Linux 6.10-rc3
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / eeh_pe.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * The file intends to implement PE based on the information from
4  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
5  * All the PEs should be organized as hierarchy tree. The first level
6  * of the tree will be associated to existing PHBs since the particular
7  * PE is only meaningful in one PHB domain.
8  *
9  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10  */
11
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/gfp.h>
15 #include <linux/kernel.h>
16 #include <linux/of.h>
17 #include <linux/pci.h>
18 #include <linux/string.h>
19
20 #include <asm/pci-bridge.h>
21 #include <asm/ppc-pci.h>
22
23 static int eeh_pe_aux_size = 0;
24 static LIST_HEAD(eeh_phb_pe);
25
26 /**
27  * eeh_set_pe_aux_size - Set PE auxiliary data size
28  * @size: PE auxiliary data size in bytes
29  *
30  * Set PE auxiliary data size.
31  */
32 void eeh_set_pe_aux_size(int size)
33 {
34         if (size < 0)
35                 return;
36
37         eeh_pe_aux_size = size;
38 }
39
40 /**
41  * eeh_pe_alloc - Allocate PE
42  * @phb: PCI controller
43  * @type: PE type
44  *
45  * Allocate PE instance dynamically.
46  */
47 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
48 {
49         struct eeh_pe *pe;
50         size_t alloc_size;
51
52         alloc_size = sizeof(struct eeh_pe);
53         if (eeh_pe_aux_size) {
54                 alloc_size = ALIGN(alloc_size, cache_line_size());
55                 alloc_size += eeh_pe_aux_size;
56         }
57
58         /* Allocate PHB PE */
59         pe = kzalloc(alloc_size, GFP_KERNEL);
60         if (!pe) return NULL;
61
62         /* Initialize PHB PE */
63         pe->type = type;
64         pe->phb = phb;
65         INIT_LIST_HEAD(&pe->child_list);
66         INIT_LIST_HEAD(&pe->edevs);
67
68         pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
69                                       cache_line_size());
70         return pe;
71 }
72
73 /**
74  * eeh_phb_pe_create - Create PHB PE
75  * @phb: PCI controller
76  *
77  * The function should be called while the PHB is detected during
78  * system boot or PCI hotplug in order to create PHB PE.
79  */
80 int eeh_phb_pe_create(struct pci_controller *phb)
81 {
82         struct eeh_pe *pe;
83
84         /* Allocate PHB PE */
85         pe = eeh_pe_alloc(phb, EEH_PE_PHB);
86         if (!pe) {
87                 pr_err("%s: out of memory!\n", __func__);
88                 return -ENOMEM;
89         }
90
91         /* Put it into the list */
92         list_add_tail(&pe->child, &eeh_phb_pe);
93
94         pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
95
96         return 0;
97 }
98
99 /**
100  * eeh_wait_state - Wait for PE state
101  * @pe: EEH PE
102  * @max_wait: maximal period in millisecond
103  *
104  * Wait for the state of associated PE. It might take some time
105  * to retrieve the PE's state.
106  */
107 int eeh_wait_state(struct eeh_pe *pe, int max_wait)
108 {
109         int ret;
110         int mwait;
111
112         /*
113          * According to PAPR, the state of PE might be temporarily
114          * unavailable. Under the circumstance, we have to wait
115          * for indicated time determined by firmware. The maximal
116          * wait time is 5 minutes, which is acquired from the original
117          * EEH implementation. Also, the original implementation
118          * also defined the minimal wait time as 1 second.
119          */
120 #define EEH_STATE_MIN_WAIT_TIME (1000)
121 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
122
123         while (1) {
124                 ret = eeh_ops->get_state(pe, &mwait);
125
126                 if (ret != EEH_STATE_UNAVAILABLE)
127                         return ret;
128
129                 if (max_wait <= 0) {
130                         pr_warn("%s: Timeout when getting PE's state (%d)\n",
131                                 __func__, max_wait);
132                         return EEH_STATE_NOT_SUPPORT;
133                 }
134
135                 if (mwait < EEH_STATE_MIN_WAIT_TIME) {
136                         pr_warn("%s: Firmware returned bad wait value %d\n",
137                                 __func__, mwait);
138                         mwait = EEH_STATE_MIN_WAIT_TIME;
139                 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
140                         pr_warn("%s: Firmware returned too long wait value %d\n",
141                                 __func__, mwait);
142                         mwait = EEH_STATE_MAX_WAIT_TIME;
143                 }
144
145                 msleep(min(mwait, max_wait));
146                 max_wait -= mwait;
147         }
148 }
149
150 /**
151  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
152  * @phb: PCI controller
153  *
154  * The overall PEs form hierarchy tree. The first layer of the
155  * hierarchy tree is composed of PHB PEs. The function is used
156  * to retrieve the corresponding PHB PE according to the given PHB.
157  */
158 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
159 {
160         struct eeh_pe *pe;
161
162         list_for_each_entry(pe, &eeh_phb_pe, child) {
163                 /*
164                  * Actually, we needn't check the type since
165                  * the PE for PHB has been determined when that
166                  * was created.
167                  */
168                 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
169                         return pe;
170         }
171
172         return NULL;
173 }
174
175 /**
176  * eeh_pe_next - Retrieve the next PE in the tree
177  * @pe: current PE
178  * @root: root PE
179  *
180  * The function is used to retrieve the next PE in the
181  * hierarchy PE tree.
182  */
183 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
184 {
185         struct list_head *next = pe->child_list.next;
186
187         if (next == &pe->child_list) {
188                 while (1) {
189                         if (pe == root)
190                                 return NULL;
191                         next = pe->child.next;
192                         if (next != &pe->parent->child_list)
193                                 break;
194                         pe = pe->parent;
195                 }
196         }
197
198         return list_entry(next, struct eeh_pe, child);
199 }
200
201 /**
202  * eeh_pe_traverse - Traverse PEs in the specified PHB
203  * @root: root PE
204  * @fn: callback
205  * @flag: extra parameter to callback
206  *
207  * The function is used to traverse the specified PE and its
208  * child PEs. The traversing is to be terminated once the
209  * callback returns something other than NULL, or no more PEs
210  * to be traversed.
211  */
212 void *eeh_pe_traverse(struct eeh_pe *root,
213                       eeh_pe_traverse_func fn, void *flag)
214 {
215         struct eeh_pe *pe;
216         void *ret;
217
218         eeh_for_each_pe(root, pe) {
219                 ret = fn(pe, flag);
220                 if (ret) return ret;
221         }
222
223         return NULL;
224 }
225
226 /**
227  * eeh_pe_dev_traverse - Traverse the devices from the PE
228  * @root: EEH PE
229  * @fn: function callback
230  * @flag: extra parameter to callback
231  *
232  * The function is used to traverse the devices of the specified
233  * PE and its child PEs.
234  */
235 void eeh_pe_dev_traverse(struct eeh_pe *root,
236                           eeh_edev_traverse_func fn, void *flag)
237 {
238         struct eeh_pe *pe;
239         struct eeh_dev *edev, *tmp;
240
241         if (!root) {
242                 pr_warn("%s: Invalid PE %p\n",
243                         __func__, root);
244                 return;
245         }
246
247         /* Traverse root PE */
248         eeh_for_each_pe(root, pe)
249                 eeh_pe_for_each_dev(pe, edev, tmp)
250                         fn(edev, flag);
251 }
252
253 /**
254  * __eeh_pe_get - Check the PE address
255  *
256  * For one particular PE, it can be identified by PE address
257  * or tranditional BDF address. BDF address is composed of
258  * Bus/Device/Function number. The extra data referred by flag
259  * indicates which type of address should be used.
260  */
261 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
262 {
263         int *target_pe = flag;
264
265         /* PHB PEs are special and should be ignored */
266         if (pe->type & EEH_PE_PHB)
267                 return NULL;
268
269         if (*target_pe == pe->addr)
270                 return pe;
271
272         return NULL;
273 }
274
275 /**
276  * eeh_pe_get - Search PE based on the given address
277  * @phb: PCI controller
278  * @pe_no: PE number
279  *
280  * Search the corresponding PE based on the specified address which
281  * is included in the eeh device. The function is used to check if
282  * the associated PE has been created against the PE address. It's
283  * notable that the PE address has 2 format: traditional PE address
284  * which is composed of PCI bus/device/function number, or unified
285  * PE address.
286  */
287 struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
288 {
289         struct eeh_pe *root = eeh_phb_pe_get(phb);
290
291         return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
292 }
293
294 /**
295  * eeh_pe_tree_insert - Add EEH device to parent PE
296  * @edev: EEH device
297  * @new_pe_parent: PE to create additional PEs under
298  *
299  * Add EEH device to the PE in edev->pe_config_addr. If a PE already
300  * exists with that address then @edev is added to that PE. Otherwise
301  * a new PE is created and inserted into the PE tree as a child of
302  * @new_pe_parent.
303  *
304  * If @new_pe_parent is NULL then the new PE will be inserted under
305  * directly under the PHB.
306  */
307 int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
308 {
309         struct pci_controller *hose = edev->controller;
310         struct eeh_pe *pe, *parent;
311
312         /*
313          * Search the PE has been existing or not according
314          * to the PE address. If that has been existing, the
315          * PE should be composed of PCI bus and its subordinate
316          * components.
317          */
318         pe = eeh_pe_get(hose, edev->pe_config_addr);
319         if (pe) {
320                 if (pe->type & EEH_PE_INVALID) {
321                         list_add_tail(&edev->entry, &pe->edevs);
322                         edev->pe = pe;
323                         /*
324                          * We're running to here because of PCI hotplug caused by
325                          * EEH recovery. We need clear EEH_PE_INVALID until the top.
326                          */
327                         parent = pe;
328                         while (parent) {
329                                 if (!(parent->type & EEH_PE_INVALID))
330                                         break;
331                                 parent->type &= ~EEH_PE_INVALID;
332                                 parent = parent->parent;
333                         }
334
335                         eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
336                                      pe->parent->addr);
337                 } else {
338                         /* Mark the PE as type of PCI bus */
339                         pe->type = EEH_PE_BUS;
340                         edev->pe = pe;
341
342                         /* Put the edev to PE */
343                         list_add_tail(&edev->entry, &pe->edevs);
344                         eeh_edev_dbg(edev, "Added to bus PE\n");
345                 }
346                 return 0;
347         }
348
349         /* Create a new EEH PE */
350         if (edev->physfn)
351                 pe = eeh_pe_alloc(hose, EEH_PE_VF);
352         else
353                 pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
354         if (!pe) {
355                 pr_err("%s: out of memory!\n", __func__);
356                 return -ENOMEM;
357         }
358
359         pe->addr = edev->pe_config_addr;
360
361         /*
362          * Put the new EEH PE into hierarchy tree. If the parent
363          * can't be found, the newly created PE will be attached
364          * to PHB directly. Otherwise, we have to associate the
365          * PE with its parent.
366          */
367         if (!new_pe_parent) {
368                 new_pe_parent = eeh_phb_pe_get(hose);
369                 if (!new_pe_parent) {
370                         pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
371                                 __func__, hose->global_number);
372                         edev->pe = NULL;
373                         kfree(pe);
374                         return -EEXIST;
375                 }
376         }
377
378         /* link new PE into the tree */
379         pe->parent = new_pe_parent;
380         list_add_tail(&pe->child, &new_pe_parent->child_list);
381
382         /*
383          * Put the newly created PE into the child list and
384          * link the EEH device accordingly.
385          */
386         list_add_tail(&edev->entry, &pe->edevs);
387         edev->pe = pe;
388         eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
389                      new_pe_parent->addr);
390
391         return 0;
392 }
393
394 /**
395  * eeh_pe_tree_remove - Remove one EEH device from the associated PE
396  * @edev: EEH device
397  *
398  * The PE hierarchy tree might be changed when doing PCI hotplug.
399  * Also, the PCI devices or buses could be removed from the system
400  * during EEH recovery. So we have to call the function remove the
401  * corresponding PE accordingly if necessary.
402  */
403 int eeh_pe_tree_remove(struct eeh_dev *edev)
404 {
405         struct eeh_pe *pe, *parent, *child;
406         bool keep, recover;
407         int cnt;
408
409         pe = eeh_dev_to_pe(edev);
410         if (!pe) {
411                 eeh_edev_dbg(edev, "No PE found for device.\n");
412                 return -EEXIST;
413         }
414
415         /* Remove the EEH device */
416         edev->pe = NULL;
417         list_del(&edev->entry);
418
419         /*
420          * Check if the parent PE includes any EEH devices.
421          * If not, we should delete that. Also, we should
422          * delete the parent PE if it doesn't have associated
423          * child PEs and EEH devices.
424          */
425         while (1) {
426                 parent = pe->parent;
427
428                 /* PHB PEs should never be removed */
429                 if (pe->type & EEH_PE_PHB)
430                         break;
431
432                 /*
433                  * XXX: KEEP is set while resetting a PE. I don't think it's
434                  * ever set without RECOVERING also being set. I could
435                  * be wrong though so catch that with a WARN.
436                  */
437                 keep = !!(pe->state & EEH_PE_KEEP);
438                 recover = !!(pe->state & EEH_PE_RECOVERING);
439                 WARN_ON(keep && !recover);
440
441                 if (!keep && !recover) {
442                         if (list_empty(&pe->edevs) &&
443                             list_empty(&pe->child_list)) {
444                                 list_del(&pe->child);
445                                 kfree(pe);
446                         } else {
447                                 break;
448                         }
449                 } else {
450                         /*
451                          * Mark the PE as invalid. At the end of the recovery
452                          * process any invalid PEs will be garbage collected.
453                          *
454                          * We need to delay the free()ing of them since we can
455                          * remove edev's while traversing the PE tree which
456                          * might trigger the removal of a PE and we can't
457                          * deal with that (yet).
458                          */
459                         if (list_empty(&pe->edevs)) {
460                                 cnt = 0;
461                                 list_for_each_entry(child, &pe->child_list, child) {
462                                         if (!(child->type & EEH_PE_INVALID)) {
463                                                 cnt++;
464                                                 break;
465                                         }
466                                 }
467
468                                 if (!cnt)
469                                         pe->type |= EEH_PE_INVALID;
470                                 else
471                                         break;
472                         }
473                 }
474
475                 pe = parent;
476         }
477
478         return 0;
479 }
480
481 /**
482  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
483  * @pe: EEH PE
484  *
485  * We have time stamp for each PE to trace its time of getting
486  * frozen in last hour. The function should be called to update
487  * the time stamp on first error of the specific PE. On the other
488  * handle, we needn't account for errors happened in last hour.
489  */
490 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
491 {
492         time64_t tstamp;
493
494         if (!pe) return;
495
496         if (pe->freeze_count <= 0) {
497                 pe->freeze_count = 0;
498                 pe->tstamp = ktime_get_seconds();
499         } else {
500                 tstamp = ktime_get_seconds();
501                 if (tstamp - pe->tstamp > 3600) {
502                         pe->tstamp = tstamp;
503                         pe->freeze_count = 0;
504                 }
505         }
506 }
507
508 /**
509  * eeh_pe_state_mark - Mark specified state for PE and its associated device
510  * @pe: EEH PE
511  *
512  * EEH error affects the current PE and its child PEs. The function
513  * is used to mark appropriate state for the affected PEs and the
514  * associated devices.
515  */
516 void eeh_pe_state_mark(struct eeh_pe *root, int state)
517 {
518         struct eeh_pe *pe;
519
520         eeh_for_each_pe(root, pe)
521                 if (!(pe->state & EEH_PE_REMOVED))
522                         pe->state |= state;
523 }
524 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
525
526 /**
527  * eeh_pe_mark_isolated
528  * @pe: EEH PE
529  *
530  * Record that a PE has been isolated by marking the PE and its children as
531  * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
532  * as pci_channel_io_frozen.
533  */
534 void eeh_pe_mark_isolated(struct eeh_pe *root)
535 {
536         struct eeh_pe *pe;
537         struct eeh_dev *edev;
538         struct pci_dev *pdev;
539
540         eeh_pe_state_mark(root, EEH_PE_ISOLATED);
541         eeh_for_each_pe(root, pe) {
542                 list_for_each_entry(edev, &pe->edevs, entry) {
543                         pdev = eeh_dev_to_pci_dev(edev);
544                         if (pdev)
545                                 pdev->error_state = pci_channel_io_frozen;
546                 }
547                 /* Block PCI config access if required */
548                 if (pe->state & EEH_PE_CFG_RESTRICTED)
549                         pe->state |= EEH_PE_CFG_BLOCKED;
550         }
551 }
552 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
553
554 static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
555 {
556         int mode = *((int *)flag);
557
558         edev->mode |= mode;
559 }
560
561 /**
562  * eeh_pe_dev_state_mark - Mark state for all device under the PE
563  * @pe: EEH PE
564  *
565  * Mark specific state for all child devices of the PE.
566  */
567 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
568 {
569         eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
570 }
571
572 /**
573  * eeh_pe_state_clear - Clear state for the PE
574  * @data: EEH PE
575  * @state: state
576  * @include_passed: include passed-through devices?
577  *
578  * The function is used to clear the indicated state from the
579  * given PE. Besides, we also clear the check count of the PE
580  * as well.
581  */
582 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
583 {
584         struct eeh_pe *pe;
585         struct eeh_dev *edev, *tmp;
586         struct pci_dev *pdev;
587
588         eeh_for_each_pe(root, pe) {
589                 /* Keep the state of permanently removed PE intact */
590                 if (pe->state & EEH_PE_REMOVED)
591                         continue;
592
593                 if (!include_passed && eeh_pe_passed(pe))
594                         continue;
595
596                 pe->state &= ~state;
597
598                 /*
599                  * Special treatment on clearing isolated state. Clear
600                  * check count since last isolation and put all affected
601                  * devices to normal state.
602                  */
603                 if (!(state & EEH_PE_ISOLATED))
604                         continue;
605
606                 pe->check_count = 0;
607                 eeh_pe_for_each_dev(pe, edev, tmp) {
608                         pdev = eeh_dev_to_pci_dev(edev);
609                         if (!pdev)
610                                 continue;
611
612                         pdev->error_state = pci_channel_io_normal;
613                 }
614
615                 /* Unblock PCI config access if required */
616                 if (pe->state & EEH_PE_CFG_RESTRICTED)
617                         pe->state &= ~EEH_PE_CFG_BLOCKED;
618         }
619 }
620
621 /*
622  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
623  * buses assigned explicitly by firmware, and we probably have
624  * lost that after reset. So we have to delay the check until
625  * the PCI-CFG registers have been restored for the parent
626  * bridge.
627  *
628  * Don't use normal PCI-CFG accessors, which probably has been
629  * blocked on normal path during the stage. So we need utilize
630  * eeh operations, which is always permitted.
631  */
632 static void eeh_bridge_check_link(struct eeh_dev *edev)
633 {
634         int cap;
635         uint32_t val;
636         int timeout = 0;
637
638         /*
639          * We only check root port and downstream ports of
640          * PCIe switches
641          */
642         if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
643                 return;
644
645         eeh_edev_dbg(edev, "Checking PCIe link...\n");
646
647         /* Check slot status */
648         cap = edev->pcie_cap;
649         eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
650         if (!(val & PCI_EXP_SLTSTA_PDS)) {
651                 eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
652                 return;
653         }
654
655         /* Check power status if we have the capability */
656         eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
657         if (val & PCI_EXP_SLTCAP_PCP) {
658                 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
659                 if (val & PCI_EXP_SLTCTL_PCC) {
660                         eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
661                         val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
662                         val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
663                         eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
664                         msleep(2 * 1000);
665                 }
666         }
667
668         /* Enable link */
669         eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
670         val &= ~PCI_EXP_LNKCTL_LD;
671         eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
672
673         /* Check link */
674         if (!edev->pdev->link_active_reporting) {
675                 eeh_edev_dbg(edev, "No link reporting capability\n");
676                 msleep(1000);
677                 return;
678         }
679
680         /* Wait the link is up until timeout (5s) */
681         timeout = 0;
682         while (timeout < 5000) {
683                 msleep(20);
684                 timeout += 20;
685
686                 eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687                 if (val & PCI_EXP_LNKSTA_DLLLA)
688                         break;
689         }
690
691         if (val & PCI_EXP_LNKSTA_DLLLA)
692                 eeh_edev_dbg(edev, "Link up (%s)\n",
693                          (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694         else
695                 eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
696 }
697
698 #define BYTE_SWAP(OFF)  (8*((OFF)/4)+3-(OFF))
699 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
700
701 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
702 {
703         int i;
704
705         /*
706          * Device BARs: 0x10 - 0x18
707          * Bus numbers and windows: 0x18 - 0x30
708          */
709         for (i = 4; i < 13; i++)
710                 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711         /* Rom: 0x38 */
712         eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
713
714         /* Cache line & Latency timer: 0xC 0xD */
715         eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717         eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718                 SAVED_BYTE(PCI_LATENCY_TIMER));
719         /* Max latency, min grant, interrupt ping and line: 0x3C */
720         eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
721
722         /* PCI Command: 0x4 */
723         eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724                               PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
725
726         /* Check the PCIe link is ready */
727         eeh_bridge_check_link(edev);
728 }
729
730 static void eeh_restore_device_bars(struct eeh_dev *edev)
731 {
732         int i;
733         u32 cmd;
734
735         for (i = 4; i < 10; i++)
736                 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737         /* 12 == Expansion ROM Address */
738         eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
739
740         eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742         eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743                 SAVED_BYTE(PCI_LATENCY_TIMER));
744
745         /* max latency, min grant, interrupt pin and line */
746         eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
747
748         /*
749          * Restore PERR & SERR bits, some devices require it,
750          * don't touch the other command bits
751          */
752         eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753         if (edev->config_space[1] & PCI_COMMAND_PARITY)
754                 cmd |= PCI_COMMAND_PARITY;
755         else
756                 cmd &= ~PCI_COMMAND_PARITY;
757         if (edev->config_space[1] & PCI_COMMAND_SERR)
758                 cmd |= PCI_COMMAND_SERR;
759         else
760                 cmd &= ~PCI_COMMAND_SERR;
761         eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
762 }
763
764 /**
765  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766  * @data: EEH device
767  * @flag: Unused
768  *
769  * Loads the PCI configuration space base address registers,
770  * the expansion ROM base address, the latency timer, and etc.
771  * from the saved values in the device node.
772  */
773 static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
774 {
775         /* Do special restore for bridges */
776         if (edev->mode & EEH_DEV_BRIDGE)
777                 eeh_restore_bridge_bars(edev);
778         else
779                 eeh_restore_device_bars(edev);
780
781         if (eeh_ops->restore_config)
782                 eeh_ops->restore_config(edev);
783 }
784
785 /**
786  * eeh_pe_restore_bars - Restore the PCI config space info
787  * @pe: EEH PE
788  *
789  * This routine performs a recursive walk to the children
790  * of this device as well.
791  */
792 void eeh_pe_restore_bars(struct eeh_pe *pe)
793 {
794         /*
795          * We needn't take the EEH lock since eeh_pe_dev_traverse()
796          * will take that.
797          */
798         eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
799 }
800
801 /**
802  * eeh_pe_loc_get - Retrieve location code binding to the given PE
803  * @pe: EEH PE
804  *
805  * Retrieve the location code of the given PE. If the primary PE bus
806  * is root bus, we will grab location code from PHB device tree node
807  * or root port. Otherwise, the upstream bridge's device tree node
808  * of the primary PE bus will be checked for the location code.
809  */
810 const char *eeh_pe_loc_get(struct eeh_pe *pe)
811 {
812         struct pci_bus *bus = eeh_pe_bus_get(pe);
813         struct device_node *dn;
814         const char *loc = NULL;
815
816         while (bus) {
817                 dn = pci_bus_to_OF_node(bus);
818                 if (!dn) {
819                         bus = bus->parent;
820                         continue;
821                 }
822
823                 if (pci_is_root_bus(bus))
824                         loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825                 else
826                         loc = of_get_property(dn, "ibm,slot-location-code",
827                                               NULL);
828
829                 if (loc)
830                         return loc;
831
832                 bus = bus->parent;
833         }
834
835         return "N/A";
836 }
837
838 /**
839  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840  * @pe: EEH PE
841  *
842  * Retrieve the PCI bus according to the given PE. Basically,
843  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844  * primary PCI bus will be retrieved. The parent bus will be
845  * returned for BUS PE. However, we don't have associated PCI
846  * bus for DEVICE PE.
847  */
848 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
849 {
850         struct eeh_dev *edev;
851         struct pci_dev *pdev;
852
853         if (pe->type & EEH_PE_PHB)
854                 return pe->phb->bus;
855
856         /* The primary bus might be cached during probe time */
857         if (pe->state & EEH_PE_PRI_BUS)
858                 return pe->bus;
859
860         /* Retrieve the parent PCI bus of first (top) PCI device */
861         edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862         pdev = eeh_dev_to_pci_dev(edev);
863         if (pdev)
864                 return pdev->bus;
865
866         return NULL;
867 }