crypto: x86/sm3 - Fixup SLS
[sfrench/cifs-2.6.git] / arch / x86 / crypto / sm3-avx-asm_64.S
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * SM3 AVX accelerated transform.
4  * specified in: https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02
5  *
6  * Copyright (C) 2021 Jussi Kivilinna <jussi.kivilinna@iki.fi>
7  * Copyright (C) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
8  */
9
10 /* Based on SM3 AES/BMI2 accelerated work by libgcrypt at:
11  *  https://gnupg.org/software/libgcrypt/index.html
12  */
13
14 #include <linux/linkage.h>
15 #include <asm/frame.h>
16
17 /* Context structure */
18
19 #define state_h0 0
20 #define state_h1 4
21 #define state_h2 8
22 #define state_h3 12
23 #define state_h4 16
24 #define state_h5 20
25 #define state_h6 24
26 #define state_h7 28
27
28 /* Constants */
29
30 /* Round constant macros */
31
32 #define K0   2043430169  /* 0x79cc4519 */
33 #define K1   -208106958  /* 0xf3988a32 */
34 #define K2   -416213915  /* 0xe7311465 */
35 #define K3   -832427829  /* 0xce6228cb */
36 #define K4  -1664855657  /* 0x9cc45197 */
37 #define K5    965255983  /* 0x3988a32f */
38 #define K6   1930511966  /* 0x7311465e */
39 #define K7   -433943364  /* 0xe6228cbc */
40 #define K8   -867886727  /* 0xcc451979 */
41 #define K9  -1735773453  /* 0x988a32f3 */
42 #define K10   823420391  /* 0x311465e7 */
43 #define K11  1646840782  /* 0x6228cbce */
44 #define K12 -1001285732  /* 0xc451979c */
45 #define K13 -2002571463  /* 0x88a32f39 */
46 #define K14   289824371  /* 0x11465e73 */
47 #define K15   579648742  /* 0x228cbce6 */
48 #define K16 -1651869049  /* 0x9d8a7a87 */
49 #define K17   991229199  /* 0x3b14f50f */
50 #define K18  1982458398  /* 0x7629ea1e */
51 #define K19  -330050500  /* 0xec53d43c */
52 #define K20  -660100999  /* 0xd8a7a879 */
53 #define K21 -1320201997  /* 0xb14f50f3 */
54 #define K22  1654563303  /* 0x629ea1e7 */
55 #define K23  -985840690  /* 0xc53d43ce */
56 #define K24 -1971681379  /* 0x8a7a879d */
57 #define K25   351604539  /* 0x14f50f3b */
58 #define K26   703209078  /* 0x29ea1e76 */
59 #define K27  1406418156  /* 0x53d43cec */
60 #define K28 -1482130984  /* 0xa7a879d8 */
61 #define K29  1330705329  /* 0x4f50f3b1 */
62 #define K30 -1633556638  /* 0x9ea1e762 */
63 #define K31  1027854021  /* 0x3d43cec5 */
64 #define K32  2055708042  /* 0x7a879d8a */
65 #define K33  -183551212  /* 0xf50f3b14 */
66 #define K34  -367102423  /* 0xea1e7629 */
67 #define K35  -734204845  /* 0xd43cec53 */
68 #define K36 -1468409689  /* 0xa879d8a7 */
69 #define K37  1358147919  /* 0x50f3b14f */
70 #define K38 -1578671458  /* 0xa1e7629e */
71 #define K39  1137624381  /* 0x43cec53d */
72 #define K40 -2019718534  /* 0x879d8a7a */
73 #define K41   255530229  /* 0x0f3b14f5 */
74 #define K42   511060458  /* 0x1e7629ea */
75 #define K43  1022120916  /* 0x3cec53d4 */
76 #define K44  2044241832  /* 0x79d8a7a8 */
77 #define K45  -206483632  /* 0xf3b14f50 */
78 #define K46  -412967263  /* 0xe7629ea1 */
79 #define K47  -825934525  /* 0xcec53d43 */
80 #define K48 -1651869049  /* 0x9d8a7a87 */
81 #define K49   991229199  /* 0x3b14f50f */
82 #define K50  1982458398  /* 0x7629ea1e */
83 #define K51  -330050500  /* 0xec53d43c */
84 #define K52  -660100999  /* 0xd8a7a879 */
85 #define K53 -1320201997  /* 0xb14f50f3 */
86 #define K54  1654563303  /* 0x629ea1e7 */
87 #define K55  -985840690  /* 0xc53d43ce */
88 #define K56 -1971681379  /* 0x8a7a879d */
89 #define K57   351604539  /* 0x14f50f3b */
90 #define K58   703209078  /* 0x29ea1e76 */
91 #define K59  1406418156  /* 0x53d43cec */
92 #define K60 -1482130984  /* 0xa7a879d8 */
93 #define K61  1330705329  /* 0x4f50f3b1 */
94 #define K62 -1633556638  /* 0x9ea1e762 */
95 #define K63  1027854021  /* 0x3d43cec5 */
96
97 /* Register macros */
98
99 #define RSTATE %rdi
100 #define RDATA  %rsi
101 #define RNBLKS %rdx
102
103 #define t0 %eax
104 #define t1 %ebx
105 #define t2 %ecx
106
107 #define a %r8d
108 #define b %r9d
109 #define c %r10d
110 #define d %r11d
111 #define e %r12d
112 #define f %r13d
113 #define g %r14d
114 #define h %r15d
115
116 #define W0 %xmm0
117 #define W1 %xmm1
118 #define W2 %xmm2
119 #define W3 %xmm3
120 #define W4 %xmm4
121 #define W5 %xmm5
122
123 #define XTMP0 %xmm6
124 #define XTMP1 %xmm7
125 #define XTMP2 %xmm8
126 #define XTMP3 %xmm9
127 #define XTMP4 %xmm10
128 #define XTMP5 %xmm11
129 #define XTMP6 %xmm12
130
131 #define BSWAP_REG %xmm15
132
133 /* Stack structure */
134
135 #define STACK_W_SIZE        (32 * 2 * 3)
136 #define STACK_REG_SAVE_SIZE (64)
137
138 #define STACK_W             (0)
139 #define STACK_REG_SAVE      (STACK_W + STACK_W_SIZE)
140 #define STACK_SIZE          (STACK_REG_SAVE + STACK_REG_SAVE_SIZE)
141
142 /* Instruction helpers. */
143
144 #define roll2(v, reg)           \
145         roll $(v), reg;
146
147 #define roll3mov(v, src, dst)   \
148         movl src, dst;          \
149         roll $(v), dst;
150
151 #define roll3(v, src, dst)      \
152         rorxl $(32-(v)), src, dst;
153
154 #define addl2(a, out)           \
155         leal (a, out), out;
156
157 /* Round function macros. */
158
159 #define GG1(x, y, z, o, t)      \
160         movl x, o;              \
161         xorl y, o;              \
162         xorl z, o;
163
164 #define FF1(x, y, z, o, t) GG1(x, y, z, o, t)
165
166 #define GG2(x, y, z, o, t)      \
167         andnl z, x, o;          \
168         movl y, t;              \
169         andl x, t;              \
170         addl2(t, o);
171
172 #define FF2(x, y, z, o, t)      \
173         movl y, o;              \
174         xorl x, o;              \
175         movl y, t;              \
176         andl x, t;              \
177         andl z, o;              \
178         xorl t, o;
179
180 #define R(i, a, b, c, d, e, f, g, h, round, widx, wtype)                \
181         /* rol(a, 12) => t0 */                                          \
182         roll3mov(12, a, t0); /* rorxl here would reduce perf by 6% on zen3 */ \
183         /* rol (t0 + e + t), 7) => t1 */                                \
184         leal K##round(t0, e, 1), t1;                                    \
185         roll2(7, t1);                                                   \
186         /* h + w1 => h */                                               \
187         addl wtype##_W1_ADDR(round, widx), h;                           \
188         /* h + t1 => h */                                               \
189         addl2(t1, h);                                                   \
190         /* t1 ^ t0 => t0 */                                             \
191         xorl t1, t0;                                                    \
192         /* w1w2 + d => d */                                             \
193         addl wtype##_W1W2_ADDR(round, widx), d;                         \
194         /* FF##i(a,b,c) => t1 */                                        \
195         FF##i(a, b, c, t1, t2);                                         \
196         /* d + t1 => d */                                               \
197         addl2(t1, d);                                                   \
198         /* GG#i(e,f,g) => t2 */                                         \
199         GG##i(e, f, g, t2, t1);                                         \
200         /* h + t2 => h */                                               \
201         addl2(t2, h);                                                   \
202         /* rol (f, 19) => f */                                          \
203         roll2(19, f);                                                   \
204         /* d + t0 => d */                                               \
205         addl2(t0, d);                                                   \
206         /* rol (b, 9) => b */                                           \
207         roll2(9, b);                                                    \
208         /* P0(h) => h */                                                \
209         roll3(9, h, t2);                                                \
210         roll3(17, h, t1);                                               \
211         xorl t2, h;                                                     \
212         xorl t1, h;
213
214 #define R1(a, b, c, d, e, f, g, h, round, widx, wtype) \
215         R(1, a, b, c, d, e, f, g, h, round, widx, wtype)
216
217 #define R2(a, b, c, d, e, f, g, h, round, widx, wtype) \
218         R(2, a, b, c, d, e, f, g, h, round, widx, wtype)
219
220 /* Input expansion macros. */
221
222 /* Byte-swapped input address. */
223 #define IW_W_ADDR(round, widx, offs) \
224         (STACK_W + ((round) / 4) * 64 + (offs) + ((widx) * 4))(%rsp)
225
226 /* Expanded input address. */
227 #define XW_W_ADDR(round, widx, offs) \
228         (STACK_W + ((((round) / 3) - 4) % 2) * 64 + (offs) + ((widx) * 4))(%rsp)
229
230 /* Rounds 1-12, byte-swapped input block addresses. */
231 #define IW_W1_ADDR(round, widx)   IW_W_ADDR(round, widx, 0)
232 #define IW_W1W2_ADDR(round, widx) IW_W_ADDR(round, widx, 32)
233
234 /* Rounds 1-12, expanded input block addresses. */
235 #define XW_W1_ADDR(round, widx)   XW_W_ADDR(round, widx, 0)
236 #define XW_W1W2_ADDR(round, widx) XW_W_ADDR(round, widx, 32)
237
238 /* Input block loading. */
239 #define LOAD_W_XMM_1()                                                  \
240         vmovdqu 0*16(RDATA), XTMP0; /* XTMP0: w3, w2, w1, w0 */         \
241         vmovdqu 1*16(RDATA), XTMP1; /* XTMP1: w7, w6, w5, w4 */         \
242         vmovdqu 2*16(RDATA), XTMP2; /* XTMP2: w11, w10, w9, w8 */       \
243         vmovdqu 3*16(RDATA), XTMP3; /* XTMP3: w15, w14, w13, w12 */     \
244         vpshufb BSWAP_REG, XTMP0, XTMP0;                                \
245         vpshufb BSWAP_REG, XTMP1, XTMP1;                                \
246         vpshufb BSWAP_REG, XTMP2, XTMP2;                                \
247         vpshufb BSWAP_REG, XTMP3, XTMP3;                                \
248         vpxor XTMP0, XTMP1, XTMP4;                                      \
249         vpxor XTMP1, XTMP2, XTMP5;                                      \
250         vpxor XTMP2, XTMP3, XTMP6;                                      \
251         leaq 64(RDATA), RDATA;                                          \
252         vmovdqa XTMP0, IW_W1_ADDR(0, 0);                                \
253         vmovdqa XTMP4, IW_W1W2_ADDR(0, 0);                              \
254         vmovdqa XTMP1, IW_W1_ADDR(4, 0);                                \
255         vmovdqa XTMP5, IW_W1W2_ADDR(4, 0);
256
257 #define LOAD_W_XMM_2()                          \
258         vmovdqa XTMP2, IW_W1_ADDR(8, 0);        \
259         vmovdqa XTMP6, IW_W1W2_ADDR(8, 0);
260
261 #define LOAD_W_XMM_3()                                                  \
262         vpshufd $0b00000000, XTMP0, W0; /* W0: xx, w0, xx, xx */        \
263         vpshufd $0b11111001, XTMP0, W1; /* W1: xx, w3, w2, w1 */        \
264         vmovdqa XTMP1, W2;              /* W2: xx, w6, w5, w4 */        \
265         vpalignr $12, XTMP1, XTMP2, W3; /* W3: xx, w9, w8, w7 */        \
266         vpalignr $8, XTMP2, XTMP3, W4;  /* W4: xx, w12, w11, w10 */     \
267         vpshufd $0b11111001, XTMP3, W5; /* W5: xx, w15, w14, w13 */
268
269 /* Message scheduling. Note: 3 words per XMM register. */
270 #define SCHED_W_0(round, w0, w1, w2, w3, w4, w5)                        \
271         /* Load (w[i - 16]) => XTMP0 */                                 \
272         vpshufd $0b10111111, w0, XTMP0;                                 \
273         vpalignr $12, XTMP0, w1, XTMP0; /* XTMP0: xx, w2, w1, w0 */     \
274         /* Load (w[i - 13]) => XTMP1 */                                 \
275         vpshufd $0b10111111, w1, XTMP1;                                 \
276         vpalignr $12, XTMP1, w2, XTMP1;                                 \
277         /* w[i - 9] == w3 */                                            \
278         /* XMM3 ^ XTMP0 => XTMP0 */                                     \
279         vpxor w3, XTMP0, XTMP0;
280
281 #define SCHED_W_1(round, w0, w1, w2, w3, w4, w5)        \
282         /* w[i - 3] == w5 */                            \
283         /* rol(XMM5, 15) ^ XTMP0 => XTMP0 */            \
284         vpslld $15, w5, XTMP2;                          \
285         vpsrld $(32-15), w5, XTMP3;                     \
286         vpxor XTMP2, XTMP3, XTMP3;                      \
287         vpxor XTMP3, XTMP0, XTMP0;                      \
288         /* rol(XTMP1, 7) => XTMP1 */                    \
289         vpslld $7, XTMP1, XTMP5;                        \
290         vpsrld $(32-7), XTMP1, XTMP1;                   \
291         vpxor XTMP5, XTMP1, XTMP1;                      \
292         /* XMM4 ^ XTMP1 => XTMP1 */                     \
293         vpxor w4, XTMP1, XTMP1;                         \
294         /* w[i - 6] == XMM4 */                          \
295         /* P1(XTMP0) ^ XTMP1 => XMM0 */                 \
296         vpslld $15, XTMP0, XTMP5;                       \
297         vpsrld $(32-15), XTMP0, XTMP6;                  \
298         vpslld $23, XTMP0, XTMP2;                       \
299         vpsrld $(32-23), XTMP0, XTMP3;                  \
300         vpxor XTMP0, XTMP1, XTMP1;                      \
301         vpxor XTMP6, XTMP5, XTMP5;                      \
302         vpxor XTMP3, XTMP2, XTMP2;                      \
303         vpxor XTMP2, XTMP5, XTMP5;                      \
304         vpxor XTMP5, XTMP1, w0;
305
306 #define SCHED_W_2(round, w0, w1, w2, w3, w4, w5)        \
307         /* W1 in XMM12 */                               \
308         vpshufd $0b10111111, w4, XTMP4;                 \
309         vpalignr $12, XTMP4, w5, XTMP4;                 \
310         vmovdqa XTMP4, XW_W1_ADDR((round), 0);          \
311         /* W1 ^ W2 => XTMP1 */                          \
312         vpxor w0, XTMP4, XTMP1;                         \
313         vmovdqa XTMP1, XW_W1W2_ADDR((round), 0);
314
315
316 .section        .rodata.cst16, "aM", @progbits, 16
317 .align 16
318
319 .Lbe32mask:
320         .long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f
321
322 .text
323
324 /*
325  * Transform nblocks*64 bytes (nblocks*16 32-bit words) at DATA.
326  *
327  * void sm3_transform_avx(struct sm3_state *state,
328  *                        const u8 *data, int nblocks);
329  */
330 .align 16
331 SYM_FUNC_START(sm3_transform_avx)
332         /* input:
333          *      %rdi: ctx, CTX
334          *      %rsi: data (64*nblks bytes)
335          *      %rdx: nblocks
336          */
337         vzeroupper;
338
339         pushq %rbp;
340         movq %rsp, %rbp;
341
342         movq %rdx, RNBLKS;
343
344         subq $STACK_SIZE, %rsp;
345         andq $(~63), %rsp;
346
347         movq %rbx, (STACK_REG_SAVE + 0 * 8)(%rsp);
348         movq %r15, (STACK_REG_SAVE + 1 * 8)(%rsp);
349         movq %r14, (STACK_REG_SAVE + 2 * 8)(%rsp);
350         movq %r13, (STACK_REG_SAVE + 3 * 8)(%rsp);
351         movq %r12, (STACK_REG_SAVE + 4 * 8)(%rsp);
352
353         vmovdqa .Lbe32mask (%rip), BSWAP_REG;
354
355         /* Get the values of the chaining variables. */
356         movl state_h0(RSTATE), a;
357         movl state_h1(RSTATE), b;
358         movl state_h2(RSTATE), c;
359         movl state_h3(RSTATE), d;
360         movl state_h4(RSTATE), e;
361         movl state_h5(RSTATE), f;
362         movl state_h6(RSTATE), g;
363         movl state_h7(RSTATE), h;
364
365 .align 16
366 .Loop:
367         /* Load data part1. */
368         LOAD_W_XMM_1();
369
370         leaq -1(RNBLKS), RNBLKS;
371
372         /* Transform 0-3 + Load data part2. */
373         R1(a, b, c, d, e, f, g, h, 0, 0, IW); LOAD_W_XMM_2();
374         R1(d, a, b, c, h, e, f, g, 1, 1, IW);
375         R1(c, d, a, b, g, h, e, f, 2, 2, IW);
376         R1(b, c, d, a, f, g, h, e, 3, 3, IW); LOAD_W_XMM_3();
377
378         /* Transform 4-7 + Precalc 12-14. */
379         R1(a, b, c, d, e, f, g, h, 4, 0, IW);
380         R1(d, a, b, c, h, e, f, g, 5, 1, IW);
381         R1(c, d, a, b, g, h, e, f, 6, 2, IW); SCHED_W_0(12, W0, W1, W2, W3, W4, W5);
382         R1(b, c, d, a, f, g, h, e, 7, 3, IW); SCHED_W_1(12, W0, W1, W2, W3, W4, W5);
383
384         /* Transform 8-11 + Precalc 12-17. */
385         R1(a, b, c, d, e, f, g, h, 8, 0, IW); SCHED_W_2(12, W0, W1, W2, W3, W4, W5);
386         R1(d, a, b, c, h, e, f, g, 9, 1, IW); SCHED_W_0(15, W1, W2, W3, W4, W5, W0);
387         R1(c, d, a, b, g, h, e, f, 10, 2, IW); SCHED_W_1(15, W1, W2, W3, W4, W5, W0);
388         R1(b, c, d, a, f, g, h, e, 11, 3, IW); SCHED_W_2(15, W1, W2, W3, W4, W5, W0);
389
390         /* Transform 12-14 + Precalc 18-20 */
391         R1(a, b, c, d, e, f, g, h, 12, 0, XW); SCHED_W_0(18, W2, W3, W4, W5, W0, W1);
392         R1(d, a, b, c, h, e, f, g, 13, 1, XW); SCHED_W_1(18, W2, W3, W4, W5, W0, W1);
393         R1(c, d, a, b, g, h, e, f, 14, 2, XW); SCHED_W_2(18, W2, W3, W4, W5, W0, W1);
394
395         /* Transform 15-17 + Precalc 21-23 */
396         R1(b, c, d, a, f, g, h, e, 15, 0, XW); SCHED_W_0(21, W3, W4, W5, W0, W1, W2);
397         R2(a, b, c, d, e, f, g, h, 16, 1, XW); SCHED_W_1(21, W3, W4, W5, W0, W1, W2);
398         R2(d, a, b, c, h, e, f, g, 17, 2, XW); SCHED_W_2(21, W3, W4, W5, W0, W1, W2);
399
400         /* Transform 18-20 + Precalc 24-26 */
401         R2(c, d, a, b, g, h, e, f, 18, 0, XW); SCHED_W_0(24, W4, W5, W0, W1, W2, W3);
402         R2(b, c, d, a, f, g, h, e, 19, 1, XW); SCHED_W_1(24, W4, W5, W0, W1, W2, W3);
403         R2(a, b, c, d, e, f, g, h, 20, 2, XW); SCHED_W_2(24, W4, W5, W0, W1, W2, W3);
404
405         /* Transform 21-23 + Precalc 27-29 */
406         R2(d, a, b, c, h, e, f, g, 21, 0, XW); SCHED_W_0(27, W5, W0, W1, W2, W3, W4);
407         R2(c, d, a, b, g, h, e, f, 22, 1, XW); SCHED_W_1(27, W5, W0, W1, W2, W3, W4);
408         R2(b, c, d, a, f, g, h, e, 23, 2, XW); SCHED_W_2(27, W5, W0, W1, W2, W3, W4);
409
410         /* Transform 24-26 + Precalc 30-32 */
411         R2(a, b, c, d, e, f, g, h, 24, 0, XW); SCHED_W_0(30, W0, W1, W2, W3, W4, W5);
412         R2(d, a, b, c, h, e, f, g, 25, 1, XW); SCHED_W_1(30, W0, W1, W2, W3, W4, W5);
413         R2(c, d, a, b, g, h, e, f, 26, 2, XW); SCHED_W_2(30, W0, W1, W2, W3, W4, W5);
414
415         /* Transform 27-29 + Precalc 33-35 */
416         R2(b, c, d, a, f, g, h, e, 27, 0, XW); SCHED_W_0(33, W1, W2, W3, W4, W5, W0);
417         R2(a, b, c, d, e, f, g, h, 28, 1, XW); SCHED_W_1(33, W1, W2, W3, W4, W5, W0);
418         R2(d, a, b, c, h, e, f, g, 29, 2, XW); SCHED_W_2(33, W1, W2, W3, W4, W5, W0);
419
420         /* Transform 30-32 + Precalc 36-38 */
421         R2(c, d, a, b, g, h, e, f, 30, 0, XW); SCHED_W_0(36, W2, W3, W4, W5, W0, W1);
422         R2(b, c, d, a, f, g, h, e, 31, 1, XW); SCHED_W_1(36, W2, W3, W4, W5, W0, W1);
423         R2(a, b, c, d, e, f, g, h, 32, 2, XW); SCHED_W_2(36, W2, W3, W4, W5, W0, W1);
424
425         /* Transform 33-35 + Precalc 39-41 */
426         R2(d, a, b, c, h, e, f, g, 33, 0, XW); SCHED_W_0(39, W3, W4, W5, W0, W1, W2);
427         R2(c, d, a, b, g, h, e, f, 34, 1, XW); SCHED_W_1(39, W3, W4, W5, W0, W1, W2);
428         R2(b, c, d, a, f, g, h, e, 35, 2, XW); SCHED_W_2(39, W3, W4, W5, W0, W1, W2);
429
430         /* Transform 36-38 + Precalc 42-44 */
431         R2(a, b, c, d, e, f, g, h, 36, 0, XW); SCHED_W_0(42, W4, W5, W0, W1, W2, W3);
432         R2(d, a, b, c, h, e, f, g, 37, 1, XW); SCHED_W_1(42, W4, W5, W0, W1, W2, W3);
433         R2(c, d, a, b, g, h, e, f, 38, 2, XW); SCHED_W_2(42, W4, W5, W0, W1, W2, W3);
434
435         /* Transform 39-41 + Precalc 45-47 */
436         R2(b, c, d, a, f, g, h, e, 39, 0, XW); SCHED_W_0(45, W5, W0, W1, W2, W3, W4);
437         R2(a, b, c, d, e, f, g, h, 40, 1, XW); SCHED_W_1(45, W5, W0, W1, W2, W3, W4);
438         R2(d, a, b, c, h, e, f, g, 41, 2, XW); SCHED_W_2(45, W5, W0, W1, W2, W3, W4);
439
440         /* Transform 42-44 + Precalc 48-50 */
441         R2(c, d, a, b, g, h, e, f, 42, 0, XW); SCHED_W_0(48, W0, W1, W2, W3, W4, W5);
442         R2(b, c, d, a, f, g, h, e, 43, 1, XW); SCHED_W_1(48, W0, W1, W2, W3, W4, W5);
443         R2(a, b, c, d, e, f, g, h, 44, 2, XW); SCHED_W_2(48, W0, W1, W2, W3, W4, W5);
444
445         /* Transform 45-47 + Precalc 51-53 */
446         R2(d, a, b, c, h, e, f, g, 45, 0, XW); SCHED_W_0(51, W1, W2, W3, W4, W5, W0);
447         R2(c, d, a, b, g, h, e, f, 46, 1, XW); SCHED_W_1(51, W1, W2, W3, W4, W5, W0);
448         R2(b, c, d, a, f, g, h, e, 47, 2, XW); SCHED_W_2(51, W1, W2, W3, W4, W5, W0);
449
450         /* Transform 48-50 + Precalc 54-56 */
451         R2(a, b, c, d, e, f, g, h, 48, 0, XW); SCHED_W_0(54, W2, W3, W4, W5, W0, W1);
452         R2(d, a, b, c, h, e, f, g, 49, 1, XW); SCHED_W_1(54, W2, W3, W4, W5, W0, W1);
453         R2(c, d, a, b, g, h, e, f, 50, 2, XW); SCHED_W_2(54, W2, W3, W4, W5, W0, W1);
454
455         /* Transform 51-53 + Precalc 57-59 */
456         R2(b, c, d, a, f, g, h, e, 51, 0, XW); SCHED_W_0(57, W3, W4, W5, W0, W1, W2);
457         R2(a, b, c, d, e, f, g, h, 52, 1, XW); SCHED_W_1(57, W3, W4, W5, W0, W1, W2);
458         R2(d, a, b, c, h, e, f, g, 53, 2, XW); SCHED_W_2(57, W3, W4, W5, W0, W1, W2);
459
460         /* Transform 54-56 + Precalc 60-62 */
461         R2(c, d, a, b, g, h, e, f, 54, 0, XW); SCHED_W_0(60, W4, W5, W0, W1, W2, W3);
462         R2(b, c, d, a, f, g, h, e, 55, 1, XW); SCHED_W_1(60, W4, W5, W0, W1, W2, W3);
463         R2(a, b, c, d, e, f, g, h, 56, 2, XW); SCHED_W_2(60, W4, W5, W0, W1, W2, W3);
464
465         /* Transform 57-59 + Precalc 63 */
466         R2(d, a, b, c, h, e, f, g, 57, 0, XW); SCHED_W_0(63, W5, W0, W1, W2, W3, W4);
467         R2(c, d, a, b, g, h, e, f, 58, 1, XW);
468         R2(b, c, d, a, f, g, h, e, 59, 2, XW); SCHED_W_1(63, W5, W0, W1, W2, W3, W4);
469
470         /* Transform 60-62 + Precalc 63 */
471         R2(a, b, c, d, e, f, g, h, 60, 0, XW);
472         R2(d, a, b, c, h, e, f, g, 61, 1, XW); SCHED_W_2(63, W5, W0, W1, W2, W3, W4);
473         R2(c, d, a, b, g, h, e, f, 62, 2, XW);
474
475         /* Transform 63 */
476         R2(b, c, d, a, f, g, h, e, 63, 0, XW);
477
478         /* Update the chaining variables. */
479         xorl state_h0(RSTATE), a;
480         xorl state_h1(RSTATE), b;
481         xorl state_h2(RSTATE), c;
482         xorl state_h3(RSTATE), d;
483         movl a, state_h0(RSTATE);
484         movl b, state_h1(RSTATE);
485         movl c, state_h2(RSTATE);
486         movl d, state_h3(RSTATE);
487         xorl state_h4(RSTATE), e;
488         xorl state_h5(RSTATE), f;
489         xorl state_h6(RSTATE), g;
490         xorl state_h7(RSTATE), h;
491         movl e, state_h4(RSTATE);
492         movl f, state_h5(RSTATE);
493         movl g, state_h6(RSTATE);
494         movl h, state_h7(RSTATE);
495
496         cmpq $0, RNBLKS;
497         jne .Loop;
498
499         vzeroall;
500
501         movq (STACK_REG_SAVE + 0 * 8)(%rsp), %rbx;
502         movq (STACK_REG_SAVE + 1 * 8)(%rsp), %r15;
503         movq (STACK_REG_SAVE + 2 * 8)(%rsp), %r14;
504         movq (STACK_REG_SAVE + 3 * 8)(%rsp), %r13;
505         movq (STACK_REG_SAVE + 4 * 8)(%rsp), %r12;
506
507         vmovdqa %xmm0, IW_W1_ADDR(0, 0);
508         vmovdqa %xmm0, IW_W1W2_ADDR(0, 0);
509         vmovdqa %xmm0, IW_W1_ADDR(4, 0);
510         vmovdqa %xmm0, IW_W1W2_ADDR(4, 0);
511         vmovdqa %xmm0, IW_W1_ADDR(8, 0);
512         vmovdqa %xmm0, IW_W1W2_ADDR(8, 0);
513
514         movq %rbp, %rsp;
515         popq %rbp;
516         RET;
517 SYM_FUNC_END(sm3_transform_avx)