powerpc: Add ppc_strict_facility_enable boot option
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73         /*
74          * If we are saving the current thread's registers, and the
75          * thread is in a transactional state, set the TIF_RESTORE_TM
76          * bit so that we know to restore the registers before
77          * returning to userspace.
78          */
79         if (tsk == current && tsk->thread.regs &&
80             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81             !test_thread_flag(TIF_RESTORE_TM)) {
82                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83                 set_thread_flag(TIF_RESTORE_TM);
84         }
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92
93 static int __init enable_strict_msr_control(char *str)
94 {
95         strict_msr_control = true;
96         pr_info("Enabling strict facility control\n");
97
98         return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101
102 void msr_check_and_set(unsigned long bits)
103 {
104         unsigned long oldmsr = mfmsr();
105         unsigned long newmsr;
106
107         newmsr = oldmsr | bits;
108
109 #ifdef CONFIG_VSX
110         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111                 newmsr |= MSR_VSX;
112 #endif
113
114         if (oldmsr != newmsr)
115                 mtmsr_isync(newmsr);
116 }
117
118 void __msr_check_and_clear(unsigned long bits)
119 {
120         unsigned long oldmsr = mfmsr();
121         unsigned long newmsr;
122
123         newmsr = oldmsr & ~bits;
124
125 #ifdef CONFIG_VSX
126         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127                 newmsr &= ~MSR_VSX;
128 #endif
129
130         if (oldmsr != newmsr)
131                 mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134
135 #ifdef CONFIG_PPC_FPU
136 void giveup_fpu(struct task_struct *tsk)
137 {
138         check_if_tm_restore_required(tsk);
139
140         msr_check_and_set(MSR_FP);
141         __giveup_fpu(tsk);
142         msr_check_and_clear(MSR_FP);
143 }
144 EXPORT_SYMBOL(giveup_fpu);
145
146 /*
147  * Make sure the floating-point register state in the
148  * the thread_struct is up to date for task tsk.
149  */
150 void flush_fp_to_thread(struct task_struct *tsk)
151 {
152         if (tsk->thread.regs) {
153                 /*
154                  * We need to disable preemption here because if we didn't,
155                  * another process could get scheduled after the regs->msr
156                  * test but before we have finished saving the FP registers
157                  * to the thread_struct.  That process could take over the
158                  * FPU, and then when we get scheduled again we would store
159                  * bogus values for the remaining FP registers.
160                  */
161                 preempt_disable();
162                 if (tsk->thread.regs->msr & MSR_FP) {
163                         /*
164                          * This should only ever be called for current or
165                          * for a stopped child process.  Since we save away
166                          * the FP register state on context switch,
167                          * there is something wrong if a stopped child appears
168                          * to still have its FP state in the CPU registers.
169                          */
170                         BUG_ON(tsk != current);
171                         giveup_fpu(tsk);
172                 }
173                 preempt_enable();
174         }
175 }
176 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177 #endif /* CONFIG_PPC_FPU */
178
179 void enable_kernel_fp(void)
180 {
181         WARN_ON(preemptible());
182
183         msr_check_and_set(MSR_FP);
184
185         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
186                 __giveup_fpu(current);
187 }
188 EXPORT_SYMBOL(enable_kernel_fp);
189
190 #ifdef CONFIG_ALTIVEC
191 void giveup_altivec(struct task_struct *tsk)
192 {
193         check_if_tm_restore_required(tsk);
194
195         msr_check_and_set(MSR_VEC);
196         __giveup_altivec(tsk);
197         msr_check_and_clear(MSR_VEC);
198 }
199 EXPORT_SYMBOL(giveup_altivec);
200
201 void enable_kernel_altivec(void)
202 {
203         WARN_ON(preemptible());
204
205         msr_check_and_set(MSR_VEC);
206
207         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
208                 __giveup_altivec(current);
209 }
210 EXPORT_SYMBOL(enable_kernel_altivec);
211
212 /*
213  * Make sure the VMX/Altivec register state in the
214  * the thread_struct is up to date for task tsk.
215  */
216 void flush_altivec_to_thread(struct task_struct *tsk)
217 {
218         if (tsk->thread.regs) {
219                 preempt_disable();
220                 if (tsk->thread.regs->msr & MSR_VEC) {
221                         BUG_ON(tsk != current);
222                         giveup_altivec(tsk);
223                 }
224                 preempt_enable();
225         }
226 }
227 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
228 #endif /* CONFIG_ALTIVEC */
229
230 #ifdef CONFIG_VSX
231 void giveup_vsx(struct task_struct *tsk)
232 {
233         check_if_tm_restore_required(tsk);
234
235         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
236         if (tsk->thread.regs->msr & MSR_FP)
237                 __giveup_fpu(tsk);
238         if (tsk->thread.regs->msr & MSR_VEC)
239                 __giveup_altivec(tsk);
240         __giveup_vsx(tsk);
241         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
242 }
243 EXPORT_SYMBOL(giveup_vsx);
244
245 void enable_kernel_vsx(void)
246 {
247         WARN_ON(preemptible());
248
249         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
250
251         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
252                 if (current->thread.regs->msr & MSR_FP)
253                         __giveup_fpu(current);
254                 if (current->thread.regs->msr & MSR_VEC)
255                         __giveup_altivec(current);
256                 __giveup_vsx(current);
257         }
258 }
259 EXPORT_SYMBOL(enable_kernel_vsx);
260
261 void flush_vsx_to_thread(struct task_struct *tsk)
262 {
263         if (tsk->thread.regs) {
264                 preempt_disable();
265                 if (tsk->thread.regs->msr & MSR_VSX) {
266                         BUG_ON(tsk != current);
267                         giveup_vsx(tsk);
268                 }
269                 preempt_enable();
270         }
271 }
272 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
273 #endif /* CONFIG_VSX */
274
275 #ifdef CONFIG_SPE
276 void giveup_spe(struct task_struct *tsk)
277 {
278         check_if_tm_restore_required(tsk);
279
280         msr_check_and_set(MSR_SPE);
281         __giveup_spe(tsk);
282         msr_check_and_clear(MSR_SPE);
283 }
284 EXPORT_SYMBOL(giveup_spe);
285
286 void enable_kernel_spe(void)
287 {
288         WARN_ON(preemptible());
289
290         msr_check_and_set(MSR_SPE);
291
292         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
293                 __giveup_spe(current);
294 }
295 EXPORT_SYMBOL(enable_kernel_spe);
296
297 void flush_spe_to_thread(struct task_struct *tsk)
298 {
299         if (tsk->thread.regs) {
300                 preempt_disable();
301                 if (tsk->thread.regs->msr & MSR_SPE) {
302                         BUG_ON(tsk != current);
303                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
304                         giveup_spe(tsk);
305                 }
306                 preempt_enable();
307         }
308 }
309 #endif /* CONFIG_SPE */
310
311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
312 void do_send_trap(struct pt_regs *regs, unsigned long address,
313                   unsigned long error_code, int signal_code, int breakpt)
314 {
315         siginfo_t info;
316
317         current->thread.trap_nr = signal_code;
318         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
319                         11, SIGSEGV) == NOTIFY_STOP)
320                 return;
321
322         /* Deliver the signal to userspace */
323         info.si_signo = SIGTRAP;
324         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
325         info.si_code = signal_code;
326         info.si_addr = (void __user *)address;
327         force_sig_info(SIGTRAP, &info, current);
328 }
329 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
330 void do_break (struct pt_regs *regs, unsigned long address,
331                     unsigned long error_code)
332 {
333         siginfo_t info;
334
335         current->thread.trap_nr = TRAP_HWBKPT;
336         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
337                         11, SIGSEGV) == NOTIFY_STOP)
338                 return;
339
340         if (debugger_break_match(regs))
341                 return;
342
343         /* Clear the breakpoint */
344         hw_breakpoint_disable();
345
346         /* Deliver the signal to userspace */
347         info.si_signo = SIGTRAP;
348         info.si_errno = 0;
349         info.si_code = TRAP_HWBKPT;
350         info.si_addr = (void __user *)address;
351         force_sig_info(SIGTRAP, &info, current);
352 }
353 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
354
355 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
356
357 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
358 /*
359  * Set the debug registers back to their default "safe" values.
360  */
361 static void set_debug_reg_defaults(struct thread_struct *thread)
362 {
363         thread->debug.iac1 = thread->debug.iac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
365         thread->debug.iac3 = thread->debug.iac4 = 0;
366 #endif
367         thread->debug.dac1 = thread->debug.dac2 = 0;
368 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
369         thread->debug.dvc1 = thread->debug.dvc2 = 0;
370 #endif
371         thread->debug.dbcr0 = 0;
372 #ifdef CONFIG_BOOKE
373         /*
374          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
375          */
376         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
377                         DBCR1_IAC3US | DBCR1_IAC4US;
378         /*
379          * Force Data Address Compare User/Supervisor bits to be User-only
380          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
381          */
382         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
383 #else
384         thread->debug.dbcr1 = 0;
385 #endif
386 }
387
388 static void prime_debug_regs(struct debug_reg *debug)
389 {
390         /*
391          * We could have inherited MSR_DE from userspace, since
392          * it doesn't get cleared on exception entry.  Make sure
393          * MSR_DE is clear before we enable any debug events.
394          */
395         mtmsr(mfmsr() & ~MSR_DE);
396
397         mtspr(SPRN_IAC1, debug->iac1);
398         mtspr(SPRN_IAC2, debug->iac2);
399 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
400         mtspr(SPRN_IAC3, debug->iac3);
401         mtspr(SPRN_IAC4, debug->iac4);
402 #endif
403         mtspr(SPRN_DAC1, debug->dac1);
404         mtspr(SPRN_DAC2, debug->dac2);
405 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
406         mtspr(SPRN_DVC1, debug->dvc1);
407         mtspr(SPRN_DVC2, debug->dvc2);
408 #endif
409         mtspr(SPRN_DBCR0, debug->dbcr0);
410         mtspr(SPRN_DBCR1, debug->dbcr1);
411 #ifdef CONFIG_BOOKE
412         mtspr(SPRN_DBCR2, debug->dbcr2);
413 #endif
414 }
415 /*
416  * Unless neither the old or new thread are making use of the
417  * debug registers, set the debug registers from the values
418  * stored in the new thread.
419  */
420 void switch_booke_debug_regs(struct debug_reg *new_debug)
421 {
422         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
423                 || (new_debug->dbcr0 & DBCR0_IDM))
424                         prime_debug_regs(new_debug);
425 }
426 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
427 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
428 #ifndef CONFIG_HAVE_HW_BREAKPOINT
429 static void set_debug_reg_defaults(struct thread_struct *thread)
430 {
431         thread->hw_brk.address = 0;
432         thread->hw_brk.type = 0;
433         set_breakpoint(&thread->hw_brk);
434 }
435 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
436 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
437
438 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
439 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
440 {
441         mtspr(SPRN_DAC1, dabr);
442 #ifdef CONFIG_PPC_47x
443         isync();
444 #endif
445         return 0;
446 }
447 #elif defined(CONFIG_PPC_BOOK3S)
448 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
449 {
450         mtspr(SPRN_DABR, dabr);
451         if (cpu_has_feature(CPU_FTR_DABRX))
452                 mtspr(SPRN_DABRX, dabrx);
453         return 0;
454 }
455 #else
456 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
457 {
458         return -EINVAL;
459 }
460 #endif
461
462 static inline int set_dabr(struct arch_hw_breakpoint *brk)
463 {
464         unsigned long dabr, dabrx;
465
466         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
467         dabrx = ((brk->type >> 3) & 0x7);
468
469         if (ppc_md.set_dabr)
470                 return ppc_md.set_dabr(dabr, dabrx);
471
472         return __set_dabr(dabr, dabrx);
473 }
474
475 static inline int set_dawr(struct arch_hw_breakpoint *brk)
476 {
477         unsigned long dawr, dawrx, mrd;
478
479         dawr = brk->address;
480
481         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
482                                    << (63 - 58); //* read/write bits */
483         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
484                                    << (63 - 59); //* translate */
485         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
486                                    >> 3; //* PRIM bits */
487         /* dawr length is stored in field MDR bits 48:53.  Matches range in
488            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
489            0b111111=64DW.
490            brk->len is in bytes.
491            This aligns up to double word size, shifts and does the bias.
492         */
493         mrd = ((brk->len + 7) >> 3) - 1;
494         dawrx |= (mrd & 0x3f) << (63 - 53);
495
496         if (ppc_md.set_dawr)
497                 return ppc_md.set_dawr(dawr, dawrx);
498         mtspr(SPRN_DAWR, dawr);
499         mtspr(SPRN_DAWRX, dawrx);
500         return 0;
501 }
502
503 void __set_breakpoint(struct arch_hw_breakpoint *brk)
504 {
505         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
506
507         if (cpu_has_feature(CPU_FTR_DAWR))
508                 set_dawr(brk);
509         else
510                 set_dabr(brk);
511 }
512
513 void set_breakpoint(struct arch_hw_breakpoint *brk)
514 {
515         preempt_disable();
516         __set_breakpoint(brk);
517         preempt_enable();
518 }
519
520 #ifdef CONFIG_PPC64
521 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
522 #endif
523
524 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
525                               struct arch_hw_breakpoint *b)
526 {
527         if (a->address != b->address)
528                 return false;
529         if (a->type != b->type)
530                 return false;
531         if (a->len != b->len)
532                 return false;
533         return true;
534 }
535
536 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
537 static void tm_reclaim_thread(struct thread_struct *thr,
538                               struct thread_info *ti, uint8_t cause)
539 {
540         unsigned long msr_diff = 0;
541
542         /*
543          * If FP/VSX registers have been already saved to the
544          * thread_struct, move them to the transact_fp array.
545          * We clear the TIF_RESTORE_TM bit since after the reclaim
546          * the thread will no longer be transactional.
547          */
548         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
549                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
550                 if (msr_diff & MSR_FP)
551                         memcpy(&thr->transact_fp, &thr->fp_state,
552                                sizeof(struct thread_fp_state));
553                 if (msr_diff & MSR_VEC)
554                         memcpy(&thr->transact_vr, &thr->vr_state,
555                                sizeof(struct thread_vr_state));
556                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
557                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
558         }
559
560         tm_reclaim(thr, thr->regs->msr, cause);
561
562         /* Having done the reclaim, we now have the checkpointed
563          * FP/VSX values in the registers.  These might be valid
564          * even if we have previously called enable_kernel_fp() or
565          * flush_fp_to_thread(), so update thr->regs->msr to
566          * indicate their current validity.
567          */
568         thr->regs->msr |= msr_diff;
569 }
570
571 void tm_reclaim_current(uint8_t cause)
572 {
573         tm_enable();
574         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
575 }
576
577 static inline void tm_reclaim_task(struct task_struct *tsk)
578 {
579         /* We have to work out if we're switching from/to a task that's in the
580          * middle of a transaction.
581          *
582          * In switching we need to maintain a 2nd register state as
583          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
584          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
585          * (current) FPRs into oldtask->thread.transact_fpr[].
586          *
587          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
588          */
589         struct thread_struct *thr = &tsk->thread;
590
591         if (!thr->regs)
592                 return;
593
594         if (!MSR_TM_ACTIVE(thr->regs->msr))
595                 goto out_and_saveregs;
596
597         /* Stash the original thread MSR, as giveup_fpu et al will
598          * modify it.  We hold onto it to see whether the task used
599          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
600          * ckpt_regs.msr is already set.
601          */
602         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
603                 thr->ckpt_regs.msr = thr->regs->msr;
604
605         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
606                  "ccr=%lx, msr=%lx, trap=%lx)\n",
607                  tsk->pid, thr->regs->nip,
608                  thr->regs->ccr, thr->regs->msr,
609                  thr->regs->trap);
610
611         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
612
613         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
614                  tsk->pid);
615
616 out_and_saveregs:
617         /* Always save the regs here, even if a transaction's not active.
618          * This context-switches a thread's TM info SPRs.  We do it here to
619          * be consistent with the restore path (in recheckpoint) which
620          * cannot happen later in _switch().
621          */
622         tm_save_sprs(thr);
623 }
624
625 extern void __tm_recheckpoint(struct thread_struct *thread,
626                               unsigned long orig_msr);
627
628 void tm_recheckpoint(struct thread_struct *thread,
629                      unsigned long orig_msr)
630 {
631         unsigned long flags;
632
633         /* We really can't be interrupted here as the TEXASR registers can't
634          * change and later in the trecheckpoint code, we have a userspace R1.
635          * So let's hard disable over this region.
636          */
637         local_irq_save(flags);
638         hard_irq_disable();
639
640         /* The TM SPRs are restored here, so that TEXASR.FS can be set
641          * before the trecheckpoint and no explosion occurs.
642          */
643         tm_restore_sprs(thread);
644
645         __tm_recheckpoint(thread, orig_msr);
646
647         local_irq_restore(flags);
648 }
649
650 static inline void tm_recheckpoint_new_task(struct task_struct *new)
651 {
652         unsigned long msr;
653
654         if (!cpu_has_feature(CPU_FTR_TM))
655                 return;
656
657         /* Recheckpoint the registers of the thread we're about to switch to.
658          *
659          * If the task was using FP, we non-lazily reload both the original and
660          * the speculative FP register states.  This is because the kernel
661          * doesn't see if/when a TM rollback occurs, so if we take an FP
662          * unavoidable later, we are unable to determine which set of FP regs
663          * need to be restored.
664          */
665         if (!new->thread.regs)
666                 return;
667
668         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
669                 tm_restore_sprs(&new->thread);
670                 return;
671         }
672         msr = new->thread.ckpt_regs.msr;
673         /* Recheckpoint to restore original checkpointed register state. */
674         TM_DEBUG("*** tm_recheckpoint of pid %d "
675                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
676                  new->pid, new->thread.regs->msr, msr);
677
678         /* This loads the checkpointed FP/VEC state, if used */
679         tm_recheckpoint(&new->thread, msr);
680
681         /* This loads the speculative FP/VEC state, if used */
682         if (msr & MSR_FP) {
683                 do_load_up_transact_fpu(&new->thread);
684                 new->thread.regs->msr |=
685                         (MSR_FP | new->thread.fpexc_mode);
686         }
687 #ifdef CONFIG_ALTIVEC
688         if (msr & MSR_VEC) {
689                 do_load_up_transact_altivec(&new->thread);
690                 new->thread.regs->msr |= MSR_VEC;
691         }
692 #endif
693         /* We may as well turn on VSX too since all the state is restored now */
694         if (msr & MSR_VSX)
695                 new->thread.regs->msr |= MSR_VSX;
696
697         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
698                  "(kernel msr 0x%lx)\n",
699                  new->pid, mfmsr());
700 }
701
702 static inline void __switch_to_tm(struct task_struct *prev)
703 {
704         if (cpu_has_feature(CPU_FTR_TM)) {
705                 tm_enable();
706                 tm_reclaim_task(prev);
707         }
708 }
709
710 /*
711  * This is called if we are on the way out to userspace and the
712  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
713  * FP and/or vector state and does so if necessary.
714  * If userspace is inside a transaction (whether active or
715  * suspended) and FP/VMX/VSX instructions have ever been enabled
716  * inside that transaction, then we have to keep them enabled
717  * and keep the FP/VMX/VSX state loaded while ever the transaction
718  * continues.  The reason is that if we didn't, and subsequently
719  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
720  * we don't know whether it's the same transaction, and thus we
721  * don't know which of the checkpointed state and the transactional
722  * state to use.
723  */
724 void restore_tm_state(struct pt_regs *regs)
725 {
726         unsigned long msr_diff;
727
728         clear_thread_flag(TIF_RESTORE_TM);
729         if (!MSR_TM_ACTIVE(regs->msr))
730                 return;
731
732         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
733         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
734         if (msr_diff & MSR_FP) {
735                 fp_enable();
736                 load_fp_state(&current->thread.fp_state);
737                 regs->msr |= current->thread.fpexc_mode;
738         }
739         if (msr_diff & MSR_VEC) {
740                 vec_enable();
741                 load_vr_state(&current->thread.vr_state);
742         }
743         regs->msr |= msr_diff;
744 }
745
746 #else
747 #define tm_recheckpoint_new_task(new)
748 #define __switch_to_tm(prev)
749 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
750
751 static inline void save_sprs(struct thread_struct *t)
752 {
753 #ifdef CONFIG_ALTIVEC
754         if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
755                 t->vrsave = mfspr(SPRN_VRSAVE);
756 #endif
757 #ifdef CONFIG_PPC_BOOK3S_64
758         if (cpu_has_feature(CPU_FTR_DSCR))
759                 t->dscr = mfspr(SPRN_DSCR);
760
761         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
762                 t->bescr = mfspr(SPRN_BESCR);
763                 t->ebbhr = mfspr(SPRN_EBBHR);
764                 t->ebbrr = mfspr(SPRN_EBBRR);
765
766                 t->fscr = mfspr(SPRN_FSCR);
767
768                 /*
769                  * Note that the TAR is not available for use in the kernel.
770                  * (To provide this, the TAR should be backed up/restored on
771                  * exception entry/exit instead, and be in pt_regs.  FIXME,
772                  * this should be in pt_regs anyway (for debug).)
773                  */
774                 t->tar = mfspr(SPRN_TAR);
775         }
776 #endif
777 }
778
779 static inline void restore_sprs(struct thread_struct *old_thread,
780                                 struct thread_struct *new_thread)
781 {
782 #ifdef CONFIG_ALTIVEC
783         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
784             old_thread->vrsave != new_thread->vrsave)
785                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
786 #endif
787 #ifdef CONFIG_PPC_BOOK3S_64
788         if (cpu_has_feature(CPU_FTR_DSCR)) {
789                 u64 dscr = get_paca()->dscr_default;
790                 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
791
792                 if (new_thread->dscr_inherit) {
793                         dscr = new_thread->dscr;
794                         fscr |= FSCR_DSCR;
795                 }
796
797                 if (old_thread->dscr != dscr)
798                         mtspr(SPRN_DSCR, dscr);
799
800                 if (old_thread->fscr != fscr)
801                         mtspr(SPRN_FSCR, fscr);
802         }
803
804         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
805                 if (old_thread->bescr != new_thread->bescr)
806                         mtspr(SPRN_BESCR, new_thread->bescr);
807                 if (old_thread->ebbhr != new_thread->ebbhr)
808                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
809                 if (old_thread->ebbrr != new_thread->ebbrr)
810                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
811
812                 if (old_thread->tar != new_thread->tar)
813                         mtspr(SPRN_TAR, new_thread->tar);
814         }
815 #endif
816 }
817
818 struct task_struct *__switch_to(struct task_struct *prev,
819         struct task_struct *new)
820 {
821         struct thread_struct *new_thread, *old_thread;
822         struct task_struct *last;
823 #ifdef CONFIG_PPC_BOOK3S_64
824         struct ppc64_tlb_batch *batch;
825 #endif
826
827         new_thread = &new->thread;
828         old_thread = &current->thread;
829
830         WARN_ON(!irqs_disabled());
831
832         /*
833          * We need to save SPRs before treclaim/trecheckpoint as these will
834          * change a number of them.
835          */
836         save_sprs(&prev->thread);
837
838         __switch_to_tm(prev);
839
840         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
841                 giveup_fpu(prev);
842 #ifdef CONFIG_ALTIVEC
843         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
844                 giveup_altivec(prev);
845 #endif /* CONFIG_ALTIVEC */
846 #ifdef CONFIG_VSX
847         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
848                 /* VMX and FPU registers are already save here */
849                 __giveup_vsx(prev);
850 #endif /* CONFIG_VSX */
851 #ifdef CONFIG_SPE
852         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
853                 giveup_spe(prev);
854 #endif /* CONFIG_SPE */
855
856 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
857         switch_booke_debug_regs(&new->thread.debug);
858 #else
859 /*
860  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
861  * schedule DABR
862  */
863 #ifndef CONFIG_HAVE_HW_BREAKPOINT
864         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
865                 __set_breakpoint(&new->thread.hw_brk);
866 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
867 #endif
868
869 #ifdef CONFIG_PPC64
870         /*
871          * Collect processor utilization data per process
872          */
873         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
874                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
875                 long unsigned start_tb, current_tb;
876                 start_tb = old_thread->start_tb;
877                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
878                 old_thread->accum_tb += (current_tb - start_tb);
879                 new_thread->start_tb = current_tb;
880         }
881 #endif /* CONFIG_PPC64 */
882
883 #ifdef CONFIG_PPC_BOOK3S_64
884         batch = this_cpu_ptr(&ppc64_tlb_batch);
885         if (batch->active) {
886                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
887                 if (batch->index)
888                         __flush_tlb_pending(batch);
889                 batch->active = 0;
890         }
891 #endif /* CONFIG_PPC_BOOK3S_64 */
892
893         /*
894          * We can't take a PMU exception inside _switch() since there is a
895          * window where the kernel stack SLB and the kernel stack are out
896          * of sync. Hard disable here.
897          */
898         hard_irq_disable();
899
900         tm_recheckpoint_new_task(new);
901
902         last = _switch(old_thread, new_thread);
903
904         /* Need to recalculate these after calling _switch() */
905         old_thread = &last->thread;
906         new_thread = &current->thread;
907
908 #ifdef CONFIG_PPC_BOOK3S_64
909         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
910                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
911                 batch = this_cpu_ptr(&ppc64_tlb_batch);
912                 batch->active = 1;
913         }
914 #endif /* CONFIG_PPC_BOOK3S_64 */
915
916         restore_sprs(old_thread, new_thread);
917
918         return last;
919 }
920
921 static int instructions_to_print = 16;
922
923 static void show_instructions(struct pt_regs *regs)
924 {
925         int i;
926         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
927                         sizeof(int));
928
929         printk("Instruction dump:");
930
931         for (i = 0; i < instructions_to_print; i++) {
932                 int instr;
933
934                 if (!(i % 8))
935                         printk("\n");
936
937 #if !defined(CONFIG_BOOKE)
938                 /* If executing with the IMMU off, adjust pc rather
939                  * than print XXXXXXXX.
940                  */
941                 if (!(regs->msr & MSR_IR))
942                         pc = (unsigned long)phys_to_virt(pc);
943 #endif
944
945                 if (!__kernel_text_address(pc) ||
946                      probe_kernel_address((unsigned int __user *)pc, instr)) {
947                         printk(KERN_CONT "XXXXXXXX ");
948                 } else {
949                         if (regs->nip == pc)
950                                 printk(KERN_CONT "<%08x> ", instr);
951                         else
952                                 printk(KERN_CONT "%08x ", instr);
953                 }
954
955                 pc += sizeof(int);
956         }
957
958         printk("\n");
959 }
960
961 static struct regbit {
962         unsigned long bit;
963         const char *name;
964 } msr_bits[] = {
965 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
966         {MSR_SF,        "SF"},
967         {MSR_HV,        "HV"},
968 #endif
969         {MSR_VEC,       "VEC"},
970         {MSR_VSX,       "VSX"},
971 #ifdef CONFIG_BOOKE
972         {MSR_CE,        "CE"},
973 #endif
974         {MSR_EE,        "EE"},
975         {MSR_PR,        "PR"},
976         {MSR_FP,        "FP"},
977         {MSR_ME,        "ME"},
978 #ifdef CONFIG_BOOKE
979         {MSR_DE,        "DE"},
980 #else
981         {MSR_SE,        "SE"},
982         {MSR_BE,        "BE"},
983 #endif
984         {MSR_IR,        "IR"},
985         {MSR_DR,        "DR"},
986         {MSR_PMM,       "PMM"},
987 #ifndef CONFIG_BOOKE
988         {MSR_RI,        "RI"},
989         {MSR_LE,        "LE"},
990 #endif
991         {0,             NULL}
992 };
993
994 static void printbits(unsigned long val, struct regbit *bits)
995 {
996         const char *sep = "";
997
998         printk("<");
999         for (; bits->bit; ++bits)
1000                 if (val & bits->bit) {
1001                         printk("%s%s", sep, bits->name);
1002                         sep = ",";
1003                 }
1004         printk(">");
1005 }
1006
1007 #ifdef CONFIG_PPC64
1008 #define REG             "%016lx"
1009 #define REGS_PER_LINE   4
1010 #define LAST_VOLATILE   13
1011 #else
1012 #define REG             "%08lx"
1013 #define REGS_PER_LINE   8
1014 #define LAST_VOLATILE   12
1015 #endif
1016
1017 void show_regs(struct pt_regs * regs)
1018 {
1019         int i, trap;
1020
1021         show_regs_print_info(KERN_DEFAULT);
1022
1023         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1024                regs->nip, regs->link, regs->ctr);
1025         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1026                regs, regs->trap, print_tainted(), init_utsname()->release);
1027         printk("MSR: "REG" ", regs->msr);
1028         printbits(regs->msr, msr_bits);
1029         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1030         trap = TRAP(regs);
1031         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1032                 printk("CFAR: "REG" ", regs->orig_gpr3);
1033         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1034 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1035                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1036 #else
1037                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1038 #endif
1039 #ifdef CONFIG_PPC64
1040         printk("SOFTE: %ld ", regs->softe);
1041 #endif
1042 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1043         if (MSR_TM_ACTIVE(regs->msr))
1044                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1045 #endif
1046
1047         for (i = 0;  i < 32;  i++) {
1048                 if ((i % REGS_PER_LINE) == 0)
1049                         printk("\nGPR%02d: ", i);
1050                 printk(REG " ", regs->gpr[i]);
1051                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1052                         break;
1053         }
1054         printk("\n");
1055 #ifdef CONFIG_KALLSYMS
1056         /*
1057          * Lookup NIP late so we have the best change of getting the
1058          * above info out without failing
1059          */
1060         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1061         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1062 #endif
1063         show_stack(current, (unsigned long *) regs->gpr[1]);
1064         if (!user_mode(regs))
1065                 show_instructions(regs);
1066 }
1067
1068 void exit_thread(void)
1069 {
1070 }
1071
1072 void flush_thread(void)
1073 {
1074 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1075         flush_ptrace_hw_breakpoint(current);
1076 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1077         set_debug_reg_defaults(&current->thread);
1078 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1079 }
1080
1081 void
1082 release_thread(struct task_struct *t)
1083 {
1084 }
1085
1086 /*
1087  * this gets called so that we can store coprocessor state into memory and
1088  * copy the current task into the new thread.
1089  */
1090 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1091 {
1092         flush_fp_to_thread(src);
1093         flush_altivec_to_thread(src);
1094         flush_vsx_to_thread(src);
1095         flush_spe_to_thread(src);
1096         /*
1097          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1098          * flush but it removes the checkpointed state from the current CPU and
1099          * transitions the CPU out of TM mode.  Hence we need to call
1100          * tm_recheckpoint_new_task() (on the same task) to restore the
1101          * checkpointed state back and the TM mode.
1102          */
1103         __switch_to_tm(src);
1104         tm_recheckpoint_new_task(src);
1105
1106         *dst = *src;
1107
1108         clear_task_ebb(dst);
1109
1110         return 0;
1111 }
1112
1113 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1114 {
1115 #ifdef CONFIG_PPC_STD_MMU_64
1116         unsigned long sp_vsid;
1117         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1118
1119         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1120                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1121                         << SLB_VSID_SHIFT_1T;
1122         else
1123                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1124                         << SLB_VSID_SHIFT;
1125         sp_vsid |= SLB_VSID_KERNEL | llp;
1126         p->thread.ksp_vsid = sp_vsid;
1127 #endif
1128 }
1129
1130 /*
1131  * Copy a thread..
1132  */
1133
1134 /*
1135  * Copy architecture-specific thread state
1136  */
1137 int copy_thread(unsigned long clone_flags, unsigned long usp,
1138                 unsigned long kthread_arg, struct task_struct *p)
1139 {
1140         struct pt_regs *childregs, *kregs;
1141         extern void ret_from_fork(void);
1142         extern void ret_from_kernel_thread(void);
1143         void (*f)(void);
1144         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1145
1146         /* Copy registers */
1147         sp -= sizeof(struct pt_regs);
1148         childregs = (struct pt_regs *) sp;
1149         if (unlikely(p->flags & PF_KTHREAD)) {
1150                 /* kernel thread */
1151                 struct thread_info *ti = (void *)task_stack_page(p);
1152                 memset(childregs, 0, sizeof(struct pt_regs));
1153                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1154                 /* function */
1155                 if (usp)
1156                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1157 #ifdef CONFIG_PPC64
1158                 clear_tsk_thread_flag(p, TIF_32BIT);
1159                 childregs->softe = 1;
1160 #endif
1161                 childregs->gpr[15] = kthread_arg;
1162                 p->thread.regs = NULL;  /* no user register state */
1163                 ti->flags |= _TIF_RESTOREALL;
1164                 f = ret_from_kernel_thread;
1165         } else {
1166                 /* user thread */
1167                 struct pt_regs *regs = current_pt_regs();
1168                 CHECK_FULL_REGS(regs);
1169                 *childregs = *regs;
1170                 if (usp)
1171                         childregs->gpr[1] = usp;
1172                 p->thread.regs = childregs;
1173                 childregs->gpr[3] = 0;  /* Result from fork() */
1174                 if (clone_flags & CLONE_SETTLS) {
1175 #ifdef CONFIG_PPC64
1176                         if (!is_32bit_task())
1177                                 childregs->gpr[13] = childregs->gpr[6];
1178                         else
1179 #endif
1180                                 childregs->gpr[2] = childregs->gpr[6];
1181                 }
1182
1183                 f = ret_from_fork;
1184         }
1185         sp -= STACK_FRAME_OVERHEAD;
1186
1187         /*
1188          * The way this works is that at some point in the future
1189          * some task will call _switch to switch to the new task.
1190          * That will pop off the stack frame created below and start
1191          * the new task running at ret_from_fork.  The new task will
1192          * do some house keeping and then return from the fork or clone
1193          * system call, using the stack frame created above.
1194          */
1195         ((unsigned long *)sp)[0] = 0;
1196         sp -= sizeof(struct pt_regs);
1197         kregs = (struct pt_regs *) sp;
1198         sp -= STACK_FRAME_OVERHEAD;
1199         p->thread.ksp = sp;
1200 #ifdef CONFIG_PPC32
1201         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1202                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1203 #endif
1204 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1205         p->thread.ptrace_bps[0] = NULL;
1206 #endif
1207
1208         p->thread.fp_save_area = NULL;
1209 #ifdef CONFIG_ALTIVEC
1210         p->thread.vr_save_area = NULL;
1211 #endif
1212
1213         setup_ksp_vsid(p, sp);
1214
1215 #ifdef CONFIG_PPC64 
1216         if (cpu_has_feature(CPU_FTR_DSCR)) {
1217                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1218                 p->thread.dscr = current->thread.dscr;
1219         }
1220         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1221                 p->thread.ppr = INIT_PPR;
1222 #endif
1223         kregs->nip = ppc_function_entry(f);
1224         return 0;
1225 }
1226
1227 /*
1228  * Set up a thread for executing a new program
1229  */
1230 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1231 {
1232 #ifdef CONFIG_PPC64
1233         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1234 #endif
1235
1236         /*
1237          * If we exec out of a kernel thread then thread.regs will not be
1238          * set.  Do it now.
1239          */
1240         if (!current->thread.regs) {
1241                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1242                 current->thread.regs = regs - 1;
1243         }
1244
1245         memset(regs->gpr, 0, sizeof(regs->gpr));
1246         regs->ctr = 0;
1247         regs->link = 0;
1248         regs->xer = 0;
1249         regs->ccr = 0;
1250         regs->gpr[1] = sp;
1251
1252         /*
1253          * We have just cleared all the nonvolatile GPRs, so make
1254          * FULL_REGS(regs) return true.  This is necessary to allow
1255          * ptrace to examine the thread immediately after exec.
1256          */
1257         regs->trap &= ~1UL;
1258
1259 #ifdef CONFIG_PPC32
1260         regs->mq = 0;
1261         regs->nip = start;
1262         regs->msr = MSR_USER;
1263 #else
1264         if (!is_32bit_task()) {
1265                 unsigned long entry;
1266
1267                 if (is_elf2_task()) {
1268                         /* Look ma, no function descriptors! */
1269                         entry = start;
1270
1271                         /*
1272                          * Ulrich says:
1273                          *   The latest iteration of the ABI requires that when
1274                          *   calling a function (at its global entry point),
1275                          *   the caller must ensure r12 holds the entry point
1276                          *   address (so that the function can quickly
1277                          *   establish addressability).
1278                          */
1279                         regs->gpr[12] = start;
1280                         /* Make sure that's restored on entry to userspace. */
1281                         set_thread_flag(TIF_RESTOREALL);
1282                 } else {
1283                         unsigned long toc;
1284
1285                         /* start is a relocated pointer to the function
1286                          * descriptor for the elf _start routine.  The first
1287                          * entry in the function descriptor is the entry
1288                          * address of _start and the second entry is the TOC
1289                          * value we need to use.
1290                          */
1291                         __get_user(entry, (unsigned long __user *)start);
1292                         __get_user(toc, (unsigned long __user *)start+1);
1293
1294                         /* Check whether the e_entry function descriptor entries
1295                          * need to be relocated before we can use them.
1296                          */
1297                         if (load_addr != 0) {
1298                                 entry += load_addr;
1299                                 toc   += load_addr;
1300                         }
1301                         regs->gpr[2] = toc;
1302                 }
1303                 regs->nip = entry;
1304                 regs->msr = MSR_USER64;
1305         } else {
1306                 regs->nip = start;
1307                 regs->gpr[2] = 0;
1308                 regs->msr = MSR_USER32;
1309         }
1310 #endif
1311 #ifdef CONFIG_VSX
1312         current->thread.used_vsr = 0;
1313 #endif
1314         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1315         current->thread.fp_save_area = NULL;
1316 #ifdef CONFIG_ALTIVEC
1317         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1318         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1319         current->thread.vr_save_area = NULL;
1320         current->thread.vrsave = 0;
1321         current->thread.used_vr = 0;
1322 #endif /* CONFIG_ALTIVEC */
1323 #ifdef CONFIG_SPE
1324         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1325         current->thread.acc = 0;
1326         current->thread.spefscr = 0;
1327         current->thread.used_spe = 0;
1328 #endif /* CONFIG_SPE */
1329 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1330         if (cpu_has_feature(CPU_FTR_TM))
1331                 regs->msr |= MSR_TM;
1332         current->thread.tm_tfhar = 0;
1333         current->thread.tm_texasr = 0;
1334         current->thread.tm_tfiar = 0;
1335 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1336 }
1337 EXPORT_SYMBOL(start_thread);
1338
1339 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1340                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1341
1342 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1343 {
1344         struct pt_regs *regs = tsk->thread.regs;
1345
1346         /* This is a bit hairy.  If we are an SPE enabled  processor
1347          * (have embedded fp) we store the IEEE exception enable flags in
1348          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1349          * mode (asyn, precise, disabled) for 'Classic' FP. */
1350         if (val & PR_FP_EXC_SW_ENABLE) {
1351 #ifdef CONFIG_SPE
1352                 if (cpu_has_feature(CPU_FTR_SPE)) {
1353                         /*
1354                          * When the sticky exception bits are set
1355                          * directly by userspace, it must call prctl
1356                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1357                          * in the existing prctl settings) or
1358                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1359                          * the bits being set).  <fenv.h> functions
1360                          * saving and restoring the whole
1361                          * floating-point environment need to do so
1362                          * anyway to restore the prctl settings from
1363                          * the saved environment.
1364                          */
1365                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1366                         tsk->thread.fpexc_mode = val &
1367                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1368                         return 0;
1369                 } else {
1370                         return -EINVAL;
1371                 }
1372 #else
1373                 return -EINVAL;
1374 #endif
1375         }
1376
1377         /* on a CONFIG_SPE this does not hurt us.  The bits that
1378          * __pack_fe01 use do not overlap with bits used for
1379          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1380          * on CONFIG_SPE implementations are reserved so writing to
1381          * them does not change anything */
1382         if (val > PR_FP_EXC_PRECISE)
1383                 return -EINVAL;
1384         tsk->thread.fpexc_mode = __pack_fe01(val);
1385         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1386                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1387                         | tsk->thread.fpexc_mode;
1388         return 0;
1389 }
1390
1391 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1392 {
1393         unsigned int val;
1394
1395         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1396 #ifdef CONFIG_SPE
1397                 if (cpu_has_feature(CPU_FTR_SPE)) {
1398                         /*
1399                          * When the sticky exception bits are set
1400                          * directly by userspace, it must call prctl
1401                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1402                          * in the existing prctl settings) or
1403                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1404                          * the bits being set).  <fenv.h> functions
1405                          * saving and restoring the whole
1406                          * floating-point environment need to do so
1407                          * anyway to restore the prctl settings from
1408                          * the saved environment.
1409                          */
1410                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1411                         val = tsk->thread.fpexc_mode;
1412                 } else
1413                         return -EINVAL;
1414 #else
1415                 return -EINVAL;
1416 #endif
1417         else
1418                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1419         return put_user(val, (unsigned int __user *) adr);
1420 }
1421
1422 int set_endian(struct task_struct *tsk, unsigned int val)
1423 {
1424         struct pt_regs *regs = tsk->thread.regs;
1425
1426         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1427             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1428                 return -EINVAL;
1429
1430         if (regs == NULL)
1431                 return -EINVAL;
1432
1433         if (val == PR_ENDIAN_BIG)
1434                 regs->msr &= ~MSR_LE;
1435         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1436                 regs->msr |= MSR_LE;
1437         else
1438                 return -EINVAL;
1439
1440         return 0;
1441 }
1442
1443 int get_endian(struct task_struct *tsk, unsigned long adr)
1444 {
1445         struct pt_regs *regs = tsk->thread.regs;
1446         unsigned int val;
1447
1448         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1449             !cpu_has_feature(CPU_FTR_REAL_LE))
1450                 return -EINVAL;
1451
1452         if (regs == NULL)
1453                 return -EINVAL;
1454
1455         if (regs->msr & MSR_LE) {
1456                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1457                         val = PR_ENDIAN_LITTLE;
1458                 else
1459                         val = PR_ENDIAN_PPC_LITTLE;
1460         } else
1461                 val = PR_ENDIAN_BIG;
1462
1463         return put_user(val, (unsigned int __user *)adr);
1464 }
1465
1466 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1467 {
1468         tsk->thread.align_ctl = val;
1469         return 0;
1470 }
1471
1472 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1473 {
1474         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1475 }
1476
1477 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1478                                   unsigned long nbytes)
1479 {
1480         unsigned long stack_page;
1481         unsigned long cpu = task_cpu(p);
1482
1483         /*
1484          * Avoid crashing if the stack has overflowed and corrupted
1485          * task_cpu(p), which is in the thread_info struct.
1486          */
1487         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1488                 stack_page = (unsigned long) hardirq_ctx[cpu];
1489                 if (sp >= stack_page + sizeof(struct thread_struct)
1490                     && sp <= stack_page + THREAD_SIZE - nbytes)
1491                         return 1;
1492
1493                 stack_page = (unsigned long) softirq_ctx[cpu];
1494                 if (sp >= stack_page + sizeof(struct thread_struct)
1495                     && sp <= stack_page + THREAD_SIZE - nbytes)
1496                         return 1;
1497         }
1498         return 0;
1499 }
1500
1501 int validate_sp(unsigned long sp, struct task_struct *p,
1502                        unsigned long nbytes)
1503 {
1504         unsigned long stack_page = (unsigned long)task_stack_page(p);
1505
1506         if (sp >= stack_page + sizeof(struct thread_struct)
1507             && sp <= stack_page + THREAD_SIZE - nbytes)
1508                 return 1;
1509
1510         return valid_irq_stack(sp, p, nbytes);
1511 }
1512
1513 EXPORT_SYMBOL(validate_sp);
1514
1515 unsigned long get_wchan(struct task_struct *p)
1516 {
1517         unsigned long ip, sp;
1518         int count = 0;
1519
1520         if (!p || p == current || p->state == TASK_RUNNING)
1521                 return 0;
1522
1523         sp = p->thread.ksp;
1524         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1525                 return 0;
1526
1527         do {
1528                 sp = *(unsigned long *)sp;
1529                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1530                         return 0;
1531                 if (count > 0) {
1532                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1533                         if (!in_sched_functions(ip))
1534                                 return ip;
1535                 }
1536         } while (count++ < 16);
1537         return 0;
1538 }
1539
1540 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1541
1542 void show_stack(struct task_struct *tsk, unsigned long *stack)
1543 {
1544         unsigned long sp, ip, lr, newsp;
1545         int count = 0;
1546         int firstframe = 1;
1547 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1548         int curr_frame = current->curr_ret_stack;
1549         extern void return_to_handler(void);
1550         unsigned long rth = (unsigned long)return_to_handler;
1551 #endif
1552
1553         sp = (unsigned long) stack;
1554         if (tsk == NULL)
1555                 tsk = current;
1556         if (sp == 0) {
1557                 if (tsk == current)
1558                         sp = current_stack_pointer();
1559                 else
1560                         sp = tsk->thread.ksp;
1561         }
1562
1563         lr = 0;
1564         printk("Call Trace:\n");
1565         do {
1566                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1567                         return;
1568
1569                 stack = (unsigned long *) sp;
1570                 newsp = stack[0];
1571                 ip = stack[STACK_FRAME_LR_SAVE];
1572                 if (!firstframe || ip != lr) {
1573                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1574 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1575                         if ((ip == rth) && curr_frame >= 0) {
1576                                 printk(" (%pS)",
1577                                        (void *)current->ret_stack[curr_frame].ret);
1578                                 curr_frame--;
1579                         }
1580 #endif
1581                         if (firstframe)
1582                                 printk(" (unreliable)");
1583                         printk("\n");
1584                 }
1585                 firstframe = 0;
1586
1587                 /*
1588                  * See if this is an exception frame.
1589                  * We look for the "regshere" marker in the current frame.
1590                  */
1591                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1592                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1593                         struct pt_regs *regs = (struct pt_regs *)
1594                                 (sp + STACK_FRAME_OVERHEAD);
1595                         lr = regs->link;
1596                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1597                                regs->trap, (void *)regs->nip, (void *)lr);
1598                         firstframe = 1;
1599                 }
1600
1601                 sp = newsp;
1602         } while (count++ < kstack_depth_to_print);
1603 }
1604
1605 #ifdef CONFIG_PPC64
1606 /* Called with hard IRQs off */
1607 void notrace __ppc64_runlatch_on(void)
1608 {
1609         struct thread_info *ti = current_thread_info();
1610         unsigned long ctrl;
1611
1612         ctrl = mfspr(SPRN_CTRLF);
1613         ctrl |= CTRL_RUNLATCH;
1614         mtspr(SPRN_CTRLT, ctrl);
1615
1616         ti->local_flags |= _TLF_RUNLATCH;
1617 }
1618
1619 /* Called with hard IRQs off */
1620 void notrace __ppc64_runlatch_off(void)
1621 {
1622         struct thread_info *ti = current_thread_info();
1623         unsigned long ctrl;
1624
1625         ti->local_flags &= ~_TLF_RUNLATCH;
1626
1627         ctrl = mfspr(SPRN_CTRLF);
1628         ctrl &= ~CTRL_RUNLATCH;
1629         mtspr(SPRN_CTRLT, ctrl);
1630 }
1631 #endif /* CONFIG_PPC64 */
1632
1633 unsigned long arch_align_stack(unsigned long sp)
1634 {
1635         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1636                 sp -= get_random_int() & ~PAGE_MASK;
1637         return sp & ~0xf;
1638 }
1639
1640 static inline unsigned long brk_rnd(void)
1641 {
1642         unsigned long rnd = 0;
1643
1644         /* 8MB for 32bit, 1GB for 64bit */
1645         if (is_32bit_task())
1646                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1647         else
1648                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1649
1650         return rnd << PAGE_SHIFT;
1651 }
1652
1653 unsigned long arch_randomize_brk(struct mm_struct *mm)
1654 {
1655         unsigned long base = mm->brk;
1656         unsigned long ret;
1657
1658 #ifdef CONFIG_PPC_STD_MMU_64
1659         /*
1660          * If we are using 1TB segments and we are allowed to randomise
1661          * the heap, we can put it above 1TB so it is backed by a 1TB
1662          * segment. Otherwise the heap will be in the bottom 1TB
1663          * which always uses 256MB segments and this may result in a
1664          * performance penalty.
1665          */
1666         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1667                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1668 #endif
1669
1670         ret = PAGE_ALIGN(base + brk_rnd());
1671
1672         if (ret < mm->brk)
1673                 return mm->brk;
1674
1675         return ret;
1676 }
1677