Linux 6.10-rc1
[sfrench/cifs-2.6.git] / arch / arm / vfp / vfpmodule.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/vfp/vfpmodule.c
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
22
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
28 #include <asm/vfp.h>
29 #include <asm/neon.h>
30
31 #include "vfpinstr.h"
32 #include "vfp.h"
33
34 static bool have_vfp __ro_after_init;
35
36 /*
37  * Dual-use variable.
38  * Used in startup: set to non-zero if VFP checks fail
39  * After startup, holds VFP architecture
40  */
41 static unsigned int VFP_arch;
42
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45 #endif
46
47 /*
48  * The pointer to the vfpstate structure of the thread which currently
49  * owns the context held in the VFP hardware, or NULL if the hardware
50  * context is invalid.
51  *
52  * For UP, this is sufficient to tell which thread owns the VFP context.
53  * However, for SMP, we also need to check the CPU number stored in the
54  * saved state too to catch migrations.
55  */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58 /*
59  * Is 'thread's most up to date state stored in this CPUs hardware?
60  * Must be called from non-preemptible context.
61  */
62 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
63 {
64 #ifdef CONFIG_SMP
65         if (thread->vfpstate.hard.cpu != cpu)
66                 return false;
67 #endif
68         return vfp_current_hw_state[cpu] == &thread->vfpstate;
69 }
70
71 /*
72  * Force a reload of the VFP context from the thread structure.  We do
73  * this by ensuring that access to the VFP hardware is disabled, and
74  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
75  */
76 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
77 {
78         if (vfp_state_in_hw(cpu, thread)) {
79                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
80                 vfp_current_hw_state[cpu] = NULL;
81         }
82 #ifdef CONFIG_SMP
83         thread->vfpstate.hard.cpu = NR_CPUS;
84 #endif
85 }
86
87 /*
88  * Per-thread VFP initialization.
89  */
90 static void vfp_thread_flush(struct thread_info *thread)
91 {
92         union vfp_state *vfp = &thread->vfpstate;
93         unsigned int cpu;
94
95         /*
96          * Disable VFP to ensure we initialize it first.  We must ensure
97          * that the modification of vfp_current_hw_state[] and hardware
98          * disable are done for the same CPU and without preemption.
99          *
100          * Do this first to ensure that preemption won't overwrite our
101          * state saving should access to the VFP be enabled at this point.
102          */
103         cpu = get_cpu();
104         if (vfp_current_hw_state[cpu] == vfp)
105                 vfp_current_hw_state[cpu] = NULL;
106         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
107         put_cpu();
108
109         memset(vfp, 0, sizeof(union vfp_state));
110
111         vfp->hard.fpexc = FPEXC_EN;
112         vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
113 #ifdef CONFIG_SMP
114         vfp->hard.cpu = NR_CPUS;
115 #endif
116 }
117
118 static void vfp_thread_exit(struct thread_info *thread)
119 {
120         /* release case: Per-thread VFP cleanup. */
121         union vfp_state *vfp = &thread->vfpstate;
122         unsigned int cpu = get_cpu();
123
124         if (vfp_current_hw_state[cpu] == vfp)
125                 vfp_current_hw_state[cpu] = NULL;
126         put_cpu();
127 }
128
129 static void vfp_thread_copy(struct thread_info *thread)
130 {
131         struct thread_info *parent = current_thread_info();
132
133         vfp_sync_hwstate(parent);
134         thread->vfpstate = parent->vfpstate;
135 #ifdef CONFIG_SMP
136         thread->vfpstate.hard.cpu = NR_CPUS;
137 #endif
138 }
139
140 /*
141  * When this function is called with the following 'cmd's, the following
142  * is true while this function is being run:
143  *  THREAD_NOFTIFY_SWTICH:
144  *   - the previously running thread will not be scheduled onto another CPU.
145  *   - the next thread to be run (v) will not be running on another CPU.
146  *   - thread->cpu is the local CPU number
147  *   - not preemptible as we're called in the middle of a thread switch
148  *  THREAD_NOTIFY_FLUSH:
149  *   - the thread (v) will be running on the local CPU, so
150  *      v === current_thread_info()
151  *   - thread->cpu is the local CPU number at the time it is accessed,
152  *      but may change at any time.
153  *   - we could be preempted if tree preempt rcu is enabled, so
154  *      it is unsafe to use thread->cpu.
155  *  THREAD_NOTIFY_EXIT
156  *   - we could be preempted if tree preempt rcu is enabled, so
157  *      it is unsafe to use thread->cpu.
158  */
159 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
160 {
161         struct thread_info *thread = v;
162         u32 fpexc;
163 #ifdef CONFIG_SMP
164         unsigned int cpu;
165 #endif
166
167         switch (cmd) {
168         case THREAD_NOTIFY_SWITCH:
169                 fpexc = fmrx(FPEXC);
170
171 #ifdef CONFIG_SMP
172                 cpu = thread->cpu;
173
174                 /*
175                  * On SMP, if VFP is enabled, save the old state in
176                  * case the thread migrates to a different CPU. The
177                  * restoring is done lazily.
178                  */
179                 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
180                         vfp_save_state(vfp_current_hw_state[cpu], fpexc);
181 #endif
182
183                 /*
184                  * Always disable VFP so we can lazily save/restore the
185                  * old state.
186                  */
187                 fmxr(FPEXC, fpexc & ~FPEXC_EN);
188                 break;
189
190         case THREAD_NOTIFY_FLUSH:
191                 vfp_thread_flush(thread);
192                 break;
193
194         case THREAD_NOTIFY_EXIT:
195                 vfp_thread_exit(thread);
196                 break;
197
198         case THREAD_NOTIFY_COPY:
199                 vfp_thread_copy(thread);
200                 break;
201         }
202
203         return NOTIFY_DONE;
204 }
205
206 static struct notifier_block vfp_notifier_block = {
207         .notifier_call  = vfp_notifier,
208 };
209
210 /*
211  * Raise a SIGFPE for the current process.
212  * sicode describes the signal being raised.
213  */
214 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
215 {
216         /*
217          * This is the same as NWFPE, because it's not clear what
218          * this is used for
219          */
220         current->thread.error_code = 0;
221         current->thread.trap_no = 6;
222
223         send_sig_fault(SIGFPE, sicode,
224                        (void __user *)(instruction_pointer(regs) - 4),
225                        current);
226 }
227
228 static void vfp_panic(char *reason, u32 inst)
229 {
230         int i;
231
232         pr_err("VFP: Error: %s\n", reason);
233         pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
234                 fmrx(FPEXC), fmrx(FPSCR), inst);
235         for (i = 0; i < 32; i += 2)
236                 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
237                        i, vfp_get_float(i), i+1, vfp_get_float(i+1));
238 }
239
240 /*
241  * Process bitmask of exception conditions.
242  */
243 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
244 {
245         int si_code = 0;
246
247         pr_debug("VFP: raising exceptions %08x\n", exceptions);
248
249         if (exceptions == VFP_EXCEPTION_ERROR) {
250                 vfp_panic("unhandled bounce", inst);
251                 vfp_raise_sigfpe(FPE_FLTINV, regs);
252                 return;
253         }
254
255         /*
256          * If any of the status flags are set, update the FPSCR.
257          * Comparison instructions always return at least one of
258          * these flags set.
259          */
260         if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
261                 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
262
263         fpscr |= exceptions;
264
265         fmxr(FPSCR, fpscr);
266
267 #define RAISE(stat,en,sig)                              \
268         if (exceptions & stat && fpscr & en)            \
269                 si_code = sig;
270
271         /*
272          * These are arranged in priority order, least to highest.
273          */
274         RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
275         RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
276         RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
277         RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
278         RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
279
280         if (si_code)
281                 vfp_raise_sigfpe(si_code, regs);
282 }
283
284 /*
285  * Emulate a VFP instruction.
286  */
287 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
288 {
289         u32 exceptions = VFP_EXCEPTION_ERROR;
290
291         pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
292
293         if (INST_CPRTDO(inst)) {
294                 if (!INST_CPRT(inst)) {
295                         /*
296                          * CPDO
297                          */
298                         if (vfp_single(inst)) {
299                                 exceptions = vfp_single_cpdo(inst, fpscr);
300                         } else {
301                                 exceptions = vfp_double_cpdo(inst, fpscr);
302                         }
303                 } else {
304                         /*
305                          * A CPRT instruction can not appear in FPINST2, nor
306                          * can it cause an exception.  Therefore, we do not
307                          * have to emulate it.
308                          */
309                 }
310         } else {
311                 /*
312                  * A CPDT instruction can not appear in FPINST2, nor can
313                  * it cause an exception.  Therefore, we do not have to
314                  * emulate it.
315                  */
316         }
317         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
318         return exceptions & ~VFP_NAN_FLAG;
319 }
320
321 /*
322  * Package up a bounce condition.
323  */
324 static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
325 {
326         u32 fpscr, orig_fpscr, fpsid, exceptions;
327
328         pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
329
330         /*
331          * At this point, FPEXC can have the following configuration:
332          *
333          *  EX DEX IXE
334          *  0   1   x   - synchronous exception
335          *  1   x   0   - asynchronous exception
336          *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
337          *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
338          *                implementation), undefined otherwise
339          *
340          * Clear various bits and enable access to the VFP so we can
341          * handle the bounce.
342          */
343         fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
344
345         fpsid = fmrx(FPSID);
346         orig_fpscr = fpscr = fmrx(FPSCR);
347
348         /*
349          * Check for the special VFP subarch 1 and FPSCR.IXE bit case
350          */
351         if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
352             && (fpscr & FPSCR_IXE)) {
353                 /*
354                  * Synchronous exception, emulate the trigger instruction
355                  */
356                 goto emulate;
357         }
358
359         if (fpexc & FPEXC_EX) {
360                 /*
361                  * Asynchronous exception. The instruction is read from FPINST
362                  * and the interrupted instruction has to be restarted.
363                  */
364                 trigger = fmrx(FPINST);
365                 regs->ARM_pc -= 4;
366         } else if (!(fpexc & FPEXC_DEX)) {
367                 /*
368                  * Illegal combination of bits. It can be caused by an
369                  * unallocated VFP instruction but with FPSCR.IXE set and not
370                  * on VFP subarch 1.
371                  */
372                  vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
373                 return;
374         }
375
376         /*
377          * Modify fpscr to indicate the number of iterations remaining.
378          * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
379          * whether FPEXC.VECITR or FPSCR.LEN is used.
380          */
381         if (fpexc & (FPEXC_EX | FPEXC_VV)) {
382                 u32 len;
383
384                 len = fpexc + (1 << FPEXC_LENGTH_BIT);
385
386                 fpscr &= ~FPSCR_LENGTH_MASK;
387                 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
388         }
389
390         /*
391          * Handle the first FP instruction.  We used to take note of the
392          * FPEXC bounce reason, but this appears to be unreliable.
393          * Emulate the bounced instruction instead.
394          */
395         exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
396         if (exceptions)
397                 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
398
399         /*
400          * If there isn't a second FP instruction, exit now. Note that
401          * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
402          */
403         if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
404                 return;
405
406         /*
407          * The barrier() here prevents fpinst2 being read
408          * before the condition above.
409          */
410         barrier();
411         trigger = fmrx(FPINST2);
412
413  emulate:
414         exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
415         if (exceptions)
416                 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
417 }
418
419 static void vfp_enable(void *unused)
420 {
421         u32 access;
422
423         BUG_ON(preemptible());
424         access = get_copro_access();
425
426         /*
427          * Enable full access to VFP (cp10 and cp11)
428          */
429         set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
430 }
431
432 /* Called by platforms on which we want to disable VFP because it may not be
433  * present on all CPUs within a SMP complex. Needs to be called prior to
434  * vfp_init().
435  */
436 void __init vfp_disable(void)
437 {
438         if (VFP_arch) {
439                 pr_debug("%s: should be called prior to vfp_init\n", __func__);
440                 return;
441         }
442         VFP_arch = 1;
443 }
444
445 #ifdef CONFIG_CPU_PM
446 static int vfp_pm_suspend(void)
447 {
448         struct thread_info *ti = current_thread_info();
449         u32 fpexc = fmrx(FPEXC);
450
451         /* if vfp is on, then save state for resumption */
452         if (fpexc & FPEXC_EN) {
453                 pr_debug("%s: saving vfp state\n", __func__);
454                 vfp_save_state(&ti->vfpstate, fpexc);
455
456                 /* disable, just in case */
457                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
458         } else if (vfp_current_hw_state[ti->cpu]) {
459 #ifndef CONFIG_SMP
460                 fmxr(FPEXC, fpexc | FPEXC_EN);
461                 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
462                 fmxr(FPEXC, fpexc);
463 #endif
464         }
465
466         /* clear any information we had about last context state */
467         vfp_current_hw_state[ti->cpu] = NULL;
468
469         return 0;
470 }
471
472 static void vfp_pm_resume(void)
473 {
474         /* ensure we have access to the vfp */
475         vfp_enable(NULL);
476
477         /* and disable it to ensure the next usage restores the state */
478         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
479 }
480
481 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
482         void *v)
483 {
484         switch (cmd) {
485         case CPU_PM_ENTER:
486                 vfp_pm_suspend();
487                 break;
488         case CPU_PM_ENTER_FAILED:
489         case CPU_PM_EXIT:
490                 vfp_pm_resume();
491                 break;
492         }
493         return NOTIFY_OK;
494 }
495
496 static struct notifier_block vfp_cpu_pm_notifier_block = {
497         .notifier_call = vfp_cpu_pm_notifier,
498 };
499
500 static void vfp_pm_init(void)
501 {
502         cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
503 }
504
505 #else
506 static inline void vfp_pm_init(void) { }
507 #endif /* CONFIG_CPU_PM */
508
509 /*
510  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
511  * with the hardware state.
512  */
513 void vfp_sync_hwstate(struct thread_info *thread)
514 {
515         unsigned int cpu = get_cpu();
516
517         local_bh_disable();
518
519         if (vfp_state_in_hw(cpu, thread)) {
520                 u32 fpexc = fmrx(FPEXC);
521
522                 /*
523                  * Save the last VFP state on this CPU.
524                  */
525                 fmxr(FPEXC, fpexc | FPEXC_EN);
526                 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
527                 fmxr(FPEXC, fpexc);
528         }
529
530         local_bh_enable();
531         put_cpu();
532 }
533
534 /* Ensure that the thread reloads the hardware VFP state on the next use. */
535 void vfp_flush_hwstate(struct thread_info *thread)
536 {
537         unsigned int cpu = get_cpu();
538
539         vfp_force_reload(cpu, thread);
540
541         put_cpu();
542 }
543
544 /*
545  * Save the current VFP state into the provided structures and prepare
546  * for entry into a new function (signal handler).
547  */
548 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
549                                     struct user_vfp_exc *ufp_exc)
550 {
551         struct thread_info *thread = current_thread_info();
552         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
553
554         /* Ensure that the saved hwstate is up-to-date. */
555         vfp_sync_hwstate(thread);
556
557         /*
558          * Copy the floating point registers. There can be unused
559          * registers see asm/hwcap.h for details.
560          */
561         memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
562
563         /*
564          * Copy the status and control register.
565          */
566         ufp->fpscr = hwstate->fpscr;
567
568         /*
569          * Copy the exception registers.
570          */
571         ufp_exc->fpexc = hwstate->fpexc;
572         ufp_exc->fpinst = hwstate->fpinst;
573         ufp_exc->fpinst2 = hwstate->fpinst2;
574
575         /* Ensure that VFP is disabled. */
576         vfp_flush_hwstate(thread);
577
578         /*
579          * As per the PCS, clear the length and stride bits for function
580          * entry.
581          */
582         hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583         return 0;
584 }
585
586 /* Sanitise and restore the current VFP state from the provided structures. */
587 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
588 {
589         struct thread_info *thread = current_thread_info();
590         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591         unsigned long fpexc;
592
593         /* Disable VFP to avoid corrupting the new thread state. */
594         vfp_flush_hwstate(thread);
595
596         /*
597          * Copy the floating point registers. There can be unused
598          * registers see asm/hwcap.h for details.
599          */
600         memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
601         /*
602          * Copy the status and control register.
603          */
604         hwstate->fpscr = ufp->fpscr;
605
606         /*
607          * Sanitise and restore the exception registers.
608          */
609         fpexc = ufp_exc->fpexc;
610
611         /* Ensure the VFP is enabled. */
612         fpexc |= FPEXC_EN;
613
614         /* Ensure FPINST2 is invalid and the exception flag is cleared. */
615         fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
616         hwstate->fpexc = fpexc;
617
618         hwstate->fpinst = ufp_exc->fpinst;
619         hwstate->fpinst2 = ufp_exc->fpinst2;
620
621         return 0;
622 }
623
624 /*
625  * VFP hardware can lose all context when a CPU goes offline.
626  * As we will be running in SMP mode with CPU hotplug, we will save the
627  * hardware state at every thread switch.  We clear our held state when
628  * a CPU has been killed, indicating that the VFP hardware doesn't contain
629  * a threads VFP state.  When a CPU starts up, we re-enable access to the
630  * VFP hardware. The callbacks below are called on the CPU which
631  * is being offlined/onlined.
632  */
633 static int vfp_dying_cpu(unsigned int cpu)
634 {
635         vfp_current_hw_state[cpu] = NULL;
636         return 0;
637 }
638
639 static int vfp_starting_cpu(unsigned int unused)
640 {
641         vfp_enable(NULL);
642         return 0;
643 }
644
645 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
646 {
647         /*
648          * If we reach this point, a floating point exception has been raised
649          * while running in kernel mode. If the NEON/VFP unit was enabled at the
650          * time, it means a VFP instruction has been issued that requires
651          * software assistance to complete, something which is not currently
652          * supported in kernel mode.
653          * If the NEON/VFP unit was disabled, and the location pointed to below
654          * is properly preceded by a call to kernel_neon_begin(), something has
655          * caused the task to be scheduled out and back in again. In this case,
656          * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
657          * be helpful in localizing the problem.
658          */
659         if (fmrx(FPEXC) & FPEXC_EN)
660                 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
661         else
662                 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
663         pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
664         return 1;
665 }
666
667 /*
668  * vfp_support_entry - Handle VFP exception
669  *
670  * @regs:       pt_regs structure holding the register state at exception entry
671  * @trigger:    The opcode of the instruction that triggered the exception
672  *
673  * Returns 0 if the exception was handled, or an error code otherwise.
674  */
675 static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
676 {
677         struct thread_info *ti = current_thread_info();
678         u32 fpexc;
679
680         if (unlikely(!have_vfp))
681                 return -ENODEV;
682
683         if (!user_mode(regs))
684                 return vfp_kmode_exception(regs, trigger);
685
686         local_bh_disable();
687         fpexc = fmrx(FPEXC);
688
689         /*
690          * If the VFP unit was not enabled yet, we have to check whether the
691          * VFP state in the CPU's registers is the most recent VFP state
692          * associated with the process. On UP systems, we don't save the VFP
693          * state eagerly on a context switch, so we may need to save the
694          * VFP state to memory first, as it may belong to another process.
695          */
696         if (!(fpexc & FPEXC_EN)) {
697                 /*
698                  * Enable the VFP unit but mask the FP exception flag for the
699                  * time being, so we can access all the registers.
700                  */
701                 fpexc |= FPEXC_EN;
702                 fmxr(FPEXC, fpexc & ~FPEXC_EX);
703
704                 /*
705                  * Check whether or not the VFP state in the CPU's registers is
706                  * the most recent VFP state associated with this task. On SMP,
707                  * migration may result in multiple CPUs holding VFP states
708                  * that belong to the same task, but only the most recent one
709                  * is valid.
710                  */
711                 if (!vfp_state_in_hw(ti->cpu, ti)) {
712                         if (!IS_ENABLED(CONFIG_SMP) &&
713                             vfp_current_hw_state[ti->cpu] != NULL) {
714                                 /*
715                                  * This CPU is currently holding the most
716                                  * recent VFP state associated with another
717                                  * task, and we must save that to memory first.
718                                  */
719                                 vfp_save_state(vfp_current_hw_state[ti->cpu],
720                                                fpexc);
721                         }
722
723                         /*
724                          * We can now proceed with loading the task's VFP state
725                          * from memory into the CPU registers.
726                          */
727                         fpexc = vfp_load_state(&ti->vfpstate);
728                         vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
729 #ifdef CONFIG_SMP
730                         /*
731                          * Record that this CPU is now the one holding the most
732                          * recent VFP state of the task.
733                          */
734                         ti->vfpstate.hard.cpu = ti->cpu;
735 #endif
736                 }
737
738                 if (fpexc & FPEXC_EX)
739                         /*
740                          * Might as well handle the pending exception before
741                          * retrying branch out before setting an FPEXC that
742                          * stops us reading stuff.
743                          */
744                         goto bounce;
745
746                 /*
747                  * No FP exception is pending: just enable the VFP and
748                  * replay the instruction that trapped.
749                  */
750                 fmxr(FPEXC, fpexc);
751         } else {
752                 /* Check for synchronous or asynchronous exceptions */
753                 if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
754                         u32 fpscr = fmrx(FPSCR);
755
756                         /*
757                          * On some implementations of the VFP subarch 1,
758                          * setting FPSCR.IXE causes all the CDP instructions to
759                          * be bounced synchronously without setting the
760                          * FPEXC.EX bit
761                          */
762                         if (!(fpscr & FPSCR_IXE)) {
763                                 if (!(fpscr & FPSCR_LENGTH_MASK)) {
764                                         pr_debug("not VFP\n");
765                                         local_bh_enable();
766                                         return -ENOEXEC;
767                                 }
768                                 fpexc |= FPEXC_DEX;
769                         }
770                 }
771 bounce:         regs->ARM_pc += 4;
772                 VFP_bounce(trigger, fpexc, regs);
773         }
774
775         local_bh_enable();
776         return 0;
777 }
778
779 static struct undef_hook neon_support_hook[] = {{
780         .instr_mask     = 0xfe000000,
781         .instr_val      = 0xf2000000,
782         .cpsr_mask      = PSR_T_BIT,
783         .cpsr_val       = 0,
784         .fn             = vfp_support_entry,
785 }, {
786         .instr_mask     = 0xff100000,
787         .instr_val      = 0xf4000000,
788         .cpsr_mask      = PSR_T_BIT,
789         .cpsr_val       = 0,
790         .fn             = vfp_support_entry,
791 }, {
792         .instr_mask     = 0xef000000,
793         .instr_val      = 0xef000000,
794         .cpsr_mask      = PSR_T_BIT,
795         .cpsr_val       = PSR_T_BIT,
796         .fn             = vfp_support_entry,
797 }, {
798         .instr_mask     = 0xff100000,
799         .instr_val      = 0xf9000000,
800         .cpsr_mask      = PSR_T_BIT,
801         .cpsr_val       = PSR_T_BIT,
802         .fn             = vfp_support_entry,
803 }, {
804         .instr_mask     = 0xff000800,
805         .instr_val      = 0xfc000800,
806         .cpsr_mask      = 0,
807         .cpsr_val       = 0,
808         .fn             = vfp_support_entry,
809 }, {
810         .instr_mask     = 0xff000800,
811         .instr_val      = 0xfd000800,
812         .cpsr_mask      = 0,
813         .cpsr_val       = 0,
814         .fn             = vfp_support_entry,
815 }, {
816         .instr_mask     = 0xff000800,
817         .instr_val      = 0xfe000800,
818         .cpsr_mask      = 0,
819         .cpsr_val       = 0,
820         .fn             = vfp_support_entry,
821 }};
822
823 static struct undef_hook vfp_support_hook = {
824         .instr_mask     = 0x0c000e00,
825         .instr_val      = 0x0c000a00,
826         .fn             = vfp_support_entry,
827 };
828
829 #ifdef CONFIG_KERNEL_MODE_NEON
830
831 /*
832  * Kernel-side NEON support functions
833  */
834 void kernel_neon_begin(void)
835 {
836         struct thread_info *thread = current_thread_info();
837         unsigned int cpu;
838         u32 fpexc;
839
840         local_bh_disable();
841
842         /*
843          * Kernel mode NEON is only allowed outside of hardirq context with
844          * preemption and softirq processing disabled. This will make sure that
845          * the kernel mode NEON register contents never need to be preserved.
846          */
847         BUG_ON(in_hardirq());
848         cpu = __smp_processor_id();
849
850         fpexc = fmrx(FPEXC) | FPEXC_EN;
851         fmxr(FPEXC, fpexc);
852
853         /*
854          * Save the userland NEON/VFP state. Under UP,
855          * the owner could be a task other than 'current'
856          */
857         if (vfp_state_in_hw(cpu, thread))
858                 vfp_save_state(&thread->vfpstate, fpexc);
859 #ifndef CONFIG_SMP
860         else if (vfp_current_hw_state[cpu] != NULL)
861                 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
862 #endif
863         vfp_current_hw_state[cpu] = NULL;
864 }
865 EXPORT_SYMBOL(kernel_neon_begin);
866
867 void kernel_neon_end(void)
868 {
869         /* Disable the NEON/VFP unit. */
870         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
871         local_bh_enable();
872 }
873 EXPORT_SYMBOL(kernel_neon_end);
874
875 #endif /* CONFIG_KERNEL_MODE_NEON */
876
877 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
878 {
879         VFP_arch = UINT_MAX;    /* mark as not present */
880         regs->ARM_pc += 4;
881         return 0;
882 }
883
884 static struct undef_hook vfp_detect_hook __initdata = {
885         .instr_mask     = 0x0c000e00,
886         .instr_val      = 0x0c000a00,
887         .cpsr_mask      = MODE_MASK,
888         .cpsr_val       = SVC_MODE,
889         .fn             = vfp_detect,
890 };
891
892 /*
893  * VFP support code initialisation.
894  */
895 static int __init vfp_init(void)
896 {
897         unsigned int vfpsid;
898         unsigned int cpu_arch = cpu_architecture();
899         unsigned int isar6;
900
901         /*
902          * Enable the access to the VFP on all online CPUs so the
903          * following test on FPSID will succeed.
904          */
905         if (cpu_arch >= CPU_ARCH_ARMv6)
906                 on_each_cpu(vfp_enable, NULL, 1);
907
908         /*
909          * First check that there is a VFP that we can use.
910          * The handler is already setup to just log calls, so
911          * we just need to read the VFPSID register.
912          */
913         register_undef_hook(&vfp_detect_hook);
914         barrier();
915         vfpsid = fmrx(FPSID);
916         barrier();
917         unregister_undef_hook(&vfp_detect_hook);
918
919         pr_info("VFP support v0.3: ");
920         if (VFP_arch) {
921                 pr_cont("not present\n");
922                 return 0;
923         /* Extract the architecture on CPUID scheme */
924         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
925                 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
926                 VFP_arch >>= FPSID_ARCH_BIT;
927                 /*
928                  * Check for the presence of the Advanced SIMD
929                  * load/store instructions, integer and single
930                  * precision floating point operations. Only check
931                  * for NEON if the hardware has the MVFR registers.
932                  */
933                 if (IS_ENABLED(CONFIG_NEON) &&
934                     (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
935                         elf_hwcap |= HWCAP_NEON;
936                         for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
937                                 register_undef_hook(&neon_support_hook[i]);
938                 }
939
940                 if (IS_ENABLED(CONFIG_VFPv3)) {
941                         u32 mvfr0 = fmrx(MVFR0);
942                         if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
943                             ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
944                                 elf_hwcap |= HWCAP_VFPv3;
945                                 /*
946                                  * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
947                                  * this configuration only have 16 x 64bit
948                                  * registers.
949                                  */
950                                 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
951                                         /* also v4-D16 */
952                                         elf_hwcap |= HWCAP_VFPv3D16;
953                                 else
954                                         elf_hwcap |= HWCAP_VFPD32;
955                         }
956
957                         if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
958                                 elf_hwcap |= HWCAP_VFPv4;
959                         if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
960                                 elf_hwcap |= HWCAP_ASIMDHP;
961                         if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
962                                 elf_hwcap |= HWCAP_FPHP;
963                 }
964
965                 /*
966                  * Check for the presence of Advanced SIMD Dot Product
967                  * instructions.
968                  */
969                 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
970                 if (cpuid_feature_extract_field(isar6, 4) == 0x1)
971                         elf_hwcap |= HWCAP_ASIMDDP;
972                 /*
973                  * Check for the presence of Advanced SIMD Floating point
974                  * half-precision multiplication instructions.
975                  */
976                 if (cpuid_feature_extract_field(isar6, 8) == 0x1)
977                         elf_hwcap |= HWCAP_ASIMDFHM;
978                 /*
979                  * Check for the presence of Advanced SIMD Bfloat16
980                  * floating point instructions.
981                  */
982                 if (cpuid_feature_extract_field(isar6, 20) == 0x1)
983                         elf_hwcap |= HWCAP_ASIMDBF16;
984                 /*
985                  * Check for the presence of Advanced SIMD and floating point
986                  * Int8 matrix multiplication instructions instructions.
987                  */
988                 if (cpuid_feature_extract_field(isar6, 24) == 0x1)
989                         elf_hwcap |= HWCAP_I8MM;
990
991         /* Extract the architecture version on pre-cpuid scheme */
992         } else {
993                 if (vfpsid & FPSID_NODOUBLE) {
994                         pr_cont("no double precision support\n");
995                         return 0;
996                 }
997
998                 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
999         }
1000
1001         cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1002                                   "arm/vfp:starting", vfp_starting_cpu,
1003                                   vfp_dying_cpu);
1004
1005         have_vfp = true;
1006
1007         register_undef_hook(&vfp_support_hook);
1008         thread_register_notifier(&vfp_notifier_block);
1009         vfp_pm_init();
1010
1011         /*
1012          * We detected VFP, and the support code is
1013          * in place; report VFP support to userspace.
1014          */
1015         elf_hwcap |= HWCAP_VFP;
1016
1017         pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1018                 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1019                 VFP_arch,
1020                 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1021                 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1022                 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1023
1024         return 0;
1025 }
1026
1027 core_initcall(vfp_init);