Merge tag 'tag-chrome-platform-for-v5.10' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/personality.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kdebug.h>
19 #include <linux/module.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30
31 #include <asm/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/cpufeature.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/extable.h>
38 #include <asm/insn.h>
39 #include <asm/kprobes.h>
40 #include <asm/traps.h>
41 #include <asm/smp.h>
42 #include <asm/stack_pointer.h>
43 #include <asm/stacktrace.h>
44 #include <asm/exception.h>
45 #include <asm/system_misc.h>
46 #include <asm/sysreg.h>
47
48 static const char *handler[]= {
49         "Synchronous Abort",
50         "IRQ",
51         "FIQ",
52         "Error"
53 };
54
55 int show_unhandled_signals = 0;
56
57 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
58 {
59         unsigned long addr = instruction_pointer(regs);
60         char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
61         int i;
62
63         if (user_mode(regs))
64                 return;
65
66         for (i = -4; i < 1; i++) {
67                 unsigned int val, bad;
68
69                 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
70
71                 if (!bad)
72                         p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
73                 else {
74                         p += sprintf(p, "bad PC value");
75                         break;
76                 }
77         }
78
79         printk("%sCode: %s\n", lvl, str);
80 }
81
82 #ifdef CONFIG_PREEMPT
83 #define S_PREEMPT " PREEMPT"
84 #elif defined(CONFIG_PREEMPT_RT)
85 #define S_PREEMPT " PREEMPT_RT"
86 #else
87 #define S_PREEMPT ""
88 #endif
89
90 #define S_SMP " SMP"
91
92 static int __die(const char *str, int err, struct pt_regs *regs)
93 {
94         static int die_counter;
95         int ret;
96
97         pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
98                  str, err, ++die_counter);
99
100         /* trap and error numbers are mostly meaningless on ARM */
101         ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
102         if (ret == NOTIFY_STOP)
103                 return ret;
104
105         print_modules();
106         show_regs(regs);
107
108         dump_kernel_instr(KERN_EMERG, regs);
109
110         return ret;
111 }
112
113 static DEFINE_RAW_SPINLOCK(die_lock);
114
115 /*
116  * This function is protected against re-entrancy.
117  */
118 void die(const char *str, struct pt_regs *regs, int err)
119 {
120         int ret;
121         unsigned long flags;
122
123         raw_spin_lock_irqsave(&die_lock, flags);
124
125         oops_enter();
126
127         console_verbose();
128         bust_spinlocks(1);
129         ret = __die(str, err, regs);
130
131         if (regs && kexec_should_crash(current))
132                 crash_kexec(regs);
133
134         bust_spinlocks(0);
135         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
136         oops_exit();
137
138         if (in_interrupt())
139                 panic("%s: Fatal exception in interrupt", str);
140         if (panic_on_oops)
141                 panic("%s: Fatal exception", str);
142
143         raw_spin_unlock_irqrestore(&die_lock, flags);
144
145         if (ret != NOTIFY_STOP)
146                 do_exit(SIGSEGV);
147 }
148
149 static void arm64_show_signal(int signo, const char *str)
150 {
151         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
152                                       DEFAULT_RATELIMIT_BURST);
153         struct task_struct *tsk = current;
154         unsigned int esr = tsk->thread.fault_code;
155         struct pt_regs *regs = task_pt_regs(tsk);
156
157         /* Leave if the signal won't be shown */
158         if (!show_unhandled_signals ||
159             !unhandled_signal(tsk, signo) ||
160             !__ratelimit(&rs))
161                 return;
162
163         pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
164         if (esr)
165                 pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
166
167         pr_cont("%s", str);
168         print_vma_addr(KERN_CONT " in ", regs->pc);
169         pr_cont("\n");
170         __show_regs(regs);
171 }
172
173 void arm64_force_sig_fault(int signo, int code, void __user *addr,
174                            const char *str)
175 {
176         arm64_show_signal(signo, str);
177         if (signo == SIGKILL)
178                 force_sig(SIGKILL);
179         else
180                 force_sig_fault(signo, code, addr);
181 }
182
183 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
184                             const char *str)
185 {
186         arm64_show_signal(SIGBUS, str);
187         force_sig_mceerr(code, addr, lsb);
188 }
189
190 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
191                                        const char *str)
192 {
193         arm64_show_signal(SIGTRAP, str);
194         force_sig_ptrace_errno_trap(errno, addr);
195 }
196
197 void arm64_notify_die(const char *str, struct pt_regs *regs,
198                       int signo, int sicode, void __user *addr,
199                       int err)
200 {
201         if (user_mode(regs)) {
202                 WARN_ON(regs != current_pt_regs());
203                 current->thread.fault_address = 0;
204                 current->thread.fault_code = err;
205
206                 arm64_force_sig_fault(signo, sicode, addr, str);
207         } else {
208                 die(str, regs, err);
209         }
210 }
211
212 #ifdef CONFIG_COMPAT
213 #define PSTATE_IT_1_0_SHIFT     25
214 #define PSTATE_IT_1_0_MASK      (0x3 << PSTATE_IT_1_0_SHIFT)
215 #define PSTATE_IT_7_2_SHIFT     10
216 #define PSTATE_IT_7_2_MASK      (0x3f << PSTATE_IT_7_2_SHIFT)
217
218 static u32 compat_get_it_state(struct pt_regs *regs)
219 {
220         u32 it, pstate = regs->pstate;
221
222         it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
223         it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
224
225         return it;
226 }
227
228 static void compat_set_it_state(struct pt_regs *regs, u32 it)
229 {
230         u32 pstate_it;
231
232         pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
233         pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
234
235         regs->pstate &= ~PSR_AA32_IT_MASK;
236         regs->pstate |= pstate_it;
237 }
238
239 static void advance_itstate(struct pt_regs *regs)
240 {
241         u32 it;
242
243         /* ARM mode */
244         if (!(regs->pstate & PSR_AA32_T_BIT) ||
245             !(regs->pstate & PSR_AA32_IT_MASK))
246                 return;
247
248         it  = compat_get_it_state(regs);
249
250         /*
251          * If this is the last instruction of the block, wipe the IT
252          * state. Otherwise advance it.
253          */
254         if (!(it & 7))
255                 it = 0;
256         else
257                 it = (it & 0xe0) | ((it << 1) & 0x1f);
258
259         compat_set_it_state(regs, it);
260 }
261 #else
262 static void advance_itstate(struct pt_regs *regs)
263 {
264 }
265 #endif
266
267 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
268 {
269         regs->pc += size;
270
271         /*
272          * If we were single stepping, we want to get the step exception after
273          * we return from the trap.
274          */
275         if (user_mode(regs))
276                 user_fastforward_single_step(current);
277
278         if (compat_user_mode(regs))
279                 advance_itstate(regs);
280         else
281                 regs->pstate &= ~PSR_BTYPE_MASK;
282 }
283
284 static LIST_HEAD(undef_hook);
285 static DEFINE_RAW_SPINLOCK(undef_lock);
286
287 void register_undef_hook(struct undef_hook *hook)
288 {
289         unsigned long flags;
290
291         raw_spin_lock_irqsave(&undef_lock, flags);
292         list_add(&hook->node, &undef_hook);
293         raw_spin_unlock_irqrestore(&undef_lock, flags);
294 }
295
296 void unregister_undef_hook(struct undef_hook *hook)
297 {
298         unsigned long flags;
299
300         raw_spin_lock_irqsave(&undef_lock, flags);
301         list_del(&hook->node);
302         raw_spin_unlock_irqrestore(&undef_lock, flags);
303 }
304
305 static int call_undef_hook(struct pt_regs *regs)
306 {
307         struct undef_hook *hook;
308         unsigned long flags;
309         u32 instr;
310         int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
311         void __user *pc = (void __user *)instruction_pointer(regs);
312
313         if (!user_mode(regs)) {
314                 __le32 instr_le;
315                 if (get_kernel_nofault(instr_le, (__force __le32 *)pc))
316                         goto exit;
317                 instr = le32_to_cpu(instr_le);
318         } else if (compat_thumb_mode(regs)) {
319                 /* 16-bit Thumb instruction */
320                 __le16 instr_le;
321                 if (get_user(instr_le, (__le16 __user *)pc))
322                         goto exit;
323                 instr = le16_to_cpu(instr_le);
324                 if (aarch32_insn_is_wide(instr)) {
325                         u32 instr2;
326
327                         if (get_user(instr_le, (__le16 __user *)(pc + 2)))
328                                 goto exit;
329                         instr2 = le16_to_cpu(instr_le);
330                         instr = (instr << 16) | instr2;
331                 }
332         } else {
333                 /* 32-bit ARM instruction */
334                 __le32 instr_le;
335                 if (get_user(instr_le, (__le32 __user *)pc))
336                         goto exit;
337                 instr = le32_to_cpu(instr_le);
338         }
339
340         raw_spin_lock_irqsave(&undef_lock, flags);
341         list_for_each_entry(hook, &undef_hook, node)
342                 if ((instr & hook->instr_mask) == hook->instr_val &&
343                         (regs->pstate & hook->pstate_mask) == hook->pstate_val)
344                         fn = hook->fn;
345
346         raw_spin_unlock_irqrestore(&undef_lock, flags);
347 exit:
348         return fn ? fn(regs, instr) : 1;
349 }
350
351 void force_signal_inject(int signal, int code, unsigned long address, unsigned int err)
352 {
353         const char *desc;
354         struct pt_regs *regs = current_pt_regs();
355
356         if (WARN_ON(!user_mode(regs)))
357                 return;
358
359         switch (signal) {
360         case SIGILL:
361                 desc = "undefined instruction";
362                 break;
363         case SIGSEGV:
364                 desc = "illegal memory access";
365                 break;
366         default:
367                 desc = "unknown or unrecoverable error";
368                 break;
369         }
370
371         /* Force signals we don't understand to SIGKILL */
372         if (WARN_ON(signal != SIGKILL &&
373                     siginfo_layout(signal, code) != SIL_FAULT)) {
374                 signal = SIGKILL;
375         }
376
377         arm64_notify_die(desc, regs, signal, code, (void __user *)address, err);
378 }
379
380 /*
381  * Set up process info to signal segmentation fault - called on access error.
382  */
383 void arm64_notify_segfault(unsigned long addr)
384 {
385         int code;
386
387         mmap_read_lock(current->mm);
388         if (find_vma(current->mm, addr) == NULL)
389                 code = SEGV_MAPERR;
390         else
391                 code = SEGV_ACCERR;
392         mmap_read_unlock(current->mm);
393
394         force_signal_inject(SIGSEGV, code, addr, 0);
395 }
396
397 void do_undefinstr(struct pt_regs *regs)
398 {
399         /* check for AArch32 breakpoint instructions */
400         if (!aarch32_break_handler(regs))
401                 return;
402
403         if (call_undef_hook(regs) == 0)
404                 return;
405
406         BUG_ON(!user_mode(regs));
407         force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
408 }
409 NOKPROBE_SYMBOL(do_undefinstr);
410
411 void do_bti(struct pt_regs *regs)
412 {
413         BUG_ON(!user_mode(regs));
414         force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
415 }
416 NOKPROBE_SYMBOL(do_bti);
417
418 void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr)
419 {
420         /*
421          * Unexpected FPAC exception or pointer authentication failure in
422          * the kernel: kill the task before it does any more harm.
423          */
424         BUG_ON(!user_mode(regs));
425         force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
426 }
427 NOKPROBE_SYMBOL(do_ptrauth_fault);
428
429 #define __user_cache_maint(insn, address, res)                  \
430         if (address >= user_addr_max()) {                       \
431                 res = -EFAULT;                                  \
432         } else {                                                \
433                 uaccess_ttbr0_enable();                         \
434                 asm volatile (                                  \
435                         "1:     " insn ", %1\n"                 \
436                         "       mov     %w0, #0\n"              \
437                         "2:\n"                                  \
438                         "       .pushsection .fixup,\"ax\"\n"   \
439                         "       .align  2\n"                    \
440                         "3:     mov     %w0, %w2\n"             \
441                         "       b       2b\n"                   \
442                         "       .popsection\n"                  \
443                         _ASM_EXTABLE(1b, 3b)                    \
444                         : "=r" (res)                            \
445                         : "r" (address), "i" (-EFAULT));        \
446                 uaccess_ttbr0_disable();                        \
447         }
448
449 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
450 {
451         unsigned long address;
452         int rt = ESR_ELx_SYS64_ISS_RT(esr);
453         int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
454         int ret = 0;
455
456         address = untagged_addr(pt_regs_read_reg(regs, rt));
457
458         switch (crm) {
459         case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:     /* DC CVAU, gets promoted */
460                 __user_cache_maint("dc civac", address, ret);
461                 break;
462         case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:     /* DC CVAC, gets promoted */
463                 __user_cache_maint("dc civac", address, ret);
464                 break;
465         case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:    /* DC CVADP */
466                 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
467                 break;
468         case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:     /* DC CVAP */
469                 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
470                 break;
471         case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:    /* DC CIVAC */
472                 __user_cache_maint("dc civac", address, ret);
473                 break;
474         case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:     /* IC IVAU */
475                 __user_cache_maint("ic ivau", address, ret);
476                 break;
477         default:
478                 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
479                 return;
480         }
481
482         if (ret)
483                 arm64_notify_segfault(address);
484         else
485                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
486 }
487
488 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
489 {
490         int rt = ESR_ELx_SYS64_ISS_RT(esr);
491         unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
492
493         if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
494                 /* Hide DIC so that we can trap the unnecessary maintenance...*/
495                 val &= ~BIT(CTR_DIC_SHIFT);
496
497                 /* ... and fake IminLine to reduce the number of traps. */
498                 val &= ~CTR_IMINLINE_MASK;
499                 val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
500         }
501
502         pt_regs_write_reg(regs, rt, val);
503
504         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
505 }
506
507 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
508 {
509         int rt = ESR_ELx_SYS64_ISS_RT(esr);
510
511         pt_regs_write_reg(regs, rt, arch_timer_read_counter());
512         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
513 }
514
515 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
516 {
517         int rt = ESR_ELx_SYS64_ISS_RT(esr);
518
519         pt_regs_write_reg(regs, rt, arch_timer_get_rate());
520         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
521 }
522
523 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
524 {
525         u32 sysreg, rt;
526
527         rt = ESR_ELx_SYS64_ISS_RT(esr);
528         sysreg = esr_sys64_to_sysreg(esr);
529
530         if (do_emulate_mrs(regs, sysreg, rt) != 0)
531                 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
532 }
533
534 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
535 {
536         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
537 }
538
539 struct sys64_hook {
540         unsigned int esr_mask;
541         unsigned int esr_val;
542         void (*handler)(unsigned int esr, struct pt_regs *regs);
543 };
544
545 static const struct sys64_hook sys64_hooks[] = {
546         {
547                 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
548                 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
549                 .handler = user_cache_maint_handler,
550         },
551         {
552                 /* Trap read access to CTR_EL0 */
553                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
554                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
555                 .handler = ctr_read_handler,
556         },
557         {
558                 /* Trap read access to CNTVCT_EL0 */
559                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
560                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
561                 .handler = cntvct_read_handler,
562         },
563         {
564                 /* Trap read access to CNTFRQ_EL0 */
565                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
566                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
567                 .handler = cntfrq_read_handler,
568         },
569         {
570                 /* Trap read access to CPUID registers */
571                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
572                 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
573                 .handler = mrs_handler,
574         },
575         {
576                 /* Trap WFI instructions executed in userspace */
577                 .esr_mask = ESR_ELx_WFx_MASK,
578                 .esr_val = ESR_ELx_WFx_WFI_VAL,
579                 .handler = wfi_handler,
580         },
581         {},
582 };
583
584 #ifdef CONFIG_COMPAT
585 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
586 {
587         int cond;
588
589         /* Only a T32 instruction can trap without CV being set */
590         if (!(esr & ESR_ELx_CV)) {
591                 u32 it;
592
593                 it = compat_get_it_state(regs);
594                 if (!it)
595                         return true;
596
597                 cond = it >> 4;
598         } else {
599                 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
600         }
601
602         return aarch32_opcode_cond_checks[cond](regs->pstate);
603 }
604
605 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
606 {
607         int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
608
609         pt_regs_write_reg(regs, reg, arch_timer_get_rate());
610         arm64_skip_faulting_instruction(regs, 4);
611 }
612
613 static const struct sys64_hook cp15_32_hooks[] = {
614         {
615                 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
616                 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
617                 .handler = compat_cntfrq_read_handler,
618         },
619         {},
620 };
621
622 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
623 {
624         int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
625         int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
626         u64 val = arch_timer_read_counter();
627
628         pt_regs_write_reg(regs, rt, lower_32_bits(val));
629         pt_regs_write_reg(regs, rt2, upper_32_bits(val));
630         arm64_skip_faulting_instruction(regs, 4);
631 }
632
633 static const struct sys64_hook cp15_64_hooks[] = {
634         {
635                 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
636                 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
637                 .handler = compat_cntvct_read_handler,
638         },
639         {},
640 };
641
642 void do_cp15instr(unsigned int esr, struct pt_regs *regs)
643 {
644         const struct sys64_hook *hook, *hook_base;
645
646         if (!cp15_cond_valid(esr, regs)) {
647                 /*
648                  * There is no T16 variant of a CP access, so we
649                  * always advance PC by 4 bytes.
650                  */
651                 arm64_skip_faulting_instruction(regs, 4);
652                 return;
653         }
654
655         switch (ESR_ELx_EC(esr)) {
656         case ESR_ELx_EC_CP15_32:
657                 hook_base = cp15_32_hooks;
658                 break;
659         case ESR_ELx_EC_CP15_64:
660                 hook_base = cp15_64_hooks;
661                 break;
662         default:
663                 do_undefinstr(regs);
664                 return;
665         }
666
667         for (hook = hook_base; hook->handler; hook++)
668                 if ((hook->esr_mask & esr) == hook->esr_val) {
669                         hook->handler(esr, regs);
670                         return;
671                 }
672
673         /*
674          * New cp15 instructions may previously have been undefined at
675          * EL0. Fall back to our usual undefined instruction handler
676          * so that we handle these consistently.
677          */
678         do_undefinstr(regs);
679 }
680 NOKPROBE_SYMBOL(do_cp15instr);
681 #endif
682
683 void do_sysinstr(unsigned int esr, struct pt_regs *regs)
684 {
685         const struct sys64_hook *hook;
686
687         for (hook = sys64_hooks; hook->handler; hook++)
688                 if ((hook->esr_mask & esr) == hook->esr_val) {
689                         hook->handler(esr, regs);
690                         return;
691                 }
692
693         /*
694          * New SYS instructions may previously have been undefined at EL0. Fall
695          * back to our usual undefined instruction handler so that we handle
696          * these consistently.
697          */
698         do_undefinstr(regs);
699 }
700 NOKPROBE_SYMBOL(do_sysinstr);
701
702 static const char *esr_class_str[] = {
703         [0 ... ESR_ELx_EC_MAX]          = "UNRECOGNIZED EC",
704         [ESR_ELx_EC_UNKNOWN]            = "Unknown/Uncategorized",
705         [ESR_ELx_EC_WFx]                = "WFI/WFE",
706         [ESR_ELx_EC_CP15_32]            = "CP15 MCR/MRC",
707         [ESR_ELx_EC_CP15_64]            = "CP15 MCRR/MRRC",
708         [ESR_ELx_EC_CP14_MR]            = "CP14 MCR/MRC",
709         [ESR_ELx_EC_CP14_LS]            = "CP14 LDC/STC",
710         [ESR_ELx_EC_FP_ASIMD]           = "ASIMD",
711         [ESR_ELx_EC_CP10_ID]            = "CP10 MRC/VMRS",
712         [ESR_ELx_EC_PAC]                = "PAC",
713         [ESR_ELx_EC_CP14_64]            = "CP14 MCRR/MRRC",
714         [ESR_ELx_EC_BTI]                = "BTI",
715         [ESR_ELx_EC_ILL]                = "PSTATE.IL",
716         [ESR_ELx_EC_SVC32]              = "SVC (AArch32)",
717         [ESR_ELx_EC_HVC32]              = "HVC (AArch32)",
718         [ESR_ELx_EC_SMC32]              = "SMC (AArch32)",
719         [ESR_ELx_EC_SVC64]              = "SVC (AArch64)",
720         [ESR_ELx_EC_HVC64]              = "HVC (AArch64)",
721         [ESR_ELx_EC_SMC64]              = "SMC (AArch64)",
722         [ESR_ELx_EC_SYS64]              = "MSR/MRS (AArch64)",
723         [ESR_ELx_EC_SVE]                = "SVE",
724         [ESR_ELx_EC_ERET]               = "ERET/ERETAA/ERETAB",
725         [ESR_ELx_EC_FPAC]               = "FPAC",
726         [ESR_ELx_EC_IMP_DEF]            = "EL3 IMP DEF",
727         [ESR_ELx_EC_IABT_LOW]           = "IABT (lower EL)",
728         [ESR_ELx_EC_IABT_CUR]           = "IABT (current EL)",
729         [ESR_ELx_EC_PC_ALIGN]           = "PC Alignment",
730         [ESR_ELx_EC_DABT_LOW]           = "DABT (lower EL)",
731         [ESR_ELx_EC_DABT_CUR]           = "DABT (current EL)",
732         [ESR_ELx_EC_SP_ALIGN]           = "SP Alignment",
733         [ESR_ELx_EC_FP_EXC32]           = "FP (AArch32)",
734         [ESR_ELx_EC_FP_EXC64]           = "FP (AArch64)",
735         [ESR_ELx_EC_SERROR]             = "SError",
736         [ESR_ELx_EC_BREAKPT_LOW]        = "Breakpoint (lower EL)",
737         [ESR_ELx_EC_BREAKPT_CUR]        = "Breakpoint (current EL)",
738         [ESR_ELx_EC_SOFTSTP_LOW]        = "Software Step (lower EL)",
739         [ESR_ELx_EC_SOFTSTP_CUR]        = "Software Step (current EL)",
740         [ESR_ELx_EC_WATCHPT_LOW]        = "Watchpoint (lower EL)",
741         [ESR_ELx_EC_WATCHPT_CUR]        = "Watchpoint (current EL)",
742         [ESR_ELx_EC_BKPT32]             = "BKPT (AArch32)",
743         [ESR_ELx_EC_VECTOR32]           = "Vector catch (AArch32)",
744         [ESR_ELx_EC_BRK64]              = "BRK (AArch64)",
745 };
746
747 const char *esr_get_class_string(u32 esr)
748 {
749         return esr_class_str[ESR_ELx_EC(esr)];
750 }
751
752 /*
753  * bad_mode handles the impossible case in the exception vector. This is always
754  * fatal.
755  */
756 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
757 {
758         console_verbose();
759
760         pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
761                 handler[reason], smp_processor_id(), esr,
762                 esr_get_class_string(esr));
763
764         __show_regs(regs);
765         local_daif_mask();
766         panic("bad mode");
767 }
768
769 /*
770  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
771  * exceptions taken from EL0. Unlike bad_mode, this returns.
772  */
773 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
774 {
775         void __user *pc = (void __user *)instruction_pointer(regs);
776
777         current->thread.fault_address = 0;
778         current->thread.fault_code = esr;
779
780         arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
781                               "Bad EL0 synchronous exception");
782 }
783
784 #ifdef CONFIG_VMAP_STACK
785
786 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
787         __aligned(16);
788
789 asmlinkage void handle_bad_stack(struct pt_regs *regs)
790 {
791         unsigned long tsk_stk = (unsigned long)current->stack;
792         unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
793         unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
794         unsigned int esr = read_sysreg(esr_el1);
795         unsigned long far = read_sysreg(far_el1);
796
797         console_verbose();
798         pr_emerg("Insufficient stack space to handle exception!");
799
800         pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
801         pr_emerg("FAR: 0x%016lx\n", far);
802
803         pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
804                  tsk_stk, tsk_stk + THREAD_SIZE);
805         pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
806                  irq_stk, irq_stk + IRQ_STACK_SIZE);
807         pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
808                  ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
809
810         __show_regs(regs);
811
812         /*
813          * We use nmi_panic to limit the potential for recusive overflows, and
814          * to get a better stack trace.
815          */
816         nmi_panic(NULL, "kernel stack overflow");
817         cpu_park_loop();
818 }
819 #endif
820
821 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
822 {
823         console_verbose();
824
825         pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
826                 smp_processor_id(), esr, esr_get_class_string(esr));
827         if (regs)
828                 __show_regs(regs);
829
830         nmi_panic(regs, "Asynchronous SError Interrupt");
831
832         cpu_park_loop();
833         unreachable();
834 }
835
836 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
837 {
838         u32 aet = arm64_ras_serror_get_severity(esr);
839
840         switch (aet) {
841         case ESR_ELx_AET_CE:    /* corrected error */
842         case ESR_ELx_AET_UEO:   /* restartable, not yet consumed */
843                 /*
844                  * The CPU can make progress. We may take UEO again as
845                  * a more severe error.
846                  */
847                 return false;
848
849         case ESR_ELx_AET_UEU:   /* Uncorrected Unrecoverable */
850         case ESR_ELx_AET_UER:   /* Uncorrected Recoverable */
851                 /*
852                  * The CPU can't make progress. The exception may have
853                  * been imprecise.
854                  *
855                  * Neoverse-N1 #1349291 means a non-KVM SError reported as
856                  * Unrecoverable should be treated as Uncontainable. We
857                  * call arm64_serror_panic() in both cases.
858                  */
859                 return true;
860
861         case ESR_ELx_AET_UC:    /* Uncontainable or Uncategorized error */
862         default:
863                 /* Error has been silently propagated */
864                 arm64_serror_panic(regs, esr);
865         }
866 }
867
868 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
869 {
870         nmi_enter();
871
872         /* non-RAS errors are not containable */
873         if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
874                 arm64_serror_panic(regs, esr);
875
876         nmi_exit();
877 }
878
879 asmlinkage void enter_from_user_mode(void)
880 {
881         CT_WARN_ON(ct_state() != CONTEXT_USER);
882         user_exit_irqoff();
883 }
884 NOKPROBE_SYMBOL(enter_from_user_mode);
885
886 /* GENERIC_BUG traps */
887
888 int is_valid_bugaddr(unsigned long addr)
889 {
890         /*
891          * bug_handler() only called for BRK #BUG_BRK_IMM.
892          * So the answer is trivial -- any spurious instances with no
893          * bug table entry will be rejected by report_bug() and passed
894          * back to the debug-monitors code and handled as a fatal
895          * unexpected debug exception.
896          */
897         return 1;
898 }
899
900 static int bug_handler(struct pt_regs *regs, unsigned int esr)
901 {
902         switch (report_bug(regs->pc, regs)) {
903         case BUG_TRAP_TYPE_BUG:
904                 die("Oops - BUG", regs, 0);
905                 break;
906
907         case BUG_TRAP_TYPE_WARN:
908                 break;
909
910         default:
911                 /* unknown/unrecognised bug trap type */
912                 return DBG_HOOK_ERROR;
913         }
914
915         /* If thread survives, skip over the BUG instruction and continue: */
916         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
917         return DBG_HOOK_HANDLED;
918 }
919
920 static struct break_hook bug_break_hook = {
921         .fn = bug_handler,
922         .imm = BUG_BRK_IMM,
923 };
924
925 static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr)
926 {
927         pr_err("%s generated an invalid instruction at %pS!\n",
928                 in_bpf_jit(regs) ? "BPF JIT" : "Kernel text patching",
929                 (void *)instruction_pointer(regs));
930
931         /* We cannot handle this */
932         return DBG_HOOK_ERROR;
933 }
934
935 static struct break_hook fault_break_hook = {
936         .fn = reserved_fault_handler,
937         .imm = FAULT_BRK_IMM,
938 };
939
940 #ifdef CONFIG_KASAN_SW_TAGS
941
942 #define KASAN_ESR_RECOVER       0x20
943 #define KASAN_ESR_WRITE 0x10
944 #define KASAN_ESR_SIZE_MASK     0x0f
945 #define KASAN_ESR_SIZE(esr)     (1 << ((esr) & KASAN_ESR_SIZE_MASK))
946
947 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
948 {
949         bool recover = esr & KASAN_ESR_RECOVER;
950         bool write = esr & KASAN_ESR_WRITE;
951         size_t size = KASAN_ESR_SIZE(esr);
952         u64 addr = regs->regs[0];
953         u64 pc = regs->pc;
954
955         kasan_report(addr, size, write, pc);
956
957         /*
958          * The instrumentation allows to control whether we can proceed after
959          * a crash was detected. This is done by passing the -recover flag to
960          * the compiler. Disabling recovery allows to generate more compact
961          * code.
962          *
963          * Unfortunately disabling recovery doesn't work for the kernel right
964          * now. KASAN reporting is disabled in some contexts (for example when
965          * the allocator accesses slab object metadata; this is controlled by
966          * current->kasan_depth). All these accesses are detected by the tool,
967          * even though the reports for them are not printed.
968          *
969          * This is something that might be fixed at some point in the future.
970          */
971         if (!recover)
972                 die("Oops - KASAN", regs, 0);
973
974         /* If thread survives, skip over the brk instruction and continue: */
975         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
976         return DBG_HOOK_HANDLED;
977 }
978
979 static struct break_hook kasan_break_hook = {
980         .fn     = kasan_handler,
981         .imm    = KASAN_BRK_IMM,
982         .mask   = KASAN_BRK_MASK,
983 };
984 #endif
985
986 /*
987  * Initial handler for AArch64 BRK exceptions
988  * This handler only used until debug_traps_init().
989  */
990 int __init early_brk64(unsigned long addr, unsigned int esr,
991                 struct pt_regs *regs)
992 {
993 #ifdef CONFIG_KASAN_SW_TAGS
994         unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
995
996         if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
997                 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
998 #endif
999         return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1000 }
1001
1002 void __init trap_init(void)
1003 {
1004         register_kernel_break_hook(&bug_break_hook);
1005         register_kernel_break_hook(&fault_break_hook);
1006 #ifdef CONFIG_KASAN_SW_TAGS
1007         register_kernel_break_hook(&kasan_break_hook);
1008 #endif
1009         debug_traps_init();
1010 }