Merge tag 'fs.rt.v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / machine_kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec for arm64
4  *
5  * Copyright (C) Linaro.
6  * Copyright (C) Huawei Futurewei Technologies.
7  */
8
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/kexec.h>
13 #include <linux/page-flags.h>
14 #include <linux/set_memory.h>
15 #include <linux/smp.h>
16
17 #include <asm/cacheflush.h>
18 #include <asm/cpu_ops.h>
19 #include <asm/daifflags.h>
20 #include <asm/memory.h>
21 #include <asm/mmu.h>
22 #include <asm/mmu_context.h>
23 #include <asm/page.h>
24 #include <asm/sections.h>
25 #include <asm/trans_pgd.h>
26
27 /**
28  * kexec_image_info - For debugging output.
29  */
30 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
31 static void _kexec_image_info(const char *func, int line,
32         const struct kimage *kimage)
33 {
34         unsigned long i;
35
36         pr_debug("%s:%d:\n", func, line);
37         pr_debug("  kexec kimage info:\n");
38         pr_debug("    type:        %d\n", kimage->type);
39         pr_debug("    start:       %lx\n", kimage->start);
40         pr_debug("    head:        %lx\n", kimage->head);
41         pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
42         pr_debug("    dtb_mem: %pa\n", &kimage->arch.dtb_mem);
43         pr_debug("    kern_reloc: %pa\n", &kimage->arch.kern_reloc);
44         pr_debug("    el2_vectors: %pa\n", &kimage->arch.el2_vectors);
45
46         for (i = 0; i < kimage->nr_segments; i++) {
47                 pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
48                         i,
49                         kimage->segment[i].mem,
50                         kimage->segment[i].mem + kimage->segment[i].memsz,
51                         kimage->segment[i].memsz,
52                         kimage->segment[i].memsz /  PAGE_SIZE);
53         }
54 }
55
56 void machine_kexec_cleanup(struct kimage *kimage)
57 {
58         /* Empty routine needed to avoid build errors. */
59 }
60
61 /**
62  * machine_kexec_prepare - Prepare for a kexec reboot.
63  *
64  * Called from the core kexec code when a kernel image is loaded.
65  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
66  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
67  */
68 int machine_kexec_prepare(struct kimage *kimage)
69 {
70         if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
71                 pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
72                 return -EBUSY;
73         }
74
75         return 0;
76 }
77
78 /**
79  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
80  */
81 static void kexec_segment_flush(const struct kimage *kimage)
82 {
83         unsigned long i;
84
85         pr_debug("%s:\n", __func__);
86
87         for (i = 0; i < kimage->nr_segments; i++) {
88                 pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
89                         i,
90                         kimage->segment[i].mem,
91                         kimage->segment[i].mem + kimage->segment[i].memsz,
92                         kimage->segment[i].memsz,
93                         kimage->segment[i].memsz /  PAGE_SIZE);
94
95                 dcache_clean_inval_poc(
96                         (unsigned long)phys_to_virt(kimage->segment[i].mem),
97                         (unsigned long)phys_to_virt(kimage->segment[i].mem) +
98                                 kimage->segment[i].memsz);
99         }
100 }
101
102 /* Allocates pages for kexec page table */
103 static void *kexec_page_alloc(void *arg)
104 {
105         struct kimage *kimage = (struct kimage *)arg;
106         struct page *page = kimage_alloc_control_pages(kimage, 0);
107         void *vaddr = NULL;
108
109         if (!page)
110                 return NULL;
111
112         vaddr = page_address(page);
113         memset(vaddr, 0, PAGE_SIZE);
114
115         return vaddr;
116 }
117
118 int machine_kexec_post_load(struct kimage *kimage)
119 {
120         int rc;
121         pgd_t *trans_pgd;
122         void *reloc_code = page_to_virt(kimage->control_code_page);
123         long reloc_size;
124         struct trans_pgd_info info = {
125                 .trans_alloc_page       = kexec_page_alloc,
126                 .trans_alloc_arg        = kimage,
127         };
128
129         /* If in place, relocation is not used, only flush next kernel */
130         if (kimage->head & IND_DONE) {
131                 kexec_segment_flush(kimage);
132                 kexec_image_info(kimage);
133                 return 0;
134         }
135
136         kimage->arch.el2_vectors = 0;
137         if (is_hyp_nvhe()) {
138                 rc = trans_pgd_copy_el2_vectors(&info,
139                                                 &kimage->arch.el2_vectors);
140                 if (rc)
141                         return rc;
142         }
143
144         /* Create a copy of the linear map */
145         trans_pgd = kexec_page_alloc(kimage);
146         if (!trans_pgd)
147                 return -ENOMEM;
148         rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END);
149         if (rc)
150                 return rc;
151         kimage->arch.ttbr1 = __pa(trans_pgd);
152         kimage->arch.zero_page = __pa_symbol(empty_zero_page);
153
154         reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start;
155         memcpy(reloc_code, __relocate_new_kernel_start, reloc_size);
156         kimage->arch.kern_reloc = __pa(reloc_code);
157         rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0,
158                                   &kimage->arch.t0sz, reloc_code);
159         if (rc)
160                 return rc;
161         kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage;
162
163         /* Flush the reloc_code in preparation for its execution. */
164         dcache_clean_inval_poc((unsigned long)reloc_code,
165                                (unsigned long)reloc_code + reloc_size);
166         icache_inval_pou((uintptr_t)reloc_code,
167                          (uintptr_t)reloc_code + reloc_size);
168         kexec_image_info(kimage);
169
170         return 0;
171 }
172
173 /**
174  * machine_kexec - Do the kexec reboot.
175  *
176  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
177  */
178 void machine_kexec(struct kimage *kimage)
179 {
180         bool in_kexec_crash = (kimage == kexec_crash_image);
181         bool stuck_cpus = cpus_are_stuck_in_kernel();
182
183         /*
184          * New cpus may have become stuck_in_kernel after we loaded the image.
185          */
186         BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
187         WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
188                 "Some CPUs may be stale, kdump will be unreliable.\n");
189
190         pr_info("Bye!\n");
191
192         local_daif_mask();
193
194         /*
195          * Both restart and kernel_reloc will shutdown the MMU, disable data
196          * caches. However, restart will start new kernel or purgatory directly,
197          * kernel_reloc contains the body of arm64_relocate_new_kernel
198          * In kexec case, kimage->start points to purgatory assuming that
199          * kernel entry and dtb address are embedded in purgatory by
200          * userspace (kexec-tools).
201          * In kexec_file case, the kernel starts directly without purgatory.
202          */
203         if (kimage->head & IND_DONE) {
204                 typeof(cpu_soft_restart) *restart;
205
206                 cpu_install_idmap();
207                 restart = (void *)__pa_symbol(function_nocfi(cpu_soft_restart));
208                 restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem,
209                         0, 0);
210         } else {
211                 void (*kernel_reloc)(struct kimage *kimage);
212
213                 if (is_hyp_nvhe())
214                         __hyp_set_vectors(kimage->arch.el2_vectors);
215                 cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz);
216                 kernel_reloc = (void *)kimage->arch.kern_reloc;
217                 kernel_reloc(kimage);
218         }
219
220         BUG(); /* Should never get here. */
221 }
222
223 static void machine_kexec_mask_interrupts(void)
224 {
225         unsigned int i;
226         struct irq_desc *desc;
227
228         for_each_irq_desc(i, desc) {
229                 struct irq_chip *chip;
230                 int ret;
231
232                 chip = irq_desc_get_chip(desc);
233                 if (!chip)
234                         continue;
235
236                 /*
237                  * First try to remove the active state. If this
238                  * fails, try to EOI the interrupt.
239                  */
240                 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
241
242                 if (ret && irqd_irq_inprogress(&desc->irq_data) &&
243                     chip->irq_eoi)
244                         chip->irq_eoi(&desc->irq_data);
245
246                 if (chip->irq_mask)
247                         chip->irq_mask(&desc->irq_data);
248
249                 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
250                         chip->irq_disable(&desc->irq_data);
251         }
252 }
253
254 /**
255  * machine_crash_shutdown - shutdown non-crashing cpus and save registers
256  */
257 void machine_crash_shutdown(struct pt_regs *regs)
258 {
259         local_irq_disable();
260
261         /* shutdown non-crashing cpus */
262         crash_smp_send_stop();
263
264         /* for crashing cpu */
265         crash_save_cpu(regs, smp_processor_id());
266         machine_kexec_mask_interrupts();
267
268         pr_info("Starting crashdump kernel...\n");
269 }
270
271 void arch_kexec_protect_crashkres(void)
272 {
273         int i;
274
275         for (i = 0; i < kexec_crash_image->nr_segments; i++)
276                 set_memory_valid(
277                         __phys_to_virt(kexec_crash_image->segment[i].mem),
278                         kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
279 }
280
281 void arch_kexec_unprotect_crashkres(void)
282 {
283         int i;
284
285         for (i = 0; i < kexec_crash_image->nr_segments; i++)
286                 set_memory_valid(
287                         __phys_to_virt(kexec_crash_image->segment[i].mem),
288                         kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
289 }
290
291 #ifdef CONFIG_HIBERNATION
292 /*
293  * To preserve the crash dump kernel image, the relevant memory segments
294  * should be mapped again around the hibernation.
295  */
296 void crash_prepare_suspend(void)
297 {
298         if (kexec_crash_image)
299                 arch_kexec_unprotect_crashkres();
300 }
301
302 void crash_post_resume(void)
303 {
304         if (kexec_crash_image)
305                 arch_kexec_protect_crashkres();
306 }
307
308 /*
309  * crash_is_nosave
310  *
311  * Return true only if a page is part of reserved memory for crash dump kernel,
312  * but does not hold any data of loaded kernel image.
313  *
314  * Note that all the pages in crash dump kernel memory have been initially
315  * marked as Reserved as memory was allocated via memblock_reserve().
316  *
317  * In hibernation, the pages which are Reserved and yet "nosave" are excluded
318  * from the hibernation iamge. crash_is_nosave() does thich check for crash
319  * dump kernel and will reduce the total size of hibernation image.
320  */
321
322 bool crash_is_nosave(unsigned long pfn)
323 {
324         int i;
325         phys_addr_t addr;
326
327         if (!crashk_res.end)
328                 return false;
329
330         /* in reserved memory? */
331         addr = __pfn_to_phys(pfn);
332         if ((addr < crashk_res.start) || (crashk_res.end < addr))
333                 return false;
334
335         if (!kexec_crash_image)
336                 return true;
337
338         /* not part of loaded kernel image? */
339         for (i = 0; i < kexec_crash_image->nr_segments; i++)
340                 if (addr >= kexec_crash_image->segment[i].mem &&
341                                 addr < (kexec_crash_image->segment[i].mem +
342                                         kexec_crash_image->segment[i].memsz))
343                         return false;
344
345         return true;
346 }
347
348 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
349 {
350         unsigned long addr;
351         struct page *page;
352
353         for (addr = begin; addr < end; addr += PAGE_SIZE) {
354                 page = phys_to_page(addr);
355                 free_reserved_page(page);
356         }
357 }
358 #endif /* CONFIG_HIBERNATION */