2 * linux/arch/arm/vfp/vfpdouble.c
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
36 #include <asm/div64.h>
37 #include <asm/ptrace.h>
43 static struct vfp_double vfp_double_default_qnan = {
46 .significand = VFP_DOUBLE_SIGNIFICAND_QNAN,
49 static void vfp_double_dump(const char *str, struct vfp_double *d)
51 pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
52 str, d->sign != 0, d->exponent, d->significand);
55 static void vfp_double_normalise_denormal(struct vfp_double *vd)
57 int bits = 31 - fls(vd->significand >> 32);
59 bits = 62 - fls(vd->significand);
61 vfp_double_dump("normalise_denormal: in", vd);
64 vd->exponent -= bits - 1;
65 vd->significand <<= bits;
68 vfp_double_dump("normalise_denormal: out", vd);
71 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
73 u64 significand, incr;
74 int exponent, shift, underflow;
77 vfp_double_dump("pack: in", vd);
80 * Infinities and NaNs are a special case.
82 if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
88 if (vd->significand == 0) {
93 exponent = vd->exponent;
94 significand = vd->significand;
96 shift = 32 - fls(significand >> 32);
98 shift = 64 - fls(significand);
101 significand <<= shift;
105 vd->exponent = exponent;
106 vd->significand = significand;
107 vfp_double_dump("pack: normalised", vd);
113 underflow = exponent < 0;
115 significand = vfp_shiftright64jamming(significand, -exponent);
118 vd->exponent = exponent;
119 vd->significand = significand;
120 vfp_double_dump("pack: tiny number", vd);
122 if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
127 * Select rounding increment.
130 rmode = fpscr & FPSCR_RMODE_MASK;
132 if (rmode == FPSCR_ROUND_NEAREST) {
133 incr = 1ULL << VFP_DOUBLE_LOW_BITS;
134 if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
136 } else if (rmode == FPSCR_ROUND_TOZERO) {
138 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
139 incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
141 pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
144 * Is our rounding going to overflow?
146 if ((significand + incr) < significand) {
148 significand = (significand >> 1) | (significand & 1);
151 vd->exponent = exponent;
152 vd->significand = significand;
153 vfp_double_dump("pack: overflow", vd);
158 * If any of the low bits (which will be shifted out of the
159 * number) are non-zero, the result is inexact.
161 if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
162 exceptions |= FPSCR_IXC;
172 if (exponent >= 2046) {
173 exceptions |= FPSCR_OFC | FPSCR_IXC;
176 vd->significand = 0x7fffffffffffffffULL;
178 vd->exponent = 2047; /* infinity */
182 if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
184 if (exponent || significand > 0x8000000000000000ULL)
187 exceptions |= FPSCR_UFC;
188 vd->exponent = exponent;
189 vd->significand = significand >> 1;
193 vfp_double_dump("pack: final", vd);
195 s64 d = vfp_double_pack(vd);
196 pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
198 vfp_put_double(dd, d);
200 return exceptions & ~VFP_NAN_FLAG;
204 * Propagate the NaN, setting exceptions if it is signalling.
205 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
208 vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
209 struct vfp_double *vdm, u32 fpscr)
211 struct vfp_double *nan;
214 tn = vfp_double_type(vdn);
217 tm = vfp_double_type(vdm);
219 if (fpscr & FPSCR_DEFAULT_NAN)
221 * Default NaN mode - always returns a quiet NaN
223 nan = &vfp_double_default_qnan;
226 * Contemporary mode - select the first signalling
227 * NAN, or if neither are signalling, the first
230 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
235 * Make the NaN quiet.
237 nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
243 * If one was a signalling NAN, raise invalid operation.
245 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
249 * Extended operations
251 static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
253 vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm)));
257 static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
259 vfp_put_double(dd, vfp_get_double(dm));
263 static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
265 vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm)));
269 static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
271 struct vfp_double vdm, vdd;
274 vfp_double_unpack(&vdm, vfp_get_double(dm));
275 tm = vfp_double_type(&vdm);
276 if (tm & (VFP_NAN|VFP_INFINITY)) {
277 struct vfp_double *vdp = &vdd;
280 ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
281 else if (vdm.sign == 0) {
287 vdp = &vfp_double_default_qnan;
290 vfp_put_double(dd, vfp_double_pack(vdp));
295 * sqrt(+/- 0) == +/- 0
301 * Normalise a denormalised number
303 if (tm & VFP_DENORMAL)
304 vfp_double_normalise_denormal(&vdm);
312 vfp_double_dump("sqrt", &vdm);
315 * Estimate the square root.
318 vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
319 vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
321 vfp_double_dump("sqrt estimate1", &vdd);
323 vdm.significand >>= 1 + (vdm.exponent & 1);
324 vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
326 vfp_double_dump("sqrt estimate2", &vdd);
331 if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
332 if (vdd.significand < 2) {
333 vdd.significand = ~0ULL;
335 u64 termh, terml, remh, reml;
336 vdm.significand <<= 2;
337 mul64to128(&termh, &terml, vdd.significand, vdd.significand);
338 sub128(&remh, &reml, vdm.significand, 0, termh, terml);
339 while ((s64)remh < 0) {
340 vdd.significand -= 1;
341 shift64left(&termh, &terml, vdd.significand);
343 add128(&remh, &reml, remh, reml, termh, terml);
345 vdd.significand |= (remh | reml) != 0;
348 vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
350 return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
359 static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
364 m = vfp_get_double(dm);
365 if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
366 ret |= FPSCR_C | FPSCR_V;
367 if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
369 * Signalling NaN, or signalling on quiet NaN
374 d = vfp_get_double(dd);
375 if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
376 ret |= FPSCR_C | FPSCR_V;
377 if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
379 * Signalling NaN, or signalling on quiet NaN
385 if (d == m || vfp_double_packed_abs(d | m) == 0) {
389 ret |= FPSCR_Z | FPSCR_C;
390 } else if (vfp_double_packed_sign(d ^ m)) {
394 if (vfp_double_packed_sign(d))
396 * d is negative, so d < m
401 * d is positive, so d > m
404 } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
409 } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
420 static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
422 return vfp_compare(dd, 0, dm, fpscr);
425 static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
427 return vfp_compare(dd, 1, dm, fpscr);
430 static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
432 return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
435 static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
437 return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
440 static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
442 struct vfp_double vdm;
443 struct vfp_single vsd;
447 vfp_double_unpack(&vdm, vfp_get_double(dm));
449 tm = vfp_double_type(&vdm);
452 * If we have a signalling NaN, signal invalid operation.
455 exceptions = FPSCR_IOC;
457 if (tm & VFP_DENORMAL)
458 vfp_double_normalise_denormal(&vdm);
461 vsd.significand = vfp_hi64to32jamming(vdm.significand);
464 * If we have an infinity or a NaN, the exponent must be 255
466 if (tm & (VFP_INFINITY|VFP_NAN)) {
469 vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
471 } else if (tm & VFP_ZERO)
474 vsd.exponent = vdm.exponent - (1023 - 127);
476 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
479 vfp_put_float(sd, vfp_single_pack(&vsd));
483 static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
485 struct vfp_double vdm;
486 u32 m = vfp_get_float(dm);
489 vdm.exponent = 1023 + 63 - 1;
490 vdm.significand = (u64)m;
492 return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
495 static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
497 struct vfp_double vdm;
498 u32 m = vfp_get_float(dm);
500 vdm.sign = (m & 0x80000000) >> 16;
501 vdm.exponent = 1023 + 63 - 1;
502 vdm.significand = vdm.sign ? -m : m;
504 return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
507 static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
509 struct vfp_double vdm;
510 u32 d, exceptions = 0;
511 int rmode = fpscr & FPSCR_RMODE_MASK;
514 vfp_double_unpack(&vdm, vfp_get_double(dm));
517 * Do we have a denormalised number?
519 tm = vfp_double_type(&vdm);
520 if (tm & VFP_DENORMAL)
521 exceptions |= FPSCR_IDC;
526 if (vdm.exponent >= 1023 + 32) {
527 d = vdm.sign ? 0 : 0xffffffff;
528 exceptions = FPSCR_IOC;
529 } else if (vdm.exponent >= 1023 - 1) {
530 int shift = 1023 + 63 - vdm.exponent;
534 * 2^0 <= m < 2^32-2^8
536 d = (vdm.significand << 1) >> shift;
537 rem = vdm.significand << (65 - shift);
539 if (rmode == FPSCR_ROUND_NEAREST) {
540 incr = 0x8000000000000000ULL;
543 } else if (rmode == FPSCR_ROUND_TOZERO) {
545 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
549 if ((rem + incr) < rem) {
553 exceptions |= FPSCR_IOC;
558 exceptions |= FPSCR_IOC;
560 exceptions |= FPSCR_IXC;
563 if (vdm.exponent | vdm.significand) {
564 exceptions |= FPSCR_IXC;
565 if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
567 else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
569 exceptions |= FPSCR_IOC;
574 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
576 vfp_put_float(sd, d);
581 static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
583 return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
586 static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
588 struct vfp_double vdm;
589 u32 d, exceptions = 0;
590 int rmode = fpscr & FPSCR_RMODE_MASK;
593 vfp_double_unpack(&vdm, vfp_get_double(dm));
594 vfp_double_dump("VDM", &vdm);
597 * Do we have denormalised number?
599 tm = vfp_double_type(&vdm);
600 if (tm & VFP_DENORMAL)
601 exceptions |= FPSCR_IDC;
605 exceptions |= FPSCR_IOC;
606 } else if (vdm.exponent >= 1023 + 32) {
610 exceptions |= FPSCR_IOC;
611 } else if (vdm.exponent >= 1023 - 1) {
612 int shift = 1023 + 63 - vdm.exponent; /* 58 */
615 d = (vdm.significand << 1) >> shift;
616 rem = vdm.significand << (65 - shift);
618 if (rmode == FPSCR_ROUND_NEAREST) {
619 incr = 0x8000000000000000ULL;
622 } else if (rmode == FPSCR_ROUND_TOZERO) {
624 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
628 if ((rem + incr) < rem && d < 0xffffffff)
630 if (d > 0x7fffffff + (vdm.sign != 0)) {
631 d = 0x7fffffff + (vdm.sign != 0);
632 exceptions |= FPSCR_IOC;
634 exceptions |= FPSCR_IXC;
640 if (vdm.exponent | vdm.significand) {
641 exceptions |= FPSCR_IXC;
642 if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
644 else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
649 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
651 vfp_put_float(sd, (s32)d);
656 static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
658 return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
662 static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
663 [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy,
664 [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs,
665 [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg,
666 [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt,
667 [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp,
668 [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe,
669 [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz,
670 [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez,
671 [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts,
672 [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito,
673 [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito,
674 [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui,
675 [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz,
676 [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi,
677 [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz,
684 vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
685 struct vfp_double *vdm, u32 fpscr)
687 struct vfp_double *vdp;
691 tn = vfp_double_type(vdn);
692 tm = vfp_double_type(vdm);
694 if (tn & tm & VFP_INFINITY) {
696 * Two infinities. Are they different signs?
698 if (vdn->sign ^ vdm->sign) {
700 * different signs -> invalid
702 exceptions = FPSCR_IOC;
703 vdp = &vfp_double_default_qnan;
706 * same signs -> valid
710 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
712 * One infinity and one number -> infinity
717 * 'n' is a NaN of some type
719 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
726 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
727 struct vfp_double *vdm, u32 fpscr)
732 if (vdn->significand & (1ULL << 63) ||
733 vdm->significand & (1ULL << 63)) {
734 pr_info("VFP: bad FP values in %s\n", __func__);
735 vfp_double_dump("VDN", vdn);
736 vfp_double_dump("VDM", vdm);
740 * Ensure that 'n' is the largest magnitude number. Note that
741 * if 'n' and 'm' have equal exponents, we do not swap them.
742 * This ensures that NaN propagation works correctly.
744 if (vdn->exponent < vdm->exponent) {
745 struct vfp_double *t = vdn;
751 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
752 * infinity or a NaN here.
754 if (vdn->exponent == 2047)
755 return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
758 * We have two proper numbers, where 'vdn' is the larger magnitude.
760 * Copy 'n' to 'd' before doing the arithmetic.
765 * Align 'm' with the result.
767 exp_diff = vdn->exponent - vdm->exponent;
768 m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
771 * If the signs are different, we are really subtracting.
773 if (vdn->sign ^ vdm->sign) {
774 m_sig = vdn->significand - m_sig;
775 if ((s64)m_sig < 0) {
776 vdd->sign = vfp_sign_negate(vdd->sign);
778 } else if (m_sig == 0) {
779 vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
780 FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
783 m_sig += vdn->significand;
785 vdd->significand = m_sig;
791 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
792 struct vfp_double *vdm, u32 fpscr)
794 vfp_double_dump("VDN", vdn);
795 vfp_double_dump("VDM", vdm);
798 * Ensure that 'n' is the largest magnitude number. Note that
799 * if 'n' and 'm' have equal exponents, we do not swap them.
800 * This ensures that NaN propagation works correctly.
802 if (vdn->exponent < vdm->exponent) {
803 struct vfp_double *t = vdn;
806 pr_debug("VFP: swapping M <-> N\n");
809 vdd->sign = vdn->sign ^ vdm->sign;
812 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
814 if (vdn->exponent == 2047) {
815 if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
816 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
817 if ((vdm->exponent | vdm->significand) == 0) {
818 *vdd = vfp_double_default_qnan;
821 vdd->exponent = vdn->exponent;
822 vdd->significand = 0;
827 * If 'm' is zero, the result is always zero. In this case,
828 * 'n' may be zero or a number, but it doesn't matter which.
830 if ((vdm->exponent | vdm->significand) == 0) {
832 vdd->significand = 0;
837 * We add 2 to the destination exponent for the same reason
838 * as the addition case - though this time we have +1 from
839 * each input operand.
841 vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
842 vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
844 vfp_double_dump("VDD", vdd);
848 #define NEG_MULTIPLY (1 << 0)
849 #define NEG_SUBTRACT (1 << 1)
852 vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
854 struct vfp_double vdd, vdp, vdn, vdm;
857 vfp_double_unpack(&vdn, vfp_get_double(dn));
858 if (vdn.exponent == 0 && vdn.significand)
859 vfp_double_normalise_denormal(&vdn);
861 vfp_double_unpack(&vdm, vfp_get_double(dm));
862 if (vdm.exponent == 0 && vdm.significand)
863 vfp_double_normalise_denormal(&vdm);
865 exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
866 if (negate & NEG_MULTIPLY)
867 vdp.sign = vfp_sign_negate(vdp.sign);
869 vfp_double_unpack(&vdn, vfp_get_double(dd));
870 if (negate & NEG_SUBTRACT)
871 vdn.sign = vfp_sign_negate(vdn.sign);
873 exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
875 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
879 * Standard operations
883 * sd = sd + (sn * sm)
885 static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
887 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
891 * sd = sd - (sn * sm)
893 static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
895 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
899 * sd = -sd + (sn * sm)
901 static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
903 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
907 * sd = -sd - (sn * sm)
909 static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
911 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
917 static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
919 struct vfp_double vdd, vdn, vdm;
922 vfp_double_unpack(&vdn, vfp_get_double(dn));
923 if (vdn.exponent == 0 && vdn.significand)
924 vfp_double_normalise_denormal(&vdn);
926 vfp_double_unpack(&vdm, vfp_get_double(dm));
927 if (vdm.exponent == 0 && vdm.significand)
928 vfp_double_normalise_denormal(&vdm);
930 exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
931 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
937 static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
939 struct vfp_double vdd, vdn, vdm;
942 vfp_double_unpack(&vdn, vfp_get_double(dn));
943 if (vdn.exponent == 0 && vdn.significand)
944 vfp_double_normalise_denormal(&vdn);
946 vfp_double_unpack(&vdm, vfp_get_double(dm));
947 if (vdm.exponent == 0 && vdm.significand)
948 vfp_double_normalise_denormal(&vdm);
950 exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
951 vdd.sign = vfp_sign_negate(vdd.sign);
953 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
959 static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
961 struct vfp_double vdd, vdn, vdm;
964 vfp_double_unpack(&vdn, vfp_get_double(dn));
965 if (vdn.exponent == 0 && vdn.significand)
966 vfp_double_normalise_denormal(&vdn);
968 vfp_double_unpack(&vdm, vfp_get_double(dm));
969 if (vdm.exponent == 0 && vdm.significand)
970 vfp_double_normalise_denormal(&vdm);
972 exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
974 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
980 static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
982 struct vfp_double vdd, vdn, vdm;
985 vfp_double_unpack(&vdn, vfp_get_double(dn));
986 if (vdn.exponent == 0 && vdn.significand)
987 vfp_double_normalise_denormal(&vdn);
989 vfp_double_unpack(&vdm, vfp_get_double(dm));
990 if (vdm.exponent == 0 && vdm.significand)
991 vfp_double_normalise_denormal(&vdm);
994 * Subtraction is like addition, but with a negated operand.
996 vdm.sign = vfp_sign_negate(vdm.sign);
998 exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
1000 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
1006 static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
1008 struct vfp_double vdd, vdn, vdm;
1012 vfp_double_unpack(&vdn, vfp_get_double(dn));
1013 vfp_double_unpack(&vdm, vfp_get_double(dm));
1015 vdd.sign = vdn.sign ^ vdm.sign;
1017 tn = vfp_double_type(&vdn);
1018 tm = vfp_double_type(&vdm);
1033 * If n and m are infinity, the result is invalid
1034 * If n and m are zero, the result is invalid
1036 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1040 * If n is infinity, the result is infinity
1042 if (tn & VFP_INFINITY)
1046 * If m is zero, raise div0 exceptions
1052 * If m is infinity, or n is zero, the result is zero
1054 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1057 if (tn & VFP_DENORMAL)
1058 vfp_double_normalise_denormal(&vdn);
1059 if (tm & VFP_DENORMAL)
1060 vfp_double_normalise_denormal(&vdm);
1063 * Ok, we have two numbers, we can perform division.
1065 vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
1066 vdm.significand <<= 1;
1067 if (vdm.significand <= (2 * vdn.significand)) {
1068 vdn.significand >>= 1;
1071 vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
1072 if ((vdd.significand & 0x1ff) <= 2) {
1073 u64 termh, terml, remh, reml;
1074 mul64to128(&termh, &terml, vdm.significand, vdd.significand);
1075 sub128(&remh, &reml, vdn.significand, 0, termh, terml);
1076 while ((s64)remh < 0) {
1077 vdd.significand -= 1;
1078 add128(&remh, &reml, remh, reml, 0, vdm.significand);
1080 vdd.significand |= (reml != 0);
1082 return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
1085 exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
1087 vfp_put_double(dd, vfp_double_pack(&vdd));
1091 exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
1096 vdd.significand = 0;
1100 exceptions = FPSCR_DZC;
1102 vdd.exponent = 2047;
1103 vdd.significand = 0;
1107 vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan));
1111 static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
1112 [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac,
1113 [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac,
1114 [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc,
1115 [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc,
1116 [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul,
1117 [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul,
1118 [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd,
1119 [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub,
1120 [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv,
1123 #define FREG_BANK(x) ((x) & 0x0c)
1124 #define FREG_IDX(x) ((x) & 3)
1126 u32 vfp_double_cpdo(u32 inst, u32 fpscr)
1128 u32 op = inst & FOP_MASK;
1130 unsigned int dd = vfp_get_dd(inst);
1131 unsigned int dn = vfp_get_dn(inst);
1132 unsigned int dm = vfp_get_dm(inst);
1133 unsigned int vecitr, veclen, vecstride;
1134 u32 (*fop)(int, int, s32, u32);
1136 veclen = fpscr & FPSCR_LENGTH_MASK;
1137 vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
1140 * If destination bank is zero, vector length is always '1'.
1141 * ARM DDI0100F C5.1.3, C5.3.2.
1143 if (FREG_BANK(dd) == 0)
1146 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1147 (veclen >> FPSCR_LENGTH_BIT) + 1);
1149 fop = (op == FOP_EXT) ? fop_extfns[FEXT_TO_IDX(inst)] : fop_fns[FOP_TO_IDX(op)];
1153 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1157 pr_debug("VFP: itr%d (d%u) = op[%u] (d%u)\n",
1158 vecitr >> FPSCR_LENGTH_BIT,
1161 pr_debug("VFP: itr%d (d%u) = (d%u) op[%u] (d%u)\n",
1162 vecitr >> FPSCR_LENGTH_BIT,
1163 dd, dn, FOP_TO_IDX(op), dm);
1165 except = fop(dd, dn, dm, fpscr);
1166 pr_debug("VFP: itr%d: exceptions=%08x\n",
1167 vecitr >> FPSCR_LENGTH_BIT, except);
1169 exceptions |= except;
1172 * This ensures that comparisons only operate on scalars;
1173 * comparisons always return with one FPSCR status bit set.
1175 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1179 * CHECK: It appears to be undefined whether we stop when
1180 * we encounter an exception. We continue.
1183 dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6);
1184 dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
1185 if (FREG_BANK(dm) != 0)
1186 dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);