Merge branch 'for-spi' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT        \
41                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46                                  COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56         /* file-wide pr_fmt adds "CPU features: " prefix */
57         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58         return 0;
59 }
60
61 static struct notifier_block cpu_hwcaps_notifier = {
62         .notifier_call = dump_cpu_hwcaps
63 };
64
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67         atomic_notifier_chain_register(&panic_notifier_list,
68                                        &cpu_hwcaps_notifier);
69         return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77         {                                               \
78                 .sign = SIGNED,                         \
79                 .visible = VISIBLE,                     \
80                 .strict = STRICT,                       \
81                 .type = TYPE,                           \
82                 .shift = SHIFT,                         \
83                 .width = WIDTH,                         \
84                 .safe_val = SAFE_VAL,                   \
85         }
86
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94
95 #define ARM64_FTR_END                                   \
96         {                                               \
97                 .width = 0,                             \
98         }
99
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
104
105 /*
106  * NOTE: Any changes to the visibility of features should be kept in
107  * sync with the documentation of the CPU feature register ABI.
108  */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116         ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123         ARM64_FTR_END,
124 };
125
126 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
127         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
128         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
129         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
130         /* Linux doesn't care about the EL3 */
131         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
134         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
135         ARM64_FTR_END,
136 };
137
138 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
139         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
140         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
141         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
142         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
143         /* Linux shouldn't care about secure memory */
144         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
145         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
147         /*
148          * Differing PARange is fine as long as all peripherals and memory are mapped
149          * within the minimum PARange of all CPUs
150          */
151         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
152         ARM64_FTR_END,
153 };
154
155 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
156         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
157         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
162         ARM64_FTR_END,
163 };
164
165 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
166         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
171         ARM64_FTR_END,
172 };
173
174 static const struct arm64_ftr_bits ftr_ctr[] = {
175         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
176         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
177         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
179         /*
180          * Linux can handle differing I-cache policies. Userspace JITs will
181          * make use of *minLine.
182          * If we have differing I-cache policies, report it as the weakest - VIPT.
183          */
184         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
186         ARM64_FTR_END,
187 };
188
189 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
190         .name           = "SYS_CTR_EL0",
191         .ftr_bits       = ftr_ctr
192 };
193
194 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
195         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),        /* InnerShr */
196         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),    /* FCSE */
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),    /* TCM */
199         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* ShareLvl */
200         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
201         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),     /* PMSA */
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),     /* VMSA */
203         ARM64_FTR_END,
204 };
205
206 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
212         /*
213          * We can instantiate multiple PMU instances with different levels
214          * of support.
215          */
216         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_mvfr2[] = {
223         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* FPMisc */
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* SIMDMisc */
225         ARM64_FTR_END,
226 };
227
228 static const struct arm64_ftr_bits ftr_dczid[] = {
229         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
230         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
231         ARM64_FTR_END,
232 };
233
234
235 static const struct arm64_ftr_bits ftr_id_isar5[] = {
236         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
242         ARM64_FTR_END,
243 };
244
245 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* ac2 */
247         ARM64_FTR_END,
248 };
249
250 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* State3 */
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),             /* State2 */
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* State1 */
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* State0 */
255         ARM64_FTR_END,
256 };
257
258 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
260         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
266         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
267         ARM64_FTR_END,
268 };
269
270 /*
271  * Common ftr bits for a 32bit register with all hidden, strict
272  * attributes, with 4bit feature fields and a default safe value of
273  * 0. Covers the following 32bit registers:
274  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
275  */
276 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
285         ARM64_FTR_END,
286 };
287
288 /* Table for a single 32bit feature value */
289 static const struct arm64_ftr_bits ftr_single32[] = {
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
291         ARM64_FTR_END,
292 };
293
294 static const struct arm64_ftr_bits ftr_raz[] = {
295         ARM64_FTR_END,
296 };
297
298 #define ARM64_FTR_REG(id, table) {              \
299         .sys_id = id,                           \
300         .reg =  &(struct arm64_ftr_reg){        \
301                 .name = #id,                    \
302                 .ftr_bits = &((table)[0]),      \
303         }}
304
305 static const struct __ftr_reg_entry {
306         u32                     sys_id;
307         struct arm64_ftr_reg    *reg;
308 } arm64_ftr_regs[] = {
309
310         /* Op1 = 0, CRn = 0, CRm = 1 */
311         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
312         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
313         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
314         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
315         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
316         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
317         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
318
319         /* Op1 = 0, CRn = 0, CRm = 2 */
320         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
321         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
322         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
323         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
324         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
325         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
326         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
327
328         /* Op1 = 0, CRn = 0, CRm = 3 */
329         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
330         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
331         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
332
333         /* Op1 = 0, CRn = 0, CRm = 4 */
334         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
335         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
336
337         /* Op1 = 0, CRn = 0, CRm = 5 */
338         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
339         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
340
341         /* Op1 = 0, CRn = 0, CRm = 6 */
342         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
343         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
344
345         /* Op1 = 0, CRn = 0, CRm = 7 */
346         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
347         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
348         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
349
350         /* Op1 = 3, CRn = 0, CRm = 0 */
351         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
352         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
353
354         /* Op1 = 3, CRn = 14, CRm = 0 */
355         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
356 };
357
358 static int search_cmp_ftr_reg(const void *id, const void *regp)
359 {
360         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
361 }
362
363 /*
364  * get_arm64_ftr_reg - Lookup a feature register entry using its
365  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
366  * ascending order of sys_id , we use binary search to find a matching
367  * entry.
368  *
369  * returns - Upon success,  matching ftr_reg entry for id.
370  *         - NULL on failure. It is upto the caller to decide
371  *           the impact of a failure.
372  */
373 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
374 {
375         const struct __ftr_reg_entry *ret;
376
377         ret = bsearch((const void *)(unsigned long)sys_id,
378                         arm64_ftr_regs,
379                         ARRAY_SIZE(arm64_ftr_regs),
380                         sizeof(arm64_ftr_regs[0]),
381                         search_cmp_ftr_reg);
382         if (ret)
383                 return ret->reg;
384         return NULL;
385 }
386
387 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
388                                s64 ftr_val)
389 {
390         u64 mask = arm64_ftr_mask(ftrp);
391
392         reg &= ~mask;
393         reg |= (ftr_val << ftrp->shift) & mask;
394         return reg;
395 }
396
397 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
398                                 s64 cur)
399 {
400         s64 ret = 0;
401
402         switch (ftrp->type) {
403         case FTR_EXACT:
404                 ret = ftrp->safe_val;
405                 break;
406         case FTR_LOWER_SAFE:
407                 ret = new < cur ? new : cur;
408                 break;
409         case FTR_HIGHER_SAFE:
410                 ret = new > cur ? new : cur;
411                 break;
412         default:
413                 BUG();
414         }
415
416         return ret;
417 }
418
419 static void __init sort_ftr_regs(void)
420 {
421         int i;
422
423         /* Check that the array is sorted so that we can do the binary search */
424         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
425                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
426 }
427
428 /*
429  * Initialise the CPU feature register from Boot CPU values.
430  * Also initiliases the strict_mask for the register.
431  * Any bits that are not covered by an arm64_ftr_bits entry are considered
432  * RES0 for the system-wide value, and must strictly match.
433  */
434 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
435 {
436         u64 val = 0;
437         u64 strict_mask = ~0x0ULL;
438         u64 user_mask = 0;
439         u64 valid_mask = 0;
440
441         const struct arm64_ftr_bits *ftrp;
442         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
443
444         BUG_ON(!reg);
445
446         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
447                 u64 ftr_mask = arm64_ftr_mask(ftrp);
448                 s64 ftr_new = arm64_ftr_value(ftrp, new);
449
450                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
451
452                 valid_mask |= ftr_mask;
453                 if (!ftrp->strict)
454                         strict_mask &= ~ftr_mask;
455                 if (ftrp->visible)
456                         user_mask |= ftr_mask;
457                 else
458                         reg->user_val = arm64_ftr_set_value(ftrp,
459                                                             reg->user_val,
460                                                             ftrp->safe_val);
461         }
462
463         val &= valid_mask;
464
465         reg->sys_val = val;
466         reg->strict_mask = strict_mask;
467         reg->user_mask = user_mask;
468 }
469
470 void __init init_cpu_features(struct cpuinfo_arm64 *info)
471 {
472         /* Before we start using the tables, make sure it is sorted */
473         sort_ftr_regs();
474
475         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
476         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
477         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
478         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
479         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
480         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
481         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
482         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
483         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
484         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
485         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
486         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
487
488         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
489                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
490                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
491                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
492                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
493                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
494                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
495                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
496                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
497                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
498                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
499                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
500                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
501                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
502                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
503                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
504                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
505         }
506
507 }
508
509 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
510 {
511         const struct arm64_ftr_bits *ftrp;
512
513         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
514                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
515                 s64 ftr_new = arm64_ftr_value(ftrp, new);
516
517                 if (ftr_cur == ftr_new)
518                         continue;
519                 /* Find a safe value */
520                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
521                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
522         }
523
524 }
525
526 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
527 {
528         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
529
530         BUG_ON(!regp);
531         update_cpu_ftr_reg(regp, val);
532         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
533                 return 0;
534         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
535                         regp->name, boot, cpu, val);
536         return 1;
537 }
538
539 /*
540  * Update system wide CPU feature registers with the values from a
541  * non-boot CPU. Also performs SANITY checks to make sure that there
542  * aren't any insane variations from that of the boot CPU.
543  */
544 void update_cpu_features(int cpu,
545                          struct cpuinfo_arm64 *info,
546                          struct cpuinfo_arm64 *boot)
547 {
548         int taint = 0;
549
550         /*
551          * The kernel can handle differing I-cache policies, but otherwise
552          * caches should look identical. Userspace JITs will make use of
553          * *minLine.
554          */
555         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
556                                       info->reg_ctr, boot->reg_ctr);
557
558         /*
559          * Userspace may perform DC ZVA instructions. Mismatched block sizes
560          * could result in too much or too little memory being zeroed if a
561          * process is preempted and migrated between CPUs.
562          */
563         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
564                                       info->reg_dczid, boot->reg_dczid);
565
566         /* If different, timekeeping will be broken (especially with KVM) */
567         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
568                                       info->reg_cntfrq, boot->reg_cntfrq);
569
570         /*
571          * The kernel uses self-hosted debug features and expects CPUs to
572          * support identical debug features. We presently need CTX_CMPs, WRPs,
573          * and BRPs to be identical.
574          * ID_AA64DFR1 is currently RES0.
575          */
576         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
577                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
578         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
579                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
580         /*
581          * Even in big.LITTLE, processors should be identical instruction-set
582          * wise.
583          */
584         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
585                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
586         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
587                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
588
589         /*
590          * Differing PARange support is fine as long as all peripherals and
591          * memory are mapped within the minimum PARange of all CPUs.
592          * Linux should not care about secure memory.
593          */
594         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
595                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
596         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
597                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
598         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
599                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
600
601         /*
602          * EL3 is not our concern.
603          * ID_AA64PFR1 is currently RES0.
604          */
605         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
606                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
607         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
608                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
609
610         /*
611          * If we have AArch32, we care about 32-bit features for compat.
612          * If the system doesn't support AArch32, don't update them.
613          */
614         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
615                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
616
617                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
618                                         info->reg_id_dfr0, boot->reg_id_dfr0);
619                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
620                                         info->reg_id_isar0, boot->reg_id_isar0);
621                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
622                                         info->reg_id_isar1, boot->reg_id_isar1);
623                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
624                                         info->reg_id_isar2, boot->reg_id_isar2);
625                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
626                                         info->reg_id_isar3, boot->reg_id_isar3);
627                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
628                                         info->reg_id_isar4, boot->reg_id_isar4);
629                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
630                                         info->reg_id_isar5, boot->reg_id_isar5);
631
632                 /*
633                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
634                  * ACTLR formats could differ across CPUs and therefore would have to
635                  * be trapped for virtualization anyway.
636                  */
637                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
638                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
639                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
640                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
641                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
642                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
643                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
644                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
645                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
646                                         info->reg_id_pfr0, boot->reg_id_pfr0);
647                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
648                                         info->reg_id_pfr1, boot->reg_id_pfr1);
649                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
650                                         info->reg_mvfr0, boot->reg_mvfr0);
651                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
652                                         info->reg_mvfr1, boot->reg_mvfr1);
653                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
654                                         info->reg_mvfr2, boot->reg_mvfr2);
655         }
656
657         /*
658          * Mismatched CPU features are a recipe for disaster. Don't even
659          * pretend to support them.
660          */
661         if (taint) {
662                 pr_warn_once("Unsupported CPU feature variation detected.\n");
663                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
664         }
665 }
666
667 u64 read_sanitised_ftr_reg(u32 id)
668 {
669         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
670
671         /* We shouldn't get a request for an unsupported register */
672         BUG_ON(!regp);
673         return regp->sys_val;
674 }
675
676 #define read_sysreg_case(r)     \
677         case r:         return read_sysreg_s(r)
678
679 /*
680  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
681  * Read the system register on the current CPU
682  */
683 static u64 __read_sysreg_by_encoding(u32 sys_id)
684 {
685         switch (sys_id) {
686         read_sysreg_case(SYS_ID_PFR0_EL1);
687         read_sysreg_case(SYS_ID_PFR1_EL1);
688         read_sysreg_case(SYS_ID_DFR0_EL1);
689         read_sysreg_case(SYS_ID_MMFR0_EL1);
690         read_sysreg_case(SYS_ID_MMFR1_EL1);
691         read_sysreg_case(SYS_ID_MMFR2_EL1);
692         read_sysreg_case(SYS_ID_MMFR3_EL1);
693         read_sysreg_case(SYS_ID_ISAR0_EL1);
694         read_sysreg_case(SYS_ID_ISAR1_EL1);
695         read_sysreg_case(SYS_ID_ISAR2_EL1);
696         read_sysreg_case(SYS_ID_ISAR3_EL1);
697         read_sysreg_case(SYS_ID_ISAR4_EL1);
698         read_sysreg_case(SYS_ID_ISAR5_EL1);
699         read_sysreg_case(SYS_MVFR0_EL1);
700         read_sysreg_case(SYS_MVFR1_EL1);
701         read_sysreg_case(SYS_MVFR2_EL1);
702
703         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
704         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
705         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
706         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
707         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
708         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
709         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
710         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
711         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
712
713         read_sysreg_case(SYS_CNTFRQ_EL0);
714         read_sysreg_case(SYS_CTR_EL0);
715         read_sysreg_case(SYS_DCZID_EL0);
716
717         default:
718                 BUG();
719                 return 0;
720         }
721 }
722
723 #include <linux/irqchip/arm-gic-v3.h>
724
725 static bool
726 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
727 {
728         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
729
730         return val >= entry->min_field_value;
731 }
732
733 static bool
734 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
735 {
736         u64 val;
737
738         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
739         if (scope == SCOPE_SYSTEM)
740                 val = read_sanitised_ftr_reg(entry->sys_reg);
741         else
742                 val = __read_sysreg_by_encoding(entry->sys_reg);
743
744         return feature_matches(val, entry);
745 }
746
747 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
748 {
749         bool has_sre;
750
751         if (!has_cpuid_feature(entry, scope))
752                 return false;
753
754         has_sre = gic_enable_sre();
755         if (!has_sre)
756                 pr_warn_once("%s present but disabled by higher exception level\n",
757                              entry->desc);
758
759         return has_sre;
760 }
761
762 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
763 {
764         u32 midr = read_cpuid_id();
765
766         /* Cavium ThunderX pass 1.x and 2.x */
767         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
768                 MIDR_CPU_VAR_REV(0, 0),
769                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
770 }
771
772 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
773 {
774         return is_kernel_in_hyp_mode();
775 }
776
777 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
778                            int __unused)
779 {
780         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
781
782         /*
783          * Activate the lower HYP offset only if:
784          * - the idmap doesn't clash with it,
785          * - the kernel is not running at EL2.
786          */
787         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
788 }
789
790 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
791 {
792         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
793
794         return cpuid_feature_extract_signed_field(pfr0,
795                                         ID_AA64PFR0_FP_SHIFT) < 0;
796 }
797
798 static const struct arm64_cpu_capabilities arm64_features[] = {
799         {
800                 .desc = "GIC system register CPU interface",
801                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
802                 .def_scope = SCOPE_SYSTEM,
803                 .matches = has_useable_gicv3_cpuif,
804                 .sys_reg = SYS_ID_AA64PFR0_EL1,
805                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
806                 .sign = FTR_UNSIGNED,
807                 .min_field_value = 1,
808         },
809 #ifdef CONFIG_ARM64_PAN
810         {
811                 .desc = "Privileged Access Never",
812                 .capability = ARM64_HAS_PAN,
813                 .def_scope = SCOPE_SYSTEM,
814                 .matches = has_cpuid_feature,
815                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
816                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
817                 .sign = FTR_UNSIGNED,
818                 .min_field_value = 1,
819                 .enable = cpu_enable_pan,
820         },
821 #endif /* CONFIG_ARM64_PAN */
822 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
823         {
824                 .desc = "LSE atomic instructions",
825                 .capability = ARM64_HAS_LSE_ATOMICS,
826                 .def_scope = SCOPE_SYSTEM,
827                 .matches = has_cpuid_feature,
828                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
829                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
830                 .sign = FTR_UNSIGNED,
831                 .min_field_value = 2,
832         },
833 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
834         {
835                 .desc = "Software prefetching using PRFM",
836                 .capability = ARM64_HAS_NO_HW_PREFETCH,
837                 .def_scope = SCOPE_SYSTEM,
838                 .matches = has_no_hw_prefetch,
839         },
840 #ifdef CONFIG_ARM64_UAO
841         {
842                 .desc = "User Access Override",
843                 .capability = ARM64_HAS_UAO,
844                 .def_scope = SCOPE_SYSTEM,
845                 .matches = has_cpuid_feature,
846                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
847                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
848                 .min_field_value = 1,
849                 /*
850                  * We rely on stop_machine() calling uao_thread_switch() to set
851                  * UAO immediately after patching.
852                  */
853         },
854 #endif /* CONFIG_ARM64_UAO */
855 #ifdef CONFIG_ARM64_PAN
856         {
857                 .capability = ARM64_ALT_PAN_NOT_UAO,
858                 .def_scope = SCOPE_SYSTEM,
859                 .matches = cpufeature_pan_not_uao,
860         },
861 #endif /* CONFIG_ARM64_PAN */
862         {
863                 .desc = "Virtualization Host Extensions",
864                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
865                 .def_scope = SCOPE_SYSTEM,
866                 .matches = runs_at_el2,
867         },
868         {
869                 .desc = "32-bit EL0 Support",
870                 .capability = ARM64_HAS_32BIT_EL0,
871                 .def_scope = SCOPE_SYSTEM,
872                 .matches = has_cpuid_feature,
873                 .sys_reg = SYS_ID_AA64PFR0_EL1,
874                 .sign = FTR_UNSIGNED,
875                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
876                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
877         },
878         {
879                 .desc = "Reduced HYP mapping offset",
880                 .capability = ARM64_HYP_OFFSET_LOW,
881                 .def_scope = SCOPE_SYSTEM,
882                 .matches = hyp_offset_low,
883         },
884         {
885                 /* FP/SIMD is not implemented */
886                 .capability = ARM64_HAS_NO_FPSIMD,
887                 .def_scope = SCOPE_SYSTEM,
888                 .min_field_value = 0,
889                 .matches = has_no_fpsimd,
890         },
891         {},
892 };
893
894 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
895         {                                                       \
896                 .desc = #cap,                                   \
897                 .def_scope = SCOPE_SYSTEM,                      \
898                 .matches = has_cpuid_feature,                   \
899                 .sys_reg = reg,                                 \
900                 .field_pos = field,                             \
901                 .sign = s,                                      \
902                 .min_field_value = min_value,                   \
903                 .hwcap_type = type,                             \
904                 .hwcap = cap,                                   \
905         }
906
907 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
908         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
909         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
910         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
911         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
912         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
913         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
914         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
915         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
916         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
917         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
918         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
919         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
920         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
921         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
922         {},
923 };
924
925 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
926 #ifdef CONFIG_COMPAT
927         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
928         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
929         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
930         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
931         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
932 #endif
933         {},
934 };
935
936 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
937 {
938         switch (cap->hwcap_type) {
939         case CAP_HWCAP:
940                 elf_hwcap |= cap->hwcap;
941                 break;
942 #ifdef CONFIG_COMPAT
943         case CAP_COMPAT_HWCAP:
944                 compat_elf_hwcap |= (u32)cap->hwcap;
945                 break;
946         case CAP_COMPAT_HWCAP2:
947                 compat_elf_hwcap2 |= (u32)cap->hwcap;
948                 break;
949 #endif
950         default:
951                 WARN_ON(1);
952                 break;
953         }
954 }
955
956 /* Check if we have a particular HWCAP enabled */
957 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
958 {
959         bool rc;
960
961         switch (cap->hwcap_type) {
962         case CAP_HWCAP:
963                 rc = (elf_hwcap & cap->hwcap) != 0;
964                 break;
965 #ifdef CONFIG_COMPAT
966         case CAP_COMPAT_HWCAP:
967                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
968                 break;
969         case CAP_COMPAT_HWCAP2:
970                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
971                 break;
972 #endif
973         default:
974                 WARN_ON(1);
975                 rc = false;
976         }
977
978         return rc;
979 }
980
981 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
982 {
983         /* We support emulation of accesses to CPU ID feature registers */
984         elf_hwcap |= HWCAP_CPUID;
985         for (; hwcaps->matches; hwcaps++)
986                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
987                         cap_set_elf_hwcap(hwcaps);
988 }
989
990 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
991                             const char *info)
992 {
993         for (; caps->matches; caps++) {
994                 if (!caps->matches(caps, caps->def_scope))
995                         continue;
996
997                 if (!cpus_have_cap(caps->capability) && caps->desc)
998                         pr_info("%s %s\n", info, caps->desc);
999                 cpus_set_cap(caps->capability);
1000         }
1001 }
1002
1003 /*
1004  * Run through the enabled capabilities and enable() it on all active
1005  * CPUs
1006  */
1007 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1008 {
1009         for (; caps->matches; caps++) {
1010                 unsigned int num = caps->capability;
1011
1012                 if (!cpus_have_cap(num))
1013                         continue;
1014
1015                 /* Ensure cpus_have_const_cap(num) works */
1016                 static_branch_enable(&cpu_hwcap_keys[num]);
1017
1018                 if (caps->enable) {
1019                         /*
1020                          * Use stop_machine() as it schedules the work allowing
1021                          * us to modify PSTATE, instead of on_each_cpu() which
1022                          * uses an IPI, giving us a PSTATE that disappears when
1023                          * we return.
1024                          */
1025                         stop_machine(caps->enable, NULL, cpu_online_mask);
1026                 }
1027         }
1028 }
1029
1030 /*
1031  * Flag to indicate if we have computed the system wide
1032  * capabilities based on the boot time active CPUs. This
1033  * will be used to determine if a new booting CPU should
1034  * go through the verification process to make sure that it
1035  * supports the system capabilities, without using a hotplug
1036  * notifier.
1037  */
1038 static bool sys_caps_initialised;
1039
1040 static inline void set_sys_caps_initialised(void)
1041 {
1042         sys_caps_initialised = true;
1043 }
1044
1045 /*
1046  * Check for CPU features that are used in early boot
1047  * based on the Boot CPU value.
1048  */
1049 static void check_early_cpu_features(void)
1050 {
1051         verify_cpu_run_el();
1052         verify_cpu_asid_bits();
1053 }
1054
1055 static void
1056 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1057 {
1058
1059         for (; caps->matches; caps++)
1060                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1061                         pr_crit("CPU%d: missing HWCAP: %s\n",
1062                                         smp_processor_id(), caps->desc);
1063                         cpu_die_early();
1064                 }
1065 }
1066
1067 static void
1068 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1069 {
1070         for (; caps->matches; caps++) {
1071                 if (!cpus_have_cap(caps->capability))
1072                         continue;
1073                 /*
1074                  * If the new CPU misses an advertised feature, we cannot proceed
1075                  * further, park the cpu.
1076                  */
1077                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1078                         pr_crit("CPU%d: missing feature: %s\n",
1079                                         smp_processor_id(), caps->desc);
1080                         cpu_die_early();
1081                 }
1082                 if (caps->enable)
1083                         caps->enable(NULL);
1084         }
1085 }
1086
1087 /*
1088  * Run through the enabled system capabilities and enable() it on this CPU.
1089  * The capabilities were decided based on the available CPUs at the boot time.
1090  * Any new CPU should match the system wide status of the capability. If the
1091  * new CPU doesn't have a capability which the system now has enabled, we
1092  * cannot do anything to fix it up and could cause unexpected failures. So
1093  * we park the CPU.
1094  */
1095 static void verify_local_cpu_capabilities(void)
1096 {
1097         verify_local_cpu_errata_workarounds();
1098         verify_local_cpu_features(arm64_features);
1099         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1100         if (system_supports_32bit_el0())
1101                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1102 }
1103
1104 void check_local_cpu_capabilities(void)
1105 {
1106         /*
1107          * All secondary CPUs should conform to the early CPU features
1108          * in use by the kernel based on boot CPU.
1109          */
1110         check_early_cpu_features();
1111
1112         /*
1113          * If we haven't finalised the system capabilities, this CPU gets
1114          * a chance to update the errata work arounds.
1115          * Otherwise, this CPU should verify that it has all the system
1116          * advertised capabilities.
1117          */
1118         if (!sys_caps_initialised)
1119                 update_cpu_errata_workarounds();
1120         else
1121                 verify_local_cpu_capabilities();
1122 }
1123
1124 static void __init setup_feature_capabilities(void)
1125 {
1126         update_cpu_capabilities(arm64_features, "detected feature:");
1127         enable_cpu_capabilities(arm64_features);
1128 }
1129
1130 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1131 EXPORT_SYMBOL(arm64_const_caps_ready);
1132
1133 static void __init mark_const_caps_ready(void)
1134 {
1135         static_branch_enable(&arm64_const_caps_ready);
1136 }
1137
1138 /*
1139  * Check if the current CPU has a given feature capability.
1140  * Should be called from non-preemptible context.
1141  */
1142 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1143                                unsigned int cap)
1144 {
1145         const struct arm64_cpu_capabilities *caps;
1146
1147         if (WARN_ON(preemptible()))
1148                 return false;
1149
1150         for (caps = cap_array; caps->desc; caps++)
1151                 if (caps->capability == cap && caps->matches)
1152                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1153
1154         return false;
1155 }
1156
1157 extern const struct arm64_cpu_capabilities arm64_errata[];
1158
1159 bool this_cpu_has_cap(unsigned int cap)
1160 {
1161         return (__this_cpu_has_cap(arm64_features, cap) ||
1162                 __this_cpu_has_cap(arm64_errata, cap));
1163 }
1164
1165 void __init setup_cpu_features(void)
1166 {
1167         u32 cwg;
1168         int cls;
1169
1170         /* Set the CPU feature capabilies */
1171         setup_feature_capabilities();
1172         enable_errata_workarounds();
1173         mark_const_caps_ready();
1174         setup_elf_hwcaps(arm64_elf_hwcaps);
1175
1176         if (system_supports_32bit_el0())
1177                 setup_elf_hwcaps(compat_elf_hwcaps);
1178
1179         /* Advertise that we have computed the system capabilities */
1180         set_sys_caps_initialised();
1181
1182         /*
1183          * Check for sane CTR_EL0.CWG value.
1184          */
1185         cwg = cache_type_cwg();
1186         cls = cache_line_size();
1187         if (!cwg)
1188                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1189                         cls);
1190         if (L1_CACHE_BYTES < cls)
1191                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1192                         L1_CACHE_BYTES, cls);
1193 }
1194
1195 static bool __maybe_unused
1196 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1197 {
1198         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1199 }
1200
1201 /*
1202  * We emulate only the following system register space.
1203  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1204  * See Table C5-6 System instruction encodings for System register accesses,
1205  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1206  */
1207 static inline bool __attribute_const__ is_emulated(u32 id)
1208 {
1209         return (sys_reg_Op0(id) == 0x3 &&
1210                 sys_reg_CRn(id) == 0x0 &&
1211                 sys_reg_Op1(id) == 0x0 &&
1212                 (sys_reg_CRm(id) == 0 ||
1213                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1214 }
1215
1216 /*
1217  * With CRm == 0, reg should be one of :
1218  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1219  */
1220 static inline int emulate_id_reg(u32 id, u64 *valp)
1221 {
1222         switch (id) {
1223         case SYS_MIDR_EL1:
1224                 *valp = read_cpuid_id();
1225                 break;
1226         case SYS_MPIDR_EL1:
1227                 *valp = SYS_MPIDR_SAFE_VAL;
1228                 break;
1229         case SYS_REVIDR_EL1:
1230                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1231                 *valp = 0;
1232                 break;
1233         default:
1234                 return -EINVAL;
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int emulate_sys_reg(u32 id, u64 *valp)
1241 {
1242         struct arm64_ftr_reg *regp;
1243
1244         if (!is_emulated(id))
1245                 return -EINVAL;
1246
1247         if (sys_reg_CRm(id) == 0)
1248                 return emulate_id_reg(id, valp);
1249
1250         regp = get_arm64_ftr_reg(id);
1251         if (regp)
1252                 *valp = arm64_ftr_reg_user_value(regp);
1253         else
1254                 /*
1255                  * The untracked registers are either IMPLEMENTATION DEFINED
1256                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1257                  */
1258                 *valp = 0;
1259         return 0;
1260 }
1261
1262 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1263 {
1264         int rc;
1265         u32 sys_reg, dst;
1266         u64 val;
1267
1268         /*
1269          * sys_reg values are defined as used in mrs/msr instruction.
1270          * shift the imm value to get the encoding.
1271          */
1272         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1273         rc = emulate_sys_reg(sys_reg, &val);
1274         if (!rc) {
1275                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1276                 pt_regs_write_reg(regs, dst, val);
1277                 regs->pc += 4;
1278         }
1279
1280         return rc;
1281 }
1282
1283 static struct undef_hook mrs_hook = {
1284         .instr_mask = 0xfff00000,
1285         .instr_val  = 0xd5300000,
1286         .pstate_mask = COMPAT_PSR_MODE_MASK,
1287         .pstate_val = PSR_MODE_EL0t,
1288         .fn = emulate_mrs,
1289 };
1290
1291 static int __init enable_mrs_emulation(void)
1292 {
1293         register_undef_hook(&mrs_hook);
1294         return 0;
1295 }
1296
1297 late_initcall(enable_mrs_emulation);