Merge tag 'v4.15-rc1' into patchwork
[sfrench/cifs-2.6.git] / arch / s390 / kernel / crash_dump.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * S390 kdump implementation
4  *
5  * Copyright IBM Corp. 2011
6  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7  */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/bootmem.h>
17 #include <linux/elf.h>
18 #include <asm/asm-offsets.h>
19 #include <linux/memblock.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24
25 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
26 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
27 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
28
29 static struct memblock_region oldmem_region;
30
31 static struct memblock_type oldmem_type = {
32         .cnt = 1,
33         .max = 1,
34         .total_size = 0,
35         .regions = &oldmem_region,
36         .name = "oldmem",
37 };
38
39 struct save_area {
40         struct list_head list;
41         u64 psw[2];
42         u64 ctrs[16];
43         u64 gprs[16];
44         u32 acrs[16];
45         u64 fprs[16];
46         u32 fpc;
47         u32 prefix;
48         u64 todpreg;
49         u64 timer;
50         u64 todcmp;
51         u64 vxrs_low[16];
52         __vector128 vxrs_high[16];
53 };
54
55 static LIST_HEAD(dump_save_areas);
56
57 /*
58  * Allocate a save area
59  */
60 struct save_area * __init save_area_alloc(bool is_boot_cpu)
61 {
62         struct save_area *sa;
63
64         sa = (void *) memblock_alloc(sizeof(*sa), 8);
65         if (is_boot_cpu)
66                 list_add(&sa->list, &dump_save_areas);
67         else
68                 list_add_tail(&sa->list, &dump_save_areas);
69         return sa;
70 }
71
72 /*
73  * Return the address of the save area for the boot CPU
74  */
75 struct save_area * __init save_area_boot_cpu(void)
76 {
77         return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
78 }
79
80 /*
81  * Copy CPU registers into the save area
82  */
83 void __init save_area_add_regs(struct save_area *sa, void *regs)
84 {
85         struct lowcore *lc;
86
87         lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
88         memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
89         memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
90         memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
91         memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
92         memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
93         memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
94         memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
95         memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
96         memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
97         memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
98 }
99
100 /*
101  * Copy vector registers into the save area
102  */
103 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
104 {
105         int i;
106
107         /* Copy lower halves of vector registers 0-15 */
108         for (i = 0; i < 16; i++)
109                 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
110         /* Copy vector registers 16-31 */
111         memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
112 }
113
114 /*
115  * Return physical address for virtual address
116  */
117 static inline void *load_real_addr(void *addr)
118 {
119         unsigned long real_addr;
120
121         asm volatile(
122                    "    lra     %0,0(%1)\n"
123                    "    jz      0f\n"
124                    "    la      %0,0\n"
125                    "0:"
126                    : "=a" (real_addr) : "a" (addr) : "cc");
127         return (void *)real_addr;
128 }
129
130 /*
131  * Copy memory of the old, dumped system to a kernel space virtual address
132  */
133 int copy_oldmem_kernel(void *dst, void *src, size_t count)
134 {
135         unsigned long from, len;
136         void *ra;
137         int rc;
138
139         while (count) {
140                 from = __pa(src);
141                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
142                         /* Copy from zfcpdump HSA area */
143                         len = min(count, sclp.hsa_size - from);
144                         rc = memcpy_hsa_kernel(dst, from, len);
145                         if (rc)
146                                 return rc;
147                 } else {
148                         /* Check for swapped kdump oldmem areas */
149                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
150                                 from -= OLDMEM_BASE;
151                                 len = min(count, OLDMEM_SIZE - from);
152                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
153                                 len = min(count, OLDMEM_SIZE - from);
154                                 from += OLDMEM_BASE;
155                         } else {
156                                 len = count;
157                         }
158                         if (is_vmalloc_or_module_addr(dst)) {
159                                 ra = load_real_addr(dst);
160                                 len = min(PAGE_SIZE - offset_in_page(ra), len);
161                         } else {
162                                 ra = dst;
163                         }
164                         if (memcpy_real(ra, (void *) from, len))
165                                 return -EFAULT;
166                 }
167                 dst += len;
168                 src += len;
169                 count -= len;
170         }
171         return 0;
172 }
173
174 /*
175  * Copy memory of the old, dumped system to a user space virtual address
176  */
177 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
178 {
179         unsigned long from, len;
180         int rc;
181
182         while (count) {
183                 from = __pa(src);
184                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
185                         /* Copy from zfcpdump HSA area */
186                         len = min(count, sclp.hsa_size - from);
187                         rc = memcpy_hsa_user(dst, from, len);
188                         if (rc)
189                                 return rc;
190                 } else {
191                         /* Check for swapped kdump oldmem areas */
192                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
193                                 from -= OLDMEM_BASE;
194                                 len = min(count, OLDMEM_SIZE - from);
195                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
196                                 len = min(count, OLDMEM_SIZE - from);
197                                 from += OLDMEM_BASE;
198                         } else {
199                                 len = count;
200                         }
201                         rc = copy_to_user_real(dst, (void *) from, count);
202                         if (rc)
203                                 return rc;
204                 }
205                 dst += len;
206                 src += len;
207                 count -= len;
208         }
209         return 0;
210 }
211
212 /*
213  * Copy one page from "oldmem"
214  */
215 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
216                          unsigned long offset, int userbuf)
217 {
218         void *src;
219         int rc;
220
221         if (!csize)
222                 return 0;
223         src = (void *) (pfn << PAGE_SHIFT) + offset;
224         if (userbuf)
225                 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
226         else
227                 rc = copy_oldmem_kernel((void *) buf, src, csize);
228         return rc;
229 }
230
231 /*
232  * Remap "oldmem" for kdump
233  *
234  * For the kdump reserved memory this functions performs a swap operation:
235  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
236  */
237 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
238                                         unsigned long from, unsigned long pfn,
239                                         unsigned long size, pgprot_t prot)
240 {
241         unsigned long size_old;
242         int rc;
243
244         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
245                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
246                 rc = remap_pfn_range(vma, from,
247                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
248                                      size_old, prot);
249                 if (rc || size == size_old)
250                         return rc;
251                 size -= size_old;
252                 from += size_old;
253                 pfn += size_old >> PAGE_SHIFT;
254         }
255         return remap_pfn_range(vma, from, pfn, size, prot);
256 }
257
258 /*
259  * Remap "oldmem" for zfcpdump
260  *
261  * We only map available memory above HSA size. Memory below HSA size
262  * is read on demand using the copy_oldmem_page() function.
263  */
264 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
265                                            unsigned long from,
266                                            unsigned long pfn,
267                                            unsigned long size, pgprot_t prot)
268 {
269         unsigned long hsa_end = sclp.hsa_size;
270         unsigned long size_hsa;
271
272         if (pfn < hsa_end >> PAGE_SHIFT) {
273                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
274                 if (size == size_hsa)
275                         return 0;
276                 size -= size_hsa;
277                 from += size_hsa;
278                 pfn += size_hsa >> PAGE_SHIFT;
279         }
280         return remap_pfn_range(vma, from, pfn, size, prot);
281 }
282
283 /*
284  * Remap "oldmem" for kdump or zfcpdump
285  */
286 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
287                            unsigned long pfn, unsigned long size, pgprot_t prot)
288 {
289         if (OLDMEM_BASE)
290                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
291         else
292                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
293                                                        prot);
294 }
295
296 /*
297  * Alloc memory and panic in case of ENOMEM
298  */
299 static void *kzalloc_panic(int len)
300 {
301         void *rc;
302
303         rc = kzalloc(len, GFP_KERNEL);
304         if (!rc)
305                 panic("s390 kdump kzalloc (%d) failed", len);
306         return rc;
307 }
308
309 /*
310  * Initialize ELF note
311  */
312 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
313                           const char *name)
314 {
315         Elf64_Nhdr *note;
316         u64 len;
317
318         note = (Elf64_Nhdr *)buf;
319         note->n_namesz = strlen(name) + 1;
320         note->n_descsz = d_len;
321         note->n_type = type;
322         len = sizeof(Elf64_Nhdr);
323
324         memcpy(buf + len, name, note->n_namesz);
325         len = roundup(len + note->n_namesz, 4);
326
327         memcpy(buf + len, desc, note->n_descsz);
328         len = roundup(len + note->n_descsz, 4);
329
330         return PTR_ADD(buf, len);
331 }
332
333 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
334 {
335         const char *note_name = "LINUX";
336
337         if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
338                 note_name = KEXEC_CORE_NOTE_NAME;
339         return nt_init_name(buf, type, desc, d_len, note_name);
340 }
341
342 /*
343  * Fill ELF notes for one CPU with save area registers
344  */
345 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
346 {
347         struct elf_prstatus nt_prstatus;
348         elf_fpregset_t nt_fpregset;
349
350         /* Prepare prstatus note */
351         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
352         memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
353         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
354         memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
355         nt_prstatus.pr_pid = cpu;
356         /* Prepare fpregset (floating point) note */
357         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
358         memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
359         memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
360         /* Create ELF notes for the CPU */
361         ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
362         ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
363         ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
364         ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
365         ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
366         ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
367         ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
368         if (MACHINE_HAS_VX) {
369                 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
370                               &sa->vxrs_high, sizeof(sa->vxrs_high));
371                 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
372                               &sa->vxrs_low, sizeof(sa->vxrs_low));
373         }
374         return ptr;
375 }
376
377 /*
378  * Initialize prpsinfo note (new kernel)
379  */
380 static void *nt_prpsinfo(void *ptr)
381 {
382         struct elf_prpsinfo prpsinfo;
383
384         memset(&prpsinfo, 0, sizeof(prpsinfo));
385         prpsinfo.pr_sname = 'R';
386         strcpy(prpsinfo.pr_fname, "vmlinux");
387         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
388 }
389
390 /*
391  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
392  */
393 static void *get_vmcoreinfo_old(unsigned long *size)
394 {
395         char nt_name[11], *vmcoreinfo;
396         Elf64_Nhdr note;
397         void *addr;
398
399         if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
400                 return NULL;
401         memset(nt_name, 0, sizeof(nt_name));
402         if (copy_oldmem_kernel(&note, addr, sizeof(note)))
403                 return NULL;
404         if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
405                                sizeof(nt_name) - 1))
406                 return NULL;
407         if (strcmp(nt_name, "VMCOREINFO") != 0)
408                 return NULL;
409         vmcoreinfo = kzalloc_panic(note.n_descsz);
410         if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
411                 return NULL;
412         *size = note.n_descsz;
413         return vmcoreinfo;
414 }
415
416 /*
417  * Initialize vmcoreinfo note (new kernel)
418  */
419 static void *nt_vmcoreinfo(void *ptr)
420 {
421         unsigned long size;
422         void *vmcoreinfo;
423
424         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
425         if (!vmcoreinfo)
426                 vmcoreinfo = get_vmcoreinfo_old(&size);
427         if (!vmcoreinfo)
428                 return ptr;
429         return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
430 }
431
432 /*
433  * Initialize final note (needed for /proc/vmcore code)
434  */
435 static void *nt_final(void *ptr)
436 {
437         Elf64_Nhdr *note;
438
439         note = (Elf64_Nhdr *) ptr;
440         note->n_namesz = 0;
441         note->n_descsz = 0;
442         note->n_type = 0;
443         return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
444 }
445
446 /*
447  * Initialize ELF header (new kernel)
448  */
449 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
450 {
451         memset(ehdr, 0, sizeof(*ehdr));
452         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
453         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
454         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
455         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
456         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
457         ehdr->e_type = ET_CORE;
458         ehdr->e_machine = EM_S390;
459         ehdr->e_version = EV_CURRENT;
460         ehdr->e_phoff = sizeof(Elf64_Ehdr);
461         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
462         ehdr->e_phentsize = sizeof(Elf64_Phdr);
463         ehdr->e_phnum = mem_chunk_cnt + 1;
464         return ehdr + 1;
465 }
466
467 /*
468  * Return CPU count for ELF header (new kernel)
469  */
470 static int get_cpu_cnt(void)
471 {
472         struct save_area *sa;
473         int cpus = 0;
474
475         list_for_each_entry(sa, &dump_save_areas, list)
476                 if (sa->prefix != 0)
477                         cpus++;
478         return cpus;
479 }
480
481 /*
482  * Return memory chunk count for ELF header (new kernel)
483  */
484 static int get_mem_chunk_cnt(void)
485 {
486         int cnt = 0;
487         u64 idx;
488
489         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
490                            MEMBLOCK_NONE, NULL, NULL, NULL)
491                 cnt++;
492         return cnt;
493 }
494
495 /*
496  * Initialize ELF loads (new kernel)
497  */
498 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
499 {
500         phys_addr_t start, end;
501         u64 idx;
502
503         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
504                            MEMBLOCK_NONE, &start, &end, NULL) {
505                 phdr->p_filesz = end - start;
506                 phdr->p_type = PT_LOAD;
507                 phdr->p_offset = start;
508                 phdr->p_vaddr = start;
509                 phdr->p_paddr = start;
510                 phdr->p_memsz = end - start;
511                 phdr->p_flags = PF_R | PF_W | PF_X;
512                 phdr->p_align = PAGE_SIZE;
513                 phdr++;
514         }
515 }
516
517 /*
518  * Initialize notes (new kernel)
519  */
520 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
521 {
522         struct save_area *sa;
523         void *ptr_start = ptr;
524         int cpu;
525
526         ptr = nt_prpsinfo(ptr);
527
528         cpu = 1;
529         list_for_each_entry(sa, &dump_save_areas, list)
530                 if (sa->prefix != 0)
531                         ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
532         ptr = nt_vmcoreinfo(ptr);
533         ptr = nt_final(ptr);
534         memset(phdr, 0, sizeof(*phdr));
535         phdr->p_type = PT_NOTE;
536         phdr->p_offset = notes_offset;
537         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
538         phdr->p_memsz = phdr->p_filesz;
539         return ptr;
540 }
541
542 /*
543  * Create ELF core header (new kernel)
544  */
545 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
546 {
547         Elf64_Phdr *phdr_notes, *phdr_loads;
548         int mem_chunk_cnt;
549         void *ptr, *hdr;
550         u32 alloc_size;
551         u64 hdr_off;
552
553         /* If we are not in kdump or zfcpdump mode return */
554         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
555                 return 0;
556         /* If we cannot get HSA size for zfcpdump return error */
557         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
558                 return -ENODEV;
559
560         /* For kdump, exclude previous crashkernel memory */
561         if (OLDMEM_BASE) {
562                 oldmem_region.base = OLDMEM_BASE;
563                 oldmem_region.size = OLDMEM_SIZE;
564                 oldmem_type.total_size = OLDMEM_SIZE;
565         }
566
567         mem_chunk_cnt = get_mem_chunk_cnt();
568
569         alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
570                 mem_chunk_cnt * sizeof(Elf64_Phdr);
571         hdr = kzalloc_panic(alloc_size);
572         /* Init elf header */
573         ptr = ehdr_init(hdr, mem_chunk_cnt);
574         /* Init program headers */
575         phdr_notes = ptr;
576         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
577         phdr_loads = ptr;
578         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
579         /* Init notes */
580         hdr_off = PTR_DIFF(ptr, hdr);
581         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
582         /* Init loads */
583         hdr_off = PTR_DIFF(ptr, hdr);
584         loads_init(phdr_loads, hdr_off);
585         *addr = (unsigned long long) hdr;
586         *size = (unsigned long long) hdr_off;
587         BUG_ON(elfcorehdr_size > alloc_size);
588         return 0;
589 }
590
591 /*
592  * Free ELF core header (new kernel)
593  */
594 void elfcorehdr_free(unsigned long long addr)
595 {
596         kfree((void *)(unsigned long)addr);
597 }
598
599 /*
600  * Read from ELF header
601  */
602 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
603 {
604         void *src = (void *)(unsigned long)*ppos;
605
606         memcpy(buf, src, count);
607         *ppos += count;
608         return count;
609 }
610
611 /*
612  * Read from ELF notes data
613  */
614 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
615 {
616         void *src = (void *)(unsigned long)*ppos;
617
618         memcpy(buf, src, count);
619         *ppos += count;
620         return count;
621 }