Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28
29
30 #ifdef CONFIG_HUGETLB_PAGE
31
32 #define PAGE_SHIFT_64K  16
33 #define PAGE_SHIFT_512K 19
34 #define PAGE_SHIFT_8M   23
35 #define PAGE_SHIFT_16M  24
36 #define PAGE_SHIFT_16G  34
37
38 bool hugetlb_disabled = false;
39
40 unsigned int HPAGE_SHIFT;
41 EXPORT_SYMBOL(HPAGE_SHIFT);
42
43 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
44
45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
46 {
47         /*
48          * Only called for hugetlbfs pages, hence can ignore THP and the
49          * irq disabled walk.
50          */
51         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
52 }
53
54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
55                            unsigned long address, unsigned int pdshift,
56                            unsigned int pshift, spinlock_t *ptl)
57 {
58         struct kmem_cache *cachep;
59         pte_t *new;
60         int i;
61         int num_hugepd;
62
63         if (pshift >= pdshift) {
64                 cachep = hugepte_cache;
65                 num_hugepd = 1 << (pshift - pdshift);
66         } else {
67                 cachep = PGT_CACHE(pdshift - pshift);
68                 num_hugepd = 1;
69         }
70
71         new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
72
73         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
74         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
75
76         if (! new)
77                 return -ENOMEM;
78
79         /*
80          * Make sure other cpus find the hugepd set only after a
81          * properly initialized page table is visible to them.
82          * For more details look for comment in __pte_alloc().
83          */
84         smp_wmb();
85
86         spin_lock(ptl);
87         /*
88          * We have multiple higher-level entries that point to the same
89          * actual pte location.  Fill in each as we go and backtrack on error.
90          * We need all of these so the DTLB pgtable walk code can find the
91          * right higher-level entry without knowing if it's a hugepage or not.
92          */
93         for (i = 0; i < num_hugepd; i++, hpdp++) {
94                 if (unlikely(!hugepd_none(*hpdp)))
95                         break;
96                 else {
97 #ifdef CONFIG_PPC_BOOK3S_64
98                         *hpdp = __hugepd(__pa(new) |
99                                          (shift_to_mmu_psize(pshift) << 2));
100 #elif defined(CONFIG_PPC_8xx)
101                         *hpdp = __hugepd(__pa(new) | _PMD_USER |
102                                          (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
103                                           _PMD_PAGE_512K) | _PMD_PRESENT);
104 #else
105                         /* We use the old format for PPC_FSL_BOOK3E */
106                         *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
107 #endif
108                 }
109         }
110         /* If we bailed from the for loop early, an error occurred, clean up */
111         if (i < num_hugepd) {
112                 for (i = i - 1 ; i >= 0; i--, hpdp--)
113                         *hpdp = __hugepd(0);
114                 kmem_cache_free(cachep, new);
115         }
116         spin_unlock(ptl);
117         return 0;
118 }
119
120 /*
121  * These macros define how to determine which level of the page table holds
122  * the hpdp.
123  */
124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
125 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
126 #define HUGEPD_PUD_SHIFT PUD_SHIFT
127 #endif
128
129 /*
130  * At this point we do the placement change only for BOOK3S 64. This would
131  * possibly work on other subarchs.
132  */
133 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
134 {
135         pgd_t *pg;
136         pud_t *pu;
137         pmd_t *pm;
138         hugepd_t *hpdp = NULL;
139         unsigned pshift = __ffs(sz);
140         unsigned pdshift = PGDIR_SHIFT;
141         spinlock_t *ptl;
142
143         addr &= ~(sz-1);
144         pg = pgd_offset(mm, addr);
145
146 #ifdef CONFIG_PPC_BOOK3S_64
147         if (pshift == PGDIR_SHIFT)
148                 /* 16GB huge page */
149                 return (pte_t *) pg;
150         else if (pshift > PUD_SHIFT) {
151                 /*
152                  * We need to use hugepd table
153                  */
154                 ptl = &mm->page_table_lock;
155                 hpdp = (hugepd_t *)pg;
156         } else {
157                 pdshift = PUD_SHIFT;
158                 pu = pud_alloc(mm, pg, addr);
159                 if (pshift == PUD_SHIFT)
160                         return (pte_t *)pu;
161                 else if (pshift > PMD_SHIFT) {
162                         ptl = pud_lockptr(mm, pu);
163                         hpdp = (hugepd_t *)pu;
164                 } else {
165                         pdshift = PMD_SHIFT;
166                         pm = pmd_alloc(mm, pu, addr);
167                         if (pshift == PMD_SHIFT)
168                                 /* 16MB hugepage */
169                                 return (pte_t *)pm;
170                         else {
171                                 ptl = pmd_lockptr(mm, pm);
172                                 hpdp = (hugepd_t *)pm;
173                         }
174                 }
175         }
176 #else
177         if (pshift >= HUGEPD_PGD_SHIFT) {
178                 ptl = &mm->page_table_lock;
179                 hpdp = (hugepd_t *)pg;
180         } else {
181                 pdshift = PUD_SHIFT;
182                 pu = pud_alloc(mm, pg, addr);
183                 if (pshift >= HUGEPD_PUD_SHIFT) {
184                         ptl = pud_lockptr(mm, pu);
185                         hpdp = (hugepd_t *)pu;
186                 } else {
187                         pdshift = PMD_SHIFT;
188                         pm = pmd_alloc(mm, pu, addr);
189                         ptl = pmd_lockptr(mm, pm);
190                         hpdp = (hugepd_t *)pm;
191                 }
192         }
193 #endif
194         if (!hpdp)
195                 return NULL;
196
197         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
198
199         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
200                                                   pdshift, pshift, ptl))
201                 return NULL;
202
203         return hugepte_offset(*hpdp, addr, pdshift);
204 }
205
206 #ifdef CONFIG_PPC_BOOK3S_64
207 /*
208  * Tracks gpages after the device tree is scanned and before the
209  * huge_boot_pages list is ready on pseries.
210  */
211 #define MAX_NUMBER_GPAGES       1024
212 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
213 __initdata static unsigned nr_gpages;
214
215 /*
216  * Build list of addresses of gigantic pages.  This function is used in early
217  * boot before the buddy allocator is setup.
218  */
219 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
220 {
221         if (!addr)
222                 return;
223         while (number_of_pages > 0) {
224                 gpage_freearray[nr_gpages] = addr;
225                 nr_gpages++;
226                 number_of_pages--;
227                 addr += page_size;
228         }
229 }
230
231 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
232 {
233         struct huge_bootmem_page *m;
234         if (nr_gpages == 0)
235                 return 0;
236         m = phys_to_virt(gpage_freearray[--nr_gpages]);
237         gpage_freearray[nr_gpages] = 0;
238         list_add(&m->list, &huge_boot_pages);
239         m->hstate = hstate;
240         return 1;
241 }
242 #endif
243
244
245 int __init alloc_bootmem_huge_page(struct hstate *h)
246 {
247
248 #ifdef CONFIG_PPC_BOOK3S_64
249         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
250                 return pseries_alloc_bootmem_huge_page(h);
251 #endif
252         return __alloc_bootmem_huge_page(h);
253 }
254
255 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
256 #define HUGEPD_FREELIST_SIZE \
257         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
258
259 struct hugepd_freelist {
260         struct rcu_head rcu;
261         unsigned int index;
262         void *ptes[0];
263 };
264
265 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
266
267 static void hugepd_free_rcu_callback(struct rcu_head *head)
268 {
269         struct hugepd_freelist *batch =
270                 container_of(head, struct hugepd_freelist, rcu);
271         unsigned int i;
272
273         for (i = 0; i < batch->index; i++)
274                 kmem_cache_free(hugepte_cache, batch->ptes[i]);
275
276         free_page((unsigned long)batch);
277 }
278
279 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
280 {
281         struct hugepd_freelist **batchp;
282
283         batchp = &get_cpu_var(hugepd_freelist_cur);
284
285         if (atomic_read(&tlb->mm->mm_users) < 2 ||
286             mm_is_thread_local(tlb->mm)) {
287                 kmem_cache_free(hugepte_cache, hugepte);
288                 put_cpu_var(hugepd_freelist_cur);
289                 return;
290         }
291
292         if (*batchp == NULL) {
293                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
294                 (*batchp)->index = 0;
295         }
296
297         (*batchp)->ptes[(*batchp)->index++] = hugepte;
298         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
299                 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
300                 *batchp = NULL;
301         }
302         put_cpu_var(hugepd_freelist_cur);
303 }
304 #else
305 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
306 #endif
307
308 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
309                               unsigned long start, unsigned long end,
310                               unsigned long floor, unsigned long ceiling)
311 {
312         pte_t *hugepte = hugepd_page(*hpdp);
313         int i;
314
315         unsigned long pdmask = ~((1UL << pdshift) - 1);
316         unsigned int num_hugepd = 1;
317         unsigned int shift = hugepd_shift(*hpdp);
318
319         /* Note: On fsl the hpdp may be the first of several */
320         if (shift > pdshift)
321                 num_hugepd = 1 << (shift - pdshift);
322
323         start &= pdmask;
324         if (start < floor)
325                 return;
326         if (ceiling) {
327                 ceiling &= pdmask;
328                 if (! ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 return;
333
334         for (i = 0; i < num_hugepd; i++, hpdp++)
335                 *hpdp = __hugepd(0);
336
337         if (shift >= pdshift)
338                 hugepd_free(tlb, hugepte);
339         else
340                 pgtable_free_tlb(tlb, hugepte,
341                                  get_hugepd_cache_index(pdshift - shift));
342 }
343
344 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
345                                    unsigned long addr, unsigned long end,
346                                    unsigned long floor, unsigned long ceiling)
347 {
348         pmd_t *pmd;
349         unsigned long next;
350         unsigned long start;
351
352         start = addr;
353         do {
354                 unsigned long more;
355
356                 pmd = pmd_offset(pud, addr);
357                 next = pmd_addr_end(addr, end);
358                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
359                         /*
360                          * if it is not hugepd pointer, we should already find
361                          * it cleared.
362                          */
363                         WARN_ON(!pmd_none_or_clear_bad(pmd));
364                         continue;
365                 }
366                 /*
367                  * Increment next by the size of the huge mapping since
368                  * there may be more than one entry at this level for a
369                  * single hugepage, but all of them point to
370                  * the same kmem cache that holds the hugepte.
371                  */
372                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
373                 if (more > next)
374                         next = more;
375
376                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
377                                   addr, next, floor, ceiling);
378         } while (addr = next, addr != end);
379
380         start &= PUD_MASK;
381         if (start < floor)
382                 return;
383         if (ceiling) {
384                 ceiling &= PUD_MASK;
385                 if (!ceiling)
386                         return;
387         }
388         if (end - 1 > ceiling - 1)
389                 return;
390
391         pmd = pmd_offset(pud, start);
392         pud_clear(pud);
393         pmd_free_tlb(tlb, pmd, start);
394         mm_dec_nr_pmds(tlb->mm);
395 }
396
397 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
398                                    unsigned long addr, unsigned long end,
399                                    unsigned long floor, unsigned long ceiling)
400 {
401         pud_t *pud;
402         unsigned long next;
403         unsigned long start;
404
405         start = addr;
406         do {
407                 pud = pud_offset(pgd, addr);
408                 next = pud_addr_end(addr, end);
409                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
410                         if (pud_none_or_clear_bad(pud))
411                                 continue;
412                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
413                                                ceiling);
414                 } else {
415                         unsigned long more;
416                         /*
417                          * Increment next by the size of the huge mapping since
418                          * there may be more than one entry at this level for a
419                          * single hugepage, but all of them point to
420                          * the same kmem cache that holds the hugepte.
421                          */
422                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
423                         if (more > next)
424                                 next = more;
425
426                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
427                                           addr, next, floor, ceiling);
428                 }
429         } while (addr = next, addr != end);
430
431         start &= PGDIR_MASK;
432         if (start < floor)
433                 return;
434         if (ceiling) {
435                 ceiling &= PGDIR_MASK;
436                 if (!ceiling)
437                         return;
438         }
439         if (end - 1 > ceiling - 1)
440                 return;
441
442         pud = pud_offset(pgd, start);
443         pgd_clear(pgd);
444         pud_free_tlb(tlb, pud, start);
445         mm_dec_nr_puds(tlb->mm);
446 }
447
448 /*
449  * This function frees user-level page tables of a process.
450  */
451 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
452                             unsigned long addr, unsigned long end,
453                             unsigned long floor, unsigned long ceiling)
454 {
455         pgd_t *pgd;
456         unsigned long next;
457
458         /*
459          * Because there are a number of different possible pagetable
460          * layouts for hugepage ranges, we limit knowledge of how
461          * things should be laid out to the allocation path
462          * (huge_pte_alloc(), above).  Everything else works out the
463          * structure as it goes from information in the hugepd
464          * pointers.  That means that we can't here use the
465          * optimization used in the normal page free_pgd_range(), of
466          * checking whether we're actually covering a large enough
467          * range to have to do anything at the top level of the walk
468          * instead of at the bottom.
469          *
470          * To make sense of this, you should probably go read the big
471          * block comment at the top of the normal free_pgd_range(),
472          * too.
473          */
474
475         do {
476                 next = pgd_addr_end(addr, end);
477                 pgd = pgd_offset(tlb->mm, addr);
478                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
479                         if (pgd_none_or_clear_bad(pgd))
480                                 continue;
481                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
482                 } else {
483                         unsigned long more;
484                         /*
485                          * Increment next by the size of the huge mapping since
486                          * there may be more than one entry at the pgd level
487                          * for a single hugepage, but all of them point to the
488                          * same kmem cache that holds the hugepte.
489                          */
490                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
491                         if (more > next)
492                                 next = more;
493
494                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
495                                           addr, next, floor, ceiling);
496                 }
497         } while (addr = next, addr != end);
498 }
499
500 struct page *follow_huge_pd(struct vm_area_struct *vma,
501                             unsigned long address, hugepd_t hpd,
502                             int flags, int pdshift)
503 {
504         pte_t *ptep;
505         spinlock_t *ptl;
506         struct page *page = NULL;
507         unsigned long mask;
508         int shift = hugepd_shift(hpd);
509         struct mm_struct *mm = vma->vm_mm;
510
511 retry:
512         /*
513          * hugepage directory entries are protected by mm->page_table_lock
514          * Use this instead of huge_pte_lockptr
515          */
516         ptl = &mm->page_table_lock;
517         spin_lock(ptl);
518
519         ptep = hugepte_offset(hpd, address, pdshift);
520         if (pte_present(*ptep)) {
521                 mask = (1UL << shift) - 1;
522                 page = pte_page(*ptep);
523                 page += ((address & mask) >> PAGE_SHIFT);
524                 if (flags & FOLL_GET)
525                         get_page(page);
526         } else {
527                 if (is_hugetlb_entry_migration(*ptep)) {
528                         spin_unlock(ptl);
529                         __migration_entry_wait(mm, ptep, ptl);
530                         goto retry;
531                 }
532         }
533         spin_unlock(ptl);
534         return page;
535 }
536
537 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
538                                       unsigned long sz)
539 {
540         unsigned long __boundary = (addr + sz) & ~(sz-1);
541         return (__boundary - 1 < end - 1) ? __boundary : end;
542 }
543
544 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
545                 unsigned long end, int write, struct page **pages, int *nr)
546 {
547         pte_t *ptep;
548         unsigned long sz = 1UL << hugepd_shift(hugepd);
549         unsigned long next;
550
551         ptep = hugepte_offset(hugepd, addr, pdshift);
552         do {
553                 next = hugepte_addr_end(addr, end, sz);
554                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
555                         return 0;
556         } while (ptep++, addr = next, addr != end);
557
558         return 1;
559 }
560
561 #ifdef CONFIG_PPC_MM_SLICES
562 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
563                                         unsigned long len, unsigned long pgoff,
564                                         unsigned long flags)
565 {
566         struct hstate *hstate = hstate_file(file);
567         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
568
569 #ifdef CONFIG_PPC_RADIX_MMU
570         if (radix_enabled())
571                 return radix__hugetlb_get_unmapped_area(file, addr, len,
572                                                        pgoff, flags);
573 #endif
574         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
575 }
576 #endif
577
578 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
579 {
580 #ifdef CONFIG_PPC_MM_SLICES
581         /* With radix we don't use slice, so derive it from vma*/
582         if (!radix_enabled()) {
583                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
584
585                 return 1UL << mmu_psize_to_shift(psize);
586         }
587 #endif
588         return vma_kernel_pagesize(vma);
589 }
590
591 static inline bool is_power_of_4(unsigned long x)
592 {
593         if (is_power_of_2(x))
594                 return (__ilog2(x) % 2) ? false : true;
595         return false;
596 }
597
598 static int __init add_huge_page_size(unsigned long long size)
599 {
600         int shift = __ffs(size);
601         int mmu_psize;
602
603         /* Check that it is a page size supported by the hardware and
604          * that it fits within pagetable and slice limits. */
605         if (size <= PAGE_SIZE)
606                 return -EINVAL;
607 #if defined(CONFIG_PPC_FSL_BOOK3E)
608         if (!is_power_of_4(size))
609                 return -EINVAL;
610 #elif !defined(CONFIG_PPC_8xx)
611         if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
612                 return -EINVAL;
613 #endif
614
615         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
616                 return -EINVAL;
617
618 #ifdef CONFIG_PPC_BOOK3S_64
619         /*
620          * We need to make sure that for different page sizes reported by
621          * firmware we only add hugetlb support for page sizes that can be
622          * supported by linux page table layout.
623          * For now we have
624          * Radix: 2M
625          * Hash: 16M and 16G
626          */
627         if (radix_enabled()) {
628                 if (mmu_psize != MMU_PAGE_2M) {
629                         if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
630                             (mmu_psize != MMU_PAGE_1G))
631                                 return -EINVAL;
632                 }
633         } else {
634                 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
635                         return -EINVAL;
636         }
637 #endif
638
639         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
640
641         /* Return if huge page size has already been setup */
642         if (size_to_hstate(size))
643                 return 0;
644
645         hugetlb_add_hstate(shift - PAGE_SHIFT);
646
647         return 0;
648 }
649
650 static int __init hugepage_setup_sz(char *str)
651 {
652         unsigned long long size;
653
654         size = memparse(str, &str);
655
656         if (add_huge_page_size(size) != 0) {
657                 hugetlb_bad_size();
658                 pr_err("Invalid huge page size specified(%llu)\n", size);
659         }
660
661         return 1;
662 }
663 __setup("hugepagesz=", hugepage_setup_sz);
664
665 struct kmem_cache *hugepte_cache;
666 static int __init hugetlbpage_init(void)
667 {
668         int psize;
669
670         if (hugetlb_disabled) {
671                 pr_info("HugeTLB support is disabled!\n");
672                 return 0;
673         }
674
675 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
676         if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
677                 return -ENODEV;
678 #endif
679         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
680                 unsigned shift;
681                 unsigned pdshift;
682
683                 if (!mmu_psize_defs[psize].shift)
684                         continue;
685
686                 shift = mmu_psize_to_shift(psize);
687
688 #ifdef CONFIG_PPC_BOOK3S_64
689                 if (shift > PGDIR_SHIFT)
690                         continue;
691                 else if (shift > PUD_SHIFT)
692                         pdshift = PGDIR_SHIFT;
693                 else if (shift > PMD_SHIFT)
694                         pdshift = PUD_SHIFT;
695                 else
696                         pdshift = PMD_SHIFT;
697 #else
698                 if (shift < HUGEPD_PUD_SHIFT)
699                         pdshift = PMD_SHIFT;
700                 else if (shift < HUGEPD_PGD_SHIFT)
701                         pdshift = PUD_SHIFT;
702                 else
703                         pdshift = PGDIR_SHIFT;
704 #endif
705
706                 if (add_huge_page_size(1ULL << shift) < 0)
707                         continue;
708                 /*
709                  * if we have pdshift and shift value same, we don't
710                  * use pgt cache for hugepd.
711                  */
712                 if (pdshift > shift)
713                         pgtable_cache_add(pdshift - shift, NULL);
714 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
715                 else if (!hugepte_cache) {
716                         /*
717                          * Create a kmem cache for hugeptes.  The bottom bits in
718                          * the pte have size information encoded in them, so
719                          * align them to allow this
720                          */
721                         hugepte_cache = kmem_cache_create("hugepte-cache",
722                                                           sizeof(pte_t),
723                                                           HUGEPD_SHIFT_MASK + 1,
724                                                           0, NULL);
725                         if (hugepte_cache == NULL)
726                                 panic("%s: Unable to create kmem cache "
727                                       "for hugeptes\n", __func__);
728
729                 }
730 #endif
731         }
732
733 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
734         /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
735         if (mmu_psize_defs[MMU_PAGE_4M].shift)
736                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
737         else if (mmu_psize_defs[MMU_PAGE_512K].shift)
738                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
739 #else
740         /* Set default large page size. Currently, we pick 16M or 1M
741          * depending on what is available
742          */
743         if (mmu_psize_defs[MMU_PAGE_16M].shift)
744                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
745         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
746                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
747         else if (mmu_psize_defs[MMU_PAGE_2M].shift)
748                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
749 #endif
750         return 0;
751 }
752
753 arch_initcall(hugetlbpage_init);
754
755 void flush_dcache_icache_hugepage(struct page *page)
756 {
757         int i;
758         void *start;
759
760         BUG_ON(!PageCompound(page));
761
762         for (i = 0; i < (1UL << compound_order(page)); i++) {
763                 if (!PageHighMem(page)) {
764                         __flush_dcache_icache(page_address(page+i));
765                 } else {
766                         start = kmap_atomic(page+i);
767                         __flush_dcache_icache(start);
768                         kunmap_atomic(start);
769                 }
770         }
771 }
772
773 #endif /* CONFIG_HUGETLB_PAGE */
774
775 /*
776  * We have 4 cases for pgds and pmds:
777  * (1) invalid (all zeroes)
778  * (2) pointer to next table, as normal; bottom 6 bits == 0
779  * (3) leaf pte for huge page _PAGE_PTE set
780  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
781  *
782  * So long as we atomically load page table pointers we are safe against teardown,
783  * we can follow the address down to the the page and take a ref on it.
784  * This function need to be called with interrupts disabled. We use this variant
785  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
786  */
787 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
788                         bool *is_thp, unsigned *hpage_shift)
789 {
790         pgd_t pgd, *pgdp;
791         pud_t pud, *pudp;
792         pmd_t pmd, *pmdp;
793         pte_t *ret_pte;
794         hugepd_t *hpdp = NULL;
795         unsigned pdshift = PGDIR_SHIFT;
796
797         if (hpage_shift)
798                 *hpage_shift = 0;
799
800         if (is_thp)
801                 *is_thp = false;
802
803         pgdp = pgdir + pgd_index(ea);
804         pgd  = READ_ONCE(*pgdp);
805         /*
806          * Always operate on the local stack value. This make sure the
807          * value don't get updated by a parallel THP split/collapse,
808          * page fault or a page unmap. The return pte_t * is still not
809          * stable. So should be checked there for above conditions.
810          */
811         if (pgd_none(pgd))
812                 return NULL;
813         else if (pgd_huge(pgd)) {
814                 ret_pte = (pte_t *) pgdp;
815                 goto out;
816         } else if (is_hugepd(__hugepd(pgd_val(pgd))))
817                 hpdp = (hugepd_t *)&pgd;
818         else {
819                 /*
820                  * Even if we end up with an unmap, the pgtable will not
821                  * be freed, because we do an rcu free and here we are
822                  * irq disabled
823                  */
824                 pdshift = PUD_SHIFT;
825                 pudp = pud_offset(&pgd, ea);
826                 pud  = READ_ONCE(*pudp);
827
828                 if (pud_none(pud))
829                         return NULL;
830                 else if (pud_huge(pud)) {
831                         ret_pte = (pte_t *) pudp;
832                         goto out;
833                 } else if (is_hugepd(__hugepd(pud_val(pud))))
834                         hpdp = (hugepd_t *)&pud;
835                 else {
836                         pdshift = PMD_SHIFT;
837                         pmdp = pmd_offset(&pud, ea);
838                         pmd  = READ_ONCE(*pmdp);
839                         /*
840                          * A hugepage collapse is captured by pmd_none, because
841                          * it mark the pmd none and do a hpte invalidate.
842                          */
843                         if (pmd_none(pmd))
844                                 return NULL;
845
846                         if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
847                                 if (is_thp)
848                                         *is_thp = true;
849                                 ret_pte = (pte_t *) pmdp;
850                                 goto out;
851                         }
852
853                         if (pmd_huge(pmd)) {
854                                 ret_pte = (pte_t *) pmdp;
855                                 goto out;
856                         } else if (is_hugepd(__hugepd(pmd_val(pmd))))
857                                 hpdp = (hugepd_t *)&pmd;
858                         else
859                                 return pte_offset_kernel(&pmd, ea);
860                 }
861         }
862         if (!hpdp)
863                 return NULL;
864
865         ret_pte = hugepte_offset(*hpdp, ea, pdshift);
866         pdshift = hugepd_shift(*hpdp);
867 out:
868         if (hpage_shift)
869                 *hpage_shift = pdshift;
870         return ret_pte;
871 }
872 EXPORT_SYMBOL_GPL(__find_linux_pte);
873
874 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
875                 unsigned long end, int write, struct page **pages, int *nr)
876 {
877         unsigned long pte_end;
878         struct page *head, *page;
879         pte_t pte;
880         int refs;
881
882         pte_end = (addr + sz) & ~(sz-1);
883         if (pte_end < end)
884                 end = pte_end;
885
886         pte = READ_ONCE(*ptep);
887
888         if (!pte_access_permitted(pte, write))
889                 return 0;
890
891         /* hugepages are never "special" */
892         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
893
894         refs = 0;
895         head = pte_page(pte);
896
897         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
898         do {
899                 VM_BUG_ON(compound_head(page) != head);
900                 pages[*nr] = page;
901                 (*nr)++;
902                 page++;
903                 refs++;
904         } while (addr += PAGE_SIZE, addr != end);
905
906         if (!page_cache_add_speculative(head, refs)) {
907                 *nr -= refs;
908                 return 0;
909         }
910
911         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
912                 /* Could be optimized better */
913                 *nr -= refs;
914                 while (refs--)
915                         put_page(head);
916                 return 0;
917         }
918
919         return 1;
920 }