Merge tag 'wq-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / hyp / include / hyp / switch.h
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 #include <asm/traps.h>
34
35 struct kvm_exception_table_entry {
36         int insn, fixup;
37 };
38
39 extern struct kvm_exception_table_entry __start___kvm_ex_table;
40 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
41
42 /* Check whether the FP regs are owned by the guest */
43 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
44 {
45         return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
46 }
47
48 /* Save the 32-bit only FPSIMD system register state */
49 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
50 {
51         if (!vcpu_el1_is_32bit(vcpu))
52                 return;
53
54         __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
55 }
56
57 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
58 {
59         /*
60          * We are about to set CPTR_EL2.TFP to trap all floating point
61          * register accesses to EL2, however, the ARM ARM clearly states that
62          * traps are only taken to EL2 if the operation would not otherwise
63          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
64          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
65          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
66          * it will cause an exception.
67          */
68         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
69                 write_sysreg(1 << 30, fpexc32_el2);
70                 isb();
71         }
72 }
73
74 #define compute_clr_set(vcpu, reg, clr, set)                            \
75         do {                                                            \
76                 u64 hfg;                                                \
77                 hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;  \
78                 set |= hfg & __ ## reg ## _MASK;                        \
79                 clr |= ~hfg & __ ## reg ## _nMASK;                      \
80         } while(0)
81
82 #define update_fgt_traps_cs(vcpu, reg, clr, set)                        \
83         do {                                                            \
84                 struct kvm_cpu_context *hctxt =                         \
85                         &this_cpu_ptr(&kvm_host_data)->host_ctxt;       \
86                 u64 c = 0, s = 0;                                       \
87                                                                         \
88                 ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg);  \
89                 compute_clr_set(vcpu, reg, c, s);                       \
90                 s |= set;                                               \
91                 c |= clr;                                               \
92                 if (c || s) {                                           \
93                         u64 val = __ ## reg ## _nMASK;                  \
94                         val |= s;                                       \
95                         val &= ~c;                                      \
96                         write_sysreg_s(val, SYS_ ## reg);               \
97                 }                                                       \
98         } while(0)
99
100 #define update_fgt_traps(vcpu, reg)             \
101         update_fgt_traps_cs(vcpu, reg, 0, 0)
102
103 /*
104  * Validate the fine grain trap masks.
105  * Check that the masks do not overlap and that all bits are accounted for.
106  */
107 #define CHECK_FGT_MASKS(reg)                                                    \
108         do {                                                                    \
109                 BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK));     \
110                 BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^    \
111                                (__ ## reg ## _nMASK)));                         \
112         } while(0)
113
114 static inline bool cpu_has_amu(void)
115 {
116        u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
117
118        return cpuid_feature_extract_unsigned_field(pfr0,
119                ID_AA64PFR0_EL1_AMU_SHIFT);
120 }
121
122 static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
123 {
124         struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
125         u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
126         u64 r_val, w_val;
127
128         CHECK_FGT_MASKS(HFGRTR_EL2);
129         CHECK_FGT_MASKS(HFGWTR_EL2);
130         CHECK_FGT_MASKS(HFGITR_EL2);
131         CHECK_FGT_MASKS(HDFGRTR_EL2);
132         CHECK_FGT_MASKS(HDFGWTR_EL2);
133         CHECK_FGT_MASKS(HAFGRTR_EL2);
134         CHECK_FGT_MASKS(HCRX_EL2);
135
136         if (!cpus_have_final_cap(ARM64_HAS_FGT))
137                 return;
138
139         ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2);
140         ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2);
141
142         if (cpus_have_final_cap(ARM64_SME)) {
143                 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
144
145                 r_clr |= tmp;
146                 w_clr |= tmp;
147         }
148
149         /*
150          * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
151          */
152         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
153                 w_set |= HFGxTR_EL2_TCR_EL1_MASK;
154
155         if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
156                 compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set);
157                 compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set);
158         }
159
160         /* The default to trap everything not handled or supported in KVM. */
161         tmp = HFGxTR_EL2_nAMAIR2_EL1 | HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nS2POR_EL1 |
162               HFGxTR_EL2_nPOR_EL1 | HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nACCDATA_EL1;
163
164         r_val = __HFGRTR_EL2_nMASK & ~tmp;
165         r_val |= r_set;
166         r_val &= ~r_clr;
167
168         w_val = __HFGWTR_EL2_nMASK & ~tmp;
169         w_val |= w_set;
170         w_val &= ~w_clr;
171
172         write_sysreg_s(r_val, SYS_HFGRTR_EL2);
173         write_sysreg_s(w_val, SYS_HFGWTR_EL2);
174
175         if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
176                 return;
177
178         update_fgt_traps(vcpu, HFGITR_EL2);
179         update_fgt_traps(vcpu, HDFGRTR_EL2);
180         update_fgt_traps(vcpu, HDFGWTR_EL2);
181
182         if (cpu_has_amu())
183                 update_fgt_traps(vcpu, HAFGRTR_EL2);
184 }
185
186 static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
187 {
188         struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
189
190         if (!cpus_have_final_cap(ARM64_HAS_FGT))
191                 return;
192
193         write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2);
194         write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
195
196         if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
197                 return;
198
199         write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2);
200         write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2);
201         write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2);
202
203         if (cpu_has_amu())
204                 write_sysreg_s(ctxt_sys_reg(hctxt, HAFGRTR_EL2), SYS_HAFGRTR_EL2);
205 }
206
207 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
208 {
209         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
210         write_sysreg(1 << 15, hstr_el2);
211
212         /*
213          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
214          * PMSELR_EL0 to make sure it never contains the cycle
215          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
216          * EL1 instead of being trapped to EL2.
217          */
218         if (kvm_arm_support_pmu_v3()) {
219                 struct kvm_cpu_context *hctxt;
220
221                 write_sysreg(0, pmselr_el0);
222
223                 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
224                 ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
225                 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
226                 vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
227         }
228
229         vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
230         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
231
232         if (cpus_have_final_cap(ARM64_HAS_HCX)) {
233                 u64 hcrx = HCRX_GUEST_FLAGS;
234                 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
235                         u64 clr = 0, set = 0;
236
237                         compute_clr_set(vcpu, HCRX_EL2, clr, set);
238
239                         hcrx |= set;
240                         hcrx &= ~clr;
241                 }
242
243                 write_sysreg_s(hcrx, SYS_HCRX_EL2);
244         }
245
246         __activate_traps_hfgxtr(vcpu);
247 }
248
249 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
250 {
251         write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
252
253         write_sysreg(0, hstr_el2);
254         if (kvm_arm_support_pmu_v3()) {
255                 struct kvm_cpu_context *hctxt;
256
257                 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
258                 write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
259                 vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
260         }
261
262         if (cpus_have_final_cap(ARM64_HAS_HCX))
263                 write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
264
265         __deactivate_traps_hfgxtr(vcpu);
266 }
267
268 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
269 {
270         u64 hcr = vcpu->arch.hcr_el2;
271
272         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
273                 hcr |= HCR_TVM;
274
275         write_sysreg(hcr, hcr_el2);
276
277         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
278                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
279 }
280
281 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
282 {
283         /*
284          * If we pended a virtual abort, preserve it until it gets
285          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
286          * the crucial bit is "On taking a vSError interrupt,
287          * HCR_EL2.VSE is cleared to 0."
288          */
289         if (vcpu->arch.hcr_el2 & HCR_VSE) {
290                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
291                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
292         }
293 }
294
295 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
296 {
297         return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
298 }
299
300 static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
301 {
302         *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
303         arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
304         write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
305
306         /*
307          * Finish potential single step before executing the prologue
308          * instruction.
309          */
310         *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
311         write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
312
313         return true;
314 }
315
316 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
317 {
318         sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
319         __sve_restore_state(vcpu_sve_pffr(vcpu),
320                             &vcpu->arch.ctxt.fp_regs.fpsr);
321         write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
322 }
323
324 /*
325  * We trap the first access to the FP/SIMD to save the host context and
326  * restore the guest context lazily.
327  * If FP/SIMD is not implemented, handle the trap and inject an undefined
328  * instruction exception to the guest. Similarly for trapped SVE accesses.
329  */
330 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
331 {
332         bool sve_guest;
333         u8 esr_ec;
334         u64 reg;
335
336         if (!system_supports_fpsimd())
337                 return false;
338
339         sve_guest = vcpu_has_sve(vcpu);
340         esr_ec = kvm_vcpu_trap_get_class(vcpu);
341
342         /* Only handle traps the vCPU can support here: */
343         switch (esr_ec) {
344         case ESR_ELx_EC_FP_ASIMD:
345                 break;
346         case ESR_ELx_EC_SVE:
347                 if (!sve_guest)
348                         return false;
349                 break;
350         default:
351                 return false;
352         }
353
354         /* Valid trap.  Switch the context: */
355
356         /* First disable enough traps to allow us to update the registers */
357         if (has_vhe() || has_hvhe()) {
358                 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
359                 if (sve_guest)
360                         reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
361
362                 sysreg_clear_set(cpacr_el1, 0, reg);
363         } else {
364                 reg = CPTR_EL2_TFP;
365                 if (sve_guest)
366                         reg |= CPTR_EL2_TZ;
367
368                 sysreg_clear_set(cptr_el2, reg, 0);
369         }
370         isb();
371
372         /* Write out the host state if it's in the registers */
373         if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
374                 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
375
376         /* Restore the guest state */
377         if (sve_guest)
378                 __hyp_sve_restore_guest(vcpu);
379         else
380                 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
381
382         /* Skip restoring fpexc32 for AArch64 guests */
383         if (!(read_sysreg(hcr_el2) & HCR_RW))
384                 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
385
386         vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
387
388         return true;
389 }
390
391 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
392 {
393         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
394         int rt = kvm_vcpu_sys_get_rt(vcpu);
395         u64 val = vcpu_get_reg(vcpu, rt);
396
397         /*
398          * The normal sysreg handling code expects to see the traps,
399          * let's not do anything here.
400          */
401         if (vcpu->arch.hcr_el2 & HCR_TVM)
402                 return false;
403
404         switch (sysreg) {
405         case SYS_SCTLR_EL1:
406                 write_sysreg_el1(val, SYS_SCTLR);
407                 break;
408         case SYS_TTBR0_EL1:
409                 write_sysreg_el1(val, SYS_TTBR0);
410                 break;
411         case SYS_TTBR1_EL1:
412                 write_sysreg_el1(val, SYS_TTBR1);
413                 break;
414         case SYS_TCR_EL1:
415                 write_sysreg_el1(val, SYS_TCR);
416                 break;
417         case SYS_ESR_EL1:
418                 write_sysreg_el1(val, SYS_ESR);
419                 break;
420         case SYS_FAR_EL1:
421                 write_sysreg_el1(val, SYS_FAR);
422                 break;
423         case SYS_AFSR0_EL1:
424                 write_sysreg_el1(val, SYS_AFSR0);
425                 break;
426         case SYS_AFSR1_EL1:
427                 write_sysreg_el1(val, SYS_AFSR1);
428                 break;
429         case SYS_MAIR_EL1:
430                 write_sysreg_el1(val, SYS_MAIR);
431                 break;
432         case SYS_AMAIR_EL1:
433                 write_sysreg_el1(val, SYS_AMAIR);
434                 break;
435         case SYS_CONTEXTIDR_EL1:
436                 write_sysreg_el1(val, SYS_CONTEXTIDR);
437                 break;
438         default:
439                 return false;
440         }
441
442         __kvm_skip_instr(vcpu);
443         return true;
444 }
445
446 static inline bool esr_is_ptrauth_trap(u64 esr)
447 {
448         switch (esr_sys64_to_sysreg(esr)) {
449         case SYS_APIAKEYLO_EL1:
450         case SYS_APIAKEYHI_EL1:
451         case SYS_APIBKEYLO_EL1:
452         case SYS_APIBKEYHI_EL1:
453         case SYS_APDAKEYLO_EL1:
454         case SYS_APDAKEYHI_EL1:
455         case SYS_APDBKEYLO_EL1:
456         case SYS_APDBKEYHI_EL1:
457         case SYS_APGAKEYLO_EL1:
458         case SYS_APGAKEYHI_EL1:
459                 return true;
460         }
461
462         return false;
463 }
464
465 #define __ptrauth_save_key(ctxt, key)                                   \
466         do {                                                            \
467         u64 __val;                                                      \
468         __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
469         ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
470         __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
471         ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
472 } while(0)
473
474 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
475
476 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
477 {
478         struct kvm_cpu_context *ctxt;
479         u64 val;
480
481         if (!vcpu_has_ptrauth(vcpu))
482                 return false;
483
484         ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
485         __ptrauth_save_key(ctxt, APIA);
486         __ptrauth_save_key(ctxt, APIB);
487         __ptrauth_save_key(ctxt, APDA);
488         __ptrauth_save_key(ctxt, APDB);
489         __ptrauth_save_key(ctxt, APGA);
490
491         vcpu_ptrauth_enable(vcpu);
492
493         val = read_sysreg(hcr_el2);
494         val |= (HCR_API | HCR_APK);
495         write_sysreg(val, hcr_el2);
496
497         return true;
498 }
499
500 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
501 {
502         struct arch_timer_context *ctxt;
503         u32 sysreg;
504         u64 val;
505
506         /*
507          * We only get here for 64bit guests, 32bit guests will hit
508          * the long and winding road all the way to the standard
509          * handling. Yes, it sucks to be irrelevant.
510          */
511         sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
512
513         switch (sysreg) {
514         case SYS_CNTPCT_EL0:
515         case SYS_CNTPCTSS_EL0:
516                 if (vcpu_has_nv(vcpu)) {
517                         if (is_hyp_ctxt(vcpu)) {
518                                 ctxt = vcpu_hptimer(vcpu);
519                                 break;
520                         }
521
522                         /* Check for guest hypervisor trapping */
523                         val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
524                         if (!vcpu_el2_e2h_is_set(vcpu))
525                                 val = (val & CNTHCTL_EL1PCTEN) << 10;
526
527                         if (!(val & (CNTHCTL_EL1PCTEN << 10)))
528                                 return false;
529                 }
530
531                 ctxt = vcpu_ptimer(vcpu);
532                 break;
533         default:
534                 return false;
535         }
536
537         val = arch_timer_read_cntpct_el0();
538
539         if (ctxt->offset.vm_offset)
540                 val -= *kern_hyp_va(ctxt->offset.vm_offset);
541         if (ctxt->offset.vcpu_offset)
542                 val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
543
544         vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
545         __kvm_skip_instr(vcpu);
546         return true;
547 }
548
549 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
550 {
551         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
552         int rt = kvm_vcpu_sys_get_rt(vcpu);
553         u64 val = vcpu_get_reg(vcpu, rt);
554
555         if (sysreg != SYS_TCR_EL1)
556                 return false;
557
558         /*
559          * Affected parts do not advertise support for hardware Access Flag /
560          * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
561          * control bits are still functional. The architecture requires these be
562          * RES0 on systems that do not implement FEAT_HAFDBS.
563          *
564          * Uphold the requirements of the architecture by masking guest writes
565          * to TCR_EL1.{HA,HD} here.
566          */
567         val &= ~(TCR_HD | TCR_HA);
568         write_sysreg_el1(val, SYS_TCR);
569         __kvm_skip_instr(vcpu);
570         return true;
571 }
572
573 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
574 {
575         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
576             handle_tx2_tvm(vcpu))
577                 return true;
578
579         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
580             handle_ampere1_tcr(vcpu))
581                 return true;
582
583         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
584             __vgic_v3_perform_cpuif_access(vcpu) == 1)
585                 return true;
586
587         if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
588                 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
589
590         if (kvm_hyp_handle_cntpct(vcpu))
591                 return true;
592
593         return false;
594 }
595
596 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
597 {
598         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
599             __vgic_v3_perform_cpuif_access(vcpu) == 1)
600                 return true;
601
602         return false;
603 }
604
605 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
606 {
607         if (!__populate_fault_info(vcpu))
608                 return true;
609
610         return false;
611 }
612 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
613         __alias(kvm_hyp_handle_memory_fault);
614 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
615         __alias(kvm_hyp_handle_memory_fault);
616
617 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
618 {
619         if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
620                 return true;
621
622         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
623                 bool valid;
624
625                 valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
626                         kvm_vcpu_dabt_isvalid(vcpu) &&
627                         !kvm_vcpu_abt_issea(vcpu) &&
628                         !kvm_vcpu_abt_iss1tw(vcpu);
629
630                 if (valid) {
631                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
632
633                         if (ret == 1)
634                                 return true;
635
636                         /* Promote an illegal access to an SError.*/
637                         if (ret == -1)
638                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
639                 }
640         }
641
642         return false;
643 }
644
645 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
646
647 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
648
649 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
650
651 /*
652  * Allow the hypervisor to handle the exit with an exit handler if it has one.
653  *
654  * Returns true if the hypervisor handled the exit, and control should go back
655  * to the guest, or false if it hasn't.
656  */
657 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
658 {
659         const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
660         exit_handler_fn fn;
661
662         fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
663
664         if (fn)
665                 return fn(vcpu, exit_code);
666
667         return false;
668 }
669
670 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
671 {
672         /*
673          * Check for the conditions of Cortex-A510's #2077057. When these occur
674          * SPSR_EL2 can't be trusted, but isn't needed either as it is
675          * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
676          * Are we single-stepping the guest, and took a PAC exception from the
677          * active-not-pending state?
678          */
679         if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)               &&
680             vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP                 &&
681             *vcpu_cpsr(vcpu) & DBG_SPSR_SS                              &&
682             ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
683                 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
684
685         vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
686 }
687
688 /*
689  * Return true when we were able to fixup the guest exit and should return to
690  * the guest, false when we should restore the host state and return to the
691  * main run loop.
692  */
693 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
694 {
695         /*
696          * Save PSTATE early so that we can evaluate the vcpu mode
697          * early on.
698          */
699         synchronize_vcpu_pstate(vcpu, exit_code);
700
701         /*
702          * Check whether we want to repaint the state one way or
703          * another.
704          */
705         early_exit_filter(vcpu, exit_code);
706
707         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
708                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
709
710         if (ARM_SERROR_PENDING(*exit_code) &&
711             ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
712                 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
713
714                 /*
715                  * HVC already have an adjusted PC, which we need to
716                  * correct in order to return to after having injected
717                  * the SError.
718                  *
719                  * SMC, on the other hand, is *trapped*, meaning its
720                  * preferred return address is the SMC itself.
721                  */
722                 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
723                         write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
724         }
725
726         /*
727          * We're using the raw exception code in order to only process
728          * the trap if no SError is pending. We will come back to the
729          * same PC once the SError has been injected, and replay the
730          * trapping instruction.
731          */
732         if (*exit_code != ARM_EXCEPTION_TRAP)
733                 goto exit;
734
735         /* Check if there's an exit handler and allow it to handle the exit. */
736         if (kvm_hyp_handle_exit(vcpu, exit_code))
737                 goto guest;
738 exit:
739         /* Return to the host kernel and handle the exit */
740         return false;
741
742 guest:
743         /* Re-enter the guest */
744         asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
745         return true;
746 }
747
748 static inline void __kvm_unexpected_el2_exception(void)
749 {
750         extern char __guest_exit_panic[];
751         unsigned long addr, fixup;
752         struct kvm_exception_table_entry *entry, *end;
753         unsigned long elr_el2 = read_sysreg(elr_el2);
754
755         entry = &__start___kvm_ex_table;
756         end = &__stop___kvm_ex_table;
757
758         while (entry < end) {
759                 addr = (unsigned long)&entry->insn + entry->insn;
760                 fixup = (unsigned long)&entry->fixup + entry->fixup;
761
762                 if (addr != elr_el2) {
763                         entry++;
764                         continue;
765                 }
766
767                 write_sysreg(fixup, elr_el2);
768                 return;
769         }
770
771         /* Trigger a panic after restoring the hyp context. */
772         write_sysreg(__guest_exit_panic, elr_el2);
773 }
774
775 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */