmu_initialized())
1116                 return;
1117
1118         if (cpuc->enabled)
1119                 return;
1120
1121         if (cpuc->n_added) {
1122                 int n_running = cpuc->n_events - cpuc->n_added;
1123                 /*
1124                  * apply assignment obtained either from
1125                  * hw_perf_group_sched_in() or x86_pmu_enable()
1126                  *
1127                  * step1: save events moving to new counters
1128                  */
1129                 for (i = 0; i < n_running; i++) {
1130                         event = cpuc->event_list[i];
1131                         hwc = &event->hw;
1132
1133                         /*
1134                          * we can avoid reprogramming counter if:
1135                          * - assigned same counter as last time
1136                          * - running on same CPU as last time
1137                          * - no other event has used the counter since
1138                          */
1139                         if (hwc->idx == -1 ||
1140                             match_prev_assignment(hwc, cpuc, i))
1141                                 continue;
1142
1143                         /*
1144                          * Ensure we don't accidentally enable a stopped
1145                          * counter simply because we rescheduled.
1146                          */
1147                         if (hwc->state & PERF_HES_STOPPED)
1148                                 hwc->state |= PERF_HES_ARCH;
1149
1150                         x86_pmu_stop(event, PERF_EF_UPDATE);
1151                 }
1152
1153                 /*
1154                  * step2: reprogram moved events into new counters
1155                  */
1156                 for (i = 0; i < cpuc->n_events; i++) {
1157                         event = cpuc->event_list[i];
1158                         hwc = &event->hw;
1159
1160                         if (!match_prev_assignment(hwc, cpuc, i))
1161                                 x86_assign_hw_event(event, cpuc, i);
1162                         else if (i < n_running)
1163                                 continue;
1164
1165                         if (hwc->state & PERF_HES_ARCH)
1166                                 continue;
1167
1168                         x86_pmu_start(event, PERF_EF_RELOAD);
1169                 }
1170                 cpuc->n_added = 0;
1171                 perf_events_lapic_init();
1172         }
1173
1174         cpuc->enabled = 1;
1175         barrier();
1176
1177         x86_pmu.enable_all(added);
1178 }
1179
1180 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1181
1182 /*
1183  * Set the next IRQ period, based on the hwc->period_left value.
1184  * To be called with the event disabled in hw:
1185  */
1186 int x86_perf_event_set_period(struct perf_event *event)
1187 {
1188         struct hw_perf_event *hwc = &event->hw;
1189         s64 left = local64_read(&hwc->period_left);
1190         s64 period = hwc->sample_period;
1191         int ret = 0, idx = hwc->idx;
1192
1193         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1194                 return 0;
1195
1196         /*
1197          * If we are way outside a reasonable range then just skip forward:
1198          */
1199         if (unlikely(left <= -period)) {
1200                 left = period;
1201                 local64_set(&hwc->period_left, left);
1202                 hwc->last_period = period;
1203                 ret = 1;
1204         }
1205
1206         if (unlikely(left <= 0)) {
1207                 left += period;
1208                 local64_set(&hwc->period_left, left);
1209                 hwc->last_period = period;
1210                 ret = 1;
1211         }
1212         /*
1213          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1214          */
1215         if (unlikely(left < 2))
1216                 left = 2;
1217
1218         if (left > x86_pmu.max_period)
1219                 left = x86_pmu.max_period;
1220
1221         if (x86_pmu.limit_period)
1222                 left = x86_pmu.limit_period(event, left);
1223
1224         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1225
1226         /*
1227          * The hw event starts counting from this event offset,
1228          * mark it to be able to extra future deltas:
1229          */
1230         local64_set(&hwc->prev_count, (u64)-left);
1231
1232         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1233
1234         /*
1235          * Due to erratum on certan cpu we need
1236          * a second write to be sure the register
1237          * is updated properly
1238          */
1239         if (x86_pmu.perfctr_second_write) {
1240                 wrmsrl(hwc->event_base,
1241                         (u64)(-left) & x86_pmu.cntval_mask);
1242         }
1243
1244         perf_event_update_userpage(event);
1245
1246         return ret;
1247 }
1248
1249 void x86_pmu_enable_event(struct perf_event *event)
1250 {
1251         if (__this_cpu_read(cpu_hw_events.enabled))
1252                 __x86_pmu_enable_event(&event->hw,
1253                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1254 }
1255
1256 /*
1257  * Add a single event to the PMU.
1258  *
1259  * The event is added to the group of enabled events
1260  * but only if it can be scheduled with existing events.
1261  */
1262 static int x86_pmu_add(struct perf_event *event, int flags)
1263 {
1264         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1265         struct hw_perf_event *hwc;
1266         int assign[X86_PMC_IDX_MAX];
1267         int n, n0, ret;
1268
1269         hwc = &event->hw;
1270
1271         n0 = cpuc->n_events;
1272         ret = n = collect_events(cpuc, event, false);
1273         if (ret < 0)
1274                 goto out;
1275
1276         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1277         if (!(flags & PERF_EF_START))
1278                 hwc->state |= PERF_HES_ARCH;
1279
1280         /*
1281          * If group events scheduling transaction was started,
1282          * skip the schedulability test here, it will be performed
1283          * at commit time (->commit_txn) as a whole.
1284          *
1285          * If commit fails, we'll call ->del() on all events
1286          * for which ->add() was called.
1287          */
1288         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1289                 goto done_collect;
1290
1291         ret = x86_pmu.schedule_events(cpuc, n, assign);
1292         if (ret)
1293                 goto out;
1294         /*
1295          * copy new assignment, now we know it is possible
1296          * will be used by hw_perf_enable()
1297          */
1298         memcpy(cpuc->assign, assign, n*sizeof(int));
1299
1300 done_collect:
1301         /*
1302          * Commit the collect_events() state. See x86_pmu_del() and
1303          * x86_pmu_*_txn().
1304          */
1305         cpuc->n_events = n;
1306         cpuc->n_added += n - n0;
1307         cpuc->n_txn += n - n0;
1308
1309         if (x86_pmu.add) {
1310                 /*
1311                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1312                  * so we enable LBRs before an event needs them etc..
1313                  */
1314                 x86_pmu.add(event);
1315         }
1316
1317         ret = 0;
1318 out:
1319         return ret;
1320 }
1321
1322 static void x86_pmu_start(struct perf_event *event, int flags)
1323 {
1324         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1325         int idx = event->hw.idx;
1326
1327         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1328                 return;
1329
1330         if (WARN_ON_ONCE(idx == -1))
1331                 return;
1332
1333         if (flags & PERF_EF_RELOAD) {
1334                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1335                 x86_perf_event_set_period(event);
1336         }
1337
1338         event->hw.state = 0;
1339
1340         cpuc->events[idx] = event;
1341         __set_bit(idx, cpuc->active_mask);
1342         __set_bit(idx, cpuc->running);
1343         x86_pmu.enable(event);
1344         perf_event_update_userpage(event);
1345 }
1346
1347 void perf_event_print_debug(void)
1348 {
1349         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1350         u64 pebs, debugctl;
1351         struct cpu_hw_events *cpuc;
1352         unsigned long flags;
1353         int cpu, idx;
1354
1355         if (!x86_pmu.num_counters)
1356                 return;
1357
1358         local_irq_save(flags);
1359
1360         cpu = smp_processor_id();
1361         cpuc = &per_cpu(cpu_hw_events, cpu);
1362
1363         if (x86_pmu.version >= 2) {
1364                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1365                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1366                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1367                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1368
1369                 pr_info("\n");
1370                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1371                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1372                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1373                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1374                 if (x86_pmu.pebs_constraints) {
1375                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1376                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1377                 }
1378                 if (x86_pmu.lbr_nr) {
1379                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1380                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1381                 }
1382         }
1383         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1384
1385         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1386                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1387                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1388
1389                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1390
1391                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1392                         cpu, idx, pmc_ctrl);
1393                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1394                         cpu, idx, pmc_count);
1395                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1396                         cpu, idx, prev_left);
1397         }
1398         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1399                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1400
1401                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1402                         cpu, idx, pmc_count);
1403         }
1404         local_irq_restore(flags);
1405 }
1406
1407 void x86_pmu_stop(struct perf_event *event, int flags)
1408 {
1409         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1410         struct hw_perf_event *hwc = &event->hw;
1411
1412         if (test_bit(hwc->idx, cpuc->active_mask)) {
1413                 x86_pmu.disable(event);
1414                 __clear_bit(hwc->idx, cpuc->active_mask);
1415                 cpuc->events[hwc->idx] = NULL;
1416                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1417                 hwc->state |= PERF_HES_STOPPED;
1418         }
1419
1420         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1421                 /*
1422                  * Drain the remaining delta count out of a event
1423                  * that we are disabling:
1424                  */
1425                 x86_perf_event_update(event);
1426                 hwc->state |= PERF_HES_UPTODATE;
1427         }
1428 }
1429
1430 static void x86_pmu_del(struct perf_event *event, int flags)
1431 {
1432         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1433         int i;
1434
1435         /*
1436          * If we're called during a txn, we only need to undo x86_pmu.add.
1437          * The events never got scheduled and ->cancel_txn will truncate
1438          * the event_list.
1439          *
1440          * XXX assumes any ->del() called during a TXN will only be on
1441          * an event added during that same TXN.
1442          */
1443         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1444                 goto do_del;
1445
1446         /*
1447          * Not a TXN, therefore cleanup properly.
1448          */
1449         x86_pmu_stop(event, PERF_EF_UPDATE);
1450
1451         for (i = 0; i < cpuc->n_events; i++) {
1452                 if (event == cpuc->event_list[i])
1453                         break;
1454         }
1455
1456         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1457                 return;
1458
1459         /* If we have a newly added event; make sure to decrease n_added. */
1460         if (i >= cpuc->n_events - cpuc->n_added)
1461                 --cpuc->n_added;
1462
1463         if (x86_pmu.put_event_constraints)
1464                 x86_pmu.put_event_constraints(cpuc, event);
1465
1466         /* Delete the array entry. */
1467         while (++i < cpuc->n_events) {
1468                 cpuc->event_list[i-1] = cpuc->event_list[i];
1469                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1470         }
1471         cpuc->event_constraint[i-1] = NULL;
1472         --cpuc->n_events;
1473
1474         perf_event_update_userpage(event);
1475
1476 do_del:
1477         if (x86_pmu.del) {
1478                 /*
1479                  * This is after x86_pmu_stop(); so we disable LBRs after any
1480                  * event can need them etc..
1481                  */
1482                 x86_pmu.del(event);
1483         }
1484 }
1485
1486 int x86_pmu_handle_irq(struct pt_regs *regs)
1487 {
1488         struct perf_sample_data data;
1489         struct cpu_hw_events *cpuc;
1490         struct perf_event *event;
1491         int idx, handled = 0;
1492         u64 val;
1493
1494         cpuc = this_cpu_ptr(&cpu_hw_events);
1495
1496         /*
1497          * Some chipsets need to unmask the LVTPC in a particular spot
1498          * inside the nmi handler.  As a result, the unmasking was pushed
1499          * into all the nmi handlers.
1500          *
1501          * This generic handler doesn't seem to have any issues where the
1502          * unmasking occurs so it was left at the top.
1503          */
1504         apic_write(APIC_LVTPC, APIC_DM_NMI);
1505
1506         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1507                 if (!test_bit(idx, cpuc->active_mask))
1508                         continue;
1509
1510                 event = cpuc->events[idx];
1511
1512                 val = x86_perf_event_update(event);
1513                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1514                         continue;
1515
1516                 /*
1517                  * event overflow
1518                  */
1519                 handled++;
1520                 perf_sample_data_init(&data, 0, event->hw.last_period);
1521
1522                 if (!x86_perf_event_set_period(event))
1523                         continue;
1524
1525                 if (perf_event_overflow(event, &data, regs))
1526                         x86_pmu_stop(event, 0);
1527         }
1528
1529         if (handled)
1530                 inc_irq_stat(apic_perf_irqs);
1531
1532         return handled;
1533 }
1534
1535 void perf_events_lapic_init(void)
1536 {
1537         if (!x86_pmu.apic || !x86_pmu_initialized())
1538                 return;
1539
1540         /*
1541          * Always use NMI for PMU
1542          */
1543         apic_write(APIC_LVTPC, APIC_DM_NMI);
1544 }
1545
1546 static int
1547 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1548 {
1549         u64 start_clock;
1550         u64 finish_clock;
1551         int ret;
1552
1553         /*
1554          * All PMUs/events that share this PMI handler should make sure to
1555          * increment active_events for their events.
1556          */
1557         if (!atomic_read(&active_events))
1558                 return NMI_DONE;
1559
1560         start_clock = sched_clock();
1561         ret = x86_pmu.handle_irq(regs);
1562         finish_clock = sched_clock();
1563
1564         perf_sample_event_took(finish_clock - start_clock);
1565
1566         return ret;
1567 }
1568 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1569
1570 struct event_constraint emptyconstraint;
1571 struct event_constraint unconstrained;
1572
1573 static int x86_pmu_prepare_cpu(unsigned int cpu)
1574 {
1575         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1576         int i;
1577
1578         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1579                 cpuc->kfree_on_online[i] = NULL;
1580         if (x86_pmu.cpu_prepare)
1581                 return x86_pmu.cpu_prepare(cpu);
1582         return 0;
1583 }
1584
1585 static int x86_pmu_dead_cpu(unsigned int cpu)
1586 {
1587         if (x86_pmu.cpu_dead)
1588                 x86_pmu.cpu_dead(cpu);
1589         return 0;
1590 }
1591
1592 static int x86_pmu_online_cpu(unsigned int cpu)
1593 {
1594         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1595         int i;
1596
1597         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1598                 kfree(cpuc->kfree_on_online[i]);
1599                 cpuc->kfree_on_online[i] = NULL;
1600         }
1601         return 0;
1602 }
1603
1604 static int x86_pmu_starting_cpu(unsigned int cpu)
1605 {
1606         if (x86_pmu.cpu_starting)
1607                 x86_pmu.cpu_starting(cpu);
1608         return 0;
1609 }
1610
1611 static int x86_pmu_dying_cpu(unsigned int cpu)
1612 {
1613         if (x86_pmu.cpu_dying)
1614                 x86_pmu.cpu_dying(cpu);
1615         return 0;
1616 }
1617
1618 static void __init pmu_check_apic(void)
1619 {
1620         if (boot_cpu_has(X86_FEATURE_APIC))
1621                 return;
1622
1623         x86_pmu.apic = 0;
1624         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1625         pr_info("no hardware sampling interrupt available.\n");
1626
1627         /*
1628          * If we have a PMU initialized but no APIC
1629          * interrupts, we cannot sample hardware
1630          * events (user-space has to fall back and
1631          * sample via a hrtimer based software event):
1632          */
1633         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1634
1635 }
1636
1637 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1638         .name = "format",
1639         .attrs = NULL,
1640 };
1641
1642 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1643 {
1644         struct perf_pmu_events_attr *pmu_attr = \
1645                 container_of(attr, struct perf_pmu_events_attr, attr);
1646         u64 config = x86_pmu.event_map(pmu_attr->id);
1647
1648         /* string trumps id */
1649         if (pmu_attr->event_str)
1650                 return sprintf(page, "%s", pmu_attr->event_str);
1651
1652         return x86_pmu.events_sysfs_show(page, config);
1653 }
1654 EXPORT_SYMBOL_GPL(events_sysfs_show);
1655
1656 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1657                           char *page)
1658 {
1659         struct perf_pmu_events_ht_attr *pmu_attr =
1660                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1661
1662         /*
1663          * Report conditional events depending on Hyper-Threading.
1664          *
1665          * This is overly conservative as usually the HT special
1666          * handling is not needed if the other CPU thread is idle.
1667          *
1668          * Note this does not (and cannot) handle the case when thread
1669          * siblings are invisible, for example with virtualization
1670          * if they are owned by some other guest.  The user tool
1671          * has to re-read when a thread sibling gets onlined later.
1672          */
1673         return sprintf(page, "%s",
1674                         topology_max_smt_threads() > 1 ?
1675                         pmu_attr->event_str_ht :
1676                         pmu_attr->event_str_noht);
1677 }
1678
1679 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1680 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1681 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1682 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1683 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1684 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1685 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1686 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1687 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1688 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1689
1690 static struct attribute *empty_attrs;
1691
1692 static struct attribute *events_attr[] = {
1693         EVENT_PTR(CPU_CYCLES),
1694         EVENT_PTR(INSTRUCTIONS),
1695         EVENT_PTR(CACHE_REFERENCES),
1696         EVENT_PTR(CACHE_MISSES),
1697         EVENT_PTR(BRANCH_INSTRUCTIONS),
1698         EVENT_PTR(BRANCH_MISSES),
1699         EVENT_PTR(BUS_CYCLES),
1700         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1701         EVENT_PTR(STALLED_CYCLES_BACKEND),
1702         EVENT_PTR(REF_CPU_CYCLES),
1703         NULL,
1704 };
1705
1706 /*
1707  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1708  * out of events_attr attributes.
1709  */
1710 static umode_t
1711 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1712 {
1713         struct perf_pmu_events_attr *pmu_attr;
1714
1715         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1716         /* str trumps id */
1717         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1718 }
1719
1720 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1721         .name = "events",
1722         .attrs = events_attr,
1723         .is_visible = is_visible,
1724 };
1725
1726 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1727 {
1728         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1729         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1730         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1731         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1732         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1733         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1734         ssize_t ret;
1735
1736         /*
1737         * We have whole page size to spend and just little data
1738         * to write, so we can safely use sprintf.
1739         */
1740         ret = sprintf(page, "event=0x%02llx", event);
1741
1742         if (umask)
1743                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1744
1745         if (edge)
1746                 ret += sprintf(page + ret, ",edge");
1747
1748         if (pc)
1749                 ret += sprintf(page + ret, ",pc");
1750
1751         if (any)
1752                 ret += sprintf(page + ret, ",any");
1753
1754         if (inv)
1755                 ret += sprintf(page + ret, ",inv");
1756
1757         if (cmask)
1758                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1759
1760         ret += sprintf(page + ret, "\n");
1761
1762         return ret;
1763 }
1764
1765 static struct attribute_group x86_pmu_attr_group;
1766 static struct attribute_group x86_pmu_caps_group;
1767
1768 static int __init init_hw_perf_events(void)
1769 {
1770         struct x86_pmu_quirk *quirk;
1771         int err;
1772
1773         pr_info("Performance Events: ");
1774
1775         switch (boot_cpu_data.x86_vendor) {
1776         case X86_VENDOR_INTEL:
1777                 err = intel_pmu_init();
1778                 break;
1779         case X86_VENDOR_AMD:
1780                 err = amd_pmu_init();
1781                 break;
1782         case X86_VENDOR_HYGON:
1783                 err = amd_pmu_init();
1784                 x86_pmu.name = "HYGON";
1785                 break;
1786         default:
1787                 err = -ENOTSUPP;
1788         }
1789         if (err != 0) {
1790                 pr_cont("no PMU driver, software events only.\n");
1791                 return 0;
1792         }
1793
1794         pmu_check_apic();
1795
1796         /* sanity check that the hardware exists or is emulated */
1797         if (!check_hw_exists())
1798                 return 0;
1799
1800         pr_cont("%s PMU driver.\n", x86_pmu.name);
1801
1802         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1803
1804         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1805                 quirk->func();
1806
1807         if (!x86_pmu.intel_ctrl)
1808                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1809
1810         perf_events_lapic_init();
1811         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1812
1813         unconstrained = (struct event_constraint)
1814                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1815                                    0, x86_pmu.num_counters, 0, 0);
1816
1817         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1818
1819         if (!x86_pmu.events_sysfs_show)
1820                 x86_pmu_events_group.attrs = &empty_attrs;
1821
1822         pmu.attr_update = x86_pmu.attr_update;
1823
1824         pr_info("... version:                %d\n",     x86_pmu.version);
1825         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1826         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1827         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1828         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1829         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1830         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1831
1832         /*
1833          * Install callbacks. Core will call them for each online
1834          * cpu.
1835          */
1836         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1837                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1838         if (err)
1839                 return err;
1840
1841         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1842                                 "perf/x86:starting", x86_pmu_starting_cpu,
1843                                 x86_pmu_dying_cpu);
1844         if (err)
1845                 goto out;
1846
1847         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1848                                 x86_pmu_online_cpu, NULL);
1849         if (err)
1850                 goto out1;
1851
1852         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1853         if (err)
1854                 goto out2;
1855
1856         return 0;
1857
1858 out2:
1859         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1860 out1:
1861         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1862 out:
1863         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1864         return err;
1865 }
1866 early_initcall(init_hw_perf_events);
1867
1868 static inline void x86_pmu_read(struct perf_event *event)
1869 {
1870         if (x86_pmu.read)
1871                 return x86_pmu.read(event);
1872         x86_perf_event_update(event);
1873 }
1874
1875 /*
1876  * Start group events scheduling transaction
1877  * Set the flag to make pmu::enable() not perform the
1878  * schedulability test, it will be performed at commit time
1879  *
1880  * We only support PERF_PMU_TXN_ADD transactions. Save the
1881  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1882  * transactions.
1883  */
1884 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1885 {
1886         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1887
1888         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1889
1890         cpuc->txn_flags = txn_flags;
1891         if (txn_flags & ~PERF_PMU_TXN_ADD)
1892                 return;
1893
1894         perf_pmu_disable(pmu);
1895         __this_cpu_write(cpu_hw_events.n_txn, 0);
1896 }
1897
1898 /*
1899  * Stop group events scheduling transaction
1900  * Clear the flag and pmu::enable() will perform the
1901  * schedulability test.
1902  */
1903 static void x86_pmu_cancel_txn(struct pmu *pmu)
1904 {
1905         unsigned int txn_flags;
1906         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1907
1908         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1909
1910         txn_flags = cpuc->txn_flags;
1911         cpuc->txn_flags = 0;
1912         if (txn_flags & ~PERF_PMU_TXN_ADD)
1913                 return;
1914
1915         /*
1916          * Truncate collected array by the number of events added in this
1917          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1918          */
1919         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1920         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1921         perf_pmu_enable(pmu);
1922 }
1923
1924 /*
1925  * Commit group events scheduling transaction
1926  * Perform the group schedulability test as a whole
1927  * Return 0 if success
1928  *
1929  * Does not cancel the transaction on failure; expects the caller to do this.
1930  */
1931 static int x86_pmu_commit_txn(struct pmu *pmu)
1932 {
1933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934         int assign[X86_PMC_IDX_MAX];
1935         int n, ret;
1936
1937         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1938
1939         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1940                 cpuc->txn_flags = 0;
1941                 return 0;
1942         }
1943
1944         n = cpuc->n_events;
1945
1946         if (!x86_pmu_initialized())
1947                 return -EAGAIN;
1948
1949         ret = x86_pmu.schedule_events(cpuc, n, assign);
1950         if (ret)
1951                 return ret;
1952
1953         /*
1954          * copy new assignment, now we know it is possible
1955          * will be used by hw_perf_enable()
1956          */
1957         memcpy(cpuc->assign, assign, n*sizeof(int));
1958
1959         cpuc->txn_flags = 0;
1960         perf_pmu_enable(pmu);
1961         return 0;
1962 }
1963 /*
1964  * a fake_cpuc is used to validate event groups. Due to
1965  * the extra reg logic, we need to also allocate a fake
1966  * per_core and per_cpu structure. Otherwise, group events
1967  * using extra reg may conflict without the kernel being
1968  * able to catch this when the last event gets added to
1969  * the group.
1970  */
1971 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1972 {
1973         intel_cpuc_finish(cpuc);
1974         kfree(cpuc);
1975 }
1976
1977 static struct cpu_hw_events *allocate_fake_cpuc(void)
1978 {
1979         struct cpu_hw_events *cpuc;
1980         int cpu = raw_smp_processor_id();
1981
1982         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1983         if (!cpuc)
1984                 return ERR_PTR(-ENOMEM);
1985         cpuc->is_fake = 1;
1986
1987         if (intel_cpuc_prepare(cpuc, cpu))
1988                 goto error;
1989
1990         return cpuc;
1991 error:
1992         free_fake_cpuc(cpuc);
1993         return ERR_PTR(-ENOMEM);
1994 }
1995
1996 /*
1997  * validate that we can schedule this event
1998  */
1999 static int validate_event(struct perf_event *event)
2000 {
2001         struct cpu_hw_events *fake_cpuc;
2002         struct event_constraint *c;
2003         int ret = 0;
2004
2005         fake_cpuc = allocate_fake_cpuc();
2006         if (IS_ERR(fake_cpuc))
2007                 return PTR_ERR(fake_cpuc);
2008
2009         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2010
2011         if (!c || !c->weight)
2012                 ret = -EINVAL;
2013
2014         if (x86_pmu.put_event_constraints)
2015                 x86_pmu.put_event_constraints(fake_cpuc, event);
2016
2017         free_fake_cpuc(fake_cpuc);
2018
2019         return ret;
2020 }
2021
2022 /*
2023  * validate a single event group
2024  *
2025  * validation include:
2026  *      - check events are compatible which each other
2027  *      - events do not compete for the same counter
2028  *      - number of events <= number of counters
2029  *
2030  * validation ensures the group can be loaded onto the
2031  * PMU if it was the only group available.
2032  */
2033 static int validate_group(struct perf_event *event)
2034 {
2035         struct perf_event *leader = event->group_leader;
2036         struct cpu_hw_events *fake_cpuc;
2037         int ret = -EINVAL, n;
2038
2039         fake_cpuc = allocate_fake_cpuc();
2040         if (IS_ERR(fake_cpuc))
2041                 return PTR_ERR(fake_cpuc);
2042         /*
2043          * the event is not yet connected with its
2044          * siblings therefore we must first collect
2045          * existing siblings, then add the new event
2046          * before we can simulate the scheduling
2047          */
2048         n = collect_events(fake_cpuc, leader, true);
2049         if (n < 0)
2050                 goto out;
2051
2052         fake_cpuc->n_events = n;
2053         n = collect_events(fake_cpuc, event, false);
2054         if (n < 0)
2055                 goto out;
2056
2057         fake_cpuc->n_events = 0;
2058         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2059
2060 out:
2061         free_fake_cpuc(fake_cpuc);
2062         return ret;
2063 }
2064
2065 static int x86_pmu_event_init(struct perf_event *event)
2066 {
2067         struct pmu *tmp;
2068         int err;
2069
2070         switch (event->attr.type) {
2071         case PERF_TYPE_RAW:
2072         case PERF_TYPE_HARDWARE:
2073         case PERF_TYPE_HW_CACHE:
2074                 break;
2075
2076         default:
2077                 return -ENOENT;
2078         }
2079
2080         err = __x86_pmu_event_init(event);
2081         if (!err) {
2082                 /*
2083                  * we temporarily connect event to its pmu
2084                  * such that validate_group() can classify
2085                  * it as an x86 event using is_x86_event()
2086                  */
2087                 tmp = event->pmu;
2088                 event->pmu = &pmu;
2089
2090                 if (event->group_leader != event)
2091                         err = validate_group(event);
2092                 else
2093                         err = validate_event(event);
2094
2095                 event->pmu = tmp;
2096         }
2097         if (err) {
2098                 if (event->destroy)
2099                         event->destroy(event);
2100         }
2101
2102         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2103             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2104                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2105
2106         return err;
2107 }
2108
2109 static void refresh_pce(void *ignored)
2110 {
2111         load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2112 }
2113
2114 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2115 {
2116         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2117                 return;
2118
2119         /*
2120          * This function relies on not being called concurrently in two
2121          * tasks in the same mm.  Otherwise one task could observe
2122          * perf_rdpmc_allowed > 1 and return all the way back to
2123          * userspace with CR4.PCE clear while another task is still
2124          * doing on_each_cpu_mask() to propagate CR4.PCE.
2125          *
2126          * For now, this can't happen because all callers hold mmap_sem
2127          * for write.  If this changes, we'll need a different solution.
2128          */
2129         lockdep_assert_held_write(&mm->mmap_sem);
2130
2131         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2132                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2133 }
2134
2135 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2136 {
2137
2138         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2139                 return;
2140
2141         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2142                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2143 }
2144
2145 static int x86_pmu_event_idx(struct perf_event *event)
2146 {
2147         int idx = event->hw.idx;
2148
2149         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2150                 return 0;
2151
2152         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2153                 idx -= INTEL_PMC_IDX_FIXED;
2154                 idx |= 1 << 30;
2155         }
2156
2157         return idx + 1;
2158 }
2159
2160 static ssize_t get_attr_rdpmc(struct device *cdev,
2161                               struct device_attribute *attr,
2162                               char *buf)
2163 {
2164         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2165 }
2166
2167 static ssize_t set_attr_rdpmc(struct device *cdev,
2168                               struct device_attribute *attr,
2169                               const char *buf, size_t count)
2170 {
2171         unsigned long val;
2172         ssize_t ret;
2173
2174         ret = kstrtoul(buf, 0, &val);
2175         if (ret)
2176                 return ret;
2177
2178         if (val > 2)
2179                 return -EINVAL;
2180
2181         if (x86_pmu.attr_rdpmc_broken)
2182                 return -ENOTSUPP;
2183
2184         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2185                 /*
2186                  * Changing into or out of always available, aka
2187                  * perf-event-bypassing mode.  This path is extremely slow,
2188                  * but only root can trigger it, so it's okay.
2189                  */
2190                 if (val == 2)
2191                         static_branch_inc(&rdpmc_always_available_key);
2192                 else
2193                         static_branch_dec(&rdpmc_always_available_key);
2194                 on_each_cpu(refresh_pce, NULL, 1);
2195         }
2196
2197         x86_pmu.attr_rdpmc = val;
2198
2199         return count;
2200 }
2201
2202 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2203
2204 static struct attribute *x86_pmu_attrs[] = {
2205         &dev_attr_rdpmc.attr,
2206         NULL,
2207 };
2208
2209 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2210         .attrs = x86_pmu_attrs,
2211 };
2212
2213 static ssize_t max_precise_show(struct device *cdev,
2214                                   struct device_attribute *attr,
2215                                   char *buf)
2216 {
2217         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2218 }
2219
2220 static DEVICE_ATTR_RO(max_precise);
2221
2222 static struct attribute *x86_pmu_caps_attrs[] = {
2223         &dev_attr_max_precise.attr,
2224         NULL
2225 };
2226
2227 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2228         .name = "caps",
2229         .attrs = x86_pmu_caps_attrs,
2230 };
2231
2232 static const struct attribute_group *x86_pmu_attr_groups[] = {
2233         &x86_pmu_attr_group,
2234         &x86_pmu_format_group,
2235         &x86_pmu_events_group,
2236         &x86_pmu_caps_group,
2237         NULL,
2238 };
2239
2240 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2241 {
2242         if (x86_pmu.sched_task)
2243                 x86_pmu.sched_task(ctx, sched_in);
2244 }
2245
2246 void perf_check_microcode(void)
2247 {
2248         if (x86_pmu.check_microcode)
2249                 x86_pmu.check_microcode();
2250 }
2251
2252 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2253 {
2254         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2255                 return -EINVAL;
2256
2257         if (value && x86_pmu.limit_period) {
2258                 if (x86_pmu.limit_period(event, value) > value)
2259                         return -EINVAL;
2260         }
2261
2262         return 0;
2263 }
2264
2265 static int x86_pmu_aux_output_match(struct perf_event *event)
2266 {
2267         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2268                 return 0;
2269
2270         if (x86_pmu.aux_output_match)
2271                 return x86_pmu.aux_output_match(event);
2272
2273         return 0;
2274 }
2275
2276 static struct pmu pmu = {
2277         .pmu_enable             = x86_pmu_enable,
2278         .pmu_disable            = x86_pmu_disable,
2279
2280         .attr_groups            = x86_pmu_attr_groups,
2281
2282         .event_init             = x86_pmu_event_init,
2283
2284         .event_mapped           = x86_pmu_event_mapped,
2285         .event_unmapped         = x86_pmu_event_unmapped,
2286
2287         .add                    = x86_pmu_add,
2288         .del                    = x86_pmu_del,
2289         .start                  = x86_pmu_start,
2290         .stop                   = x86_pmu_stop,
2291         .read                   = x86_pmu_read,
2292
2293         .start_txn              = x86_pmu_start_txn,
2294         .cancel_txn             = x86_pmu_cancel_txn,
2295         .commit_txn             = x86_pmu_commit_txn,
2296
2297         .event_idx              = x86_pmu_event_idx,
2298         .sched_task             = x86_pmu_sched_task,
2299         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2300         .check_period           = x86_pmu_check_period,
2301
2302         .aux_output_match       = x86_pmu_aux_output_match,
2303 };
2304
2305 void arch_perf_update_userpage(struct perf_event *event,
2306                                struct perf_event_mmap_page *userpg, u64 now)
2307 {
2308         struct cyc2ns_data data;
2309         u64 offset;
2310
2311         userpg->cap_user_time = 0;
2312         userpg->cap_user_time_zero = 0;
2313         userpg->cap_user_rdpmc =
2314                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2315         userpg->pmc_width = x86_pmu.cntval_bits;
2316
2317         if (!using_native_sched_clock() || !sched_clock_stable())
2318                 return;
2319
2320         cyc2ns_read_begin(&data);
2321
2322         offset = data.cyc2ns_offset + __sched_clock_offset;
2323
2324         /*
2325          * Internal timekeeping for enabled/running/stopped times
2326          * is always in the local_clock domain.
2327          */
2328         userpg->cap_user_time = 1;
2329         userpg->time_mult = data.cyc2ns_mul;
2330         userpg->time_shift = data.cyc2ns_shift;
2331         userpg->time_offset = offset - now;
2332
2333         /*
2334          * cap_user_time_zero doesn't make sense when we're using a different
2335          * time base for the records.
2336          */
2337         if (!event->attr.use_clockid) {
2338                 userpg->cap_user_time_zero = 1;
2339                 userpg->time_zero = offset;
2340         }
2341
2342         cyc2ns_read_end();
2343 }
2344
2345 /*
2346  * Determine whether the regs were taken from an irq/exception handler rather
2347  * than from perf_arch_fetch_caller_regs().
2348  */
2349 static bool perf_hw_regs(struct pt_regs *regs)
2350 {
2351         return regs->flags & X86_EFLAGS_FIXED;
2352 }
2353
2354 void
2355 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2356 {
2357         struct unwind_state state;
2358         unsigned long addr;
2359
2360         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2361                 /* TODO: We don't support guest os callchain now */
2362                 return;
2363         }
2364
2365         if (perf_callchain_store(entry, regs->ip))
2366                 return;
2367
2368         if (perf_hw_regs(regs))
2369                 unwind_start(&state, current, regs, NULL);
2370         else
2371                 unwind_start(&state, current, NULL, (void *)regs->sp);
2372
2373         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2374                 addr = unwind_get_return_address(&state);
2375                 if (!addr || perf_callchain_store(entry, addr))
2376                         return;
2377         }
2378 }
2379
2380 static inline int
2381 valid_user_frame(const void __user *fp, unsigned long size)
2382 {
2383         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2384 }
2385
2386 static unsigned long get_segment_base(unsigned int segment)
2387 {
2388         struct desc_struct *desc;
2389         unsigned int idx = segment >> 3;
2390
2391         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2392 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2393                 struct ldt_struct *ldt;
2394
2395                 /* IRQs are off, so this synchronizes with smp_store_release */
2396                 ldt = READ_ONCE(current->active_mm->context.ldt);
2397                 if (!ldt || idx >= ldt->nr_entries)
2398                         return 0;
2399
2400                 desc = &ldt->entries[idx];
2401 #else
2402                 return 0;
2403 #endif
2404         } else {
2405                 if (idx >= GDT_ENTRIES)
2406                         return 0;
2407
2408                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2409         }
2410
2411         return get_desc_base(desc);
2412 }
2413
2414 #ifdef CONFIG_IA32_EMULATION
2415
2416 #include <linux/compat.h>
2417
2418 static inline int
2419 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2420 {
2421         /* 32-bit process in 64-bit kernel. */
2422         unsigned long ss_base, cs_base;
2423         struct stack_frame_ia32 frame;
2424         const void __user *fp;
2425
2426         if (!test_thread_flag(TIF_IA32))
2427                 return 0;
2428
2429         cs_base = get_segment_base(regs->cs);
2430         ss_base = get_segment_base(regs->ss);
2431
2432         fp = compat_ptr(ss_base + regs->bp);
2433         pagefault_disable();
2434         while (entry->nr < entry->max_stack) {
2435                 unsigned long bytes;
2436                 frame.next_frame     = 0;
2437                 frame.return_address = 0;
2438
2439                 if (!valid_user_frame(fp, sizeof(frame)))
2440                         break;
2441
2442                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2443                 if (bytes != 0)
2444                         break;
2445                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2446                 if (bytes != 0)
2447                         break;
2448
2449                 perf_callchain_store(entry, cs_base + frame.return_address);
2450                 fp = compat_ptr(ss_base + frame.next_frame);
2451         }
2452         pagefault_enable();
2453         return 1;
2454 }
2455 #else
2456 static inline int
2457 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2458 {
2459     return 0;
2460 }
2461 #endif
2462
2463 void
2464 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2465 {
2466         struct stack_frame frame;
2467         const unsigned long __user *fp;
2468
2469         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2470                 /* TODO: We don't support guest os callchain now */
2471                 return;
2472         }
2473
2474         /*
2475          * We don't know what to do with VM86 stacks.. ignore them for now.
2476          */
2477         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2478                 return;
2479
2480         fp = (unsigned long __user *)regs->bp;
2481
2482         perf_callchain_store(entry, regs->ip);
2483
2484         if (!nmi_uaccess_okay())
2485                 return;
2486
2487         if (perf_callchain_user32(regs, entry))
2488                 return;
2489
2490         pagefault_disable();
2491         while (entry->nr < entry->max_stack) {
2492                 unsigned long bytes;
2493
2494                 frame.next_frame             = NULL;
2495                 frame.return_address = 0;
2496
2497                 if (!valid_user_frame(fp, sizeof(frame)))
2498                         break;
2499
2500                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2501                 if (bytes != 0)
2502                         break;
2503                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2504                 if (bytes != 0)
2505                         break;
2506
2507                 perf_callchain_store(entry, frame.return_address);
2508                 fp = (void __user *)frame.next_frame;
2509         }
2510         pagefault_enable();
2511 }
2512
2513 /*
2514  * Deal with code segment offsets for the various execution modes:
2515  *
2516  *   VM86 - the good olde 16 bit days, where the linear address is
2517  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2518  *
2519  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2520  *          to figure out what the 32bit base address is.
2521  *
2522  *    X32 - has TIF_X32 set, but is running in x86_64
2523  *
2524  * X86_64 - CS,DS,SS,ES are all zero based.
2525  */
2526 static unsigned long code_segment_base(struct pt_regs *regs)
2527 {
2528         /*
2529          * For IA32 we look at the GDT/LDT segment base to convert the
2530          * effective IP to a linear address.
2531          */
2532
2533 #ifdef CONFIG_X86_32
2534         /*
2535          * If we are in VM86 mode, add the segment offset to convert to a
2536          * linear address.
2537          */
2538         if (regs->flags & X86_VM_MASK)
2539                 return 0x10 * regs->cs;
2540
2541         if (user_mode(regs) && regs->cs != __USER_CS)
2542                 return get_segment_base(regs->cs);
2543 #else
2544         if (user_mode(regs) && !user_64bit_mode(regs) &&
2545             regs->cs != __USER32_CS)
2546                 return get_segment_base(regs->cs);
2547 #endif
2548         return 0;
2549 }
2550
2551 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2552 {
2553         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2554                 return perf_guest_cbs->get_guest_ip();
2555
2556         return regs->ip + code_segment_base(regs);
2557 }
2558
2559 unsigned long perf_misc_flags(struct pt_regs *regs)
2560 {
2561         int misc = 0;
2562
2563         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2564                 if (perf_guest_cbs->is_user_mode())
2565                         misc |= PERF_RECORD_MISC_GUEST_USER;
2566                 else
2567                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2568         } else {
2569                 if (user_mode(regs))
2570                         misc |= PERF_RECORD_MISC_USER;
2571                 else
2572                         misc |= PERF_RECORD_MISC_KERNEL;
2573         }
2574
2575         if (regs->flags & PERF_EFLAGS_EXACT)
2576                 misc |= PERF_RECORD_MISC_EXACT_IP;
2577
2578         return misc;
2579 }
2580
2581 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2582 {
2583         cap->version            = x86_pmu.version;
2584         cap->num_counters_gp    = x86_pmu.num_counters;
2585         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2586         cap->bit_width_gp       = x86_pmu.cntval_bits;
2587         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2588         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2589         cap->events_mask_len    = x86_pmu.events_mask_len;
2590 }
2591 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);