Merge tag 'devicetree-for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_host.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78
79 #include "book3s.h"
80
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
92
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL  (~(u64)0)
95
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112
113 #ifdef CONFIG_KVM_XICS
114 static struct kernel_param_ops module_param_ops = {
115         .set = param_set_int,
116         .get = param_get_int,
117 };
118
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133         return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
154
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156         RWMR_RPA_P8_1THREAD,
157         RWMR_RPA_P8_1THREAD,
158         RWMR_RPA_P8_2THREAD,
159         RWMR_RPA_P8_3THREAD,
160         RWMR_RPA_P8_4THREAD,
161         RWMR_RPA_P8_5THREAD,
162         RWMR_RPA_P8_6THREAD,
163         RWMR_RPA_P8_7THREAD,
164         RWMR_RPA_P8_8THREAD,
165 };
166
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168                 int *ip)
169 {
170         int i = *ip;
171         struct kvm_vcpu *vcpu;
172
173         while (++i < MAX_SMT_THREADS) {
174                 vcpu = READ_ONCE(vc->runnable_threads[i]);
175                 if (vcpu) {
176                         *ip = i;
177                         return vcpu;
178                 }
179         }
180         return NULL;
181 }
182
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190
191         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192         if (kvmhv_on_pseries())
193                 return false;
194
195         /* On POWER9 we can use msgsnd to IPI any cpu */
196         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197                 msg |= get_hard_smp_processor_id(cpu);
198                 smp_mb();
199                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200                 return true;
201         }
202
203         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205                 preempt_disable();
206                 if (cpu_first_thread_sibling(cpu) ==
207                     cpu_first_thread_sibling(smp_processor_id())) {
208                         msg |= cpu_thread_in_core(cpu);
209                         smp_mb();
210                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211                         preempt_enable();
212                         return true;
213                 }
214                 preempt_enable();
215         }
216
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218         if (cpu >= 0 && cpu < nr_cpu_ids) {
219                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220                         xics_wake_cpu(cpu);
221                         return true;
222                 }
223                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224                 return true;
225         }
226 #endif
227
228         return false;
229 }
230
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233         int cpu;
234         struct swait_queue_head *wqp;
235
236         wqp = kvm_arch_vcpu_wq(vcpu);
237         if (swq_has_sleeper(wqp)) {
238                 swake_up_one(wqp);
239                 ++vcpu->stat.halt_wakeup;
240         }
241
242         cpu = READ_ONCE(vcpu->arch.thread_cpu);
243         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244                 return;
245
246         /* CPU points to the first thread of the core */
247         cpu = vcpu->cpu;
248         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
249                 smp_send_reschedule(cpu);
250 }
251
252 /*
253  * We use the vcpu_load/put functions to measure stolen time.
254  * Stolen time is counted as time when either the vcpu is able to
255  * run as part of a virtual core, but the task running the vcore
256  * is preempted or sleeping, or when the vcpu needs something done
257  * in the kernel by the task running the vcpu, but that task is
258  * preempted or sleeping.  Those two things have to be counted
259  * separately, since one of the vcpu tasks will take on the job
260  * of running the core, and the other vcpu tasks in the vcore will
261  * sleep waiting for it to do that, but that sleep shouldn't count
262  * as stolen time.
263  *
264  * Hence we accumulate stolen time when the vcpu can run as part of
265  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266  * needs its task to do other things in the kernel (for example,
267  * service a page fault) in busy_stolen.  We don't accumulate
268  * stolen time for a vcore when it is inactive, or for a vcpu
269  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
270  * a misnomer; it means that the vcpu task is not executing in
271  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272  * the kernel.  We don't have any way of dividing up that time
273  * between time that the vcpu is genuinely stopped, time that
274  * the task is actively working on behalf of the vcpu, and time
275  * that the task is preempted, so we don't count any of it as
276  * stolen.
277  *
278  * Updates to busy_stolen are protected by arch.tbacct_lock;
279  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280  * lock.  The stolen times are measured in units of timebase ticks.
281  * (Note that the != TB_NIL checks below are purely defensive;
282  * they should never fail.)
283  */
284
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
286 {
287         unsigned long flags;
288
289         spin_lock_irqsave(&vc->stoltb_lock, flags);
290         vc->preempt_tb = mftb();
291         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
295 {
296         unsigned long flags;
297
298         spin_lock_irqsave(&vc->stoltb_lock, flags);
299         if (vc->preempt_tb != TB_NIL) {
300                 vc->stolen_tb += mftb() - vc->preempt_tb;
301                 vc->preempt_tb = TB_NIL;
302         }
303         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 }
305
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 {
308         struct kvmppc_vcore *vc = vcpu->arch.vcore;
309         unsigned long flags;
310
311         /*
312          * We can test vc->runner without taking the vcore lock,
313          * because only this task ever sets vc->runner to this
314          * vcpu, and once it is set to this vcpu, only this task
315          * ever sets it to NULL.
316          */
317         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318                 kvmppc_core_end_stolen(vc);
319
320         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322             vcpu->arch.busy_preempt != TB_NIL) {
323                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
324                 vcpu->arch.busy_preempt = TB_NIL;
325         }
326         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331         struct kvmppc_vcore *vc = vcpu->arch.vcore;
332         unsigned long flags;
333
334         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
335                 kvmppc_core_start_stolen(vc);
336
337         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
339                 vcpu->arch.busy_preempt = mftb();
340         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 }
342
343 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
344 {
345         vcpu->arch.pvr = pvr;
346 }
347
348 /* Dummy value used in computing PCR value below */
349 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
350
351 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
352 {
353         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
354         struct kvmppc_vcore *vc = vcpu->arch.vcore;
355
356         /* We can (emulate) our own architecture version and anything older */
357         if (cpu_has_feature(CPU_FTR_ARCH_300))
358                 host_pcr_bit = PCR_ARCH_300;
359         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360                 host_pcr_bit = PCR_ARCH_207;
361         else if (cpu_has_feature(CPU_FTR_ARCH_206))
362                 host_pcr_bit = PCR_ARCH_206;
363         else
364                 host_pcr_bit = PCR_ARCH_205;
365
366         /* Determine lowest PCR bit needed to run guest in given PVR level */
367         guest_pcr_bit = host_pcr_bit;
368         if (arch_compat) {
369                 switch (arch_compat) {
370                 case PVR_ARCH_205:
371                         guest_pcr_bit = PCR_ARCH_205;
372                         break;
373                 case PVR_ARCH_206:
374                 case PVR_ARCH_206p:
375                         guest_pcr_bit = PCR_ARCH_206;
376                         break;
377                 case PVR_ARCH_207:
378                         guest_pcr_bit = PCR_ARCH_207;
379                         break;
380                 case PVR_ARCH_300:
381                         guest_pcr_bit = PCR_ARCH_300;
382                         break;
383                 default:
384                         return -EINVAL;
385                 }
386         }
387
388         /* Check requested PCR bits don't exceed our capabilities */
389         if (guest_pcr_bit > host_pcr_bit)
390                 return -EINVAL;
391
392         spin_lock(&vc->lock);
393         vc->arch_compat = arch_compat;
394         /*
395          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
396          * Also set all reserved PCR bits
397          */
398         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
399         spin_unlock(&vc->lock);
400
401         return 0;
402 }
403
404 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
405 {
406         int r;
407
408         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
409         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
410                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
411         for (r = 0; r < 16; ++r)
412                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
413                        r, kvmppc_get_gpr(vcpu, r),
414                        r+16, kvmppc_get_gpr(vcpu, r+16));
415         pr_err("ctr = %.16lx  lr  = %.16lx\n",
416                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
417         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
418                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
419         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
420                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
421         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
422                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
423         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
424                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
425         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
426         pr_err("fault dar = %.16lx dsisr = %.8x\n",
427                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
428         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
429         for (r = 0; r < vcpu->arch.slb_max; ++r)
430                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
431                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
432         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
433                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
434                vcpu->arch.last_inst);
435 }
436
437 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
438 {
439         return kvm_get_vcpu_by_id(kvm, id);
440 }
441
442 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
443 {
444         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
445         vpa->yield_count = cpu_to_be32(1);
446 }
447
448 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
449                    unsigned long addr, unsigned long len)
450 {
451         /* check address is cacheline aligned */
452         if (addr & (L1_CACHE_BYTES - 1))
453                 return -EINVAL;
454         spin_lock(&vcpu->arch.vpa_update_lock);
455         if (v->next_gpa != addr || v->len != len) {
456                 v->next_gpa = addr;
457                 v->len = addr ? len : 0;
458                 v->update_pending = 1;
459         }
460         spin_unlock(&vcpu->arch.vpa_update_lock);
461         return 0;
462 }
463
464 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
465 struct reg_vpa {
466         u32 dummy;
467         union {
468                 __be16 hword;
469                 __be32 word;
470         } length;
471 };
472
473 static int vpa_is_registered(struct kvmppc_vpa *vpap)
474 {
475         if (vpap->update_pending)
476                 return vpap->next_gpa != 0;
477         return vpap->pinned_addr != NULL;
478 }
479
480 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
481                                        unsigned long flags,
482                                        unsigned long vcpuid, unsigned long vpa)
483 {
484         struct kvm *kvm = vcpu->kvm;
485         unsigned long len, nb;
486         void *va;
487         struct kvm_vcpu *tvcpu;
488         int err;
489         int subfunc;
490         struct kvmppc_vpa *vpap;
491
492         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
493         if (!tvcpu)
494                 return H_PARAMETER;
495
496         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
497         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
498             subfunc == H_VPA_REG_SLB) {
499                 /* Registering new area - address must be cache-line aligned */
500                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
501                         return H_PARAMETER;
502
503                 /* convert logical addr to kernel addr and read length */
504                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
505                 if (va == NULL)
506                         return H_PARAMETER;
507                 if (subfunc == H_VPA_REG_VPA)
508                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
509                 else
510                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
511                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
512
513                 /* Check length */
514                 if (len > nb || len < sizeof(struct reg_vpa))
515                         return H_PARAMETER;
516         } else {
517                 vpa = 0;
518                 len = 0;
519         }
520
521         err = H_PARAMETER;
522         vpap = NULL;
523         spin_lock(&tvcpu->arch.vpa_update_lock);
524
525         switch (subfunc) {
526         case H_VPA_REG_VPA:             /* register VPA */
527                 /*
528                  * The size of our lppaca is 1kB because of the way we align
529                  * it for the guest to avoid crossing a 4kB boundary. We only
530                  * use 640 bytes of the structure though, so we should accept
531                  * clients that set a size of 640.
532                  */
533                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
534                 if (len < sizeof(struct lppaca))
535                         break;
536                 vpap = &tvcpu->arch.vpa;
537                 err = 0;
538                 break;
539
540         case H_VPA_REG_DTL:             /* register DTL */
541                 if (len < sizeof(struct dtl_entry))
542                         break;
543                 len -= len % sizeof(struct dtl_entry);
544
545                 /* Check that they have previously registered a VPA */
546                 err = H_RESOURCE;
547                 if (!vpa_is_registered(&tvcpu->arch.vpa))
548                         break;
549
550                 vpap = &tvcpu->arch.dtl;
551                 err = 0;
552                 break;
553
554         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
555                 /* Check that they have previously registered a VPA */
556                 err = H_RESOURCE;
557                 if (!vpa_is_registered(&tvcpu->arch.vpa))
558                         break;
559
560                 vpap = &tvcpu->arch.slb_shadow;
561                 err = 0;
562                 break;
563
564         case H_VPA_DEREG_VPA:           /* deregister VPA */
565                 /* Check they don't still have a DTL or SLB buf registered */
566                 err = H_RESOURCE;
567                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
568                     vpa_is_registered(&tvcpu->arch.slb_shadow))
569                         break;
570
571                 vpap = &tvcpu->arch.vpa;
572                 err = 0;
573                 break;
574
575         case H_VPA_DEREG_DTL:           /* deregister DTL */
576                 vpap = &tvcpu->arch.dtl;
577                 err = 0;
578                 break;
579
580         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
581                 vpap = &tvcpu->arch.slb_shadow;
582                 err = 0;
583                 break;
584         }
585
586         if (vpap) {
587                 vpap->next_gpa = vpa;
588                 vpap->len = len;
589                 vpap->update_pending = 1;
590         }
591
592         spin_unlock(&tvcpu->arch.vpa_update_lock);
593
594         return err;
595 }
596
597 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
598 {
599         struct kvm *kvm = vcpu->kvm;
600         void *va;
601         unsigned long nb;
602         unsigned long gpa;
603
604         /*
605          * We need to pin the page pointed to by vpap->next_gpa,
606          * but we can't call kvmppc_pin_guest_page under the lock
607          * as it does get_user_pages() and down_read().  So we
608          * have to drop the lock, pin the page, then get the lock
609          * again and check that a new area didn't get registered
610          * in the meantime.
611          */
612         for (;;) {
613                 gpa = vpap->next_gpa;
614                 spin_unlock(&vcpu->arch.vpa_update_lock);
615                 va = NULL;
616                 nb = 0;
617                 if (gpa)
618                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
619                 spin_lock(&vcpu->arch.vpa_update_lock);
620                 if (gpa == vpap->next_gpa)
621                         break;
622                 /* sigh... unpin that one and try again */
623                 if (va)
624                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
625         }
626
627         vpap->update_pending = 0;
628         if (va && nb < vpap->len) {
629                 /*
630                  * If it's now too short, it must be that userspace
631                  * has changed the mappings underlying guest memory,
632                  * so unregister the region.
633                  */
634                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
635                 va = NULL;
636         }
637         if (vpap->pinned_addr)
638                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
639                                         vpap->dirty);
640         vpap->gpa = gpa;
641         vpap->pinned_addr = va;
642         vpap->dirty = false;
643         if (va)
644                 vpap->pinned_end = va + vpap->len;
645 }
646
647 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
648 {
649         if (!(vcpu->arch.vpa.update_pending ||
650               vcpu->arch.slb_shadow.update_pending ||
651               vcpu->arch.dtl.update_pending))
652                 return;
653
654         spin_lock(&vcpu->arch.vpa_update_lock);
655         if (vcpu->arch.vpa.update_pending) {
656                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
657                 if (vcpu->arch.vpa.pinned_addr)
658                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
659         }
660         if (vcpu->arch.dtl.update_pending) {
661                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
662                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
663                 vcpu->arch.dtl_index = 0;
664         }
665         if (vcpu->arch.slb_shadow.update_pending)
666                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
667         spin_unlock(&vcpu->arch.vpa_update_lock);
668 }
669
670 /*
671  * Return the accumulated stolen time for the vcore up until `now'.
672  * The caller should hold the vcore lock.
673  */
674 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
675 {
676         u64 p;
677         unsigned long flags;
678
679         spin_lock_irqsave(&vc->stoltb_lock, flags);
680         p = vc->stolen_tb;
681         if (vc->vcore_state != VCORE_INACTIVE &&
682             vc->preempt_tb != TB_NIL)
683                 p += now - vc->preempt_tb;
684         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
685         return p;
686 }
687
688 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
689                                     struct kvmppc_vcore *vc)
690 {
691         struct dtl_entry *dt;
692         struct lppaca *vpa;
693         unsigned long stolen;
694         unsigned long core_stolen;
695         u64 now;
696         unsigned long flags;
697
698         dt = vcpu->arch.dtl_ptr;
699         vpa = vcpu->arch.vpa.pinned_addr;
700         now = mftb();
701         core_stolen = vcore_stolen_time(vc, now);
702         stolen = core_stolen - vcpu->arch.stolen_logged;
703         vcpu->arch.stolen_logged = core_stolen;
704         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
705         stolen += vcpu->arch.busy_stolen;
706         vcpu->arch.busy_stolen = 0;
707         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
708         if (!dt || !vpa)
709                 return;
710         memset(dt, 0, sizeof(struct dtl_entry));
711         dt->dispatch_reason = 7;
712         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
713         dt->timebase = cpu_to_be64(now + vc->tb_offset);
714         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
715         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
716         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
717         ++dt;
718         if (dt == vcpu->arch.dtl.pinned_end)
719                 dt = vcpu->arch.dtl.pinned_addr;
720         vcpu->arch.dtl_ptr = dt;
721         /* order writing *dt vs. writing vpa->dtl_idx */
722         smp_wmb();
723         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
724         vcpu->arch.dtl.dirty = true;
725 }
726
727 /* See if there is a doorbell interrupt pending for a vcpu */
728 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
729 {
730         int thr;
731         struct kvmppc_vcore *vc;
732
733         if (vcpu->arch.doorbell_request)
734                 return true;
735         /*
736          * Ensure that the read of vcore->dpdes comes after the read
737          * of vcpu->doorbell_request.  This barrier matches the
738          * smp_wmb() in kvmppc_guest_entry_inject().
739          */
740         smp_rmb();
741         vc = vcpu->arch.vcore;
742         thr = vcpu->vcpu_id - vc->first_vcpuid;
743         return !!(vc->dpdes & (1 << thr));
744 }
745
746 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
747 {
748         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
749                 return true;
750         if ((!vcpu->arch.vcore->arch_compat) &&
751             cpu_has_feature(CPU_FTR_ARCH_207S))
752                 return true;
753         return false;
754 }
755
756 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
757                              unsigned long resource, unsigned long value1,
758                              unsigned long value2)
759 {
760         switch (resource) {
761         case H_SET_MODE_RESOURCE_SET_CIABR:
762                 if (!kvmppc_power8_compatible(vcpu))
763                         return H_P2;
764                 if (value2)
765                         return H_P4;
766                 if (mflags)
767                         return H_UNSUPPORTED_FLAG_START;
768                 /* Guests can't breakpoint the hypervisor */
769                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
770                         return H_P3;
771                 vcpu->arch.ciabr  = value1;
772                 return H_SUCCESS;
773         case H_SET_MODE_RESOURCE_SET_DAWR:
774                 if (!kvmppc_power8_compatible(vcpu))
775                         return H_P2;
776                 if (!ppc_breakpoint_available())
777                         return H_P2;
778                 if (mflags)
779                         return H_UNSUPPORTED_FLAG_START;
780                 if (value2 & DABRX_HYP)
781                         return H_P4;
782                 vcpu->arch.dawr  = value1;
783                 vcpu->arch.dawrx = value2;
784                 return H_SUCCESS;
785         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
786                 /* KVM does not support mflags=2 (AIL=2) */
787                 if (mflags != 0 && mflags != 3)
788                         return H_UNSUPPORTED_FLAG_START;
789                 return H_TOO_HARD;
790         default:
791                 return H_TOO_HARD;
792         }
793 }
794
795 /* Copy guest memory in place - must reside within a single memslot */
796 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
797                                   unsigned long len)
798 {
799         struct kvm_memory_slot *to_memslot = NULL;
800         struct kvm_memory_slot *from_memslot = NULL;
801         unsigned long to_addr, from_addr;
802         int r;
803
804         /* Get HPA for from address */
805         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
806         if (!from_memslot)
807                 return -EFAULT;
808         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
809                              << PAGE_SHIFT))
810                 return -EINVAL;
811         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
812         if (kvm_is_error_hva(from_addr))
813                 return -EFAULT;
814         from_addr |= (from & (PAGE_SIZE - 1));
815
816         /* Get HPA for to address */
817         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
818         if (!to_memslot)
819                 return -EFAULT;
820         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
821                            << PAGE_SHIFT))
822                 return -EINVAL;
823         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
824         if (kvm_is_error_hva(to_addr))
825                 return -EFAULT;
826         to_addr |= (to & (PAGE_SIZE - 1));
827
828         /* Perform copy */
829         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
830                              len);
831         if (r)
832                 return -EFAULT;
833         mark_page_dirty(kvm, to >> PAGE_SHIFT);
834         return 0;
835 }
836
837 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
838                                unsigned long dest, unsigned long src)
839 {
840         u64 pg_sz = SZ_4K;              /* 4K page size */
841         u64 pg_mask = SZ_4K - 1;
842         int ret;
843
844         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
845         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
846                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
847                 return H_PARAMETER;
848
849         /* dest (and src if copy_page flag set) must be page aligned */
850         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
851                 return H_PARAMETER;
852
853         /* zero and/or copy the page as determined by the flags */
854         if (flags & H_COPY_PAGE) {
855                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
856                 if (ret < 0)
857                         return H_PARAMETER;
858         } else if (flags & H_ZERO_PAGE) {
859                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
860                 if (ret < 0)
861                         return H_PARAMETER;
862         }
863
864         /* We can ignore the remaining flags */
865
866         return H_SUCCESS;
867 }
868
869 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
870 {
871         struct kvmppc_vcore *vcore = target->arch.vcore;
872
873         /*
874          * We expect to have been called by the real mode handler
875          * (kvmppc_rm_h_confer()) which would have directly returned
876          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
877          * have useful work to do and should not confer) so we don't
878          * recheck that here.
879          */
880
881         spin_lock(&vcore->lock);
882         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
883             vcore->vcore_state != VCORE_INACTIVE &&
884             vcore->runner)
885                 target = vcore->runner;
886         spin_unlock(&vcore->lock);
887
888         return kvm_vcpu_yield_to(target);
889 }
890
891 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
892 {
893         int yield_count = 0;
894         struct lppaca *lppaca;
895
896         spin_lock(&vcpu->arch.vpa_update_lock);
897         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
898         if (lppaca)
899                 yield_count = be32_to_cpu(lppaca->yield_count);
900         spin_unlock(&vcpu->arch.vpa_update_lock);
901         return yield_count;
902 }
903
904 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
905 {
906         unsigned long req = kvmppc_get_gpr(vcpu, 3);
907         unsigned long target, ret = H_SUCCESS;
908         int yield_count;
909         struct kvm_vcpu *tvcpu;
910         int idx, rc;
911
912         if (req <= MAX_HCALL_OPCODE &&
913             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
914                 return RESUME_HOST;
915
916         switch (req) {
917         case H_CEDE:
918                 break;
919         case H_PROD:
920                 target = kvmppc_get_gpr(vcpu, 4);
921                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
922                 if (!tvcpu) {
923                         ret = H_PARAMETER;
924                         break;
925                 }
926                 tvcpu->arch.prodded = 1;
927                 smp_mb();
928                 if (tvcpu->arch.ceded)
929                         kvmppc_fast_vcpu_kick_hv(tvcpu);
930                 break;
931         case H_CONFER:
932                 target = kvmppc_get_gpr(vcpu, 4);
933                 if (target == -1)
934                         break;
935                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
936                 if (!tvcpu) {
937                         ret = H_PARAMETER;
938                         break;
939                 }
940                 yield_count = kvmppc_get_gpr(vcpu, 5);
941                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
942                         break;
943                 kvm_arch_vcpu_yield_to(tvcpu);
944                 break;
945         case H_REGISTER_VPA:
946                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
947                                         kvmppc_get_gpr(vcpu, 5),
948                                         kvmppc_get_gpr(vcpu, 6));
949                 break;
950         case H_RTAS:
951                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
952                         return RESUME_HOST;
953
954                 idx = srcu_read_lock(&vcpu->kvm->srcu);
955                 rc = kvmppc_rtas_hcall(vcpu);
956                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
957
958                 if (rc == -ENOENT)
959                         return RESUME_HOST;
960                 else if (rc == 0)
961                         break;
962
963                 /* Send the error out to userspace via KVM_RUN */
964                 return rc;
965         case H_LOGICAL_CI_LOAD:
966                 ret = kvmppc_h_logical_ci_load(vcpu);
967                 if (ret == H_TOO_HARD)
968                         return RESUME_HOST;
969                 break;
970         case H_LOGICAL_CI_STORE:
971                 ret = kvmppc_h_logical_ci_store(vcpu);
972                 if (ret == H_TOO_HARD)
973                         return RESUME_HOST;
974                 break;
975         case H_SET_MODE:
976                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
977                                         kvmppc_get_gpr(vcpu, 5),
978                                         kvmppc_get_gpr(vcpu, 6),
979                                         kvmppc_get_gpr(vcpu, 7));
980                 if (ret == H_TOO_HARD)
981                         return RESUME_HOST;
982                 break;
983         case H_XIRR:
984         case H_CPPR:
985         case H_EOI:
986         case H_IPI:
987         case H_IPOLL:
988         case H_XIRR_X:
989                 if (kvmppc_xics_enabled(vcpu)) {
990                         if (xics_on_xive()) {
991                                 ret = H_NOT_AVAILABLE;
992                                 return RESUME_GUEST;
993                         }
994                         ret = kvmppc_xics_hcall(vcpu, req);
995                         break;
996                 }
997                 return RESUME_HOST;
998         case H_SET_DABR:
999                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1000                 break;
1001         case H_SET_XDABR:
1002                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1003                                                 kvmppc_get_gpr(vcpu, 5));
1004                 break;
1005 #ifdef CONFIG_SPAPR_TCE_IOMMU
1006         case H_GET_TCE:
1007                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1008                                                 kvmppc_get_gpr(vcpu, 5));
1009                 if (ret == H_TOO_HARD)
1010                         return RESUME_HOST;
1011                 break;
1012         case H_PUT_TCE:
1013                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1014                                                 kvmppc_get_gpr(vcpu, 5),
1015                                                 kvmppc_get_gpr(vcpu, 6));
1016                 if (ret == H_TOO_HARD)
1017                         return RESUME_HOST;
1018                 break;
1019         case H_PUT_TCE_INDIRECT:
1020                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1021                                                 kvmppc_get_gpr(vcpu, 5),
1022                                                 kvmppc_get_gpr(vcpu, 6),
1023                                                 kvmppc_get_gpr(vcpu, 7));
1024                 if (ret == H_TOO_HARD)
1025                         return RESUME_HOST;
1026                 break;
1027         case H_STUFF_TCE:
1028                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1029                                                 kvmppc_get_gpr(vcpu, 5),
1030                                                 kvmppc_get_gpr(vcpu, 6),
1031                                                 kvmppc_get_gpr(vcpu, 7));
1032                 if (ret == H_TOO_HARD)
1033                         return RESUME_HOST;
1034                 break;
1035 #endif
1036         case H_RANDOM:
1037                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1038                         ret = H_HARDWARE;
1039                 break;
1040
1041         case H_SET_PARTITION_TABLE:
1042                 ret = H_FUNCTION;
1043                 if (nesting_enabled(vcpu->kvm))
1044                         ret = kvmhv_set_partition_table(vcpu);
1045                 break;
1046         case H_ENTER_NESTED:
1047                 ret = H_FUNCTION;
1048                 if (!nesting_enabled(vcpu->kvm))
1049                         break;
1050                 ret = kvmhv_enter_nested_guest(vcpu);
1051                 if (ret == H_INTERRUPT) {
1052                         kvmppc_set_gpr(vcpu, 3, 0);
1053                         vcpu->arch.hcall_needed = 0;
1054                         return -EINTR;
1055                 } else if (ret == H_TOO_HARD) {
1056                         kvmppc_set_gpr(vcpu, 3, 0);
1057                         vcpu->arch.hcall_needed = 0;
1058                         return RESUME_HOST;
1059                 }
1060                 break;
1061         case H_TLB_INVALIDATE:
1062                 ret = H_FUNCTION;
1063                 if (nesting_enabled(vcpu->kvm))
1064                         ret = kvmhv_do_nested_tlbie(vcpu);
1065                 break;
1066         case H_COPY_TOFROM_GUEST:
1067                 ret = H_FUNCTION;
1068                 if (nesting_enabled(vcpu->kvm))
1069                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1070                 break;
1071         case H_PAGE_INIT:
1072                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1073                                          kvmppc_get_gpr(vcpu, 5),
1074                                          kvmppc_get_gpr(vcpu, 6));
1075                 break;
1076         case H_SVM_PAGE_IN:
1077                 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1078                                            kvmppc_get_gpr(vcpu, 4),
1079                                            kvmppc_get_gpr(vcpu, 5),
1080                                            kvmppc_get_gpr(vcpu, 6));
1081                 break;
1082         case H_SVM_PAGE_OUT:
1083                 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1084                                             kvmppc_get_gpr(vcpu, 4),
1085                                             kvmppc_get_gpr(vcpu, 5),
1086                                             kvmppc_get_gpr(vcpu, 6));
1087                 break;
1088         case H_SVM_INIT_START:
1089                 ret = kvmppc_h_svm_init_start(vcpu->kvm);
1090                 break;
1091         case H_SVM_INIT_DONE:
1092                 ret = kvmppc_h_svm_init_done(vcpu->kvm);
1093                 break;
1094
1095         default:
1096                 return RESUME_HOST;
1097         }
1098         kvmppc_set_gpr(vcpu, 3, ret);
1099         vcpu->arch.hcall_needed = 0;
1100         return RESUME_GUEST;
1101 }
1102
1103 /*
1104  * Handle H_CEDE in the nested virtualization case where we haven't
1105  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1106  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1107  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1108  */
1109 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1110 {
1111         vcpu->arch.shregs.msr |= MSR_EE;
1112         vcpu->arch.ceded = 1;
1113         smp_mb();
1114         if (vcpu->arch.prodded) {
1115                 vcpu->arch.prodded = 0;
1116                 smp_mb();
1117                 vcpu->arch.ceded = 0;
1118         }
1119 }
1120
1121 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1122 {
1123         switch (cmd) {
1124         case H_CEDE:
1125         case H_PROD:
1126         case H_CONFER:
1127         case H_REGISTER_VPA:
1128         case H_SET_MODE:
1129         case H_LOGICAL_CI_LOAD:
1130         case H_LOGICAL_CI_STORE:
1131 #ifdef CONFIG_KVM_XICS
1132         case H_XIRR:
1133         case H_CPPR:
1134         case H_EOI:
1135         case H_IPI:
1136         case H_IPOLL:
1137         case H_XIRR_X:
1138 #endif
1139         case H_PAGE_INIT:
1140                 return 1;
1141         }
1142
1143         /* See if it's in the real-mode table */
1144         return kvmppc_hcall_impl_hv_realmode(cmd);
1145 }
1146
1147 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1148                                         struct kvm_vcpu *vcpu)
1149 {
1150         u32 last_inst;
1151
1152         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1153                                         EMULATE_DONE) {
1154                 /*
1155                  * Fetch failed, so return to guest and
1156                  * try executing it again.
1157                  */
1158                 return RESUME_GUEST;
1159         }
1160
1161         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1162                 run->exit_reason = KVM_EXIT_DEBUG;
1163                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1164                 return RESUME_HOST;
1165         } else {
1166                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1167                 return RESUME_GUEST;
1168         }
1169 }
1170
1171 static void do_nothing(void *x)
1172 {
1173 }
1174
1175 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1176 {
1177         int thr, cpu, pcpu, nthreads;
1178         struct kvm_vcpu *v;
1179         unsigned long dpdes;
1180
1181         nthreads = vcpu->kvm->arch.emul_smt_mode;
1182         dpdes = 0;
1183         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1184         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1185                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1186                 if (!v)
1187                         continue;
1188                 /*
1189                  * If the vcpu is currently running on a physical cpu thread,
1190                  * interrupt it in order to pull it out of the guest briefly,
1191                  * which will update its vcore->dpdes value.
1192                  */
1193                 pcpu = READ_ONCE(v->cpu);
1194                 if (pcpu >= 0)
1195                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1196                 if (kvmppc_doorbell_pending(v))
1197                         dpdes |= 1 << thr;
1198         }
1199         return dpdes;
1200 }
1201
1202 /*
1203  * On POWER9, emulate doorbell-related instructions in order to
1204  * give the guest the illusion of running on a multi-threaded core.
1205  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1206  * and mfspr DPDES.
1207  */
1208 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1209 {
1210         u32 inst, rb, thr;
1211         unsigned long arg;
1212         struct kvm *kvm = vcpu->kvm;
1213         struct kvm_vcpu *tvcpu;
1214
1215         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1216                 return RESUME_GUEST;
1217         if (get_op(inst) != 31)
1218                 return EMULATE_FAIL;
1219         rb = get_rb(inst);
1220         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1221         switch (get_xop(inst)) {
1222         case OP_31_XOP_MSGSNDP:
1223                 arg = kvmppc_get_gpr(vcpu, rb);
1224                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1225                         break;
1226                 arg &= 0x3f;
1227                 if (arg >= kvm->arch.emul_smt_mode)
1228                         break;
1229                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1230                 if (!tvcpu)
1231                         break;
1232                 if (!tvcpu->arch.doorbell_request) {
1233                         tvcpu->arch.doorbell_request = 1;
1234                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1235                 }
1236                 break;
1237         case OP_31_XOP_MSGCLRP:
1238                 arg = kvmppc_get_gpr(vcpu, rb);
1239                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1240                         break;
1241                 vcpu->arch.vcore->dpdes = 0;
1242                 vcpu->arch.doorbell_request = 0;
1243                 break;
1244         case OP_31_XOP_MFSPR:
1245                 switch (get_sprn(inst)) {
1246                 case SPRN_TIR:
1247                         arg = thr;
1248                         break;
1249                 case SPRN_DPDES:
1250                         arg = kvmppc_read_dpdes(vcpu);
1251                         break;
1252                 default:
1253                         return EMULATE_FAIL;
1254                 }
1255                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1256                 break;
1257         default:
1258                 return EMULATE_FAIL;
1259         }
1260         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1261         return RESUME_GUEST;
1262 }
1263
1264 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1265                                  struct task_struct *tsk)
1266 {
1267         int r = RESUME_HOST;
1268
1269         vcpu->stat.sum_exits++;
1270
1271         /*
1272          * This can happen if an interrupt occurs in the last stages
1273          * of guest entry or the first stages of guest exit (i.e. after
1274          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1275          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1276          * That can happen due to a bug, or due to a machine check
1277          * occurring at just the wrong time.
1278          */
1279         if (vcpu->arch.shregs.msr & MSR_HV) {
1280                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1281                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1282                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1283                         vcpu->arch.shregs.msr);
1284                 kvmppc_dump_regs(vcpu);
1285                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1286                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1287                 return RESUME_HOST;
1288         }
1289         run->exit_reason = KVM_EXIT_UNKNOWN;
1290         run->ready_for_interrupt_injection = 1;
1291         switch (vcpu->arch.trap) {
1292         /* We're good on these - the host merely wanted to get our attention */
1293         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1294                 vcpu->stat.dec_exits++;
1295                 r = RESUME_GUEST;
1296                 break;
1297         case BOOK3S_INTERRUPT_EXTERNAL:
1298         case BOOK3S_INTERRUPT_H_DOORBELL:
1299         case BOOK3S_INTERRUPT_H_VIRT:
1300                 vcpu->stat.ext_intr_exits++;
1301                 r = RESUME_GUEST;
1302                 break;
1303         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1304         case BOOK3S_INTERRUPT_HMI:
1305         case BOOK3S_INTERRUPT_PERFMON:
1306         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1307                 r = RESUME_GUEST;
1308                 break;
1309         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1310                 /* Print the MCE event to host console. */
1311                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1312
1313                 /*
1314                  * If the guest can do FWNMI, exit to userspace so it can
1315                  * deliver a FWNMI to the guest.
1316                  * Otherwise we synthesize a machine check for the guest
1317                  * so that it knows that the machine check occurred.
1318                  */
1319                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1320                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1321                         kvmppc_core_queue_machine_check(vcpu, flags);
1322                         r = RESUME_GUEST;
1323                         break;
1324                 }
1325
1326                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1327                 run->exit_reason = KVM_EXIT_NMI;
1328                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1329                 /* Clear out the old NMI status from run->flags */
1330                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1331                 /* Now set the NMI status */
1332                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1333                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1334                 else
1335                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1336
1337                 r = RESUME_HOST;
1338                 break;
1339         case BOOK3S_INTERRUPT_PROGRAM:
1340         {
1341                 ulong flags;
1342                 /*
1343                  * Normally program interrupts are delivered directly
1344                  * to the guest by the hardware, but we can get here
1345                  * as a result of a hypervisor emulation interrupt
1346                  * (e40) getting turned into a 700 by BML RTAS.
1347                  */
1348                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1349                 kvmppc_core_queue_program(vcpu, flags);
1350                 r = RESUME_GUEST;
1351                 break;
1352         }
1353         case BOOK3S_INTERRUPT_SYSCALL:
1354         {
1355                 /* hcall - punt to userspace */
1356                 int i;
1357
1358                 /* hypercall with MSR_PR has already been handled in rmode,
1359                  * and never reaches here.
1360                  */
1361
1362                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1363                 for (i = 0; i < 9; ++i)
1364                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1365                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1366                 vcpu->arch.hcall_needed = 1;
1367                 r = RESUME_HOST;
1368                 break;
1369         }
1370         /*
1371          * We get these next two if the guest accesses a page which it thinks
1372          * it has mapped but which is not actually present, either because
1373          * it is for an emulated I/O device or because the corresonding
1374          * host page has been paged out.  Any other HDSI/HISI interrupts
1375          * have been handled already.
1376          */
1377         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1378                 r = RESUME_PAGE_FAULT;
1379                 break;
1380         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1381                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1382                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1383                         DSISR_SRR1_MATCH_64S;
1384                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1385                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1386                 r = RESUME_PAGE_FAULT;
1387                 break;
1388         /*
1389          * This occurs if the guest executes an illegal instruction.
1390          * If the guest debug is disabled, generate a program interrupt
1391          * to the guest. If guest debug is enabled, we need to check
1392          * whether the instruction is a software breakpoint instruction.
1393          * Accordingly return to Guest or Host.
1394          */
1395         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1396                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1397                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1398                                 swab32(vcpu->arch.emul_inst) :
1399                                 vcpu->arch.emul_inst;
1400                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1401                         r = kvmppc_emulate_debug_inst(run, vcpu);
1402                 } else {
1403                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1404                         r = RESUME_GUEST;
1405                 }
1406                 break;
1407         /*
1408          * This occurs if the guest (kernel or userspace), does something that
1409          * is prohibited by HFSCR.
1410          * On POWER9, this could be a doorbell instruction that we need
1411          * to emulate.
1412          * Otherwise, we just generate a program interrupt to the guest.
1413          */
1414         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1415                 r = EMULATE_FAIL;
1416                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1417                     cpu_has_feature(CPU_FTR_ARCH_300))
1418                         r = kvmppc_emulate_doorbell_instr(vcpu);
1419                 if (r == EMULATE_FAIL) {
1420                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1421                         r = RESUME_GUEST;
1422                 }
1423                 break;
1424
1425 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1426         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1427                 /*
1428                  * This occurs for various TM-related instructions that
1429                  * we need to emulate on POWER9 DD2.2.  We have already
1430                  * handled the cases where the guest was in real-suspend
1431                  * mode and was transitioning to transactional state.
1432                  */
1433                 r = kvmhv_p9_tm_emulation(vcpu);
1434                 break;
1435 #endif
1436
1437         case BOOK3S_INTERRUPT_HV_RM_HARD:
1438                 r = RESUME_PASSTHROUGH;
1439                 break;
1440         default:
1441                 kvmppc_dump_regs(vcpu);
1442                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1443                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1444                         vcpu->arch.shregs.msr);
1445                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1446                 r = RESUME_HOST;
1447                 break;
1448         }
1449
1450         return r;
1451 }
1452
1453 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1454 {
1455         int r;
1456         int srcu_idx;
1457
1458         vcpu->stat.sum_exits++;
1459
1460         /*
1461          * This can happen if an interrupt occurs in the last stages
1462          * of guest entry or the first stages of guest exit (i.e. after
1463          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1464          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1465          * That can happen due to a bug, or due to a machine check
1466          * occurring at just the wrong time.
1467          */
1468         if (vcpu->arch.shregs.msr & MSR_HV) {
1469                 pr_emerg("KVM trap in HV mode while nested!\n");
1470                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1471                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1472                          vcpu->arch.shregs.msr);
1473                 kvmppc_dump_regs(vcpu);
1474                 return RESUME_HOST;
1475         }
1476         switch (vcpu->arch.trap) {
1477         /* We're good on these - the host merely wanted to get our attention */
1478         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1479                 vcpu->stat.dec_exits++;
1480                 r = RESUME_GUEST;
1481                 break;
1482         case BOOK3S_INTERRUPT_EXTERNAL:
1483                 vcpu->stat.ext_intr_exits++;
1484                 r = RESUME_HOST;
1485                 break;
1486         case BOOK3S_INTERRUPT_H_DOORBELL:
1487         case BOOK3S_INTERRUPT_H_VIRT:
1488                 vcpu->stat.ext_intr_exits++;
1489                 r = RESUME_GUEST;
1490                 break;
1491         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1492         case BOOK3S_INTERRUPT_HMI:
1493         case BOOK3S_INTERRUPT_PERFMON:
1494         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1495                 r = RESUME_GUEST;
1496                 break;
1497         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1498                 /* Pass the machine check to the L1 guest */
1499                 r = RESUME_HOST;
1500                 /* Print the MCE event to host console. */
1501                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1502                 break;
1503         /*
1504          * We get these next two if the guest accesses a page which it thinks
1505          * it has mapped but which is not actually present, either because
1506          * it is for an emulated I/O device or because the corresonding
1507          * host page has been paged out.
1508          */
1509         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1510                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1511                 r = kvmhv_nested_page_fault(run, vcpu);
1512                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1513                 break;
1514         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1515                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1516                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1517                                          DSISR_SRR1_MATCH_64S;
1518                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1519                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1520                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1521                 r = kvmhv_nested_page_fault(run, vcpu);
1522                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1523                 break;
1524
1525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1526         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1527                 /*
1528                  * This occurs for various TM-related instructions that
1529                  * we need to emulate on POWER9 DD2.2.  We have already
1530                  * handled the cases where the guest was in real-suspend
1531                  * mode and was transitioning to transactional state.
1532                  */
1533                 r = kvmhv_p9_tm_emulation(vcpu);
1534                 break;
1535 #endif
1536
1537         case BOOK3S_INTERRUPT_HV_RM_HARD:
1538                 vcpu->arch.trap = 0;
1539                 r = RESUME_GUEST;
1540                 if (!xics_on_xive())
1541                         kvmppc_xics_rm_complete(vcpu, 0);
1542                 break;
1543         default:
1544                 r = RESUME_HOST;
1545                 break;
1546         }
1547
1548         return r;
1549 }
1550
1551 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1552                                             struct kvm_sregs *sregs)
1553 {
1554         int i;
1555
1556         memset(sregs, 0, sizeof(struct kvm_sregs));
1557         sregs->pvr = vcpu->arch.pvr;
1558         for (i = 0; i < vcpu->arch.slb_max; i++) {
1559                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1560                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1561         }
1562
1563         return 0;
1564 }
1565
1566 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1567                                             struct kvm_sregs *sregs)
1568 {
1569         int i, j;
1570
1571         /* Only accept the same PVR as the host's, since we can't spoof it */
1572         if (sregs->pvr != vcpu->arch.pvr)
1573                 return -EINVAL;
1574
1575         j = 0;
1576         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1577                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1578                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1579                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1580                         ++j;
1581                 }
1582         }
1583         vcpu->arch.slb_max = j;
1584
1585         return 0;
1586 }
1587
1588 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1589                 bool preserve_top32)
1590 {
1591         struct kvm *kvm = vcpu->kvm;
1592         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1593         u64 mask;
1594
1595         spin_lock(&vc->lock);
1596         /*
1597          * If ILE (interrupt little-endian) has changed, update the
1598          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1599          */
1600         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1601                 struct kvm_vcpu *vcpu;
1602                 int i;
1603
1604                 kvm_for_each_vcpu(i, vcpu, kvm) {
1605                         if (vcpu->arch.vcore != vc)
1606                                 continue;
1607                         if (new_lpcr & LPCR_ILE)
1608                                 vcpu->arch.intr_msr |= MSR_LE;
1609                         else
1610                                 vcpu->arch.intr_msr &= ~MSR_LE;
1611                 }
1612         }
1613
1614         /*
1615          * Userspace can only modify DPFD (default prefetch depth),
1616          * ILE (interrupt little-endian) and TC (translation control).
1617          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1618          */
1619         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1620         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1621                 mask |= LPCR_AIL;
1622         /*
1623          * On POWER9, allow userspace to enable large decrementer for the
1624          * guest, whether or not the host has it enabled.
1625          */
1626         if (cpu_has_feature(CPU_FTR_ARCH_300))
1627                 mask |= LPCR_LD;
1628
1629         /* Broken 32-bit version of LPCR must not clear top bits */
1630         if (preserve_top32)
1631                 mask &= 0xFFFFFFFF;
1632         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1633         spin_unlock(&vc->lock);
1634 }
1635
1636 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1637                                  union kvmppc_one_reg *val)
1638 {
1639         int r = 0;
1640         long int i;
1641
1642         switch (id) {
1643         case KVM_REG_PPC_DEBUG_INST:
1644                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1645                 break;
1646         case KVM_REG_PPC_HIOR:
1647                 *val = get_reg_val(id, 0);
1648                 break;
1649         case KVM_REG_PPC_DABR:
1650                 *val = get_reg_val(id, vcpu->arch.dabr);
1651                 break;
1652         case KVM_REG_PPC_DABRX:
1653                 *val = get_reg_val(id, vcpu->arch.dabrx);
1654                 break;
1655         case KVM_REG_PPC_DSCR:
1656                 *val = get_reg_val(id, vcpu->arch.dscr);
1657                 break;
1658         case KVM_REG_PPC_PURR:
1659                 *val = get_reg_val(id, vcpu->arch.purr);
1660                 break;
1661         case KVM_REG_PPC_SPURR:
1662                 *val = get_reg_val(id, vcpu->arch.spurr);
1663                 break;
1664         case KVM_REG_PPC_AMR:
1665                 *val = get_reg_val(id, vcpu->arch.amr);
1666                 break;
1667         case KVM_REG_PPC_UAMOR:
1668                 *val = get_reg_val(id, vcpu->arch.uamor);
1669                 break;
1670         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1671                 i = id - KVM_REG_PPC_MMCR0;
1672                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1673                 break;
1674         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1675                 i = id - KVM_REG_PPC_PMC1;
1676                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1677                 break;
1678         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1679                 i = id - KVM_REG_PPC_SPMC1;
1680                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1681                 break;
1682         case KVM_REG_PPC_SIAR:
1683                 *val = get_reg_val(id, vcpu->arch.siar);
1684                 break;
1685         case KVM_REG_PPC_SDAR:
1686                 *val = get_reg_val(id, vcpu->arch.sdar);
1687                 break;
1688         case KVM_REG_PPC_SIER:
1689                 *val = get_reg_val(id, vcpu->arch.sier);
1690                 break;
1691         case KVM_REG_PPC_IAMR:
1692                 *val = get_reg_val(id, vcpu->arch.iamr);
1693                 break;
1694         case KVM_REG_PPC_PSPB:
1695                 *val = get_reg_val(id, vcpu->arch.pspb);
1696                 break;
1697         case KVM_REG_PPC_DPDES:
1698                 /*
1699                  * On POWER9, where we are emulating msgsndp etc.,
1700                  * we return 1 bit for each vcpu, which can come from
1701                  * either vcore->dpdes or doorbell_request.
1702                  * On POWER8, doorbell_request is 0.
1703                  */
1704                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1705                                    vcpu->arch.doorbell_request);
1706                 break;
1707         case KVM_REG_PPC_VTB:
1708                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1709                 break;
1710         case KVM_REG_PPC_DAWR:
1711                 *val = get_reg_val(id, vcpu->arch.dawr);
1712                 break;
1713         case KVM_REG_PPC_DAWRX:
1714                 *val = get_reg_val(id, vcpu->arch.dawrx);
1715                 break;
1716         case KVM_REG_PPC_CIABR:
1717                 *val = get_reg_val(id, vcpu->arch.ciabr);
1718                 break;
1719         case KVM_REG_PPC_CSIGR:
1720                 *val = get_reg_val(id, vcpu->arch.csigr);
1721                 break;
1722         case KVM_REG_PPC_TACR:
1723                 *val = get_reg_val(id, vcpu->arch.tacr);
1724                 break;
1725         case KVM_REG_PPC_TCSCR:
1726                 *val = get_reg_val(id, vcpu->arch.tcscr);
1727                 break;
1728         case KVM_REG_PPC_PID:
1729                 *val = get_reg_val(id, vcpu->arch.pid);
1730                 break;
1731         case KVM_REG_PPC_ACOP:
1732                 *val = get_reg_val(id, vcpu->arch.acop);
1733                 break;
1734         case KVM_REG_PPC_WORT:
1735                 *val = get_reg_val(id, vcpu->arch.wort);
1736                 break;
1737         case KVM_REG_PPC_TIDR:
1738                 *val = get_reg_val(id, vcpu->arch.tid);
1739                 break;
1740         case KVM_REG_PPC_PSSCR:
1741                 *val = get_reg_val(id, vcpu->arch.psscr);
1742                 break;
1743         case KVM_REG_PPC_VPA_ADDR:
1744                 spin_lock(&vcpu->arch.vpa_update_lock);
1745                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1746                 spin_unlock(&vcpu->arch.vpa_update_lock);
1747                 break;
1748         case KVM_REG_PPC_VPA_SLB:
1749                 spin_lock(&vcpu->arch.vpa_update_lock);
1750                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1751                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1752                 spin_unlock(&vcpu->arch.vpa_update_lock);
1753                 break;
1754         case KVM_REG_PPC_VPA_DTL:
1755                 spin_lock(&vcpu->arch.vpa_update_lock);
1756                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1757                 val->vpaval.length = vcpu->arch.dtl.len;
1758                 spin_unlock(&vcpu->arch.vpa_update_lock);
1759                 break;
1760         case KVM_REG_PPC_TB_OFFSET:
1761                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1762                 break;
1763         case KVM_REG_PPC_LPCR:
1764         case KVM_REG_PPC_LPCR_64:
1765                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1766                 break;
1767         case KVM_REG_PPC_PPR:
1768                 *val = get_reg_val(id, vcpu->arch.ppr);
1769                 break;
1770 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1771         case KVM_REG_PPC_TFHAR:
1772                 *val = get_reg_val(id, vcpu->arch.tfhar);
1773                 break;
1774         case KVM_REG_PPC_TFIAR:
1775                 *val = get_reg_val(id, vcpu->arch.tfiar);
1776                 break;
1777         case KVM_REG_PPC_TEXASR:
1778                 *val = get_reg_val(id, vcpu->arch.texasr);
1779                 break;
1780         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1781                 i = id - KVM_REG_PPC_TM_GPR0;
1782                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1783                 break;
1784         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1785         {
1786                 int j;
1787                 i = id - KVM_REG_PPC_TM_VSR0;
1788                 if (i < 32)
1789                         for (j = 0; j < TS_FPRWIDTH; j++)
1790                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1791                 else {
1792                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1793                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1794                         else
1795                                 r = -ENXIO;
1796                 }
1797                 break;
1798         }
1799         case KVM_REG_PPC_TM_CR:
1800                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1801                 break;
1802         case KVM_REG_PPC_TM_XER:
1803                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1804                 break;
1805         case KVM_REG_PPC_TM_LR:
1806                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1807                 break;
1808         case KVM_REG_PPC_TM_CTR:
1809                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1810                 break;
1811         case KVM_REG_PPC_TM_FPSCR:
1812                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1813                 break;
1814         case KVM_REG_PPC_TM_AMR:
1815                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1816                 break;
1817         case KVM_REG_PPC_TM_PPR:
1818                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1819                 break;
1820         case KVM_REG_PPC_TM_VRSAVE:
1821                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1822                 break;
1823         case KVM_REG_PPC_TM_VSCR:
1824                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1825                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1826                 else
1827                         r = -ENXIO;
1828                 break;
1829         case KVM_REG_PPC_TM_DSCR:
1830                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1831                 break;
1832         case KVM_REG_PPC_TM_TAR:
1833                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1834                 break;
1835 #endif
1836         case KVM_REG_PPC_ARCH_COMPAT:
1837                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1838                 break;
1839         case KVM_REG_PPC_DEC_EXPIRY:
1840                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1841                                    vcpu->arch.vcore->tb_offset);
1842                 break;
1843         case KVM_REG_PPC_ONLINE:
1844                 *val = get_reg_val(id, vcpu->arch.online);
1845                 break;
1846         case KVM_REG_PPC_PTCR:
1847                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1848                 break;
1849         default:
1850                 r = -EINVAL;
1851                 break;
1852         }
1853
1854         return r;
1855 }
1856
1857 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1858                                  union kvmppc_one_reg *val)
1859 {
1860         int r = 0;
1861         long int i;
1862         unsigned long addr, len;
1863
1864         switch (id) {
1865         case KVM_REG_PPC_HIOR:
1866                 /* Only allow this to be set to zero */
1867                 if (set_reg_val(id, *val))
1868                         r = -EINVAL;
1869                 break;
1870         case KVM_REG_PPC_DABR:
1871                 vcpu->arch.dabr = set_reg_val(id, *val);
1872                 break;
1873         case KVM_REG_PPC_DABRX:
1874                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1875                 break;
1876         case KVM_REG_PPC_DSCR:
1877                 vcpu->arch.dscr = set_reg_val(id, *val);
1878                 break;
1879         case KVM_REG_PPC_PURR:
1880                 vcpu->arch.purr = set_reg_val(id, *val);
1881                 break;
1882         case KVM_REG_PPC_SPURR:
1883                 vcpu->arch.spurr = set_reg_val(id, *val);
1884                 break;
1885         case KVM_REG_PPC_AMR:
1886                 vcpu->arch.amr = set_reg_val(id, *val);
1887                 break;
1888         case KVM_REG_PPC_UAMOR:
1889                 vcpu->arch.uamor = set_reg_val(id, *val);
1890                 break;
1891         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1892                 i = id - KVM_REG_PPC_MMCR0;
1893                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1894                 break;
1895         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1896                 i = id - KVM_REG_PPC_PMC1;
1897                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1898                 break;
1899         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1900                 i = id - KVM_REG_PPC_SPMC1;
1901                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1902                 break;
1903         case KVM_REG_PPC_SIAR:
1904                 vcpu->arch.siar = set_reg_val(id, *val);
1905                 break;
1906         case KVM_REG_PPC_SDAR:
1907                 vcpu->arch.sdar = set_reg_val(id, *val);
1908                 break;
1909         case KVM_REG_PPC_SIER:
1910                 vcpu->arch.sier = set_reg_val(id, *val);
1911                 break;
1912         case KVM_REG_PPC_IAMR:
1913                 vcpu->arch.iamr = set_reg_val(id, *val);
1914                 break;
1915         case KVM_REG_PPC_PSPB:
1916                 vcpu->arch.pspb = set_reg_val(id, *val);
1917                 break;
1918         case KVM_REG_PPC_DPDES:
1919                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1920                 break;
1921         case KVM_REG_PPC_VTB:
1922                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1923                 break;
1924         case KVM_REG_PPC_DAWR:
1925                 vcpu->arch.dawr = set_reg_val(id, *val);
1926                 break;
1927         case KVM_REG_PPC_DAWRX:
1928                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1929                 break;
1930         case KVM_REG_PPC_CIABR:
1931                 vcpu->arch.ciabr = set_reg_val(id, *val);
1932                 /* Don't allow setting breakpoints in hypervisor code */
1933                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1934                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1935                 break;
1936         case KVM_REG_PPC_CSIGR:
1937                 vcpu->arch.csigr = set_reg_val(id, *val);
1938                 break;
1939         case KVM_REG_PPC_TACR:
1940                 vcpu->arch.tacr = set_reg_val(id, *val);
1941                 break;
1942         case KVM_REG_PPC_TCSCR:
1943                 vcpu->arch.tcscr = set_reg_val(id, *val);
1944                 break;
1945         case KVM_REG_PPC_PID:
1946                 vcpu->arch.pid = set_reg_val(id, *val);
1947                 break;
1948         case KVM_REG_PPC_ACOP:
1949                 vcpu->arch.acop = set_reg_val(id, *val);
1950                 break;
1951         case KVM_REG_PPC_WORT:
1952                 vcpu->arch.wort = set_reg_val(id, *val);
1953                 break;
1954         case KVM_REG_PPC_TIDR:
1955                 vcpu->arch.tid = set_reg_val(id, *val);
1956                 break;
1957         case KVM_REG_PPC_PSSCR:
1958                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1959                 break;
1960         case KVM_REG_PPC_VPA_ADDR:
1961                 addr = set_reg_val(id, *val);
1962                 r = -EINVAL;
1963                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1964                               vcpu->arch.dtl.next_gpa))
1965                         break;
1966                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1967                 break;
1968         case KVM_REG_PPC_VPA_SLB:
1969                 addr = val->vpaval.addr;
1970                 len = val->vpaval.length;
1971                 r = -EINVAL;
1972                 if (addr && !vcpu->arch.vpa.next_gpa)
1973                         break;
1974                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1975                 break;
1976         case KVM_REG_PPC_VPA_DTL:
1977                 addr = val->vpaval.addr;
1978                 len = val->vpaval.length;
1979                 r = -EINVAL;
1980                 if (addr && (len < sizeof(struct dtl_entry) ||
1981                              !vcpu->arch.vpa.next_gpa))
1982                         break;
1983                 len -= len % sizeof(struct dtl_entry);
1984                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1985                 break;
1986         case KVM_REG_PPC_TB_OFFSET:
1987                 /* round up to multiple of 2^24 */
1988                 vcpu->arch.vcore->tb_offset =
1989                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1990                 break;
1991         case KVM_REG_PPC_LPCR:
1992                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1993                 break;
1994         case KVM_REG_PPC_LPCR_64:
1995                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1996                 break;
1997         case KVM_REG_PPC_PPR:
1998                 vcpu->arch.ppr = set_reg_val(id, *val);
1999                 break;
2000 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2001         case KVM_REG_PPC_TFHAR:
2002                 vcpu->arch.tfhar = set_reg_val(id, *val);
2003                 break;
2004         case KVM_REG_PPC_TFIAR:
2005                 vcpu->arch.tfiar = set_reg_val(id, *val);
2006                 break;
2007         case KVM_REG_PPC_TEXASR:
2008                 vcpu->arch.texasr = set_reg_val(id, *val);
2009                 break;
2010         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2011                 i = id - KVM_REG_PPC_TM_GPR0;
2012                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2013                 break;
2014         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2015         {
2016                 int j;
2017                 i = id - KVM_REG_PPC_TM_VSR0;
2018                 if (i < 32)
2019                         for (j = 0; j < TS_FPRWIDTH; j++)
2020                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2021                 else
2022                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2023                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2024                         else
2025                                 r = -ENXIO;
2026                 break;
2027         }
2028         case KVM_REG_PPC_TM_CR:
2029                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2030                 break;
2031         case KVM_REG_PPC_TM_XER:
2032                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2033                 break;
2034         case KVM_REG_PPC_TM_LR:
2035                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2036                 break;
2037         case KVM_REG_PPC_TM_CTR:
2038                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2039                 break;
2040         case KVM_REG_PPC_TM_FPSCR:
2041                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2042                 break;
2043         case KVM_REG_PPC_TM_AMR:
2044                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2045                 break;
2046         case KVM_REG_PPC_TM_PPR:
2047                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2048                 break;
2049         case KVM_REG_PPC_TM_VRSAVE:
2050                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2051                 break;
2052         case KVM_REG_PPC_TM_VSCR:
2053                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2054                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2055                 else
2056                         r = - ENXIO;
2057                 break;
2058         case KVM_REG_PPC_TM_DSCR:
2059                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2060                 break;
2061         case KVM_REG_PPC_TM_TAR:
2062                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2063                 break;
2064 #endif
2065         case KVM_REG_PPC_ARCH_COMPAT:
2066                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2067                 break;
2068         case KVM_REG_PPC_DEC_EXPIRY:
2069                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2070                         vcpu->arch.vcore->tb_offset;
2071                 break;
2072         case KVM_REG_PPC_ONLINE:
2073                 i = set_reg_val(id, *val);
2074                 if (i && !vcpu->arch.online)
2075                         atomic_inc(&vcpu->arch.vcore->online_count);
2076                 else if (!i && vcpu->arch.online)
2077                         atomic_dec(&vcpu->arch.vcore->online_count);
2078                 vcpu->arch.online = i;
2079                 break;
2080         case KVM_REG_PPC_PTCR:
2081                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2082                 break;
2083         default:
2084                 r = -EINVAL;
2085                 break;
2086         }
2087
2088         return r;
2089 }
2090
2091 /*
2092  * On POWER9, threads are independent and can be in different partitions.
2093  * Therefore we consider each thread to be a subcore.
2094  * There is a restriction that all threads have to be in the same
2095  * MMU mode (radix or HPT), unfortunately, but since we only support
2096  * HPT guests on a HPT host so far, that isn't an impediment yet.
2097  */
2098 static int threads_per_vcore(struct kvm *kvm)
2099 {
2100         if (kvm->arch.threads_indep)
2101                 return 1;
2102         return threads_per_subcore;
2103 }
2104
2105 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2106 {
2107         struct kvmppc_vcore *vcore;
2108
2109         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2110
2111         if (vcore == NULL)
2112                 return NULL;
2113
2114         spin_lock_init(&vcore->lock);
2115         spin_lock_init(&vcore->stoltb_lock);
2116         init_swait_queue_head(&vcore->wq);
2117         vcore->preempt_tb = TB_NIL;
2118         vcore->lpcr = kvm->arch.lpcr;
2119         vcore->first_vcpuid = id;
2120         vcore->kvm = kvm;
2121         INIT_LIST_HEAD(&vcore->preempt_list);
2122
2123         return vcore;
2124 }
2125
2126 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2127 static struct debugfs_timings_element {
2128         const char *name;
2129         size_t offset;
2130 } timings[] = {
2131         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2132         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2133         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2134         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2135         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2136 };
2137
2138 #define N_TIMINGS       (ARRAY_SIZE(timings))
2139
2140 struct debugfs_timings_state {
2141         struct kvm_vcpu *vcpu;
2142         unsigned int    buflen;
2143         char            buf[N_TIMINGS * 100];
2144 };
2145
2146 static int debugfs_timings_open(struct inode *inode, struct file *file)
2147 {
2148         struct kvm_vcpu *vcpu = inode->i_private;
2149         struct debugfs_timings_state *p;
2150
2151         p = kzalloc(sizeof(*p), GFP_KERNEL);
2152         if (!p)
2153                 return -ENOMEM;
2154
2155         kvm_get_kvm(vcpu->kvm);
2156         p->vcpu = vcpu;
2157         file->private_data = p;
2158
2159         return nonseekable_open(inode, file);
2160 }
2161
2162 static int debugfs_timings_release(struct inode *inode, struct file *file)
2163 {
2164         struct debugfs_timings_state *p = file->private_data;
2165
2166         kvm_put_kvm(p->vcpu->kvm);
2167         kfree(p);
2168         return 0;
2169 }
2170
2171 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2172                                     size_t len, loff_t *ppos)
2173 {
2174         struct debugfs_timings_state *p = file->private_data;
2175         struct kvm_vcpu *vcpu = p->vcpu;
2176         char *s, *buf_end;
2177         struct kvmhv_tb_accumulator tb;
2178         u64 count;
2179         loff_t pos;
2180         ssize_t n;
2181         int i, loops;
2182         bool ok;
2183
2184         if (!p->buflen) {
2185                 s = p->buf;
2186                 buf_end = s + sizeof(p->buf);
2187                 for (i = 0; i < N_TIMINGS; ++i) {
2188                         struct kvmhv_tb_accumulator *acc;
2189
2190                         acc = (struct kvmhv_tb_accumulator *)
2191                                 ((unsigned long)vcpu + timings[i].offset);
2192                         ok = false;
2193                         for (loops = 0; loops < 1000; ++loops) {
2194                                 count = acc->seqcount;
2195                                 if (!(count & 1)) {
2196                                         smp_rmb();
2197                                         tb = *acc;
2198                                         smp_rmb();
2199                                         if (count == acc->seqcount) {
2200                                                 ok = true;
2201                                                 break;
2202                                         }
2203                                 }
2204                                 udelay(1);
2205                         }
2206                         if (!ok)
2207                                 snprintf(s, buf_end - s, "%s: stuck\n",
2208                                         timings[i].name);
2209                         else
2210                                 snprintf(s, buf_end - s,
2211                                         "%s: %llu %llu %llu %llu\n",
2212                                         timings[i].name, count / 2,
2213                                         tb_to_ns(tb.tb_total),
2214                                         tb_to_ns(tb.tb_min),
2215                                         tb_to_ns(tb.tb_max));
2216                         s += strlen(s);
2217                 }
2218                 p->buflen = s - p->buf;
2219         }
2220
2221         pos = *ppos;
2222         if (pos >= p->buflen)
2223                 return 0;
2224         if (len > p->buflen - pos)
2225                 len = p->buflen - pos;
2226         n = copy_to_user(buf, p->buf + pos, len);
2227         if (n) {
2228                 if (n == len)
2229                         return -EFAULT;
2230                 len -= n;
2231         }
2232         *ppos = pos + len;
2233         return len;
2234 }
2235
2236 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2237                                      size_t len, loff_t *ppos)
2238 {
2239         return -EACCES;
2240 }
2241
2242 static const struct file_operations debugfs_timings_ops = {
2243         .owner   = THIS_MODULE,
2244         .open    = debugfs_timings_open,
2245         .release = debugfs_timings_release,
2246         .read    = debugfs_timings_read,
2247         .write   = debugfs_timings_write,
2248         .llseek  = generic_file_llseek,
2249 };
2250
2251 /* Create a debugfs directory for the vcpu */
2252 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2253 {
2254         char buf[16];
2255         struct kvm *kvm = vcpu->kvm;
2256
2257         snprintf(buf, sizeof(buf), "vcpu%u", id);
2258         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2259                 return;
2260         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2261         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2262                 return;
2263         vcpu->arch.debugfs_timings =
2264                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2265                                     vcpu, &debugfs_timings_ops);
2266 }
2267
2268 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2269 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2270 {
2271 }
2272 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2273
2274 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2275                                                    unsigned int id)
2276 {
2277         struct kvm_vcpu *vcpu;
2278         int err;
2279         int core;
2280         struct kvmppc_vcore *vcore;
2281
2282         err = -ENOMEM;
2283         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2284         if (!vcpu)
2285                 goto out;
2286
2287         err = kvm_vcpu_init(vcpu, kvm, id);
2288         if (err)
2289                 goto free_vcpu;
2290
2291         vcpu->arch.shared = &vcpu->arch.shregs;
2292 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2293         /*
2294          * The shared struct is never shared on HV,
2295          * so we can always use host endianness
2296          */
2297 #ifdef __BIG_ENDIAN__
2298         vcpu->arch.shared_big_endian = true;
2299 #else
2300         vcpu->arch.shared_big_endian = false;
2301 #endif
2302 #endif
2303         vcpu->arch.mmcr[0] = MMCR0_FC;
2304         vcpu->arch.ctrl = CTRL_RUNLATCH;
2305         /* default to host PVR, since we can't spoof it */
2306         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2307         spin_lock_init(&vcpu->arch.vpa_update_lock);
2308         spin_lock_init(&vcpu->arch.tbacct_lock);
2309         vcpu->arch.busy_preempt = TB_NIL;
2310         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2311
2312         /*
2313          * Set the default HFSCR for the guest from the host value.
2314          * This value is only used on POWER9.
2315          * On POWER9, we want to virtualize the doorbell facility, so we
2316          * don't set the HFSCR_MSGP bit, and that causes those instructions
2317          * to trap and then we emulate them.
2318          */
2319         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2320                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2321         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2322                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2323                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2324                         vcpu->arch.hfscr |= HFSCR_TM;
2325         }
2326         if (cpu_has_feature(CPU_FTR_TM_COMP))
2327                 vcpu->arch.hfscr |= HFSCR_TM;
2328
2329         kvmppc_mmu_book3s_hv_init(vcpu);
2330
2331         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2332
2333         init_waitqueue_head(&vcpu->arch.cpu_run);
2334
2335         mutex_lock(&kvm->lock);
2336         vcore = NULL;
2337         err = -EINVAL;
2338         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2339                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2340                         pr_devel("KVM: VCPU ID too high\n");
2341                         core = KVM_MAX_VCORES;
2342                 } else {
2343                         BUG_ON(kvm->arch.smt_mode != 1);
2344                         core = kvmppc_pack_vcpu_id(kvm, id);
2345                 }
2346         } else {
2347                 core = id / kvm->arch.smt_mode;
2348         }
2349         if (core < KVM_MAX_VCORES) {
2350                 vcore = kvm->arch.vcores[core];
2351                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2352                         pr_devel("KVM: collision on id %u", id);
2353                         vcore = NULL;
2354                 } else if (!vcore) {
2355                         /*
2356                          * Take mmu_setup_lock for mutual exclusion
2357                          * with kvmppc_update_lpcr().
2358                          */
2359                         err = -ENOMEM;
2360                         vcore = kvmppc_vcore_create(kvm,
2361                                         id & ~(kvm->arch.smt_mode - 1));
2362                         mutex_lock(&kvm->arch.mmu_setup_lock);
2363                         kvm->arch.vcores[core] = vcore;
2364                         kvm->arch.online_vcores++;
2365                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2366                 }
2367         }
2368         mutex_unlock(&kvm->lock);
2369
2370         if (!vcore)
2371                 goto free_vcpu;
2372
2373         spin_lock(&vcore->lock);
2374         ++vcore->num_threads;
2375         spin_unlock(&vcore->lock);
2376         vcpu->arch.vcore = vcore;
2377         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2378         vcpu->arch.thread_cpu = -1;
2379         vcpu->arch.prev_cpu = -1;
2380
2381         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2382         kvmppc_sanity_check(vcpu);
2383
2384         debugfs_vcpu_init(vcpu, id);
2385
2386         return vcpu;
2387
2388 free_vcpu:
2389         kmem_cache_free(kvm_vcpu_cache, vcpu);
2390 out:
2391         return ERR_PTR(err);
2392 }
2393
2394 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2395                               unsigned long flags)
2396 {
2397         int err;
2398         int esmt = 0;
2399
2400         if (flags)
2401                 return -EINVAL;
2402         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2403                 return -EINVAL;
2404         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2405                 /*
2406                  * On POWER8 (or POWER7), the threading mode is "strict",
2407                  * so we pack smt_mode vcpus per vcore.
2408                  */
2409                 if (smt_mode > threads_per_subcore)
2410                         return -EINVAL;
2411         } else {
2412                 /*
2413                  * On POWER9, the threading mode is "loose",
2414                  * so each vcpu gets its own vcore.
2415                  */
2416                 esmt = smt_mode;
2417                 smt_mode = 1;
2418         }
2419         mutex_lock(&kvm->lock);
2420         err = -EBUSY;
2421         if (!kvm->arch.online_vcores) {
2422                 kvm->arch.smt_mode = smt_mode;
2423                 kvm->arch.emul_smt_mode = esmt;
2424                 err = 0;
2425         }
2426         mutex_unlock(&kvm->lock);
2427
2428         return err;
2429 }
2430
2431 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2432 {
2433         if (vpa->pinned_addr)
2434                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2435                                         vpa->dirty);
2436 }
2437
2438 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2439 {
2440         spin_lock(&vcpu->arch.vpa_update_lock);
2441         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2442         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2443         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2444         spin_unlock(&vcpu->arch.vpa_update_lock);
2445         kvm_vcpu_uninit(vcpu);
2446         kmem_cache_free(kvm_vcpu_cache, vcpu);
2447 }
2448
2449 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2450 {
2451         /* Indicate we want to get back into the guest */
2452         return 1;
2453 }
2454
2455 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2456 {
2457         unsigned long dec_nsec, now;
2458
2459         now = get_tb();
2460         if (now > vcpu->arch.dec_expires) {
2461                 /* decrementer has already gone negative */
2462                 kvmppc_core_queue_dec(vcpu);
2463                 kvmppc_core_prepare_to_enter(vcpu);
2464                 return;
2465         }
2466         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2467         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2468         vcpu->arch.timer_running = 1;
2469 }
2470
2471 extern int __kvmppc_vcore_entry(void);
2472
2473 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2474                                    struct kvm_vcpu *vcpu)
2475 {
2476         u64 now;
2477
2478         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2479                 return;
2480         spin_lock_irq(&vcpu->arch.tbacct_lock);
2481         now = mftb();
2482         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2483                 vcpu->arch.stolen_logged;
2484         vcpu->arch.busy_preempt = now;
2485         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2486         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2487         --vc->n_runnable;
2488         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2489 }
2490
2491 static int kvmppc_grab_hwthread(int cpu)
2492 {
2493         struct paca_struct *tpaca;
2494         long timeout = 10000;
2495
2496         tpaca = paca_ptrs[cpu];
2497
2498         /* Ensure the thread won't go into the kernel if it wakes */
2499         tpaca->kvm_hstate.kvm_vcpu = NULL;
2500         tpaca->kvm_hstate.kvm_vcore = NULL;
2501         tpaca->kvm_hstate.napping = 0;
2502         smp_wmb();
2503         tpaca->kvm_hstate.hwthread_req = 1;
2504
2505         /*
2506          * If the thread is already executing in the kernel (e.g. handling
2507          * a stray interrupt), wait for it to get back to nap mode.
2508          * The smp_mb() is to ensure that our setting of hwthread_req
2509          * is visible before we look at hwthread_state, so if this
2510          * races with the code at system_reset_pSeries and the thread
2511          * misses our setting of hwthread_req, we are sure to see its
2512          * setting of hwthread_state, and vice versa.
2513          */
2514         smp_mb();
2515         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2516                 if (--timeout <= 0) {
2517                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2518                         return -EBUSY;
2519                 }
2520                 udelay(1);
2521         }
2522         return 0;
2523 }
2524
2525 static void kvmppc_release_hwthread(int cpu)
2526 {
2527         struct paca_struct *tpaca;
2528
2529         tpaca = paca_ptrs[cpu];
2530         tpaca->kvm_hstate.hwthread_req = 0;
2531         tpaca->kvm_hstate.kvm_vcpu = NULL;
2532         tpaca->kvm_hstate.kvm_vcore = NULL;
2533         tpaca->kvm_hstate.kvm_split_mode = NULL;
2534 }
2535
2536 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2537 {
2538         struct kvm_nested_guest *nested = vcpu->arch.nested;
2539         cpumask_t *cpu_in_guest;
2540         int i;
2541
2542         cpu = cpu_first_thread_sibling(cpu);
2543         if (nested) {
2544                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2545                 cpu_in_guest = &nested->cpu_in_guest;
2546         } else {
2547                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2548                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2549         }
2550         /*
2551          * Make sure setting of bit in need_tlb_flush precedes
2552          * testing of cpu_in_guest bits.  The matching barrier on
2553          * the other side is the first smp_mb() in kvmppc_run_core().
2554          */
2555         smp_mb();
2556         for (i = 0; i < threads_per_core; ++i)
2557                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2558                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2559 }
2560
2561 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2562 {
2563         struct kvm_nested_guest *nested = vcpu->arch.nested;
2564         struct kvm *kvm = vcpu->kvm;
2565         int prev_cpu;
2566
2567         if (!cpu_has_feature(CPU_FTR_HVMODE))
2568                 return;
2569
2570         if (nested)
2571                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2572         else
2573                 prev_cpu = vcpu->arch.prev_cpu;
2574
2575         /*
2576          * With radix, the guest can do TLB invalidations itself,
2577          * and it could choose to use the local form (tlbiel) if
2578          * it is invalidating a translation that has only ever been
2579          * used on one vcpu.  However, that doesn't mean it has
2580          * only ever been used on one physical cpu, since vcpus
2581          * can move around between pcpus.  To cope with this, when
2582          * a vcpu moves from one pcpu to another, we need to tell
2583          * any vcpus running on the same core as this vcpu previously
2584          * ran to flush the TLB.  The TLB is shared between threads,
2585          * so we use a single bit in .need_tlb_flush for all 4 threads.
2586          */
2587         if (prev_cpu != pcpu) {
2588                 if (prev_cpu >= 0 &&
2589                     cpu_first_thread_sibling(prev_cpu) !=
2590                     cpu_first_thread_sibling(pcpu))
2591                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2592                 if (nested)
2593                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2594                 else
2595                         vcpu->arch.prev_cpu = pcpu;
2596         }
2597 }
2598
2599 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2600 {
2601         int cpu;
2602         struct paca_struct *tpaca;
2603         struct kvm *kvm = vc->kvm;
2604
2605         cpu = vc->pcpu;
2606         if (vcpu) {
2607                 if (vcpu->arch.timer_running) {
2608                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2609                         vcpu->arch.timer_running = 0;
2610                 }
2611                 cpu += vcpu->arch.ptid;
2612                 vcpu->cpu = vc->pcpu;
2613                 vcpu->arch.thread_cpu = cpu;
2614                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2615         }
2616         tpaca = paca_ptrs[cpu];
2617         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2618         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2619         tpaca->kvm_hstate.fake_suspend = 0;
2620         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2621         smp_wmb();
2622         tpaca->kvm_hstate.kvm_vcore = vc;
2623         if (cpu != smp_processor_id())
2624                 kvmppc_ipi_thread(cpu);
2625 }
2626
2627 static void kvmppc_wait_for_nap(int n_threads)
2628 {
2629         int cpu = smp_processor_id();
2630         int i, loops;
2631
2632         if (n_threads <= 1)
2633                 return;
2634         for (loops = 0; loops < 1000000; ++loops) {
2635                 /*
2636                  * Check if all threads are finished.
2637                  * We set the vcore pointer when starting a thread
2638                  * and the thread clears it when finished, so we look
2639                  * for any threads that still have a non-NULL vcore ptr.
2640                  */
2641                 for (i = 1; i < n_threads; ++i)
2642                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2643                                 break;
2644                 if (i == n_threads) {
2645                         HMT_medium();
2646                         return;
2647                 }
2648                 HMT_low();
2649         }
2650         HMT_medium();
2651         for (i = 1; i < n_threads; ++i)
2652                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2653                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2654 }
2655
2656 /*
2657  * Check that we are on thread 0 and that any other threads in
2658  * this core are off-line.  Then grab the threads so they can't
2659  * enter the kernel.
2660  */
2661 static int on_primary_thread(void)
2662 {
2663         int cpu = smp_processor_id();
2664         int thr;
2665
2666         /* Are we on a primary subcore? */
2667         if (cpu_thread_in_subcore(cpu))
2668                 return 0;
2669
2670         thr = 0;
2671         while (++thr < threads_per_subcore)
2672                 if (cpu_online(cpu + thr))
2673                         return 0;
2674
2675         /* Grab all hw threads so they can't go into the kernel */
2676         for (thr = 1; thr < threads_per_subcore; ++thr) {
2677                 if (kvmppc_grab_hwthread(cpu + thr)) {
2678                         /* Couldn't grab one; let the others go */
2679                         do {
2680                                 kvmppc_release_hwthread(cpu + thr);
2681                         } while (--thr > 0);
2682                         return 0;
2683                 }
2684         }
2685         return 1;
2686 }
2687
2688 /*
2689  * A list of virtual cores for each physical CPU.
2690  * These are vcores that could run but their runner VCPU tasks are
2691  * (or may be) preempted.
2692  */
2693 struct preempted_vcore_list {
2694         struct list_head        list;
2695         spinlock_t              lock;
2696 };
2697
2698 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2699
2700 static void init_vcore_lists(void)
2701 {
2702         int cpu;
2703
2704         for_each_possible_cpu(cpu) {
2705                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2706                 spin_lock_init(&lp->lock);
2707                 INIT_LIST_HEAD(&lp->list);
2708         }
2709 }
2710
2711 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2712 {
2713         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2714
2715         vc->vcore_state = VCORE_PREEMPT;
2716         vc->pcpu = smp_processor_id();
2717         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2718                 spin_lock(&lp->lock);
2719                 list_add_tail(&vc->preempt_list, &lp->list);
2720                 spin_unlock(&lp->lock);
2721         }
2722
2723         /* Start accumulating stolen time */
2724         kvmppc_core_start_stolen(vc);
2725 }
2726
2727 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2728 {
2729         struct preempted_vcore_list *lp;
2730
2731         kvmppc_core_end_stolen(vc);
2732         if (!list_empty(&vc->preempt_list)) {
2733                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2734                 spin_lock(&lp->lock);
2735                 list_del_init(&vc->preempt_list);
2736                 spin_unlock(&lp->lock);
2737         }
2738         vc->vcore_state = VCORE_INACTIVE;
2739 }
2740
2741 /*
2742  * This stores information about the virtual cores currently
2743  * assigned to a physical core.
2744  */
2745 struct core_info {
2746         int             n_subcores;
2747         int             max_subcore_threads;
2748         int             total_threads;
2749         int             subcore_threads[MAX_SUBCORES];
2750         struct kvmppc_vcore *vc[MAX_SUBCORES];
2751 };
2752
2753 /*
2754  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2755  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2756  */
2757 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2758
2759 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2760 {
2761         memset(cip, 0, sizeof(*cip));
2762         cip->n_subcores = 1;
2763         cip->max_subcore_threads = vc->num_threads;
2764         cip->total_threads = vc->num_threads;
2765         cip->subcore_threads[0] = vc->num_threads;
2766         cip->vc[0] = vc;
2767 }
2768
2769 static bool subcore_config_ok(int n_subcores, int n_threads)
2770 {
2771         /*
2772          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2773          * split-core mode, with one thread per subcore.
2774          */
2775         if (cpu_has_feature(CPU_FTR_ARCH_300))
2776                 return n_subcores <= 4 && n_threads == 1;
2777
2778         /* On POWER8, can only dynamically split if unsplit to begin with */
2779         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2780                 return false;
2781         if (n_subcores > MAX_SUBCORES)
2782                 return false;
2783         if (n_subcores > 1) {
2784                 if (!(dynamic_mt_modes & 2))
2785                         n_subcores = 4;
2786                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2787                         return false;
2788         }
2789
2790         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2791 }
2792
2793 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2794 {
2795         vc->entry_exit_map = 0;
2796         vc->in_guest = 0;
2797         vc->napping_threads = 0;
2798         vc->conferring_threads = 0;
2799         vc->tb_offset_applied = 0;
2800 }
2801
2802 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2803 {
2804         int n_threads = vc->num_threads;
2805         int sub;
2806
2807         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2808                 return false;
2809
2810         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2811         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2812                 return false;
2813
2814         /* Some POWER9 chips require all threads to be in the same MMU mode */
2815         if (no_mixing_hpt_and_radix &&
2816             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2817                 return false;
2818
2819         if (n_threads < cip->max_subcore_threads)
2820                 n_threads = cip->max_subcore_threads;
2821         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2822                 return false;
2823         cip->max_subcore_threads = n_threads;
2824
2825         sub = cip->n_subcores;
2826         ++cip->n_subcores;
2827         cip->total_threads += vc->num_threads;
2828         cip->subcore_threads[sub] = vc->num_threads;
2829         cip->vc[sub] = vc;
2830         init_vcore_to_run(vc);
2831         list_del_init(&vc->preempt_list);
2832
2833         return true;
2834 }
2835
2836 /*
2837  * Work out whether it is possible to piggyback the execution of
2838  * vcore *pvc onto the execution of the other vcores described in *cip.
2839  */
2840 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2841                           int target_threads)
2842 {
2843         if (cip->total_threads + pvc->num_threads > target_threads)
2844                 return false;
2845
2846         return can_dynamic_split(pvc, cip);
2847 }
2848
2849 static void prepare_threads(struct kvmppc_vcore *vc)
2850 {
2851         int i;
2852         struct kvm_vcpu *vcpu;
2853
2854         for_each_runnable_thread(i, vcpu, vc) {
2855                 if (signal_pending(vcpu->arch.run_task))
2856                         vcpu->arch.ret = -EINTR;
2857                 else if (vcpu->arch.vpa.update_pending ||
2858                          vcpu->arch.slb_shadow.update_pending ||
2859                          vcpu->arch.dtl.update_pending)
2860                         vcpu->arch.ret = RESUME_GUEST;
2861                 else
2862                         continue;
2863                 kvmppc_remove_runnable(vc, vcpu);
2864                 wake_up(&vcpu->arch.cpu_run);
2865         }
2866 }
2867
2868 static void collect_piggybacks(struct core_info *cip, int target_threads)
2869 {
2870         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2871         struct kvmppc_vcore *pvc, *vcnext;
2872
2873         spin_lock(&lp->lock);
2874         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2875                 if (!spin_trylock(&pvc->lock))
2876                         continue;
2877                 prepare_threads(pvc);
2878                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2879                         list_del_init(&pvc->preempt_list);
2880                         if (pvc->runner == NULL) {
2881                                 pvc->vcore_state = VCORE_INACTIVE;
2882                                 kvmppc_core_end_stolen(pvc);
2883                         }
2884                         spin_unlock(&pvc->lock);
2885                         continue;
2886                 }
2887                 if (!can_piggyback(pvc, cip, target_threads)) {
2888                         spin_unlock(&pvc->lock);
2889                         continue;
2890                 }
2891                 kvmppc_core_end_stolen(pvc);
2892                 pvc->vcore_state = VCORE_PIGGYBACK;
2893                 if (cip->total_threads >= target_threads)
2894                         break;
2895         }
2896         spin_unlock(&lp->lock);
2897 }
2898
2899 static bool recheck_signals_and_mmu(struct core_info *cip)
2900 {
2901         int sub, i;
2902         struct kvm_vcpu *vcpu;
2903         struct kvmppc_vcore *vc;
2904
2905         for (sub = 0; sub < cip->n_subcores; ++sub) {
2906                 vc = cip->vc[sub];
2907                 if (!vc->kvm->arch.mmu_ready)
2908                         return true;
2909                 for_each_runnable_thread(i, vcpu, vc)
2910                         if (signal_pending(vcpu->arch.run_task))
2911                                 return true;
2912         }
2913         return false;
2914 }
2915
2916 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2917 {
2918         int still_running = 0, i;
2919         u64 now;
2920         long ret;
2921         struct kvm_vcpu *vcpu;
2922
2923         spin_lock(&vc->lock);
2924         now = get_tb();
2925         for_each_runnable_thread(i, vcpu, vc) {
2926                 /*
2927                  * It's safe to unlock the vcore in the loop here, because
2928                  * for_each_runnable_thread() is safe against removal of
2929                  * the vcpu, and the vcore state is VCORE_EXITING here,
2930                  * so any vcpus becoming runnable will have their arch.trap
2931                  * set to zero and can't actually run in the guest.
2932                  */
2933                 spin_unlock(&vc->lock);
2934                 /* cancel pending dec exception if dec is positive */
2935                 if (now < vcpu->arch.dec_expires &&
2936                     kvmppc_core_pending_dec(vcpu))
2937                         kvmppc_core_dequeue_dec(vcpu);
2938
2939                 trace_kvm_guest_exit(vcpu);
2940
2941                 ret = RESUME_GUEST;
2942                 if (vcpu->arch.trap)
2943                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2944                                                     vcpu->arch.run_task);
2945
2946                 vcpu->arch.ret = ret;
2947                 vcpu->arch.trap = 0;
2948
2949                 spin_lock(&vc->lock);
2950                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2951                         if (vcpu->arch.pending_exceptions)
2952                                 kvmppc_core_prepare_to_enter(vcpu);
2953                         if (vcpu->arch.ceded)
2954                                 kvmppc_set_timer(vcpu);
2955                         else
2956                                 ++still_running;
2957                 } else {
2958                         kvmppc_remove_runnable(vc, vcpu);
2959                         wake_up(&vcpu->arch.cpu_run);
2960                 }
2961         }
2962         if (!is_master) {
2963                 if (still_running > 0) {
2964                         kvmppc_vcore_preempt(vc);
2965                 } else if (vc->runner) {
2966                         vc->vcore_state = VCORE_PREEMPT;
2967                         kvmppc_core_start_stolen(vc);
2968                 } else {
2969                         vc->vcore_state = VCORE_INACTIVE;
2970                 }
2971                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2972                         /* make sure there's a candidate runner awake */
2973                         i = -1;
2974                         vcpu = next_runnable_thread(vc, &i);
2975                         wake_up(&vcpu->arch.cpu_run);
2976                 }
2977         }
2978         spin_unlock(&vc->lock);
2979 }
2980
2981 /*
2982  * Clear core from the list of active host cores as we are about to
2983  * enter the guest. Only do this if it is the primary thread of the
2984  * core (not if a subcore) that is entering the guest.
2985  */
2986 static inline int kvmppc_clear_host_core(unsigned int cpu)
2987 {
2988         int core;
2989
2990         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2991                 return 0;
2992         /*
2993          * Memory barrier can be omitted here as we will do a smp_wmb()
2994          * later in kvmppc_start_thread and we need ensure that state is
2995          * visible to other CPUs only after we enter guest.
2996          */
2997         core = cpu >> threads_shift;
2998         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2999         return 0;
3000 }
3001
3002 /*
3003  * Advertise this core as an active host core since we exited the guest
3004  * Only need to do this if it is the primary thread of the core that is
3005  * exiting.
3006  */
3007 static inline int kvmppc_set_host_core(unsigned int cpu)
3008 {
3009         int core;
3010
3011         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3012                 return 0;
3013
3014         /*
3015          * Memory barrier can be omitted here because we do a spin_unlock
3016          * immediately after this which provides the memory barrier.
3017          */
3018         core = cpu >> threads_shift;
3019         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3020         return 0;
3021 }
3022
3023 static void set_irq_happened(int trap)
3024 {
3025         switch (trap) {
3026         case BOOK3S_INTERRUPT_EXTERNAL:
3027                 local_paca->irq_happened |= PACA_IRQ_EE;
3028                 break;
3029         case BOOK3S_INTERRUPT_H_DOORBELL:
3030                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3031                 break;
3032         case BOOK3S_INTERRUPT_HMI:
3033                 local_paca->irq_happened |= PACA_IRQ_HMI;
3034                 break;
3035         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3036                 replay_system_reset();
3037                 break;
3038         }
3039 }
3040
3041 /*
3042  * Run a set of guest threads on a physical core.
3043  * Called with vc->lock held.
3044  */
3045 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3046 {
3047         struct kvm_vcpu *vcpu;
3048         int i;
3049         int srcu_idx;
3050         struct core_info core_info;
3051         struct kvmppc_vcore *pvc;
3052         struct kvm_split_mode split_info, *sip;
3053         int split, subcore_size, active;
3054         int sub;
3055         bool thr0_done;
3056         unsigned long cmd_bit, stat_bit;
3057         int pcpu, thr;
3058         int target_threads;
3059         int controlled_threads;
3060         int trap;
3061         bool is_power8;
3062         bool hpt_on_radix;
3063
3064         /*
3065          * Remove from the list any threads that have a signal pending
3066          * or need a VPA update done
3067          */
3068         prepare_threads(vc);
3069
3070         /* if the runner is no longer runnable, let the caller pick a new one */
3071         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3072                 return;
3073
3074         /*
3075          * Initialize *vc.
3076          */
3077         init_vcore_to_run(vc);
3078         vc->preempt_tb = TB_NIL;
3079
3080         /*
3081          * Number of threads that we will be controlling: the same as
3082          * the number of threads per subcore, except on POWER9,
3083          * where it's 1 because the threads are (mostly) independent.
3084          */
3085         controlled_threads = threads_per_vcore(vc->kvm);
3086
3087         /*
3088          * Make sure we are running on primary threads, and that secondary
3089          * threads are offline.  Also check if the number of threads in this
3090          * guest are greater than the current system threads per guest.
3091          * On POWER9, we need to be not in independent-threads mode if
3092          * this is a HPT guest on a radix host machine where the
3093          * CPU threads may not be in different MMU modes.
3094          */
3095         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3096                 !kvm_is_radix(vc->kvm);
3097         if (((controlled_threads > 1) &&
3098              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3099             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3100                 for_each_runnable_thread(i, vcpu, vc) {
3101                         vcpu->arch.ret = -EBUSY;
3102                         kvmppc_remove_runnable(vc, vcpu);
3103                         wake_up(&vcpu->arch.cpu_run);
3104                 }
3105                 goto out;
3106         }
3107
3108         /*
3109          * See if we could run any other vcores on the physical core
3110          * along with this one.
3111          */
3112         init_core_info(&core_info, vc);
3113         pcpu = smp_processor_id();
3114         target_threads = controlled_threads;
3115         if (target_smt_mode && target_smt_mode < target_threads)
3116                 target_threads = target_smt_mode;
3117         if (vc->num_threads < target_threads)
3118                 collect_piggybacks(&core_info, target_threads);
3119
3120         /*
3121          * On radix, arrange for TLB flushing if necessary.
3122          * This has to be done before disabling interrupts since
3123          * it uses smp_call_function().
3124          */
3125         pcpu = smp_processor_id();
3126         if (kvm_is_radix(vc->kvm)) {
3127                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3128                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3129                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3130         }
3131
3132         /*
3133          * Hard-disable interrupts, and check resched flag and signals.
3134          * If we need to reschedule or deliver a signal, clean up
3135          * and return without going into the guest(s).
3136          * If the mmu_ready flag has been cleared, don't go into the
3137          * guest because that means a HPT resize operation is in progress.
3138          */
3139         local_irq_disable();
3140         hard_irq_disable();
3141         if (lazy_irq_pending() || need_resched() ||
3142             recheck_signals_and_mmu(&core_info)) {
3143                 local_irq_enable();
3144                 vc->vcore_state = VCORE_INACTIVE;
3145                 /* Unlock all except the primary vcore */
3146                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3147                         pvc = core_info.vc[sub];
3148                         /* Put back on to the preempted vcores list */
3149                         kvmppc_vcore_preempt(pvc);
3150                         spin_unlock(&pvc->lock);
3151                 }
3152                 for (i = 0; i < controlled_threads; ++i)
3153                         kvmppc_release_hwthread(pcpu + i);
3154                 return;
3155         }
3156
3157         kvmppc_clear_host_core(pcpu);
3158
3159         /* Decide on micro-threading (split-core) mode */
3160         subcore_size = threads_per_subcore;
3161         cmd_bit = stat_bit = 0;
3162         split = core_info.n_subcores;
3163         sip = NULL;
3164         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3165                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3166
3167         if (split > 1 || hpt_on_radix) {
3168                 sip = &split_info;
3169                 memset(&split_info, 0, sizeof(split_info));
3170                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3171                         split_info.vc[sub] = core_info.vc[sub];
3172
3173                 if (is_power8) {
3174                         if (split == 2 && (dynamic_mt_modes & 2)) {
3175                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3176                                 stat_bit = HID0_POWER8_2LPARMODE;
3177                         } else {
3178                                 split = 4;
3179                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3180                                 stat_bit = HID0_POWER8_4LPARMODE;
3181                         }
3182                         subcore_size = MAX_SMT_THREADS / split;
3183                         split_info.rpr = mfspr(SPRN_RPR);
3184                         split_info.pmmar = mfspr(SPRN_PMMAR);
3185                         split_info.ldbar = mfspr(SPRN_LDBAR);
3186                         split_info.subcore_size = subcore_size;
3187                 } else {
3188                         split_info.subcore_size = 1;
3189                         if (hpt_on_radix) {
3190                                 /* Use the split_info for LPCR/LPIDR changes */
3191                                 split_info.lpcr_req = vc->lpcr;
3192                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3193                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3194                                 split_info.do_set = 1;
3195                         }
3196                 }
3197
3198                 /* order writes to split_info before kvm_split_mode pointer */
3199                 smp_wmb();
3200         }
3201
3202         for (thr = 0; thr < controlled_threads; ++thr) {
3203                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3204
3205                 paca->kvm_hstate.tid = thr;
3206                 paca->kvm_hstate.napping = 0;
3207                 paca->kvm_hstate.kvm_split_mode = sip;
3208         }
3209
3210         /* Initiate micro-threading (split-core) on POWER8 if required */
3211         if (cmd_bit) {
3212                 unsigned long hid0 = mfspr(SPRN_HID0);
3213
3214                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3215                 mb();
3216                 mtspr(SPRN_HID0, hid0);
3217                 isync();
3218                 for (;;) {
3219                         hid0 = mfspr(SPRN_HID0);
3220                         if (hid0 & stat_bit)
3221                                 break;
3222                         cpu_relax();
3223                 }
3224         }
3225
3226         /*
3227          * On POWER8, set RWMR register.
3228          * Since it only affects PURR and SPURR, it doesn't affect
3229          * the host, so we don't save/restore the host value.
3230          */
3231         if (is_power8) {
3232                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3233                 int n_online = atomic_read(&vc->online_count);
3234
3235                 /*
3236                  * Use the 8-thread value if we're doing split-core
3237                  * or if the vcore's online count looks bogus.
3238                  */
3239                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3240                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3241                         rwmr_val = p8_rwmr_values[n_online];
3242                 mtspr(SPRN_RWMR, rwmr_val);
3243         }
3244
3245         /* Start all the threads */
3246         active = 0;
3247         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3248                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3249                 thr0_done = false;
3250                 active |= 1 << thr;
3251                 pvc = core_info.vc[sub];
3252                 pvc->pcpu = pcpu + thr;
3253                 for_each_runnable_thread(i, vcpu, pvc) {
3254                         kvmppc_start_thread(vcpu, pvc);
3255                         kvmppc_create_dtl_entry(vcpu, pvc);
3256                         trace_kvm_guest_enter(vcpu);
3257                         if (!vcpu->arch.ptid)
3258                                 thr0_done = true;
3259                         active |= 1 << (thr + vcpu->arch.ptid);
3260                 }
3261                 /*
3262                  * We need to start the first thread of each subcore
3263                  * even if it doesn't have a vcpu.
3264                  */
3265                 if (!thr0_done)
3266                         kvmppc_start_thread(NULL, pvc);
3267         }
3268
3269         /*
3270          * Ensure that split_info.do_nap is set after setting
3271          * the vcore pointer in the PACA of the secondaries.
3272          */
3273         smp_mb();
3274
3275         /*
3276          * When doing micro-threading, poke the inactive threads as well.
3277          * This gets them to the nap instruction after kvm_do_nap,
3278          * which reduces the time taken to unsplit later.
3279          * For POWER9 HPT guest on radix host, we need all the secondary
3280          * threads woken up so they can do the LPCR/LPIDR change.
3281          */
3282         if (cmd_bit || hpt_on_radix) {
3283                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3284                 for (thr = 1; thr < threads_per_subcore; ++thr)
3285                         if (!(active & (1 << thr)))
3286                                 kvmppc_ipi_thread(pcpu + thr);
3287         }
3288
3289         vc->vcore_state = VCORE_RUNNING;
3290         preempt_disable();
3291
3292         trace_kvmppc_run_core(vc, 0);
3293
3294         for (sub = 0; sub < core_info.n_subcores; ++sub)
3295                 spin_unlock(&core_info.vc[sub]->lock);
3296
3297         guest_enter_irqoff();
3298
3299         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3300
3301         this_cpu_disable_ftrace();
3302
3303         /*
3304          * Interrupts will be enabled once we get into the guest,
3305          * so tell lockdep that we're about to enable interrupts.
3306          */
3307         trace_hardirqs_on();
3308
3309         trap = __kvmppc_vcore_entry();
3310
3311         trace_hardirqs_off();
3312
3313         this_cpu_enable_ftrace();
3314
3315         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3316
3317         set_irq_happened(trap);
3318
3319         spin_lock(&vc->lock);
3320         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3321         vc->vcore_state = VCORE_EXITING;
3322
3323         /* wait for secondary threads to finish writing their state to memory */
3324         kvmppc_wait_for_nap(controlled_threads);
3325
3326         /* Return to whole-core mode if we split the core earlier */
3327         if (cmd_bit) {
3328                 unsigned long hid0 = mfspr(SPRN_HID0);
3329                 unsigned long loops = 0;
3330
3331                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3332                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3333                 mb();
3334                 mtspr(SPRN_HID0, hid0);
3335                 isync();
3336                 for (;;) {
3337                         hid0 = mfspr(SPRN_HID0);
3338                         if (!(hid0 & stat_bit))
3339                                 break;
3340                         cpu_relax();
3341                         ++loops;
3342                 }
3343         } else if (hpt_on_radix) {
3344                 /* Wait for all threads to have seen final sync */
3345                 for (thr = 1; thr < controlled_threads; ++thr) {
3346                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3347
3348                         while (paca->kvm_hstate.kvm_split_mode) {
3349                                 HMT_low();
3350                                 barrier();
3351                         }
3352                         HMT_medium();
3353                 }
3354         }
3355         split_info.do_nap = 0;
3356
3357         kvmppc_set_host_core(pcpu);
3358
3359         local_irq_enable();
3360         guest_exit();
3361
3362         /* Let secondaries go back to the offline loop */
3363         for (i = 0; i < controlled_threads; ++i) {
3364                 kvmppc_release_hwthread(pcpu + i);
3365                 if (sip && sip->napped[i])
3366                         kvmppc_ipi_thread(pcpu + i);
3367                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3368         }
3369
3370         spin_unlock(&vc->lock);
3371
3372         /* make sure updates to secondary vcpu structs are visible now */
3373         smp_mb();
3374
3375         preempt_enable();
3376
3377         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3378                 pvc = core_info.vc[sub];
3379                 post_guest_process(pvc, pvc == vc);
3380         }
3381
3382         spin_lock(&vc->lock);
3383
3384  out:
3385         vc->vcore_state = VCORE_INACTIVE;
3386         trace_kvmppc_run_core(vc, 1);
3387 }
3388
3389 /*
3390  * Load up hypervisor-mode registers on P9.
3391  */
3392 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3393                                      unsigned long lpcr)
3394 {
3395         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3396         s64 hdec;
3397         u64 tb, purr, spurr;
3398         int trap;
3399         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3400         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3401         unsigned long host_dawr = mfspr(SPRN_DAWR);
3402         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3403         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3404         unsigned long host_pidr = mfspr(SPRN_PID);
3405
3406         hdec = time_limit - mftb();
3407         if (hdec < 0)
3408                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3409         mtspr(SPRN_HDEC, hdec);
3410
3411         if (vc->tb_offset) {
3412                 u64 new_tb = mftb() + vc->tb_offset;
3413                 mtspr(SPRN_TBU40, new_tb);
3414                 tb = mftb();
3415                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3416                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3417                 vc->tb_offset_applied = vc->tb_offset;
3418         }
3419
3420         if (vc->pcr)
3421                 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3422         mtspr(SPRN_DPDES, vc->dpdes);
3423         mtspr(SPRN_VTB, vc->vtb);
3424
3425         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3426         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3427         mtspr(SPRN_PURR, vcpu->arch.purr);
3428         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3429
3430         if (dawr_enabled()) {
3431                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3432                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3433         }
3434         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3435         mtspr(SPRN_IC, vcpu->arch.ic);
3436         mtspr(SPRN_PID, vcpu->arch.pid);
3437
3438         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3439               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3440
3441         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3442
3443         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3444         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3445         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3446         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3447
3448         mtspr(SPRN_AMOR, ~0UL);
3449
3450         mtspr(SPRN_LPCR, lpcr);
3451         isync();
3452
3453         kvmppc_xive_push_vcpu(vcpu);
3454
3455         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3456         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3457
3458         trap = __kvmhv_vcpu_entry_p9(vcpu);
3459
3460         /* Advance host PURR/SPURR by the amount used by guest */
3461         purr = mfspr(SPRN_PURR);
3462         spurr = mfspr(SPRN_SPURR);
3463         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3464               purr - vcpu->arch.purr);
3465         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3466               spurr - vcpu->arch.spurr);
3467         vcpu->arch.purr = purr;
3468         vcpu->arch.spurr = spurr;
3469
3470         vcpu->arch.ic = mfspr(SPRN_IC);
3471         vcpu->arch.pid = mfspr(SPRN_PID);
3472         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3473
3474         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3475         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3476         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3477         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3478
3479         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3480         mtspr(SPRN_PSSCR, host_psscr |
3481               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3482         mtspr(SPRN_HFSCR, host_hfscr);
3483         mtspr(SPRN_CIABR, host_ciabr);
3484         mtspr(SPRN_DAWR, host_dawr);
3485         mtspr(SPRN_DAWRX, host_dawrx);
3486         mtspr(SPRN_PID, host_pidr);
3487
3488         /*
3489          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3490          * case we interrupted the guest between a tlbie and a ptesync.
3491          */
3492         asm volatile("eieio; tlbsync; ptesync");
3493
3494         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3495         isync();
3496
3497         vc->dpdes = mfspr(SPRN_DPDES);
3498         vc->vtb = mfspr(SPRN_VTB);
3499         mtspr(SPRN_DPDES, 0);
3500         if (vc->pcr)
3501                 mtspr(SPRN_PCR, PCR_MASK);
3502
3503         if (vc->tb_offset_applied) {
3504                 u64 new_tb = mftb() - vc->tb_offset_applied;
3505                 mtspr(SPRN_TBU40, new_tb);
3506                 tb = mftb();
3507                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3508                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3509                 vc->tb_offset_applied = 0;
3510         }
3511
3512         mtspr(SPRN_HDEC, 0x7fffffff);
3513         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3514
3515         return trap;
3516 }
3517
3518 /*
3519  * Virtual-mode guest entry for POWER9 and later when the host and
3520  * guest are both using the radix MMU.  The LPIDR has already been set.
3521  */
3522 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3523                          unsigned long lpcr)
3524 {
3525         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3526         unsigned long host_dscr = mfspr(SPRN_DSCR);
3527         unsigned long host_tidr = mfspr(SPRN_TIDR);
3528         unsigned long host_iamr = mfspr(SPRN_IAMR);
3529         unsigned long host_amr = mfspr(SPRN_AMR);
3530         s64 dec;
3531         u64 tb;
3532         int trap, save_pmu;
3533
3534         dec = mfspr(SPRN_DEC);
3535         tb = mftb();
3536         if (dec < 512)
3537                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3538         local_paca->kvm_hstate.dec_expires = dec + tb;
3539         if (local_paca->kvm_hstate.dec_expires < time_limit)
3540                 time_limit = local_paca->kvm_hstate.dec_expires;
3541
3542         vcpu->arch.ceded = 0;
3543
3544         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3545
3546         kvmppc_subcore_enter_guest();
3547
3548         vc->entry_exit_map = 1;
3549         vc->in_guest = 1;
3550
3551         if (vcpu->arch.vpa.pinned_addr) {
3552                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3553                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3554                 lp->yield_count = cpu_to_be32(yield_count);
3555                 vcpu->arch.vpa.dirty = 1;
3556         }
3557
3558         if (cpu_has_feature(CPU_FTR_TM) ||
3559             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3560                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3561
3562         kvmhv_load_guest_pmu(vcpu);
3563
3564         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3565         load_fp_state(&vcpu->arch.fp);
3566 #ifdef CONFIG_ALTIVEC
3567         load_vr_state(&vcpu->arch.vr);
3568 #endif
3569         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3570
3571         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3572         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3573         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3574         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3575         mtspr(SPRN_TAR, vcpu->arch.tar);
3576         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3577         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3578         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3579         mtspr(SPRN_WORT, vcpu->arch.wort);
3580         mtspr(SPRN_TIDR, vcpu->arch.tid);
3581         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3582         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3583         mtspr(SPRN_AMR, vcpu->arch.amr);
3584         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3585
3586         if (!(vcpu->arch.ctrl & 1))
3587                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3588
3589         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3590
3591         if (kvmhv_on_pseries()) {
3592                 /*
3593                  * We need to save and restore the guest visible part of the
3594                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3595                  * doesn't do this for us. Note only required if pseries since
3596                  * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3597                  */
3598                 unsigned long host_psscr;
3599                 /* call our hypervisor to load up HV regs and go */
3600                 struct hv_guest_state hvregs;
3601
3602                 host_psscr = mfspr(SPRN_PSSCR_PR);
3603                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3604                 kvmhv_save_hv_regs(vcpu, &hvregs);
3605                 hvregs.lpcr = lpcr;
3606                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3607                 hvregs.version = HV_GUEST_STATE_VERSION;
3608                 if (vcpu->arch.nested) {
3609                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3610                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3611                 } else {
3612                         hvregs.lpid = vcpu->kvm->arch.lpid;
3613                         hvregs.vcpu_token = vcpu->vcpu_id;
3614                 }
3615                 hvregs.hdec_expiry = time_limit;
3616                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3617                                           __pa(&vcpu->arch.regs));
3618                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3619                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3620                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3621                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3622                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3623                 mtspr(SPRN_PSSCR_PR, host_psscr);
3624
3625                 /* H_CEDE has to be handled now, not later */
3626                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3627                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3628                         kvmppc_nested_cede(vcpu);
3629                         trap = 0;
3630                 }
3631         } else {
3632                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3633         }
3634
3635         vcpu->arch.slb_max = 0;
3636         dec = mfspr(SPRN_DEC);
3637         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3638                 dec = (s32) dec;
3639         tb = mftb();
3640         vcpu->arch.dec_expires = dec + tb;
3641         vcpu->cpu = -1;
3642         vcpu->arch.thread_cpu = -1;
3643         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3644
3645         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3646         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3647         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3648         vcpu->arch.tar = mfspr(SPRN_TAR);
3649         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3650         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3651         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3652         vcpu->arch.wort = mfspr(SPRN_WORT);
3653         vcpu->arch.tid = mfspr(SPRN_TIDR);
3654         vcpu->arch.amr = mfspr(SPRN_AMR);
3655         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3656         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3657
3658         mtspr(SPRN_PSPB, 0);
3659         mtspr(SPRN_WORT, 0);
3660         mtspr(SPRN_UAMOR, 0);
3661         mtspr(SPRN_DSCR, host_dscr);
3662         mtspr(SPRN_TIDR, host_tidr);
3663         mtspr(SPRN_IAMR, host_iamr);
3664         mtspr(SPRN_PSPB, 0);
3665
3666         if (host_amr != vcpu->arch.amr)
3667                 mtspr(SPRN_AMR, host_amr);
3668
3669         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3670         store_fp_state(&vcpu->arch.fp);
3671 #ifdef CONFIG_ALTIVEC
3672         store_vr_state(&vcpu->arch.vr);
3673 #endif
3674         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3675
3676         if (cpu_has_feature(CPU_FTR_TM) ||
3677             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3678                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3679
3680         save_pmu = 1;
3681         if (vcpu->arch.vpa.pinned_addr) {
3682                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3683                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3684                 lp->yield_count = cpu_to_be32(yield_count);
3685                 vcpu->arch.vpa.dirty = 1;
3686                 save_pmu = lp->pmcregs_in_use;
3687         }
3688         /* Must save pmu if this guest is capable of running nested guests */
3689         save_pmu |= nesting_enabled(vcpu->kvm);
3690
3691         kvmhv_save_guest_pmu(vcpu, save_pmu);
3692
3693         vc->entry_exit_map = 0x101;
3694         vc->in_guest = 0;
3695
3696         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3697         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3698
3699         kvmhv_load_host_pmu();
3700
3701         kvmppc_subcore_exit_guest();
3702
3703         return trap;
3704 }
3705
3706 /*
3707  * Wait for some other vcpu thread to execute us, and
3708  * wake us up when we need to handle something in the host.
3709  */
3710 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3711                                  struct kvm_vcpu *vcpu, int wait_state)
3712 {
3713         DEFINE_WAIT(wait);
3714
3715         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3716         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3717                 spin_unlock(&vc->lock);
3718                 schedule();
3719                 spin_lock(&vc->lock);
3720         }
3721         finish_wait(&vcpu->arch.cpu_run, &wait);
3722 }
3723
3724 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3725 {
3726         if (!halt_poll_ns_grow)
3727                 return;
3728
3729         vc->halt_poll_ns *= halt_poll_ns_grow;
3730         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3731                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3732 }
3733
3734 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3735 {
3736         if (halt_poll_ns_shrink == 0)
3737                 vc->halt_poll_ns = 0;
3738         else
3739                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3740 }
3741
3742 #ifdef CONFIG_KVM_XICS
3743 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3744 {
3745         if (!xics_on_xive())
3746                 return false;
3747         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3748                 vcpu->arch.xive_saved_state.cppr;
3749 }
3750 #else
3751 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3752 {
3753         return false;
3754 }
3755 #endif /* CONFIG_KVM_XICS */
3756
3757 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3758 {
3759         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3760             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3761                 return true;
3762
3763         return false;
3764 }
3765
3766 /*
3767  * Check to see if any of the runnable vcpus on the vcore have pending
3768  * exceptions or are no longer ceded
3769  */
3770 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3771 {
3772         struct kvm_vcpu *vcpu;
3773         int i;
3774
3775         for_each_runnable_thread(i, vcpu, vc) {
3776                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3777                         return 1;
3778         }
3779
3780         return 0;
3781 }
3782
3783 /*
3784  * All the vcpus in this vcore are idle, so wait for a decrementer
3785  * or external interrupt to one of the vcpus.  vc->lock is held.
3786  */
3787 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3788 {
3789         ktime_t cur, start_poll, start_wait;
3790         int do_sleep = 1;
3791         u64 block_ns;
3792         DECLARE_SWAITQUEUE(wait);
3793
3794         /* Poll for pending exceptions and ceded state */
3795         cur = start_poll = ktime_get();
3796         if (vc->halt_poll_ns) {
3797                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3798                 ++vc->runner->stat.halt_attempted_poll;
3799
3800                 vc->vcore_state = VCORE_POLLING;
3801                 spin_unlock(&vc->lock);
3802
3803                 do {
3804                         if (kvmppc_vcore_check_block(vc)) {
3805                                 do_sleep = 0;
3806                                 break;
3807                         }
3808                         cur = ktime_get();
3809                 } while (single_task_running() && ktime_before(cur, stop));
3810
3811                 spin_lock(&vc->lock);
3812                 vc->vcore_state = VCORE_INACTIVE;
3813
3814                 if (!do_sleep) {
3815                         ++vc->runner->stat.halt_successful_poll;
3816                         goto out;
3817                 }
3818         }
3819
3820         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3821
3822         if (kvmppc_vcore_check_block(vc)) {
3823                 finish_swait(&vc->wq, &wait);
3824                 do_sleep = 0;
3825                 /* If we polled, count this as a successful poll */
3826                 if (vc->halt_poll_ns)
3827                         ++vc->runner->stat.halt_successful_poll;
3828                 goto out;
3829         }
3830
3831         start_wait = ktime_get();
3832
3833         vc->vcore_state = VCORE_SLEEPING;
3834         trace_kvmppc_vcore_blocked(vc, 0);
3835         spin_unlock(&vc->lock);
3836         schedule();
3837         finish_swait(&vc->wq, &wait);
3838         spin_lock(&vc->lock);
3839         vc->vcore_state = VCORE_INACTIVE;
3840         trace_kvmppc_vcore_blocked(vc, 1);
3841         ++vc->runner->stat.halt_successful_wait;
3842
3843         cur = ktime_get();
3844
3845 out:
3846         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3847
3848         /* Attribute wait time */
3849         if (do_sleep) {
3850                 vc->runner->stat.halt_wait_ns +=
3851                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3852                 /* Attribute failed poll time */
3853                 if (vc->halt_poll_ns)
3854                         vc->runner->stat.halt_poll_fail_ns +=
3855                                 ktime_to_ns(start_wait) -
3856                                 ktime_to_ns(start_poll);
3857         } else {
3858                 /* Attribute successful poll time */
3859                 if (vc->halt_poll_ns)
3860                         vc->runner->stat.halt_poll_success_ns +=
3861                                 ktime_to_ns(cur) -
3862                                 ktime_to_ns(start_poll);
3863         }
3864
3865         /* Adjust poll time */
3866         if (halt_poll_ns) {
3867                 if (block_ns <= vc->halt_poll_ns)
3868                         ;
3869                 /* We slept and blocked for longer than the max halt time */
3870                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3871                         shrink_halt_poll_ns(vc);
3872                 /* We slept and our poll time is too small */
3873                 else if (vc->halt_poll_ns < halt_poll_ns &&
3874                                 block_ns < halt_poll_ns)
3875                         grow_halt_poll_ns(vc);
3876                 if (vc->halt_poll_ns > halt_poll_ns)
3877                         vc->halt_poll_ns = halt_poll_ns;
3878         } else
3879                 vc->halt_poll_ns = 0;
3880
3881         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3882 }
3883
3884 /*
3885  * This never fails for a radix guest, as none of the operations it does
3886  * for a radix guest can fail or have a way to report failure.
3887  * kvmhv_run_single_vcpu() relies on this fact.
3888  */
3889 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3890 {
3891         int r = 0;
3892         struct kvm *kvm = vcpu->kvm;
3893
3894         mutex_lock(&kvm->arch.mmu_setup_lock);
3895         if (!kvm->arch.mmu_ready) {
3896                 if (!kvm_is_radix(kvm))
3897                         r = kvmppc_hv_setup_htab_rma(vcpu);
3898                 if (!r) {
3899                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3900                                 kvmppc_setup_partition_table(kvm);
3901                         kvm->arch.mmu_ready = 1;
3902                 }
3903         }
3904         mutex_unlock(&kvm->arch.mmu_setup_lock);
3905         return r;
3906 }
3907
3908 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3909 {
3910         int n_ceded, i, r;
3911         struct kvmppc_vcore *vc;
3912         struct kvm_vcpu *v;
3913
3914         trace_kvmppc_run_vcpu_enter(vcpu);
3915
3916         kvm_run->exit_reason = 0;
3917         vcpu->arch.ret = RESUME_GUEST;
3918         vcpu->arch.trap = 0;
3919         kvmppc_update_vpas(vcpu);
3920
3921         /*
3922          * Synchronize with other threads in this virtual core
3923          */
3924         vc = vcpu->arch.vcore;
3925         spin_lock(&vc->lock);
3926         vcpu->arch.ceded = 0;
3927         vcpu->arch.run_task = current;
3928         vcpu->arch.kvm_run = kvm_run;
3929         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3930         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3931         vcpu->arch.busy_preempt = TB_NIL;
3932         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3933         ++vc->n_runnable;
3934
3935         /*
3936          * This happens the first time this is called for a vcpu.
3937          * If the vcore is already running, we may be able to start
3938          * this thread straight away and have it join in.
3939          */
3940         if (!signal_pending(current)) {
3941                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3942                      vc->vcore_state == VCORE_RUNNING) &&
3943                            !VCORE_IS_EXITING(vc)) {
3944                         kvmppc_create_dtl_entry(vcpu, vc);
3945                         kvmppc_start_thread(vcpu, vc);
3946                         trace_kvm_guest_enter(vcpu);
3947                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3948                         swake_up_one(&vc->wq);
3949                 }
3950
3951         }
3952
3953         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3954                !signal_pending(current)) {
3955                 /* See if the MMU is ready to go */
3956                 if (!vcpu->kvm->arch.mmu_ready) {
3957                         spin_unlock(&vc->lock);
3958                         r = kvmhv_setup_mmu(vcpu);
3959                         spin_lock(&vc->lock);
3960                         if (r) {
3961                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3962                                 kvm_run->fail_entry.
3963                                         hardware_entry_failure_reason = 0;
3964                                 vcpu->arch.ret = r;
3965                                 break;
3966                         }
3967                 }
3968
3969                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3970                         kvmppc_vcore_end_preempt(vc);
3971
3972                 if (vc->vcore_state != VCORE_INACTIVE) {
3973                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3974                         continue;
3975                 }
3976                 for_each_runnable_thread(i, v, vc) {
3977                         kvmppc_core_prepare_to_enter(v);
3978                         if (signal_pending(v->arch.run_task)) {
3979                                 kvmppc_remove_runnable(vc, v);
3980                                 v->stat.signal_exits++;
3981                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3982                                 v->arch.ret = -EINTR;
3983                                 wake_up(&v->arch.cpu_run);
3984                         }
3985                 }
3986                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3987                         break;
3988                 n_ceded = 0;
3989                 for_each_runnable_thread(i, v, vc) {
3990                         if (!kvmppc_vcpu_woken(v))
3991                                 n_ceded += v->arch.ceded;
3992                         else
3993                                 v->arch.ceded = 0;
3994                 }
3995                 vc->runner = vcpu;
3996                 if (n_ceded == vc->n_runnable) {
3997                         kvmppc_vcore_blocked(vc);
3998                 } else if (need_resched()) {
3999                         kvmppc_vcore_preempt(vc);
4000                         /* Let something else run */
4001                         cond_resched_lock(&vc->lock);
4002                         if (vc->vcore_state == VCORE_PREEMPT)
4003                                 kvmppc_vcore_end_preempt(vc);
4004                 } else {
4005                         kvmppc_run_core(vc);
4006                 }
4007                 vc->runner = NULL;
4008         }
4009
4010         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4011                (vc->vcore_state == VCORE_RUNNING ||
4012                 vc->vcore_state == VCORE_EXITING ||
4013                 vc->vcore_state == VCORE_PIGGYBACK))
4014                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4015
4016         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4017                 kvmppc_vcore_end_preempt(vc);
4018
4019         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4020                 kvmppc_remove_runnable(vc, vcpu);
4021                 vcpu->stat.signal_exits++;
4022                 kvm_run->exit_reason = KVM_EXIT_INTR;
4023                 vcpu->arch.ret = -EINTR;
4024         }
4025
4026         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4027                 /* Wake up some vcpu to run the core */
4028                 i = -1;
4029                 v = next_runnable_thread(vc, &i);
4030                 wake_up(&v->arch.cpu_run);
4031         }
4032
4033         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4034         spin_unlock(&vc->lock);
4035         return vcpu->arch.ret;
4036 }
4037
4038 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4039                           struct kvm_vcpu *vcpu, u64 time_limit,
4040                           unsigned long lpcr)
4041 {
4042         int trap, r, pcpu;
4043         int srcu_idx, lpid;
4044         struct kvmppc_vcore *vc;
4045         struct kvm *kvm = vcpu->kvm;
4046         struct kvm_nested_guest *nested = vcpu->arch.nested;
4047
4048         trace_kvmppc_run_vcpu_enter(vcpu);
4049
4050         kvm_run->exit_reason = 0;
4051         vcpu->arch.ret = RESUME_GUEST;
4052         vcpu->arch.trap = 0;
4053
4054         vc = vcpu->arch.vcore;
4055         vcpu->arch.ceded = 0;
4056         vcpu->arch.run_task = current;
4057         vcpu->arch.kvm_run = kvm_run;
4058         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4059         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4060         vcpu->arch.busy_preempt = TB_NIL;
4061         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4062         vc->runnable_threads[0] = vcpu;
4063         vc->n_runnable = 1;
4064         vc->runner = vcpu;
4065
4066         /* See if the MMU is ready to go */
4067         if (!kvm->arch.mmu_ready)
4068                 kvmhv_setup_mmu(vcpu);
4069
4070         if (need_resched())
4071                 cond_resched();
4072
4073         kvmppc_update_vpas(vcpu);
4074
4075         init_vcore_to_run(vc);
4076         vc->preempt_tb = TB_NIL;
4077
4078         preempt_disable();
4079         pcpu = smp_processor_id();
4080         vc->pcpu = pcpu;
4081         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4082
4083         local_irq_disable();
4084         hard_irq_disable();
4085         if (signal_pending(current))
4086                 goto sigpend;
4087         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4088                 goto out;
4089
4090         if (!nested) {
4091                 kvmppc_core_prepare_to_enter(vcpu);
4092                 if (vcpu->arch.doorbell_request) {
4093                         vc->dpdes = 1;
4094                         smp_wmb();
4095                         vcpu->arch.doorbell_request = 0;
4096                 }
4097                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4098                              &vcpu->arch.pending_exceptions))
4099                         lpcr |= LPCR_MER;
4100         } else if (vcpu->arch.pending_exceptions ||
4101                    vcpu->arch.doorbell_request ||
4102                    xive_interrupt_pending(vcpu)) {
4103                 vcpu->arch.ret = RESUME_HOST;
4104                 goto out;
4105         }
4106
4107         kvmppc_clear_host_core(pcpu);
4108
4109         local_paca->kvm_hstate.tid = 0;
4110         local_paca->kvm_hstate.napping = 0;
4111         local_paca->kvm_hstate.kvm_split_mode = NULL;
4112         kvmppc_start_thread(vcpu, vc);
4113         kvmppc_create_dtl_entry(vcpu, vc);
4114         trace_kvm_guest_enter(vcpu);
4115
4116         vc->vcore_state = VCORE_RUNNING;
4117         trace_kvmppc_run_core(vc, 0);
4118
4119         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4120                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4121                 mtspr(SPRN_LPID, lpid);
4122                 isync();
4123                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4124         }
4125
4126         guest_enter_irqoff();
4127
4128         srcu_idx = srcu_read_lock(&kvm->srcu);
4129
4130         this_cpu_disable_ftrace();
4131
4132         /* Tell lockdep that we're about to enable interrupts */
4133         trace_hardirqs_on();
4134
4135         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4136         vcpu->arch.trap = trap;
4137
4138         trace_hardirqs_off();
4139
4140         this_cpu_enable_ftrace();
4141
4142         srcu_read_unlock(&kvm->srcu, srcu_idx);
4143
4144         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4145                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4146                 isync();
4147         }
4148
4149         set_irq_happened(trap);
4150
4151         kvmppc_set_host_core(pcpu);
4152
4153         local_irq_enable();
4154         guest_exit();
4155
4156         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4157
4158         preempt_enable();
4159
4160         /*
4161          * cancel pending decrementer exception if DEC is now positive, or if
4162          * entering a nested guest in which case the decrementer is now owned
4163          * by L2 and the L1 decrementer is provided in hdec_expires
4164          */
4165         if (kvmppc_core_pending_dec(vcpu) &&
4166                         ((get_tb() < vcpu->arch.dec_expires) ||
4167                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4168                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4169                 kvmppc_core_dequeue_dec(vcpu);
4170
4171         trace_kvm_guest_exit(vcpu);
4172         r = RESUME_GUEST;
4173         if (trap) {
4174                 if (!nested)
4175                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4176                 else
4177                         r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4178         }
4179         vcpu->arch.ret = r;
4180
4181         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4182             !kvmppc_vcpu_woken(vcpu)) {
4183                 kvmppc_set_timer(vcpu);
4184                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4185                         if (signal_pending(current)) {
4186                                 vcpu->stat.signal_exits++;
4187                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4188                                 vcpu->arch.ret = -EINTR;
4189                                 break;
4190                         }
4191                         spin_lock(&vc->lock);
4192                         kvmppc_vcore_blocked(vc);
4193                         spin_unlock(&vc->lock);
4194                 }
4195         }
4196         vcpu->arch.ceded = 0;
4197
4198         vc->vcore_state = VCORE_INACTIVE;
4199         trace_kvmppc_run_core(vc, 1);
4200
4201  done:
4202         kvmppc_remove_runnable(vc, vcpu);
4203         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4204
4205         return vcpu->arch.ret;
4206
4207  sigpend:
4208         vcpu->stat.signal_exits++;
4209         kvm_run->exit_reason = KVM_EXIT_INTR;
4210         vcpu->arch.ret = -EINTR;
4211  out:
4212         local_irq_enable();
4213         preempt_enable();
4214         goto done;
4215 }
4216
4217 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4218 {
4219         int r;
4220         int srcu_idx;
4221         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4222         unsigned long user_tar = 0;
4223         unsigned int user_vrsave;
4224         struct kvm *kvm;
4225
4226         if (!vcpu->arch.sane) {
4227                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4228                 return -EINVAL;
4229         }
4230
4231         /*
4232          * Don't allow entry with a suspended transaction, because
4233          * the guest entry/exit code will lose it.
4234          * If the guest has TM enabled, save away their TM-related SPRs
4235          * (they will get restored by the TM unavailable interrupt).
4236          */
4237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4238         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4239             (current->thread.regs->msr & MSR_TM)) {
4240                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4241                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4242                         run->fail_entry.hardware_entry_failure_reason = 0;
4243                         return -EINVAL;
4244                 }
4245                 /* Enable TM so we can read the TM SPRs */
4246                 mtmsr(mfmsr() | MSR_TM);
4247                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4248                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4249                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4250                 current->thread.regs->msr &= ~MSR_TM;
4251         }
4252 #endif
4253
4254         /*
4255          * Force online to 1 for the sake of old userspace which doesn't
4256          * set it.
4257          */
4258         if (!vcpu->arch.online) {
4259                 atomic_inc(&vcpu->arch.vcore->online_count);
4260                 vcpu->arch.online = 1;
4261         }
4262
4263         kvmppc_core_prepare_to_enter(vcpu);
4264
4265         /* No need to go into the guest when all we'll do is come back out */
4266         if (signal_pending(current)) {
4267                 run->exit_reason = KVM_EXIT_INTR;
4268                 return -EINTR;
4269         }
4270
4271         kvm = vcpu->kvm;
4272         atomic_inc(&kvm->arch.vcpus_running);
4273         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4274         smp_mb();
4275
4276         flush_all_to_thread(current);
4277
4278         /* Save userspace EBB and other register values */
4279         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4280                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4281                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4282                 ebb_regs[2] = mfspr(SPRN_BESCR);
4283                 user_tar = mfspr(SPRN_TAR);
4284         }
4285         user_vrsave = mfspr(SPRN_VRSAVE);
4286
4287         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4288         vcpu->arch.pgdir = current->mm->pgd;
4289         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4290
4291         do {
4292                 /*
4293                  * The early POWER9 chips that can't mix radix and HPT threads
4294                  * on the same core also need the workaround for the problem
4295                  * where the TLB would prefetch entries in the guest exit path
4296                  * for radix guests using the guest PIDR value and LPID 0.
4297                  * The workaround is in the old path (kvmppc_run_vcpu())
4298                  * but not the new path (kvmhv_run_single_vcpu()).
4299                  */
4300                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4301                     !no_mixing_hpt_and_radix)
4302                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4303                                                   vcpu->arch.vcore->lpcr);
4304                 else
4305                         r = kvmppc_run_vcpu(run, vcpu);
4306
4307                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4308                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4309                         trace_kvm_hcall_enter(vcpu);
4310                         r = kvmppc_pseries_do_hcall(vcpu);
4311                         trace_kvm_hcall_exit(vcpu, r);
4312                         kvmppc_core_prepare_to_enter(vcpu);
4313                 } else if (r == RESUME_PAGE_FAULT) {
4314                         srcu_idx = srcu_read_lock(&kvm->srcu);
4315                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4316                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4317                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4318                 } else if (r == RESUME_PASSTHROUGH) {
4319                         if (WARN_ON(xics_on_xive()))
4320                                 r = H_SUCCESS;
4321                         else
4322                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4323                 }
4324         } while (is_kvmppc_resume_guest(r));
4325
4326         /* Restore userspace EBB and other register values */
4327         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4328                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4329                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4330                 mtspr(SPRN_BESCR, ebb_regs[2]);
4331                 mtspr(SPRN_TAR, user_tar);
4332                 mtspr(SPRN_FSCR, current->thread.fscr);
4333         }
4334         mtspr(SPRN_VRSAVE, user_vrsave);
4335
4336         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4337         atomic_dec(&kvm->arch.vcpus_running);
4338         return r;
4339 }
4340
4341 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4342                                      int shift, int sllp)
4343 {
4344         (*sps)->page_shift = shift;
4345         (*sps)->slb_enc = sllp;
4346         (*sps)->enc[0].page_shift = shift;
4347         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4348         /*
4349          * Add 16MB MPSS support (may get filtered out by userspace)
4350          */
4351         if (shift != 24) {
4352                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4353                 if (penc != -1) {
4354                         (*sps)->enc[1].page_shift = 24;
4355                         (*sps)->enc[1].pte_enc = penc;
4356                 }
4357         }
4358         (*sps)++;
4359 }
4360
4361 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4362                                          struct kvm_ppc_smmu_info *info)
4363 {
4364         struct kvm_ppc_one_seg_page_size *sps;
4365
4366         /*
4367          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4368          * POWER7 doesn't support keys for instruction accesses,
4369          * POWER8 and POWER9 do.
4370          */
4371         info->data_keys = 32;
4372         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4373
4374         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4375         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4376         info->slb_size = 32;
4377
4378         /* We only support these sizes for now, and no muti-size segments */
4379         sps = &info->sps[0];
4380         kvmppc_add_seg_page_size(&sps, 12, 0);
4381         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4382         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4383
4384         /* If running as a nested hypervisor, we don't support HPT guests */
4385         if (kvmhv_on_pseries())
4386                 info->flags |= KVM_PPC_NO_HASH;
4387
4388         return 0;
4389 }
4390
4391 /*
4392  * Get (and clear) the dirty memory log for a memory slot.
4393  */
4394 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4395                                          struct kvm_dirty_log *log)
4396 {
4397         struct kvm_memslots *slots;
4398         struct kvm_memory_slot *memslot;
4399         int i, r;
4400         unsigned long n;
4401         unsigned long *buf, *p;
4402         struct kvm_vcpu *vcpu;
4403
4404         mutex_lock(&kvm->slots_lock);
4405
4406         r = -EINVAL;
4407         if (log->slot >= KVM_USER_MEM_SLOTS)
4408                 goto out;
4409
4410         slots = kvm_memslots(kvm);
4411         memslot = id_to_memslot(slots, log->slot);
4412         r = -ENOENT;
4413         if (!memslot->dirty_bitmap)
4414                 goto out;
4415
4416         /*
4417          * Use second half of bitmap area because both HPT and radix
4418          * accumulate bits in the first half.
4419          */
4420         n = kvm_dirty_bitmap_bytes(memslot);
4421         buf = memslot->dirty_bitmap + n / sizeof(long);
4422         memset(buf, 0, n);
4423
4424         if (kvm_is_radix(kvm))
4425                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4426         else
4427                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4428         if (r)
4429                 goto out;
4430
4431         /*
4432          * We accumulate dirty bits in the first half of the
4433          * memslot's dirty_bitmap area, for when pages are paged
4434          * out or modified by the host directly.  Pick up these
4435          * bits and add them to the map.
4436          */
4437         p = memslot->dirty_bitmap;
4438         for (i = 0; i < n / sizeof(long); ++i)
4439                 buf[i] |= xchg(&p[i], 0);
4440
4441         /* Harvest dirty bits from VPA and DTL updates */
4442         /* Note: we never modify the SLB shadow buffer areas */
4443         kvm_for_each_vcpu(i, vcpu, kvm) {
4444                 spin_lock(&vcpu->arch.vpa_update_lock);
4445                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4446                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4447                 spin_unlock(&vcpu->arch.vpa_update_lock);
4448         }
4449
4450         r = -EFAULT;
4451         if (copy_to_user(log->dirty_bitmap, buf, n))
4452                 goto out;
4453
4454         r = 0;
4455 out:
4456         mutex_unlock(&kvm->slots_lock);
4457         return r;
4458 }
4459
4460 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4461                                         struct kvm_memory_slot *dont)
4462 {
4463         if (!dont || free->arch.rmap != dont->arch.rmap) {
4464                 vfree(free->arch.rmap);
4465                 free->arch.rmap = NULL;
4466         }
4467 }
4468
4469 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4470                                          unsigned long npages)
4471 {
4472         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4473         if (!slot->arch.rmap)
4474                 return -ENOMEM;
4475
4476         return 0;
4477 }
4478
4479 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4480                                         struct kvm_memory_slot *memslot,
4481                                         const struct kvm_userspace_memory_region *mem)
4482 {
4483         return 0;
4484 }
4485
4486 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4487                                 const struct kvm_userspace_memory_region *mem,
4488                                 const struct kvm_memory_slot *old,
4489                                 const struct kvm_memory_slot *new,
4490                                 enum kvm_mr_change change)
4491 {
4492         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4493
4494         /*
4495          * If we are making a new memslot, it might make
4496          * some address that was previously cached as emulated
4497          * MMIO be no longer emulated MMIO, so invalidate
4498          * all the caches of emulated MMIO translations.
4499          */
4500         if (npages)
4501                 atomic64_inc(&kvm->arch.mmio_update);
4502
4503         /*
4504          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4505          * have already called kvm_arch_flush_shadow_memslot() to
4506          * flush shadow mappings.  For KVM_MR_CREATE we have no
4507          * previous mappings.  So the only case to handle is
4508          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4509          * has been changed.
4510          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4511          * to get rid of any THP PTEs in the partition-scoped page tables
4512          * so we can track dirtiness at the page level; we flush when
4513          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4514          * using THP PTEs.
4515          */
4516         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4517             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4518                 kvmppc_radix_flush_memslot(kvm, old);
4519         /*
4520          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4521          */
4522         if (!kvm->arch.secure_guest)
4523                 return;
4524
4525         switch (change) {
4526         case KVM_MR_CREATE:
4527                 if (kvmppc_uvmem_slot_init(kvm, new))
4528                         return;
4529                 uv_register_mem_slot(kvm->arch.lpid,
4530                                      new->base_gfn << PAGE_SHIFT,
4531                                      new->npages * PAGE_SIZE,
4532                                      0, new->id);
4533                 break;
4534         case KVM_MR_DELETE:
4535                 uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4536                 kvmppc_uvmem_slot_free(kvm, old);
4537                 break;
4538         default:
4539                 /* TODO: Handle KVM_MR_MOVE */
4540                 break;
4541         }
4542 }
4543
4544 /*
4545  * Update LPCR values in kvm->arch and in vcores.
4546  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4547  * of kvm->arch.lpcr update).
4548  */
4549 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4550 {
4551         long int i;
4552         u32 cores_done = 0;
4553
4554         if ((kvm->arch.lpcr & mask) == lpcr)
4555                 return;
4556
4557         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4558
4559         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4560                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4561                 if (!vc)
4562                         continue;
4563                 spin_lock(&vc->lock);
4564                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4565                 spin_unlock(&vc->lock);
4566                 if (++cores_done >= kvm->arch.online_vcores)
4567                         break;
4568         }
4569 }
4570
4571 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4572 {
4573         return;
4574 }
4575
4576 void kvmppc_setup_partition_table(struct kvm *kvm)
4577 {
4578         unsigned long dw0, dw1;
4579
4580         if (!kvm_is_radix(kvm)) {
4581                 /* PS field - page size for VRMA */
4582                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4583                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4584                 /* HTABSIZE and HTABORG fields */
4585                 dw0 |= kvm->arch.sdr1;
4586
4587                 /* Second dword as set by userspace */
4588                 dw1 = kvm->arch.process_table;
4589         } else {
4590                 dw0 = PATB_HR | radix__get_tree_size() |
4591                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4592                 dw1 = PATB_GR | kvm->arch.process_table;
4593         }
4594         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4595 }
4596
4597 /*
4598  * Set up HPT (hashed page table) and RMA (real-mode area).
4599  * Must be called with kvm->arch.mmu_setup_lock held.
4600  */
4601 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4602 {
4603         int err = 0;
4604         struct kvm *kvm = vcpu->kvm;
4605         unsigned long hva;
4606         struct kvm_memory_slot *memslot;
4607         struct vm_area_struct *vma;
4608         unsigned long lpcr = 0, senc;
4609         unsigned long psize, porder;
4610         int srcu_idx;
4611
4612         /* Allocate hashed page table (if not done already) and reset it */
4613         if (!kvm->arch.hpt.virt) {
4614                 int order = KVM_DEFAULT_HPT_ORDER;
4615                 struct kvm_hpt_info info;
4616
4617                 err = kvmppc_allocate_hpt(&info, order);
4618                 /* If we get here, it means userspace didn't specify a
4619                  * size explicitly.  So, try successively smaller
4620                  * sizes if the default failed. */
4621                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4622                         err  = kvmppc_allocate_hpt(&info, order);
4623
4624                 if (err < 0) {
4625                         pr_err("KVM: Couldn't alloc HPT\n");
4626                         goto out;
4627                 }
4628
4629                 kvmppc_set_hpt(kvm, &info);
4630         }
4631
4632         /* Look up the memslot for guest physical address 0 */
4633         srcu_idx = srcu_read_lock(&kvm->srcu);
4634         memslot = gfn_to_memslot(kvm, 0);
4635
4636         /* We must have some memory at 0 by now */
4637         err = -EINVAL;
4638         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4639                 goto out_srcu;
4640
4641         /* Look up the VMA for the start of this memory slot */
4642         hva = memslot->userspace_addr;
4643         down_read(&current->mm->mmap_sem);
4644         vma = find_vma(current->mm, hva);
4645         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4646                 goto up_out;
4647
4648         psize = vma_kernel_pagesize(vma);
4649
4650         up_read(&current->mm->mmap_sem);
4651
4652         /* We can handle 4k, 64k or 16M pages in the VRMA */
4653         if (psize >= 0x1000000)
4654                 psize = 0x1000000;
4655         else if (psize >= 0x10000)
4656                 psize = 0x10000;
4657         else
4658                 psize = 0x1000;
4659         porder = __ilog2(psize);
4660
4661         senc = slb_pgsize_encoding(psize);
4662         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4663                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4664         /* Create HPTEs in the hash page table for the VRMA */
4665         kvmppc_map_vrma(vcpu, memslot, porder);
4666
4667         /* Update VRMASD field in the LPCR */
4668         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4669                 /* the -4 is to account for senc values starting at 0x10 */
4670                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4671                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4672         }
4673
4674         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4675         smp_wmb();
4676         err = 0;
4677  out_srcu:
4678         srcu_read_unlock(&kvm->srcu, srcu_idx);
4679  out:
4680         return err;
4681
4682  up_out:
4683         up_read(&current->mm->mmap_sem);
4684         goto out_srcu;
4685 }
4686
4687 /*
4688  * Must be called with kvm->arch.mmu_setup_lock held and
4689  * mmu_ready = 0 and no vcpus running.
4690  */
4691 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4692 {
4693         if (nesting_enabled(kvm))
4694                 kvmhv_release_all_nested(kvm);
4695         kvmppc_rmap_reset(kvm);
4696         kvm->arch.process_table = 0;
4697         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4698         spin_lock(&kvm->mmu_lock);
4699         kvm->arch.radix = 0;
4700         spin_unlock(&kvm->mmu_lock);
4701         kvmppc_free_radix(kvm);
4702         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4703                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4704         return 0;
4705 }
4706
4707 /*
4708  * Must be called with kvm->arch.mmu_setup_lock held and
4709  * mmu_ready = 0 and no vcpus running.
4710  */
4711 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4712 {
4713         int err;
4714
4715         err = kvmppc_init_vm_radix(kvm);
4716         if (err)
4717                 return err;
4718         kvmppc_rmap_reset(kvm);
4719         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4720         spin_lock(&kvm->mmu_lock);
4721         kvm->arch.radix = 1;
4722         spin_unlock(&kvm->mmu_lock);
4723         kvmppc_free_hpt(&kvm->arch.hpt);
4724         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4725                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4726         return 0;
4727 }
4728
4729 #ifdef CONFIG_KVM_XICS
4730 /*
4731  * Allocate a per-core structure for managing state about which cores are
4732  * running in the host versus the guest and for exchanging data between
4733  * real mode KVM and CPU running in the host.
4734  * This is only done for the first VM.
4735  * The allocated structure stays even if all VMs have stopped.
4736  * It is only freed when the kvm-hv module is unloaded.
4737  * It's OK for this routine to fail, we just don't support host
4738  * core operations like redirecting H_IPI wakeups.
4739  */
4740 void kvmppc_alloc_host_rm_ops(void)
4741 {
4742         struct kvmppc_host_rm_ops *ops;
4743         unsigned long l_ops;
4744         int cpu, core;
4745         int size;
4746
4747         /* Not the first time here ? */
4748         if (kvmppc_host_rm_ops_hv != NULL)
4749                 return;
4750
4751         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4752         if (!ops)
4753                 return;
4754
4755         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4756         ops->rm_core = kzalloc(size, GFP_KERNEL);
4757
4758         if (!ops->rm_core) {
4759                 kfree(ops);
4760                 return;
4761         }
4762
4763         cpus_read_lock();
4764
4765         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4766                 if (!cpu_online(cpu))
4767                         continue;
4768
4769                 core = cpu >> threads_shift;
4770                 ops->rm_core[core].rm_state.in_host = 1;
4771         }
4772
4773         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4774
4775         /*
4776          * Make the contents of the kvmppc_host_rm_ops structure visible
4777          * to other CPUs before we assign it to the global variable.
4778          * Do an atomic assignment (no locks used here), but if someone
4779          * beats us to it, just free our copy and return.
4780          */
4781         smp_wmb();
4782         l_ops = (unsigned long) ops;
4783
4784         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4785                 cpus_read_unlock();
4786                 kfree(ops->rm_core);
4787                 kfree(ops);
4788                 return;
4789         }
4790
4791         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4792                                              "ppc/kvm_book3s:prepare",
4793                                              kvmppc_set_host_core,
4794                                              kvmppc_clear_host_core);
4795         cpus_read_unlock();
4796 }
4797
4798 void kvmppc_free_host_rm_ops(void)
4799 {
4800         if (kvmppc_host_rm_ops_hv) {
4801                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4802                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4803                 kfree(kvmppc_host_rm_ops_hv);
4804                 kvmppc_host_rm_ops_hv = NULL;
4805         }
4806 }
4807 #endif
4808
4809 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4810 {
4811         unsigned long lpcr, lpid;
4812         char buf[32];
4813         int ret;
4814
4815         mutex_init(&kvm->arch.uvmem_lock);
4816         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4817         mutex_init(&kvm->arch.mmu_setup_lock);
4818
4819         /* Allocate the guest's logical partition ID */
4820
4821         lpid = kvmppc_alloc_lpid();
4822         if ((long)lpid < 0)
4823                 return -ENOMEM;
4824         kvm->arch.lpid = lpid;
4825
4826         kvmppc_alloc_host_rm_ops();
4827
4828         kvmhv_vm_nested_init(kvm);
4829
4830         /*
4831          * Since we don't flush the TLB when tearing down a VM,
4832          * and this lpid might have previously been used,
4833          * make sure we flush on each core before running the new VM.
4834          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4835          * does this flush for us.
4836          */
4837         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4838                 cpumask_setall(&kvm->arch.need_tlb_flush);
4839
4840         /* Start out with the default set of hcalls enabled */
4841         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4842                sizeof(kvm->arch.enabled_hcalls));
4843
4844         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4845                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4846
4847         /* Init LPCR for virtual RMA mode */
4848         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4849                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4850                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4851                 lpcr &= LPCR_PECE | LPCR_LPES;
4852         } else {
4853                 lpcr = 0;
4854         }
4855         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4856                 LPCR_VPM0 | LPCR_VPM1;
4857         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4858                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4859         /* On POWER8 turn on online bit to enable PURR/SPURR */
4860         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4861                 lpcr |= LPCR_ONL;
4862         /*
4863          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4864          * Set HVICE bit to enable hypervisor virtualization interrupts.
4865          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4866          * be unnecessary but better safe than sorry in case we re-enable
4867          * EE in HV mode with this LPCR still set)
4868          */
4869         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4870                 lpcr &= ~LPCR_VPM0;
4871                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4872
4873                 /*
4874                  * If xive is enabled, we route 0x500 interrupts directly
4875                  * to the guest.
4876                  */
4877                 if (xics_on_xive())
4878                         lpcr |= LPCR_LPES;
4879         }
4880
4881         /*
4882          * If the host uses radix, the guest starts out as radix.
4883          */
4884         if (radix_enabled()) {
4885                 kvm->arch.radix = 1;
4886                 kvm->arch.mmu_ready = 1;
4887                 lpcr &= ~LPCR_VPM1;
4888                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4889                 ret = kvmppc_init_vm_radix(kvm);
4890                 if (ret) {
4891                         kvmppc_free_lpid(kvm->arch.lpid);
4892                         return ret;
4893                 }
4894                 kvmppc_setup_partition_table(kvm);
4895         }
4896
4897         kvm->arch.lpcr = lpcr;
4898
4899         /* Initialization for future HPT resizes */
4900         kvm->arch.resize_hpt = NULL;
4901
4902         /*
4903          * Work out how many sets the TLB has, for the use of
4904          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4905          */
4906         if (radix_enabled())
4907                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4908         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4909                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4910         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4911                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4912         else
4913                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4914
4915         /*
4916          * Track that we now have a HV mode VM active. This blocks secondary
4917          * CPU threads from coming online.
4918          * On POWER9, we only need to do this if the "indep_threads_mode"
4919          * module parameter has been set to N.
4920          */
4921         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4922                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4923                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4924                         kvm->arch.threads_indep = true;
4925                 } else {
4926                         kvm->arch.threads_indep = indep_threads_mode;
4927                 }
4928         }
4929         if (!kvm->arch.threads_indep)
4930                 kvm_hv_vm_activated();
4931
4932         /*
4933          * Initialize smt_mode depending on processor.
4934          * POWER8 and earlier have to use "strict" threading, where
4935          * all vCPUs in a vcore have to run on the same (sub)core,
4936          * whereas on POWER9 the threads can each run a different
4937          * guest.
4938          */
4939         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4940                 kvm->arch.smt_mode = threads_per_subcore;
4941         else
4942                 kvm->arch.smt_mode = 1;
4943         kvm->arch.emul_smt_mode = 1;
4944
4945         /*
4946          * Create a debugfs directory for the VM
4947          */
4948         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4949         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4950         kvmppc_mmu_debugfs_init(kvm);
4951         if (radix_enabled())
4952                 kvmhv_radix_debugfs_init(kvm);
4953
4954         return 0;
4955 }
4956
4957 static void kvmppc_free_vcores(struct kvm *kvm)
4958 {
4959         long int i;
4960
4961         for (i = 0; i < KVM_MAX_VCORES; ++i)
4962                 kfree(kvm->arch.vcores[i]);
4963         kvm->arch.online_vcores = 0;
4964 }
4965
4966 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4967 {
4968         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4969
4970         if (!kvm->arch.threads_indep)
4971                 kvm_hv_vm_deactivated();
4972
4973         kvmppc_free_vcores(kvm);
4974
4975
4976         if (kvm_is_radix(kvm))
4977                 kvmppc_free_radix(kvm);
4978         else
4979                 kvmppc_free_hpt(&kvm->arch.hpt);
4980
4981         /* Perform global invalidation and return lpid to the pool */
4982         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4983                 if (nesting_enabled(kvm))
4984                         kvmhv_release_all_nested(kvm);
4985                 kvm->arch.process_table = 0;
4986                 if (kvm->arch.secure_guest)
4987                         uv_svm_terminate(kvm->arch.lpid);
4988                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4989         }
4990
4991         kvmppc_free_lpid(kvm->arch.lpid);
4992
4993         kvmppc_free_pimap(kvm);
4994 }
4995
4996 /* We don't need to emulate any privileged instructions or dcbz */
4997 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4998                                      unsigned int inst, int *advance)
4999 {
5000         return EMULATE_FAIL;
5001 }
5002
5003 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5004                                         ulong spr_val)
5005 {
5006         return EMULATE_FAIL;
5007 }
5008
5009 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5010                                         ulong *spr_val)
5011 {
5012         return EMULATE_FAIL;
5013 }
5014
5015 static int kvmppc_core_check_processor_compat_hv(void)
5016 {
5017         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5018             cpu_has_feature(CPU_FTR_ARCH_206))
5019                 return 0;
5020
5021         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5022         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5023                 return 0;
5024
5025         return -EIO;
5026 }
5027
5028 #ifdef CONFIG_KVM_XICS
5029
5030 void kvmppc_free_pimap(struct kvm *kvm)
5031 {
5032         kfree(kvm->arch.pimap);
5033 }
5034
5035 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5036 {
5037         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5038 }
5039
5040 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5041 {
5042         struct irq_desc *desc;
5043         struct kvmppc_irq_map *irq_map;
5044         struct kvmppc_passthru_irqmap *pimap;
5045         struct irq_chip *chip;
5046         int i, rc = 0;
5047
5048         if (!kvm_irq_bypass)
5049                 return 1;
5050
5051         desc = irq_to_desc(host_irq);
5052         if (!desc)
5053                 return -EIO;
5054
5055         mutex_lock(&kvm->lock);
5056
5057         pimap = kvm->arch.pimap;
5058         if (pimap == NULL) {
5059                 /* First call, allocate structure to hold IRQ map */
5060                 pimap = kvmppc_alloc_pimap();
5061                 if (pimap == NULL) {
5062                         mutex_unlock(&kvm->lock);
5063                         return -ENOMEM;
5064                 }
5065                 kvm->arch.pimap = pimap;
5066         }
5067
5068         /*
5069          * For now, we only support interrupts for which the EOI operation
5070          * is an OPAL call followed by a write to XIRR, since that's
5071          * what our real-mode EOI code does, or a XIVE interrupt
5072          */
5073         chip = irq_data_get_irq_chip(&desc->irq_data);
5074         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5075                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5076                         host_irq, guest_gsi);
5077                 mutex_unlock(&kvm->lock);
5078                 return -ENOENT;
5079         }
5080
5081         /*
5082          * See if we already have an entry for this guest IRQ number.
5083          * If it's mapped to a hardware IRQ number, that's an error,
5084          * otherwise re-use this entry.
5085          */
5086         for (i = 0; i < pimap->n_mapped; i++) {
5087                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5088                         if (pimap->mapped[i].r_hwirq) {
5089                                 mutex_unlock(&kvm->lock);
5090                                 return -EINVAL;
5091                         }
5092                         break;
5093                 }
5094         }
5095
5096         if (i == KVMPPC_PIRQ_MAPPED) {
5097                 mutex_unlock(&kvm->lock);
5098                 return -EAGAIN;         /* table is full */
5099         }
5100
5101         irq_map = &pimap->mapped[i];
5102
5103         irq_map->v_hwirq = guest_gsi;
5104         irq_map->desc = desc;
5105
5106         /*
5107          * Order the above two stores before the next to serialize with
5108          * the KVM real mode handler.
5109          */
5110         smp_wmb();
5111         irq_map->r_hwirq = desc->irq_data.hwirq;
5112
5113         if (i == pimap->n_mapped)
5114                 pimap->n_mapped++;
5115
5116         if (xics_on_xive())
5117                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5118         else
5119                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5120         if (rc)
5121                 irq_map->r_hwirq = 0;
5122
5123         mutex_unlock(&kvm->lock);
5124
5125         return 0;
5126 }
5127
5128 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5129 {
5130         struct irq_desc *desc;
5131         struct kvmppc_passthru_irqmap *pimap;
5132         int i, rc = 0;
5133
5134         if (!kvm_irq_bypass)
5135                 return 0;
5136
5137         desc = irq_to_desc(host_irq);
5138         if (!desc)
5139                 return -EIO;
5140
5141         mutex_lock(&kvm->lock);
5142         if (!kvm->arch.pimap)
5143                 goto unlock;
5144
5145         pimap = kvm->arch.pimap;
5146
5147         for (i = 0; i < pimap->n_mapped; i++) {
5148                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5149                         break;
5150         }
5151
5152         if (i == pimap->n_mapped) {
5153                 mutex_unlock(&kvm->lock);
5154                 return -ENODEV;
5155         }
5156
5157         if (xics_on_xive())
5158                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5159         else
5160                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5161
5162         /* invalidate the entry (what do do on error from the above ?) */
5163         pimap->mapped[i].r_hwirq = 0;
5164
5165         /*
5166          * We don't free this structure even when the count goes to
5167          * zero. The structure is freed when we destroy the VM.
5168          */
5169  unlock:
5170         mutex_unlock(&kvm->lock);
5171         return rc;
5172 }
5173
5174 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5175                                              struct irq_bypass_producer *prod)
5176 {
5177         int ret = 0;
5178         struct kvm_kernel_irqfd *irqfd =
5179                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5180
5181         irqfd->producer = prod;
5182
5183         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5184         if (ret)
5185                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5186                         prod->irq, irqfd->gsi, ret);
5187
5188         return ret;
5189 }
5190
5191 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5192                                               struct irq_bypass_producer *prod)
5193 {
5194         int ret;
5195         struct kvm_kernel_irqfd *irqfd =
5196                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5197
5198         irqfd->producer = NULL;
5199
5200         /*
5201          * When producer of consumer is unregistered, we change back to
5202          * default external interrupt handling mode - KVM real mode
5203          * will switch back to host.
5204          */
5205         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5206         if (ret)
5207                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5208                         prod->irq, irqfd->gsi, ret);
5209 }
5210 #endif
5211
5212 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5213                                  unsigned int ioctl, unsigned long arg)
5214 {
5215         struct kvm *kvm __maybe_unused = filp->private_data;
5216         void __user *argp = (void __user *)arg;
5217         long r;
5218
5219         switch (ioctl) {
5220
5221         case KVM_PPC_ALLOCATE_HTAB: {
5222                 u32 htab_order;
5223
5224                 r = -EFAULT;
5225                 if (get_user(htab_order, (u32 __user *)argp))
5226                         break;
5227                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5228                 if (r)
5229                         break;
5230                 r = 0;
5231                 break;
5232         }
5233
5234         case KVM_PPC_GET_HTAB_FD: {
5235                 struct kvm_get_htab_fd ghf;
5236
5237                 r = -EFAULT;
5238                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5239                         break;
5240                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5241                 break;
5242         }
5243
5244         case KVM_PPC_RESIZE_HPT_PREPARE: {
5245                 struct kvm_ppc_resize_hpt rhpt;
5246
5247                 r = -EFAULT;
5248                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5249                         break;
5250
5251                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5252                 break;
5253         }
5254
5255         case KVM_PPC_RESIZE_HPT_COMMIT: {
5256                 struct kvm_ppc_resize_hpt rhpt;
5257
5258                 r = -EFAULT;
5259                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5260                         break;
5261
5262                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5263                 break;
5264         }
5265
5266         default:
5267                 r = -ENOTTY;
5268         }
5269
5270         return r;
5271 }
5272
5273 /*
5274  * List of hcall numbers to enable by default.
5275  * For compatibility with old userspace, we enable by default
5276  * all hcalls that were implemented before the hcall-enabling
5277  * facility was added.  Note this list should not include H_RTAS.
5278  */
5279 static unsigned int default_hcall_list[] = {
5280         H_REMOVE,
5281         H_ENTER,
5282         H_READ,
5283         H_PROTECT,
5284         H_BULK_REMOVE,
5285         H_GET_TCE,
5286         H_PUT_TCE,
5287         H_SET_DABR,
5288         H_SET_XDABR,
5289         H_CEDE,
5290         H_PROD,
5291         H_CONFER,
5292         H_REGISTER_VPA,
5293 #ifdef CONFIG_KVM_XICS
5294         H_EOI,
5295         H_CPPR,
5296         H_IPI,
5297         H_IPOLL,
5298         H_XIRR,
5299         H_XIRR_X,
5300 #endif
5301         0
5302 };
5303
5304 static void init_default_hcalls(void)
5305 {
5306         int i;
5307         unsigned int hcall;
5308
5309         for (i = 0; default_hcall_list[i]; ++i) {
5310                 hcall = default_hcall_list[i];
5311                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5312                 __set_bit(hcall / 4, default_enabled_hcalls);
5313         }
5314 }
5315
5316 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5317 {
5318         unsigned long lpcr;
5319         int radix;
5320         int err;
5321
5322         /* If not on a POWER9, reject it */
5323         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5324                 return -ENODEV;
5325
5326         /* If any unknown flags set, reject it */
5327         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5328                 return -EINVAL;
5329
5330         /* GR (guest radix) bit in process_table field must match */
5331         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5332         if (!!(cfg->process_table & PATB_GR) != radix)
5333                 return -EINVAL;
5334
5335         /* Process table size field must be reasonable, i.e. <= 24 */
5336         if ((cfg->process_table & PRTS_MASK) > 24)
5337                 return -EINVAL;
5338
5339         /* We can change a guest to/from radix now, if the host is radix */
5340         if (radix && !radix_enabled())
5341                 return -EINVAL;
5342
5343         /* If we're a nested hypervisor, we currently only support radix */
5344         if (kvmhv_on_pseries() && !radix)
5345                 return -EINVAL;
5346
5347         mutex_lock(&kvm->arch.mmu_setup_lock);
5348         if (radix != kvm_is_radix(kvm)) {
5349                 if (kvm->arch.mmu_ready) {
5350                         kvm->arch.mmu_ready = 0;
5351                         /* order mmu_ready vs. vcpus_running */
5352                         smp_mb();
5353                         if (atomic_read(&kvm->arch.vcpus_running)) {
5354                                 kvm->arch.mmu_ready = 1;
5355                                 err = -EBUSY;
5356                                 goto out_unlock;
5357                         }
5358                 }
5359                 if (radix)
5360                         err = kvmppc_switch_mmu_to_radix(kvm);
5361                 else
5362                         err = kvmppc_switch_mmu_to_hpt(kvm);
5363                 if (err)
5364                         goto out_unlock;
5365         }
5366
5367         kvm->arch.process_table = cfg->process_table;
5368         kvmppc_setup_partition_table(kvm);
5369
5370         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5371         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5372         err = 0;
5373
5374  out_unlock:
5375         mutex_unlock(&kvm->arch.mmu_setup_lock);
5376         return err;
5377 }
5378
5379 static int kvmhv_enable_nested(struct kvm *kvm)
5380 {
5381         if (!nested)
5382                 return -EPERM;
5383         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5384                 return -ENODEV;
5385
5386         /* kvm == NULL means the caller is testing if the capability exists */
5387         if (kvm)
5388                 kvm->arch.nested_enable = true;
5389         return 0;
5390 }
5391
5392 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5393                                  int size)
5394 {
5395         int rc = -EINVAL;
5396
5397         if (kvmhv_vcpu_is_radix(vcpu)) {
5398                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5399
5400                 if (rc > 0)
5401                         rc = -EINVAL;
5402         }
5403
5404         /* For now quadrants are the only way to access nested guest memory */
5405         if (rc && vcpu->arch.nested)
5406                 rc = -EAGAIN;
5407
5408         return rc;
5409 }
5410
5411 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5412                                 int size)
5413 {
5414         int rc = -EINVAL;
5415
5416         if (kvmhv_vcpu_is_radix(vcpu)) {
5417                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5418
5419                 if (rc > 0)
5420                         rc = -EINVAL;
5421         }
5422
5423         /* For now quadrants are the only way to access nested guest memory */
5424         if (rc && vcpu->arch.nested)
5425                 rc = -EAGAIN;
5426
5427         return rc;
5428 }
5429
5430 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5431 {
5432         unpin_vpa(kvm, vpa);
5433         vpa->gpa = 0;
5434         vpa->pinned_addr = NULL;
5435         vpa->dirty = false;
5436         vpa->update_pending = 0;
5437 }
5438
5439 /*
5440  *  IOCTL handler to turn off secure mode of guest
5441  *
5442  * - Release all device pages
5443  * - Issue ucall to terminate the guest on the UV side
5444  * - Unpin the VPA pages.
5445  * - Reinit the partition scoped page tables
5446  */
5447 static int kvmhv_svm_off(struct kvm *kvm)
5448 {
5449         struct kvm_vcpu *vcpu;
5450         int mmu_was_ready;
5451         int srcu_idx;
5452         int ret = 0;
5453         int i;
5454
5455         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5456                 return ret;
5457
5458         mutex_lock(&kvm->arch.mmu_setup_lock);
5459         mmu_was_ready = kvm->arch.mmu_ready;
5460         if (kvm->arch.mmu_ready) {
5461                 kvm->arch.mmu_ready = 0;
5462                 /* order mmu_ready vs. vcpus_running */
5463                 smp_mb();
5464                 if (atomic_read(&kvm->arch.vcpus_running)) {
5465                         kvm->arch.mmu_ready = 1;
5466                         ret = -EBUSY;
5467                         goto out;
5468                 }
5469         }
5470
5471         srcu_idx = srcu_read_lock(&kvm->srcu);
5472         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5473                 struct kvm_memory_slot *memslot;
5474                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5475
5476                 if (!slots)
5477                         continue;
5478
5479                 kvm_for_each_memslot(memslot, slots) {
5480                         kvmppc_uvmem_drop_pages(memslot, kvm);
5481                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5482                 }
5483         }
5484         srcu_read_unlock(&kvm->srcu, srcu_idx);
5485
5486         ret = uv_svm_terminate(kvm->arch.lpid);
5487         if (ret != U_SUCCESS) {
5488                 ret = -EINVAL;
5489                 goto out;
5490         }
5491
5492         /*
5493          * When secure guest is reset, all the guest pages are sent
5494          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5495          * chance to run and unpin their VPA pages. Unpinning of all
5496          * VPA pages is done here explicitly so that VPA pages
5497          * can be migrated to the secure side.
5498          *
5499          * This is required to for the secure SMP guest to reboot
5500          * correctly.
5501          */
5502         kvm_for_each_vcpu(i, vcpu, kvm) {
5503                 spin_lock(&vcpu->arch.vpa_update_lock);
5504                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5505                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5506                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5507                 spin_unlock(&vcpu->arch.vpa_update_lock);
5508         }
5509
5510         kvmppc_setup_partition_table(kvm);
5511         kvm->arch.secure_guest = 0;
5512         kvm->arch.mmu_ready = mmu_was_ready;
5513 out:
5514         mutex_unlock(&kvm->arch.mmu_setup_lock);
5515         return ret;
5516 }
5517
5518 static struct kvmppc_ops kvm_ops_hv = {
5519         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5520         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5521         .get_one_reg = kvmppc_get_one_reg_hv,
5522         .set_one_reg = kvmppc_set_one_reg_hv,
5523         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5524         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5525         .inject_interrupt = kvmppc_inject_interrupt_hv,
5526         .set_msr     = kvmppc_set_msr_hv,
5527         .vcpu_run    = kvmppc_vcpu_run_hv,
5528         .vcpu_create = kvmppc_core_vcpu_create_hv,
5529         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5530         .check_requests = kvmppc_core_check_requests_hv,
5531         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5532         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5533         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5534         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5535         .unmap_hva_range = kvm_unmap_hva_range_hv,
5536         .age_hva  = kvm_age_hva_hv,
5537         .test_age_hva = kvm_test_age_hva_hv,
5538         .set_spte_hva = kvm_set_spte_hva_hv,
5539         .mmu_destroy  = kvmppc_mmu_destroy_hv,
5540         .free_memslot = kvmppc_core_free_memslot_hv,
5541         .create_memslot = kvmppc_core_create_memslot_hv,
5542         .init_vm =  kvmppc_core_init_vm_hv,
5543         .destroy_vm = kvmppc_core_destroy_vm_hv,
5544         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5545         .emulate_op = kvmppc_core_emulate_op_hv,
5546         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5547         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5548         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5549         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5550         .hcall_implemented = kvmppc_hcall_impl_hv,
5551 #ifdef CONFIG_KVM_XICS
5552         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5553         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5554 #endif
5555         .configure_mmu = kvmhv_configure_mmu,
5556         .get_rmmu_info = kvmhv_get_rmmu_info,
5557         .set_smt_mode = kvmhv_set_smt_mode,
5558         .enable_nested = kvmhv_enable_nested,
5559         .load_from_eaddr = kvmhv_load_from_eaddr,
5560         .store_to_eaddr = kvmhv_store_to_eaddr,
5561         .svm_off = kvmhv_svm_off,
5562 };
5563
5564 static int kvm_init_subcore_bitmap(void)
5565 {
5566         int i, j;
5567         int nr_cores = cpu_nr_cores();
5568         struct sibling_subcore_state *sibling_subcore_state;
5569
5570         for (i = 0; i < nr_cores; i++) {
5571                 int first_cpu = i * threads_per_core;
5572                 int node = cpu_to_node(first_cpu);
5573
5574                 /* Ignore if it is already allocated. */
5575                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5576                         continue;
5577
5578                 sibling_subcore_state =
5579                         kzalloc_node(sizeof(struct sibling_subcore_state),
5580                                                         GFP_KERNEL, node);
5581                 if (!sibling_subcore_state)
5582                         return -ENOMEM;
5583
5584
5585                 for (j = 0; j < threads_per_core; j++) {
5586                         int cpu = first_cpu + j;
5587
5588                         paca_ptrs[cpu]->sibling_subcore_state =
5589                                                 sibling_subcore_state;
5590                 }
5591         }
5592         return 0;
5593 }
5594
5595 static int kvmppc_radix_possible(void)
5596 {
5597         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5598 }
5599
5600 static int kvmppc_book3s_init_hv(void)
5601 {
5602         int r;
5603
5604         if (!tlbie_capable) {
5605                 pr_err("KVM-HV: Host does not support TLBIE\n");
5606                 return -ENODEV;
5607         }
5608
5609         /*
5610          * FIXME!! Do we need to check on all cpus ?
5611          */
5612         r = kvmppc_core_check_processor_compat_hv();
5613         if (r < 0)
5614                 return -ENODEV;
5615
5616         r = kvmhv_nested_init();
5617         if (r)
5618                 return r;
5619
5620         r = kvm_init_subcore_bitmap();
5621         if (r)
5622                 return r;
5623
5624         /*
5625          * We need a way of accessing the XICS interrupt controller,
5626          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5627          * indirectly, via OPAL.
5628          */
5629 #ifdef CONFIG_SMP
5630         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5631             !local_paca->kvm_hstate.xics_phys) {
5632                 struct device_node *np;
5633
5634                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5635                 if (!np) {
5636                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5637                         return -ENODEV;
5638                 }
5639                 /* presence of intc confirmed - node can be dropped again */
5640                 of_node_put(np);
5641         }
5642 #endif
5643
5644         kvm_ops_hv.owner = THIS_MODULE;
5645         kvmppc_hv_ops = &kvm_ops_hv;
5646
5647         init_default_hcalls();
5648
5649         init_vcore_lists();
5650
5651         r = kvmppc_mmu_hv_init();
5652         if (r)
5653                 return r;
5654
5655         if (kvmppc_radix_possible())
5656                 r = kvmppc_radix_init();
5657
5658         /*
5659          * POWER9 chips before version 2.02 can't have some threads in
5660          * HPT mode and some in radix mode on the same core.
5661          */
5662         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5663                 unsigned int pvr = mfspr(SPRN_PVR);
5664                 if ((pvr >> 16) == PVR_POWER9 &&
5665                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5666                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5667                         no_mixing_hpt_and_radix = true;
5668         }
5669
5670         r = kvmppc_uvmem_init();
5671         if (r < 0)
5672                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5673
5674         return r;
5675 }
5676
5677 static void kvmppc_book3s_exit_hv(void)
5678 {
5679         kvmppc_uvmem_free();
5680         kvmppc_free_host_rm_ops();
5681         if (kvmppc_radix_possible())
5682                 kvmppc_radix_exit();
5683         kvmppc_hv_ops = NULL;
5684         kvmhv_nested_exit();
5685 }
5686
5687 module_init(kvmppc_book3s_init_hv);
5688 module_exit(kvmppc_book3s_exit_hv);
5689 MODULE_LICENSE("GPL");
5690 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5691 MODULE_ALIAS("devname:kvm");