febd115dba28aa5a2314bc6727c3529aa1b6fc4c
[sfrench/cifs-2.6.git] / arch / arm / vfp / vfpdouble.c
1 /*
2  *  linux/arch/arm/vfp/vfpdouble.c
3  *
4  * This code is derived in part from John R. Housers softfloat library, which
5  * carries the following notice:
6  *
7  * ===========================================================================
8  * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9  * Arithmetic Package, Release 2.
10  *
11  * Written by John R. Hauser.  This work was made possible in part by the
12  * International Computer Science Institute, located at Suite 600, 1947 Center
13  * Street, Berkeley, California 94704.  Funding was partially provided by the
14  * National Science Foundation under grant MIP-9311980.  The original version
15  * of this code was written as part of a project to build a fixed-point vector
16  * processor in collaboration with the University of California at Berkeley,
17  * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
18  * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19  * arithmetic/softfloat.html'.
20  *
21  * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
22  * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23  * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
24  * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25  * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26  *
27  * Derivative works are acceptable, even for commercial purposes, so long as
28  * (1) they include prominent notice that the work is derivative, and (2) they
29  * include prominent notice akin to these three paragraphs for those parts of
30  * this code that are retained.
31  * ===========================================================================
32  */
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
35
36 #include <asm/div64.h>
37 #include <asm/ptrace.h>
38 #include <asm/vfp.h>
39
40 #include "vfpinstr.h"
41 #include "vfp.h"
42
43 static struct vfp_double vfp_double_default_qnan = {
44         .exponent       = 2047,
45         .sign           = 0,
46         .significand    = VFP_DOUBLE_SIGNIFICAND_QNAN,
47 };
48
49 static void vfp_double_dump(const char *str, struct vfp_double *d)
50 {
51         pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
52                  str, d->sign != 0, d->exponent, d->significand);
53 }
54
55 static void vfp_double_normalise_denormal(struct vfp_double *vd)
56 {
57         int bits = 31 - fls(vd->significand >> 32);
58         if (bits == 31)
59                 bits = 62 - fls(vd->significand);
60
61         vfp_double_dump("normalise_denormal: in", vd);
62
63         if (bits) {
64                 vd->exponent -= bits - 1;
65                 vd->significand <<= bits;
66         }
67
68         vfp_double_dump("normalise_denormal: out", vd);
69 }
70
71 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
72 {
73         u64 significand, incr;
74         int exponent, shift, underflow;
75         u32 rmode;
76
77         vfp_double_dump("pack: in", vd);
78
79         /*
80          * Infinities and NaNs are a special case.
81          */
82         if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
83                 goto pack;
84
85         /*
86          * Special-case zero.
87          */
88         if (vd->significand == 0) {
89                 vd->exponent = 0;
90                 goto pack;
91         }
92
93         exponent = vd->exponent;
94         significand = vd->significand;
95
96         shift = 32 - fls(significand >> 32);
97         if (shift == 32)
98                 shift = 64 - fls(significand);
99         if (shift) {
100                 exponent -= shift;
101                 significand <<= shift;
102         }
103
104 #ifdef DEBUG
105         vd->exponent = exponent;
106         vd->significand = significand;
107         vfp_double_dump("pack: normalised", vd);
108 #endif
109
110         /*
111          * Tiny number?
112          */
113         underflow = exponent < 0;
114         if (underflow) {
115                 significand = vfp_shiftright64jamming(significand, -exponent);
116                 exponent = 0;
117 #ifdef DEBUG
118                 vd->exponent = exponent;
119                 vd->significand = significand;
120                 vfp_double_dump("pack: tiny number", vd);
121 #endif
122                 if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
123                         underflow = 0;
124         }
125
126         /*
127          * Select rounding increment.
128          */
129         incr = 0;
130         rmode = fpscr & FPSCR_RMODE_MASK;
131
132         if (rmode == FPSCR_ROUND_NEAREST) {
133                 incr = 1ULL << VFP_DOUBLE_LOW_BITS;
134                 if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
135                         incr -= 1;
136         } else if (rmode == FPSCR_ROUND_TOZERO) {
137                 incr = 0;
138         } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
139                 incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
140
141         pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
142
143         /*
144          * Is our rounding going to overflow?
145          */
146         if ((significand + incr) < significand) {
147                 exponent += 1;
148                 significand = (significand >> 1) | (significand & 1);
149                 incr >>= 1;
150 #ifdef DEBUG
151                 vd->exponent = exponent;
152                 vd->significand = significand;
153                 vfp_double_dump("pack: overflow", vd);
154 #endif
155         }
156
157         /*
158          * If any of the low bits (which will be shifted out of the
159          * number) are non-zero, the result is inexact.
160          */
161         if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
162                 exceptions |= FPSCR_IXC;
163
164         /*
165          * Do our rounding.
166          */
167         significand += incr;
168
169         /*
170          * Infinity?
171          */
172         if (exponent >= 2046) {
173                 exceptions |= FPSCR_OFC | FPSCR_IXC;
174                 if (incr == 0) {
175                         vd->exponent = 2045;
176                         vd->significand = 0x7fffffffffffffffULL;
177                 } else {
178                         vd->exponent = 2047;            /* infinity */
179                         vd->significand = 0;
180                 }
181         } else {
182                 if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
183                         exponent = 0;
184                 if (exponent || significand > 0x8000000000000000ULL)
185                         underflow = 0;
186                 if (underflow)
187                         exceptions |= FPSCR_UFC;
188                 vd->exponent = exponent;
189                 vd->significand = significand >> 1;
190         }
191
192  pack:
193         vfp_double_dump("pack: final", vd);
194         {
195                 s64 d = vfp_double_pack(vd);
196                 pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
197                          dd, d, exceptions);
198                 vfp_put_double(dd, d);
199         }
200         return exceptions & ~VFP_NAN_FLAG;
201 }
202
203 /*
204  * Propagate the NaN, setting exceptions if it is signalling.
205  * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
206  */
207 static u32
208 vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
209                   struct vfp_double *vdm, u32 fpscr)
210 {
211         struct vfp_double *nan;
212         int tn, tm = 0;
213
214         tn = vfp_double_type(vdn);
215
216         if (vdm)
217                 tm = vfp_double_type(vdm);
218
219         if (fpscr & FPSCR_DEFAULT_NAN)
220                 /*
221                  * Default NaN mode - always returns a quiet NaN
222                  */
223                 nan = &vfp_double_default_qnan;
224         else {
225                 /*
226                  * Contemporary mode - select the first signalling
227                  * NAN, or if neither are signalling, the first
228                  * quiet NAN.
229                  */
230                 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
231                         nan = vdn;
232                 else
233                         nan = vdm;
234                 /*
235                  * Make the NaN quiet.
236                  */
237                 nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
238         }
239
240         *vdd = *nan;
241
242         /*
243          * If one was a signalling NAN, raise invalid operation.
244          */
245         return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
246 }
247
248 /*
249  * Extended operations
250  */
251 static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
252 {
253         vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm)));
254         return 0;
255 }
256
257 static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
258 {
259         vfp_put_double(dd, vfp_get_double(dm));
260         return 0;
261 }
262
263 static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
264 {
265         vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm)));
266         return 0;
267 }
268
269 static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
270 {
271         struct vfp_double vdm, vdd;
272         int ret, tm;
273
274         vfp_double_unpack(&vdm, vfp_get_double(dm));
275         tm = vfp_double_type(&vdm);
276         if (tm & (VFP_NAN|VFP_INFINITY)) {
277                 struct vfp_double *vdp = &vdd;
278
279                 if (tm & VFP_NAN)
280                         ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
281                 else if (vdm.sign == 0) {
282  sqrt_copy:
283                         vdp = &vdm;
284                         ret = 0;
285                 } else {
286  sqrt_invalid:
287                         vdp = &vfp_double_default_qnan;
288                         ret = FPSCR_IOC;
289                 }
290                 vfp_put_double(dd, vfp_double_pack(vdp));
291                 return ret;
292         }
293
294         /*
295          * sqrt(+/- 0) == +/- 0
296          */
297         if (tm & VFP_ZERO)
298                 goto sqrt_copy;
299
300         /*
301          * Normalise a denormalised number
302          */
303         if (tm & VFP_DENORMAL)
304                 vfp_double_normalise_denormal(&vdm);
305
306         /*
307          * sqrt(<0) = invalid
308          */
309         if (vdm.sign)
310                 goto sqrt_invalid;
311
312         vfp_double_dump("sqrt", &vdm);
313
314         /*
315          * Estimate the square root.
316          */
317         vdd.sign = 0;
318         vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
319         vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
320
321         vfp_double_dump("sqrt estimate1", &vdd);
322
323         vdm.significand >>= 1 + (vdm.exponent & 1);
324         vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
325
326         vfp_double_dump("sqrt estimate2", &vdd);
327
328         /*
329          * And now adjust.
330          */
331         if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
332                 if (vdd.significand < 2) {
333                         vdd.significand = ~0ULL;
334                 } else {
335                         u64 termh, terml, remh, reml;
336                         vdm.significand <<= 2;
337                         mul64to128(&termh, &terml, vdd.significand, vdd.significand);
338                         sub128(&remh, &reml, vdm.significand, 0, termh, terml);
339                         while ((s64)remh < 0) {
340                                 vdd.significand -= 1;
341                                 shift64left(&termh, &terml, vdd.significand);
342                                 terml |= 1;
343                                 add128(&remh, &reml, remh, reml, termh, terml);
344                         }
345                         vdd.significand |= (remh | reml) != 0;
346                 }
347         }
348         vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
349
350         return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
351 }
352
353 /*
354  * Equal        := ZC
355  * Less than    := N
356  * Greater than := C
357  * Unordered    := CV
358  */
359 static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
360 {
361         s64 d, m;
362         u32 ret = 0;
363
364         m = vfp_get_double(dm);
365         if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
366                 ret |= FPSCR_C | FPSCR_V;
367                 if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
368                         /*
369                          * Signalling NaN, or signalling on quiet NaN
370                          */
371                         ret |= FPSCR_IOC;
372         }
373
374         d = vfp_get_double(dd);
375         if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
376                 ret |= FPSCR_C | FPSCR_V;
377                 if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
378                         /*
379                          * Signalling NaN, or signalling on quiet NaN
380                          */
381                         ret |= FPSCR_IOC;
382         }
383
384         if (ret == 0) {
385                 if (d == m || vfp_double_packed_abs(d | m) == 0) {
386                         /*
387                          * equal
388                          */
389                         ret |= FPSCR_Z | FPSCR_C;
390                 } else if (vfp_double_packed_sign(d ^ m)) {
391                         /*
392                          * different signs
393                          */
394                         if (vfp_double_packed_sign(d))
395                                 /*
396                                  * d is negative, so d < m
397                                  */
398                                 ret |= FPSCR_N;
399                         else
400                                 /*
401                                  * d is positive, so d > m
402                                  */
403                                 ret |= FPSCR_C;
404                 } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
405                         /*
406                          * d < m
407                          */
408                         ret |= FPSCR_N;
409                 } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
410                         /*
411                          * d > m
412                          */
413                         ret |= FPSCR_C;
414                 }
415         }
416
417         return ret;
418 }
419
420 static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
421 {
422         return vfp_compare(dd, 0, dm, fpscr);
423 }
424
425 static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
426 {
427         return vfp_compare(dd, 1, dm, fpscr);
428 }
429
430 static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
431 {
432         return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
433 }
434
435 static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
436 {
437         return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
438 }
439
440 static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
441 {
442         struct vfp_double vdm;
443         struct vfp_single vsd;
444         int tm;
445         u32 exceptions = 0;
446
447         vfp_double_unpack(&vdm, vfp_get_double(dm));
448
449         tm = vfp_double_type(&vdm);
450
451         /*
452          * If we have a signalling NaN, signal invalid operation.
453          */
454         if (tm == VFP_SNAN)
455                 exceptions = FPSCR_IOC;
456
457         if (tm & VFP_DENORMAL)
458                 vfp_double_normalise_denormal(&vdm);
459
460         vsd.sign = vdm.sign;
461         vsd.significand = vfp_hi64to32jamming(vdm.significand);
462
463         /*
464          * If we have an infinity or a NaN, the exponent must be 255
465          */
466         if (tm & (VFP_INFINITY|VFP_NAN)) {
467                 vsd.exponent = 255;
468                 if (tm & VFP_NAN)
469                         vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
470                 goto pack_nan;
471         } else if (tm & VFP_ZERO)
472                 vsd.exponent = 0;
473         else
474                 vsd.exponent = vdm.exponent - (1023 - 127);
475
476         return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
477
478  pack_nan:
479         vfp_put_float(sd, vfp_single_pack(&vsd));
480         return exceptions;
481 }
482
483 static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
484 {
485         struct vfp_double vdm;
486         u32 m = vfp_get_float(dm);
487
488         vdm.sign = 0;
489         vdm.exponent = 1023 + 63 - 1;
490         vdm.significand = (u64)m;
491
492         return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
493 }
494
495 static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
496 {
497         struct vfp_double vdm;
498         u32 m = vfp_get_float(dm);
499
500         vdm.sign = (m & 0x80000000) >> 16;
501         vdm.exponent = 1023 + 63 - 1;
502         vdm.significand = vdm.sign ? -m : m;
503
504         return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
505 }
506
507 static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
508 {
509         struct vfp_double vdm;
510         u32 d, exceptions = 0;
511         int rmode = fpscr & FPSCR_RMODE_MASK;
512         int tm;
513
514         vfp_double_unpack(&vdm, vfp_get_double(dm));
515
516         /*
517          * Do we have a denormalised number?
518          */
519         tm = vfp_double_type(&vdm);
520         if (tm & VFP_DENORMAL)
521                 exceptions |= FPSCR_IDC;
522
523         if (tm & VFP_NAN)
524                 vdm.sign = 0;
525
526         if (vdm.exponent >= 1023 + 32) {
527                 d = vdm.sign ? 0 : 0xffffffff;
528                 exceptions = FPSCR_IOC;
529         } else if (vdm.exponent >= 1023 - 1) {
530                 int shift = 1023 + 63 - vdm.exponent;
531                 u64 rem, incr = 0;
532
533                 /*
534                  * 2^0 <= m < 2^32-2^8
535                  */
536                 d = (vdm.significand << 1) >> shift;
537                 rem = vdm.significand << (65 - shift);
538
539                 if (rmode == FPSCR_ROUND_NEAREST) {
540                         incr = 0x8000000000000000ULL;
541                         if ((d & 1) == 0)
542                                 incr -= 1;
543                 } else if (rmode == FPSCR_ROUND_TOZERO) {
544                         incr = 0;
545                 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
546                         incr = ~0ULL;
547                 }
548
549                 if ((rem + incr) < rem) {
550                         if (d < 0xffffffff)
551                                 d += 1;
552                         else
553                                 exceptions |= FPSCR_IOC;
554                 }
555
556                 if (d && vdm.sign) {
557                         d = 0;
558                         exceptions |= FPSCR_IOC;
559                 } else if (rem)
560                         exceptions |= FPSCR_IXC;
561         } else {
562                 d = 0;
563                 if (vdm.exponent | vdm.significand) {
564                         exceptions |= FPSCR_IXC;
565                         if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
566                                 d = 1;
567                         else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
568                                 d = 0;
569                                 exceptions |= FPSCR_IOC;
570                         }
571                 }
572         }
573
574         pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
575
576         vfp_put_float(sd, d);
577
578         return exceptions;
579 }
580
581 static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
582 {
583         return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
584 }
585
586 static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
587 {
588         struct vfp_double vdm;
589         u32 d, exceptions = 0;
590         int rmode = fpscr & FPSCR_RMODE_MASK;
591         int tm;
592
593         vfp_double_unpack(&vdm, vfp_get_double(dm));
594         vfp_double_dump("VDM", &vdm);
595
596         /*
597          * Do we have denormalised number?
598          */
599         tm = vfp_double_type(&vdm);
600         if (tm & VFP_DENORMAL)
601                 exceptions |= FPSCR_IDC;
602
603         if (tm & VFP_NAN) {
604                 d = 0;
605                 exceptions |= FPSCR_IOC;
606         } else if (vdm.exponent >= 1023 + 32) {
607                 d = 0x7fffffff;
608                 if (vdm.sign)
609                         d = ~d;
610                 exceptions |= FPSCR_IOC;
611         } else if (vdm.exponent >= 1023 - 1) {
612                 int shift = 1023 + 63 - vdm.exponent;   /* 58 */
613                 u64 rem, incr = 0;
614
615                 d = (vdm.significand << 1) >> shift;
616                 rem = vdm.significand << (65 - shift);
617
618                 if (rmode == FPSCR_ROUND_NEAREST) {
619                         incr = 0x8000000000000000ULL;
620                         if ((d & 1) == 0)
621                                 incr -= 1;
622                 } else if (rmode == FPSCR_ROUND_TOZERO) {
623                         incr = 0;
624                 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
625                         incr = ~0ULL;
626                 }
627
628                 if ((rem + incr) < rem && d < 0xffffffff)
629                         d += 1;
630                 if (d > 0x7fffffff + (vdm.sign != 0)) {
631                         d = 0x7fffffff + (vdm.sign != 0);
632                         exceptions |= FPSCR_IOC;
633                 } else if (rem)
634                         exceptions |= FPSCR_IXC;
635
636                 if (vdm.sign)
637                         d = -d;
638         } else {
639                 d = 0;
640                 if (vdm.exponent | vdm.significand) {
641                         exceptions |= FPSCR_IXC;
642                         if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
643                                 d = 1;
644                         else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
645                                 d = -1;
646                 }
647         }
648
649         pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
650
651         vfp_put_float(sd, (s32)d);
652
653         return exceptions;
654 }
655
656 static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
657 {
658         return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
659 }
660
661
662 static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
663         [FEXT_TO_IDX(FEXT_FCPY)]        = vfp_double_fcpy,
664         [FEXT_TO_IDX(FEXT_FABS)]        = vfp_double_fabs,
665         [FEXT_TO_IDX(FEXT_FNEG)]        = vfp_double_fneg,
666         [FEXT_TO_IDX(FEXT_FSQRT)]       = vfp_double_fsqrt,
667         [FEXT_TO_IDX(FEXT_FCMP)]        = vfp_double_fcmp,
668         [FEXT_TO_IDX(FEXT_FCMPE)]       = vfp_double_fcmpe,
669         [FEXT_TO_IDX(FEXT_FCMPZ)]       = vfp_double_fcmpz,
670         [FEXT_TO_IDX(FEXT_FCMPEZ)]      = vfp_double_fcmpez,
671         [FEXT_TO_IDX(FEXT_FCVT)]        = vfp_double_fcvts,
672         [FEXT_TO_IDX(FEXT_FUITO)]       = vfp_double_fuito,
673         [FEXT_TO_IDX(FEXT_FSITO)]       = vfp_double_fsito,
674         [FEXT_TO_IDX(FEXT_FTOUI)]       = vfp_double_ftoui,
675         [FEXT_TO_IDX(FEXT_FTOUIZ)]      = vfp_double_ftouiz,
676         [FEXT_TO_IDX(FEXT_FTOSI)]       = vfp_double_ftosi,
677         [FEXT_TO_IDX(FEXT_FTOSIZ)]      = vfp_double_ftosiz,
678 };
679
680
681
682
683 static u32
684 vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
685                           struct vfp_double *vdm, u32 fpscr)
686 {
687         struct vfp_double *vdp;
688         u32 exceptions = 0;
689         int tn, tm;
690
691         tn = vfp_double_type(vdn);
692         tm = vfp_double_type(vdm);
693
694         if (tn & tm & VFP_INFINITY) {
695                 /*
696                  * Two infinities.  Are they different signs?
697                  */
698                 if (vdn->sign ^ vdm->sign) {
699                         /*
700                          * different signs -> invalid
701                          */
702                         exceptions = FPSCR_IOC;
703                         vdp = &vfp_double_default_qnan;
704                 } else {
705                         /*
706                          * same signs -> valid
707                          */
708                         vdp = vdn;
709                 }
710         } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
711                 /*
712                  * One infinity and one number -> infinity
713                  */
714                 vdp = vdn;
715         } else {
716                 /*
717                  * 'n' is a NaN of some type
718                  */
719                 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
720         }
721         *vdd = *vdp;
722         return exceptions;
723 }
724
725 static u32
726 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
727                struct vfp_double *vdm, u32 fpscr)
728 {
729         u32 exp_diff;
730         u64 m_sig;
731
732         if (vdn->significand & (1ULL << 63) ||
733             vdm->significand & (1ULL << 63)) {
734                 pr_info("VFP: bad FP values in %s\n", __func__);
735                 vfp_double_dump("VDN", vdn);
736                 vfp_double_dump("VDM", vdm);
737         }
738
739         /*
740          * Ensure that 'n' is the largest magnitude number.  Note that
741          * if 'n' and 'm' have equal exponents, we do not swap them.
742          * This ensures that NaN propagation works correctly.
743          */
744         if (vdn->exponent < vdm->exponent) {
745                 struct vfp_double *t = vdn;
746                 vdn = vdm;
747                 vdm = t;
748         }
749
750         /*
751          * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
752          * infinity or a NaN here.
753          */
754         if (vdn->exponent == 2047)
755                 return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
756
757         /*
758          * We have two proper numbers, where 'vdn' is the larger magnitude.
759          *
760          * Copy 'n' to 'd' before doing the arithmetic.
761          */
762         *vdd = *vdn;
763
764         /*
765          * Align 'm' with the result.
766          */
767         exp_diff = vdn->exponent - vdm->exponent;
768         m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
769
770         /*
771          * If the signs are different, we are really subtracting.
772          */
773         if (vdn->sign ^ vdm->sign) {
774                 m_sig = vdn->significand - m_sig;
775                 if ((s64)m_sig < 0) {
776                         vdd->sign = vfp_sign_negate(vdd->sign);
777                         m_sig = -m_sig;
778                 } else if (m_sig == 0) {
779                         vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
780                                       FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
781                 }
782         } else {
783                 m_sig += vdn->significand;
784         }
785         vdd->significand = m_sig;
786
787         return 0;
788 }
789
790 static u32
791 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
792                     struct vfp_double *vdm, u32 fpscr)
793 {
794         vfp_double_dump("VDN", vdn);
795         vfp_double_dump("VDM", vdm);
796
797         /*
798          * Ensure that 'n' is the largest magnitude number.  Note that
799          * if 'n' and 'm' have equal exponents, we do not swap them.
800          * This ensures that NaN propagation works correctly.
801          */
802         if (vdn->exponent < vdm->exponent) {
803                 struct vfp_double *t = vdn;
804                 vdn = vdm;
805                 vdm = t;
806                 pr_debug("VFP: swapping M <-> N\n");
807         }
808
809         vdd->sign = vdn->sign ^ vdm->sign;
810
811         /*
812          * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
813          */
814         if (vdn->exponent == 2047) {
815                 if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
816                         return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
817                 if ((vdm->exponent | vdm->significand) == 0) {
818                         *vdd = vfp_double_default_qnan;
819                         return FPSCR_IOC;
820                 }
821                 vdd->exponent = vdn->exponent;
822                 vdd->significand = 0;
823                 return 0;
824         }
825
826         /*
827          * If 'm' is zero, the result is always zero.  In this case,
828          * 'n' may be zero or a number, but it doesn't matter which.
829          */
830         if ((vdm->exponent | vdm->significand) == 0) {
831                 vdd->exponent = 0;
832                 vdd->significand = 0;
833                 return 0;
834         }
835
836         /*
837          * We add 2 to the destination exponent for the same reason
838          * as the addition case - though this time we have +1 from
839          * each input operand.
840          */
841         vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
842         vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
843
844         vfp_double_dump("VDD", vdd);
845         return 0;
846 }
847
848 #define NEG_MULTIPLY    (1 << 0)
849 #define NEG_SUBTRACT    (1 << 1)
850
851 static u32
852 vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
853 {
854         struct vfp_double vdd, vdp, vdn, vdm;
855         u32 exceptions;
856
857         vfp_double_unpack(&vdn, vfp_get_double(dn));
858         if (vdn.exponent == 0 && vdn.significand)
859                 vfp_double_normalise_denormal(&vdn);
860
861         vfp_double_unpack(&vdm, vfp_get_double(dm));
862         if (vdm.exponent == 0 && vdm.significand)
863                 vfp_double_normalise_denormal(&vdm);
864
865         exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
866         if (negate & NEG_MULTIPLY)
867                 vdp.sign = vfp_sign_negate(vdp.sign);
868
869         vfp_double_unpack(&vdn, vfp_get_double(dd));
870         if (negate & NEG_SUBTRACT)
871                 vdn.sign = vfp_sign_negate(vdn.sign);
872
873         exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
874
875         return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
876 }
877
878 /*
879  * Standard operations
880  */
881
882 /*
883  * sd = sd + (sn * sm)
884  */
885 static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
886 {
887         return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
888 }
889
890 /*
891  * sd = sd - (sn * sm)
892  */
893 static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
894 {
895         return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
896 }
897
898 /*
899  * sd = -sd + (sn * sm)
900  */
901 static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
902 {
903         return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
904 }
905
906 /*
907  * sd = -sd - (sn * sm)
908  */
909 static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
910 {
911         return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
912 }
913
914 /*
915  * sd = sn * sm
916  */
917 static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
918 {
919         struct vfp_double vdd, vdn, vdm;
920         u32 exceptions;
921
922         vfp_double_unpack(&vdn, vfp_get_double(dn));
923         if (vdn.exponent == 0 && vdn.significand)
924                 vfp_double_normalise_denormal(&vdn);
925
926         vfp_double_unpack(&vdm, vfp_get_double(dm));
927         if (vdm.exponent == 0 && vdm.significand)
928                 vfp_double_normalise_denormal(&vdm);
929
930         exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
931         return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
932 }
933
934 /*
935  * sd = -(sn * sm)
936  */
937 static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
938 {
939         struct vfp_double vdd, vdn, vdm;
940         u32 exceptions;
941
942         vfp_double_unpack(&vdn, vfp_get_double(dn));
943         if (vdn.exponent == 0 && vdn.significand)
944                 vfp_double_normalise_denormal(&vdn);
945
946         vfp_double_unpack(&vdm, vfp_get_double(dm));
947         if (vdm.exponent == 0 && vdm.significand)
948                 vfp_double_normalise_denormal(&vdm);
949
950         exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
951         vdd.sign = vfp_sign_negate(vdd.sign);
952
953         return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
954 }
955
956 /*
957  * sd = sn + sm
958  */
959 static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
960 {
961         struct vfp_double vdd, vdn, vdm;
962         u32 exceptions;
963
964         vfp_double_unpack(&vdn, vfp_get_double(dn));
965         if (vdn.exponent == 0 && vdn.significand)
966                 vfp_double_normalise_denormal(&vdn);
967
968         vfp_double_unpack(&vdm, vfp_get_double(dm));
969         if (vdm.exponent == 0 && vdm.significand)
970                 vfp_double_normalise_denormal(&vdm);
971
972         exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
973
974         return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
975 }
976
977 /*
978  * sd = sn - sm
979  */
980 static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
981 {
982         struct vfp_double vdd, vdn, vdm;
983         u32 exceptions;
984
985         vfp_double_unpack(&vdn, vfp_get_double(dn));
986         if (vdn.exponent == 0 && vdn.significand)
987                 vfp_double_normalise_denormal(&vdn);
988
989         vfp_double_unpack(&vdm, vfp_get_double(dm));
990         if (vdm.exponent == 0 && vdm.significand)
991                 vfp_double_normalise_denormal(&vdm);
992
993         /*
994          * Subtraction is like addition, but with a negated operand.
995          */
996         vdm.sign = vfp_sign_negate(vdm.sign);
997
998         exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
999
1000         return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
1001 }
1002
1003 /*
1004  * sd = sn / sm
1005  */
1006 static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
1007 {
1008         struct vfp_double vdd, vdn, vdm;
1009         u32 exceptions = 0;
1010         int tm, tn;
1011
1012         vfp_double_unpack(&vdn, vfp_get_double(dn));
1013         vfp_double_unpack(&vdm, vfp_get_double(dm));
1014
1015         vdd.sign = vdn.sign ^ vdm.sign;
1016
1017         tn = vfp_double_type(&vdn);
1018         tm = vfp_double_type(&vdm);
1019
1020         /*
1021          * Is n a NAN?
1022          */
1023         if (tn & VFP_NAN)
1024                 goto vdn_nan;
1025
1026         /*
1027          * Is m a NAN?
1028          */
1029         if (tm & VFP_NAN)
1030                 goto vdm_nan;
1031
1032         /*
1033          * If n and m are infinity, the result is invalid
1034          * If n and m are zero, the result is invalid
1035          */
1036         if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1037                 goto invalid;
1038
1039         /*
1040          * If n is infinity, the result is infinity
1041          */
1042         if (tn & VFP_INFINITY)
1043                 goto infinity;
1044
1045         /*
1046          * If m is zero, raise div0 exceptions
1047          */
1048         if (tm & VFP_ZERO)
1049                 goto divzero;
1050
1051         /*
1052          * If m is infinity, or n is zero, the result is zero
1053          */
1054         if (tm & VFP_INFINITY || tn & VFP_ZERO)
1055                 goto zero;
1056
1057         if (tn & VFP_DENORMAL)
1058                 vfp_double_normalise_denormal(&vdn);
1059         if (tm & VFP_DENORMAL)
1060                 vfp_double_normalise_denormal(&vdm);
1061
1062         /*
1063          * Ok, we have two numbers, we can perform division.
1064          */
1065         vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
1066         vdm.significand <<= 1;
1067         if (vdm.significand <= (2 * vdn.significand)) {
1068                 vdn.significand >>= 1;
1069                 vdd.exponent++;
1070         }
1071         vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
1072         if ((vdd.significand & 0x1ff) <= 2) {
1073                 u64 termh, terml, remh, reml;
1074                 mul64to128(&termh, &terml, vdm.significand, vdd.significand);
1075                 sub128(&remh, &reml, vdn.significand, 0, termh, terml);
1076                 while ((s64)remh < 0) {
1077                         vdd.significand -= 1;
1078                         add128(&remh, &reml, remh, reml, 0, vdm.significand);
1079                 }
1080                 vdd.significand |= (reml != 0);
1081         }
1082         return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
1083
1084  vdn_nan:
1085         exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
1086  pack:
1087         vfp_put_double(dd, vfp_double_pack(&vdd));
1088         return exceptions;
1089
1090  vdm_nan:
1091         exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
1092         goto pack;
1093
1094  zero:
1095         vdd.exponent = 0;
1096         vdd.significand = 0;
1097         goto pack;
1098
1099  divzero:
1100         exceptions = FPSCR_DZC;
1101  infinity:
1102         vdd.exponent = 2047;
1103         vdd.significand = 0;
1104         goto pack;
1105
1106  invalid:
1107         vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan));
1108         return FPSCR_IOC;
1109 }
1110
1111 static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
1112         [FOP_TO_IDX(FOP_FMAC)]  = vfp_double_fmac,
1113         [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac,
1114         [FOP_TO_IDX(FOP_FMSC)]  = vfp_double_fmsc,
1115         [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc,
1116         [FOP_TO_IDX(FOP_FMUL)]  = vfp_double_fmul,
1117         [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul,
1118         [FOP_TO_IDX(FOP_FADD)]  = vfp_double_fadd,
1119         [FOP_TO_IDX(FOP_FSUB)]  = vfp_double_fsub,
1120         [FOP_TO_IDX(FOP_FDIV)]  = vfp_double_fdiv,
1121 };
1122
1123 #define FREG_BANK(x)    ((x) & 0x0c)
1124 #define FREG_IDX(x)     ((x) & 3)
1125
1126 u32 vfp_double_cpdo(u32 inst, u32 fpscr)
1127 {
1128         u32 op = inst & FOP_MASK;
1129         u32 exceptions = 0;
1130         unsigned int dd = vfp_get_dd(inst);
1131         unsigned int dn = vfp_get_dn(inst);
1132         unsigned int dm = vfp_get_dm(inst);
1133         unsigned int vecitr, veclen, vecstride;
1134         u32 (*fop)(int, int, s32, u32);
1135
1136         veclen = fpscr & FPSCR_LENGTH_MASK;
1137         vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
1138
1139         /*
1140          * If destination bank is zero, vector length is always '1'.
1141          * ARM DDI0100F C5.1.3, C5.3.2.
1142          */
1143         if (FREG_BANK(dd) == 0)
1144                 veclen = 0;
1145
1146         pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1147                  (veclen >> FPSCR_LENGTH_BIT) + 1);
1148
1149         fop = (op == FOP_EXT) ? fop_extfns[FEXT_TO_IDX(inst)] : fop_fns[FOP_TO_IDX(op)];
1150         if (!fop)
1151                 goto invalid;
1152
1153         for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1154                 u32 except;
1155
1156                 if (op == FOP_EXT)
1157                         pr_debug("VFP: itr%d (d%u) = op[%u] (d%u)\n",
1158                                  vecitr >> FPSCR_LENGTH_BIT,
1159                                  dd, dn, dm);
1160                 else
1161                         pr_debug("VFP: itr%d (d%u) = (d%u) op[%u] (d%u)\n",
1162                                  vecitr >> FPSCR_LENGTH_BIT,
1163                                  dd, dn, FOP_TO_IDX(op), dm);
1164
1165                 except = fop(dd, dn, dm, fpscr);
1166                 pr_debug("VFP: itr%d: exceptions=%08x\n",
1167                          vecitr >> FPSCR_LENGTH_BIT, except);
1168
1169                 exceptions |= except;
1170
1171                 /*
1172                  * This ensures that comparisons only operate on scalars;
1173                  * comparisons always return with one FPSCR status bit set.
1174                  */
1175                 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1176                         break;
1177
1178                 /*
1179                  * CHECK: It appears to be undefined whether we stop when
1180                  * we encounter an exception.  We continue.
1181                  */
1182
1183                 dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6);
1184                 dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
1185                 if (FREG_BANK(dm) != 0)
1186                         dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);
1187         }
1188         return exceptions;
1189
1190  invalid:
1191         return ~0;
1192 }