Merge tag 'kvm-ppc-fixes-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / mips / mm / dma-noncoherent.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
4  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
5  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6  */
7 #include <linux/dma-direct.h>
8 #include <linux/dma-noncoherent.h>
9 #include <linux/dma-contiguous.h>
10 #include <linux/highmem.h>
11
12 #include <asm/cache.h>
13 #include <asm/cpu-type.h>
14 #include <asm/dma-coherence.h>
15 #include <asm/io.h>
16
17 #ifdef CONFIG_DMA_PERDEV_COHERENT
18 static inline int dev_is_coherent(struct device *dev)
19 {
20         return dev->archdata.dma_coherent;
21 }
22 #else
23 static inline int dev_is_coherent(struct device *dev)
24 {
25         switch (coherentio) {
26         default:
27         case IO_COHERENCE_DEFAULT:
28                 return hw_coherentio;
29         case IO_COHERENCE_ENABLED:
30                 return 1;
31         case IO_COHERENCE_DISABLED:
32                 return 0;
33         }
34 }
35 #endif /* CONFIG_DMA_PERDEV_COHERENT */
36
37 /*
38  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
39  * fill random cachelines with stale data at any time, requiring an extra
40  * flush post-DMA.
41  *
42  * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
43  * terminology calls memory areas with hardware maintained coherency coherent.
44  *
45  * Note that the R14000 and R16000 should also be checked for in this condition.
46  * However this function is only called on non-I/O-coherent systems and only the
47  * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
48  * SGI IP32 aka O2.
49  */
50 static inline bool cpu_needs_post_dma_flush(struct device *dev)
51 {
52         if (dev_is_coherent(dev))
53                 return false;
54
55         switch (boot_cpu_type()) {
56         case CPU_R10000:
57         case CPU_R12000:
58         case CPU_BMIPS5000:
59                 return true;
60         default:
61                 /*
62                  * Presence of MAARs suggests that the CPU supports
63                  * speculatively prefetching data, and therefore requires
64                  * the post-DMA flush/invalidate.
65                  */
66                 return cpu_has_maar;
67         }
68 }
69
70 void *arch_dma_alloc(struct device *dev, size_t size,
71                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
72 {
73         void *ret;
74
75         ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
76         if (!ret)
77                 return NULL;
78
79         if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
80                 dma_cache_wback_inv((unsigned long) ret, size);
81                 ret = (void *)UNCAC_ADDR(ret);
82         }
83
84         return ret;
85 }
86
87 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
88                 dma_addr_t dma_addr, unsigned long attrs)
89 {
90         if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev))
91                 cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
92         dma_direct_free(dev, size, cpu_addr, dma_addr, attrs);
93 }
94
95 int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma,
96                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
97                 unsigned long attrs)
98 {
99         unsigned long user_count = vma_pages(vma);
100         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
101         unsigned long addr = (unsigned long)cpu_addr;
102         unsigned long off = vma->vm_pgoff;
103         unsigned long pfn;
104         int ret = -ENXIO;
105
106         if (!dev_is_coherent(dev))
107                 addr = CAC_ADDR(addr);
108
109         pfn = page_to_pfn(virt_to_page((void *)addr));
110
111         if (attrs & DMA_ATTR_WRITE_COMBINE)
112                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
113         else
114                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
115
116         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
117                 return ret;
118
119         if (off < count && user_count <= (count - off)) {
120                 ret = remap_pfn_range(vma, vma->vm_start,
121                                       pfn + off,
122                                       user_count << PAGE_SHIFT,
123                                       vma->vm_page_prot);
124         }
125
126         return ret;
127 }
128
129 static inline void dma_sync_virt(void *addr, size_t size,
130                 enum dma_data_direction dir)
131 {
132         switch (dir) {
133         case DMA_TO_DEVICE:
134                 dma_cache_wback((unsigned long)addr, size);
135                 break;
136
137         case DMA_FROM_DEVICE:
138                 dma_cache_inv((unsigned long)addr, size);
139                 break;
140
141         case DMA_BIDIRECTIONAL:
142                 dma_cache_wback_inv((unsigned long)addr, size);
143                 break;
144
145         default:
146                 BUG();
147         }
148 }
149
150 /*
151  * A single sg entry may refer to multiple physically contiguous pages.  But
152  * we still need to process highmem pages individually.  If highmem is not
153  * configured then the bulk of this loop gets optimized out.
154  */
155 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
156                 enum dma_data_direction dir)
157 {
158         struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
159         unsigned long offset = paddr & ~PAGE_MASK;
160         size_t left = size;
161
162         do {
163                 size_t len = left;
164
165                 if (PageHighMem(page)) {
166                         void *addr;
167
168                         if (offset + len > PAGE_SIZE) {
169                                 if (offset >= PAGE_SIZE) {
170                                         page += offset >> PAGE_SHIFT;
171                                         offset &= ~PAGE_MASK;
172                                 }
173                                 len = PAGE_SIZE - offset;
174                         }
175
176                         addr = kmap_atomic(page);
177                         dma_sync_virt(addr + offset, len, dir);
178                         kunmap_atomic(addr);
179                 } else
180                         dma_sync_virt(page_address(page) + offset, size, dir);
181                 offset = 0;
182                 page++;
183                 left -= len;
184         } while (left);
185 }
186
187 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
188                 size_t size, enum dma_data_direction dir)
189 {
190         if (!dev_is_coherent(dev))
191                 dma_sync_phys(paddr, size, dir);
192 }
193
194 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
195                 size_t size, enum dma_data_direction dir)
196 {
197         if (cpu_needs_post_dma_flush(dev))
198                 dma_sync_phys(paddr, size, dir);
199 }
200
201 void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
202                 enum dma_data_direction direction)
203 {
204         BUG_ON(direction == DMA_NONE);
205
206         if (!dev_is_coherent(dev))
207                 dma_sync_virt(vaddr, size, direction);
208 }