Merge remote-tracking branches 'regulator/fix/resume' and 'regulator/fix/stm32-vfrefb...
[sfrench/cifs-2.6.git] / arch / arm / probes / kprobes / core.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35 #include <asm/sections.h>
36
37 #include "../decode-arm.h"
38 #include "../decode-thumb.h"
39 #include "core.h"
40
41 #define MIN_STACK_SIZE(addr)                            \
42         min((unsigned long)MAX_STACK_SIZE,              \
43             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
44
45 #define flush_insns(addr, size)                         \
46         flush_icache_range((unsigned long)(addr),       \
47                            (unsigned long)(addr) +      \
48                            (size))
49
50 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
51 #define JPROBE_MAGIC_ADDR               0xffffffff
52
53 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
55
56
57 int __kprobes arch_prepare_kprobe(struct kprobe *p)
58 {
59         kprobe_opcode_t insn;
60         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
61         unsigned long addr = (unsigned long)p->addr;
62         bool thumb;
63         kprobe_decode_insn_t *decode_insn;
64         const union decode_action *actions;
65         int is;
66         const struct decode_checker **checkers;
67
68 #ifdef CONFIG_THUMB2_KERNEL
69         thumb = true;
70         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
71         insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
72         if (is_wide_instruction(insn)) {
73                 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
74                 insn = __opcode_thumb32_compose(insn, inst2);
75                 decode_insn = thumb32_probes_decode_insn;
76                 actions = kprobes_t32_actions;
77                 checkers = kprobes_t32_checkers;
78         } else {
79                 decode_insn = thumb16_probes_decode_insn;
80                 actions = kprobes_t16_actions;
81                 checkers = kprobes_t16_checkers;
82         }
83 #else /* !CONFIG_THUMB2_KERNEL */
84         thumb = false;
85         if (addr & 0x3)
86                 return -EINVAL;
87         insn = __mem_to_opcode_arm(*p->addr);
88         decode_insn = arm_probes_decode_insn;
89         actions = kprobes_arm_actions;
90         checkers = kprobes_arm_checkers;
91 #endif
92
93         p->opcode = insn;
94         p->ainsn.insn = tmp_insn;
95
96         switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
97         case INSN_REJECTED:     /* not supported */
98                 return -EINVAL;
99
100         case INSN_GOOD:         /* instruction uses slot */
101                 p->ainsn.insn = get_insn_slot();
102                 if (!p->ainsn.insn)
103                         return -ENOMEM;
104                 for (is = 0; is < MAX_INSN_SIZE; ++is)
105                         p->ainsn.insn[is] = tmp_insn[is];
106                 flush_insns(p->ainsn.insn,
107                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
108                 p->ainsn.insn_fn = (probes_insn_fn_t *)
109                                         ((uintptr_t)p->ainsn.insn | thumb);
110                 break;
111
112         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
113                 p->ainsn.insn = NULL;
114                 break;
115         }
116
117         /*
118          * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
119          * 'str r0, [sp, #-68]' should also be prohibited.
120          * See __und_svc.
121          */
122         if ((p->ainsn.stack_space < 0) ||
123                         (p->ainsn.stack_space > MAX_STACK_SIZE))
124                 return -EINVAL;
125
126         return 0;
127 }
128
129 void __kprobes arch_arm_kprobe(struct kprobe *p)
130 {
131         unsigned int brkp;
132         void *addr;
133
134         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
135                 /* Remove any Thumb flag */
136                 addr = (void *)((uintptr_t)p->addr & ~1);
137
138                 if (is_wide_instruction(p->opcode))
139                         brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
140                 else
141                         brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
142         } else {
143                 kprobe_opcode_t insn = p->opcode;
144
145                 addr = p->addr;
146                 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
147
148                 if (insn >= 0xe0000000)
149                         brkp |= 0xe0000000;  /* Unconditional instruction */
150                 else
151                         brkp |= insn & 0xf0000000;  /* Copy condition from insn */
152         }
153
154         patch_text(addr, brkp);
155 }
156
157 /*
158  * The actual disarming is done here on each CPU and synchronized using
159  * stop_machine. This synchronization is necessary on SMP to avoid removing
160  * a probe between the moment the 'Undefined Instruction' exception is raised
161  * and the moment the exception handler reads the faulting instruction from
162  * memory. It is also needed to atomically set the two half-words of a 32-bit
163  * Thumb breakpoint.
164  */
165 struct patch {
166         void *addr;
167         unsigned int insn;
168 };
169
170 static int __kprobes_remove_breakpoint(void *data)
171 {
172         struct patch *p = data;
173         __patch_text(p->addr, p->insn);
174         return 0;
175 }
176
177 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
178 {
179         struct patch p = {
180                 .addr = addr,
181                 .insn = insn,
182         };
183         stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
184                                 cpu_online_mask);
185 }
186
187 void __kprobes arch_disarm_kprobe(struct kprobe *p)
188 {
189         kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
190                         p->opcode);
191 }
192
193 void __kprobes arch_remove_kprobe(struct kprobe *p)
194 {
195         if (p->ainsn.insn) {
196                 free_insn_slot(p->ainsn.insn, 0);
197                 p->ainsn.insn = NULL;
198         }
199 }
200
201 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
202 {
203         kcb->prev_kprobe.kp = kprobe_running();
204         kcb->prev_kprobe.status = kcb->kprobe_status;
205 }
206
207 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
208 {
209         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
210         kcb->kprobe_status = kcb->prev_kprobe.status;
211 }
212
213 static void __kprobes set_current_kprobe(struct kprobe *p)
214 {
215         __this_cpu_write(current_kprobe, p);
216 }
217
218 static void __kprobes
219 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
220 {
221 #ifdef CONFIG_THUMB2_KERNEL
222         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
223         if (is_wide_instruction(p->opcode))
224                 regs->ARM_pc += 4;
225         else
226                 regs->ARM_pc += 2;
227 #else
228         regs->ARM_pc += 4;
229 #endif
230 }
231
232 static inline void __kprobes
233 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
234 {
235         p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
236 }
237
238 /*
239  * Called with IRQs disabled. IRQs must remain disabled from that point
240  * all the way until processing this kprobe is complete.  The current
241  * kprobes implementation cannot process more than one nested level of
242  * kprobe, and that level is reserved for user kprobe handlers, so we can't
243  * risk encountering a new kprobe in an interrupt handler.
244  */
245 void __kprobes kprobe_handler(struct pt_regs *regs)
246 {
247         struct kprobe *p, *cur;
248         struct kprobe_ctlblk *kcb;
249
250         kcb = get_kprobe_ctlblk();
251         cur = kprobe_running();
252
253 #ifdef CONFIG_THUMB2_KERNEL
254         /*
255          * First look for a probe which was registered using an address with
256          * bit 0 set, this is the usual situation for pointers to Thumb code.
257          * If not found, fallback to looking for one with bit 0 clear.
258          */
259         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
260         if (!p)
261                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
262
263 #else /* ! CONFIG_THUMB2_KERNEL */
264         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
265 #endif
266
267         if (p) {
268                 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
269                         /*
270                          * Probe hit but conditional execution check failed,
271                          * so just skip the instruction and continue as if
272                          * nothing had happened.
273                          * In this case, we can skip recursing check too.
274                          */
275                         singlestep_skip(p, regs);
276                 } else if (cur) {
277                         /* Kprobe is pending, so we're recursing. */
278                         switch (kcb->kprobe_status) {
279                         case KPROBE_HIT_ACTIVE:
280                         case KPROBE_HIT_SSDONE:
281                         case KPROBE_HIT_SS:
282                                 /* A pre- or post-handler probe got us here. */
283                                 kprobes_inc_nmissed_count(p);
284                                 save_previous_kprobe(kcb);
285                                 set_current_kprobe(p);
286                                 kcb->kprobe_status = KPROBE_REENTER;
287                                 singlestep(p, regs, kcb);
288                                 restore_previous_kprobe(kcb);
289                                 break;
290                         case KPROBE_REENTER:
291                                 /* A nested probe was hit in FIQ, it is a BUG */
292                                 pr_warn("Unrecoverable kprobe detected at %p.\n",
293                                         p->addr);
294                                 /* fall through */
295                         default:
296                                 /* impossible cases */
297                                 BUG();
298                         }
299                 } else {
300                         /* Probe hit and conditional execution check ok. */
301                         set_current_kprobe(p);
302                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
303
304                         /*
305                          * If we have no pre-handler or it returned 0, we
306                          * continue with normal processing.  If we have a
307                          * pre-handler and it returned non-zero, it prepped
308                          * for calling the break_handler below on re-entry,
309                          * so get out doing nothing more here.
310                          */
311                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
312                                 kcb->kprobe_status = KPROBE_HIT_SS;
313                                 singlestep(p, regs, kcb);
314                                 if (p->post_handler) {
315                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
316                                         p->post_handler(p, regs, 0);
317                                 }
318                                 reset_current_kprobe();
319                         }
320                 }
321         } else if (cur) {
322                 /* We probably hit a jprobe.  Call its break handler. */
323                 if (cur->break_handler && cur->break_handler(cur, regs)) {
324                         kcb->kprobe_status = KPROBE_HIT_SS;
325                         singlestep(cur, regs, kcb);
326                         if (cur->post_handler) {
327                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
328                                 cur->post_handler(cur, regs, 0);
329                         }
330                 }
331                 reset_current_kprobe();
332         } else {
333                 /*
334                  * The probe was removed and a race is in progress.
335                  * There is nothing we can do about it.  Let's restart
336                  * the instruction.  By the time we can restart, the
337                  * real instruction will be there.
338                  */
339         }
340 }
341
342 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
343 {
344         unsigned long flags;
345         local_irq_save(flags);
346         kprobe_handler(regs);
347         local_irq_restore(flags);
348         return 0;
349 }
350
351 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
352 {
353         struct kprobe *cur = kprobe_running();
354         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
355
356         switch (kcb->kprobe_status) {
357         case KPROBE_HIT_SS:
358         case KPROBE_REENTER:
359                 /*
360                  * We are here because the instruction being single
361                  * stepped caused a page fault. We reset the current
362                  * kprobe and the PC to point back to the probe address
363                  * and allow the page fault handler to continue as a
364                  * normal page fault.
365                  */
366                 regs->ARM_pc = (long)cur->addr;
367                 if (kcb->kprobe_status == KPROBE_REENTER) {
368                         restore_previous_kprobe(kcb);
369                 } else {
370                         reset_current_kprobe();
371                 }
372                 break;
373
374         case KPROBE_HIT_ACTIVE:
375         case KPROBE_HIT_SSDONE:
376                 /*
377                  * We increment the nmissed count for accounting,
378                  * we can also use npre/npostfault count for accounting
379                  * these specific fault cases.
380                  */
381                 kprobes_inc_nmissed_count(cur);
382
383                 /*
384                  * We come here because instructions in the pre/post
385                  * handler caused the page_fault, this could happen
386                  * if handler tries to access user space by
387                  * copy_from_user(), get_user() etc. Let the
388                  * user-specified handler try to fix it.
389                  */
390                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
391                         return 1;
392                 break;
393
394         default:
395                 break;
396         }
397
398         return 0;
399 }
400
401 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
402                                        unsigned long val, void *data)
403 {
404         /*
405          * notify_die() is currently never called on ARM,
406          * so this callback is currently empty.
407          */
408         return NOTIFY_DONE;
409 }
410
411 /*
412  * When a retprobed function returns, trampoline_handler() is called,
413  * calling the kretprobe's handler. We construct a struct pt_regs to
414  * give a view of registers r0-r11 to the user return-handler.  This is
415  * not a complete pt_regs structure, but that should be plenty sufficient
416  * for kretprobe handlers which should normally be interested in r0 only
417  * anyway.
418  */
419 void __naked __kprobes kretprobe_trampoline(void)
420 {
421         __asm__ __volatile__ (
422                 "stmdb  sp!, {r0 - r11}         \n\t"
423                 "mov    r0, sp                  \n\t"
424                 "bl     trampoline_handler      \n\t"
425                 "mov    lr, r0                  \n\t"
426                 "ldmia  sp!, {r0 - r11}         \n\t"
427 #ifdef CONFIG_THUMB2_KERNEL
428                 "bx     lr                      \n\t"
429 #else
430                 "mov    pc, lr                  \n\t"
431 #endif
432                 : : : "memory");
433 }
434
435 /* Called from kretprobe_trampoline */
436 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
437 {
438         struct kretprobe_instance *ri = NULL;
439         struct hlist_head *head, empty_rp;
440         struct hlist_node *tmp;
441         unsigned long flags, orig_ret_address = 0;
442         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
443         kprobe_opcode_t *correct_ret_addr = NULL;
444
445         INIT_HLIST_HEAD(&empty_rp);
446         kretprobe_hash_lock(current, &head, &flags);
447
448         /*
449          * It is possible to have multiple instances associated with a given
450          * task either because multiple functions in the call path have
451          * a return probe installed on them, and/or more than one return
452          * probe was registered for a target function.
453          *
454          * We can handle this because:
455          *     - instances are always inserted at the head of the list
456          *     - when multiple return probes are registered for the same
457          *       function, the first instance's ret_addr will point to the
458          *       real return address, and all the rest will point to
459          *       kretprobe_trampoline
460          */
461         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
462                 if (ri->task != current)
463                         /* another task is sharing our hash bucket */
464                         continue;
465
466                 orig_ret_address = (unsigned long)ri->ret_addr;
467
468                 if (orig_ret_address != trampoline_address)
469                         /*
470                          * This is the real return address. Any other
471                          * instances associated with this task are for
472                          * other calls deeper on the call stack
473                          */
474                         break;
475         }
476
477         kretprobe_assert(ri, orig_ret_address, trampoline_address);
478
479         correct_ret_addr = ri->ret_addr;
480         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
481                 if (ri->task != current)
482                         /* another task is sharing our hash bucket */
483                         continue;
484
485                 orig_ret_address = (unsigned long)ri->ret_addr;
486                 if (ri->rp && ri->rp->handler) {
487                         __this_cpu_write(current_kprobe, &ri->rp->kp);
488                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
489                         ri->ret_addr = correct_ret_addr;
490                         ri->rp->handler(ri, regs);
491                         __this_cpu_write(current_kprobe, NULL);
492                 }
493
494                 recycle_rp_inst(ri, &empty_rp);
495
496                 if (orig_ret_address != trampoline_address)
497                         /*
498                          * This is the real return address. Any other
499                          * instances associated with this task are for
500                          * other calls deeper on the call stack
501                          */
502                         break;
503         }
504
505         kretprobe_hash_unlock(current, &flags);
506
507         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
508                 hlist_del(&ri->hlist);
509                 kfree(ri);
510         }
511
512         return (void *)orig_ret_address;
513 }
514
515 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
516                                       struct pt_regs *regs)
517 {
518         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
519
520         /* Replace the return addr with trampoline addr. */
521         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
522 }
523
524 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
525 {
526         struct jprobe *jp = container_of(p, struct jprobe, kp);
527         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528         long sp_addr = regs->ARM_sp;
529         long cpsr;
530
531         kcb->jprobe_saved_regs = *regs;
532         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
533         regs->ARM_pc = (long)jp->entry;
534
535         cpsr = regs->ARM_cpsr | PSR_I_BIT;
536 #ifdef CONFIG_THUMB2_KERNEL
537         /* Set correct Thumb state in cpsr */
538         if (regs->ARM_pc & 1)
539                 cpsr |= PSR_T_BIT;
540         else
541                 cpsr &= ~PSR_T_BIT;
542 #endif
543         regs->ARM_cpsr = cpsr;
544
545         preempt_disable();
546         return 1;
547 }
548
549 void __kprobes jprobe_return(void)
550 {
551         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
552
553         __asm__ __volatile__ (
554                 /*
555                  * Setup an empty pt_regs. Fill SP and PC fields as
556                  * they're needed by longjmp_break_handler.
557                  *
558                  * We allocate some slack between the original SP and start of
559                  * our fabricated regs. To be precise we want to have worst case
560                  * covered which is STMFD with all 16 regs so we allocate 2 *
561                  * sizeof(struct_pt_regs)).
562                  *
563                  * This is to prevent any simulated instruction from writing
564                  * over the regs when they are accessing the stack.
565                  */
566 #ifdef CONFIG_THUMB2_KERNEL
567                 "sub    r0, %0, %1              \n\t"
568                 "mov    sp, r0                  \n\t"
569 #else
570                 "sub    sp, %0, %1              \n\t"
571 #endif
572                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
573                 "str    %0, [sp, %2]            \n\t"
574                 "str    r0, [sp, %3]            \n\t"
575                 "mov    r0, sp                  \n\t"
576                 "bl     kprobe_handler          \n\t"
577
578                 /*
579                  * Return to the context saved by setjmp_pre_handler
580                  * and restored by longjmp_break_handler.
581                  */
582 #ifdef CONFIG_THUMB2_KERNEL
583                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
584                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
585                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
586                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
587                                                       /* rfe context */
588                 "ldmia  sp, {r0 - r12}          \n\t"
589                 "mov    sp, lr                  \n\t"
590                 "ldr    lr, [sp], #4            \n\t"
591                 "rfeia  sp!                     \n\t"
592 #else
593                 "ldr    r0, [sp, %4]            \n\t"
594                 "msr    cpsr_cxsf, r0           \n\t"
595                 "ldmia  sp, {r0 - pc}           \n\t"
596 #endif
597                 :
598                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
599                   "I" (sizeof(struct pt_regs) * 2),
600                   "J" (offsetof(struct pt_regs, ARM_sp)),
601                   "J" (offsetof(struct pt_regs, ARM_pc)),
602                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
603                   "J" (offsetof(struct pt_regs, ARM_lr))
604                 : "memory", "cc");
605 }
606
607 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
608 {
609         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
610         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
611         long orig_sp = regs->ARM_sp;
612         struct jprobe *jp = container_of(p, struct jprobe, kp);
613
614         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
615                 if (orig_sp != stack_addr) {
616                         struct pt_regs *saved_regs =
617                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
618                         printk("current sp %lx does not match saved sp %lx\n",
619                                orig_sp, stack_addr);
620                         printk("Saved registers for jprobe %p\n", jp);
621                         show_regs(saved_regs);
622                         printk("Current registers\n");
623                         show_regs(regs);
624                         BUG();
625                 }
626                 *regs = kcb->jprobe_saved_regs;
627                 memcpy((void *)stack_addr, kcb->jprobes_stack,
628                        MIN_STACK_SIZE(stack_addr));
629                 preempt_enable_no_resched();
630                 return 1;
631         }
632         return 0;
633 }
634
635 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
636 {
637         return 0;
638 }
639
640 #ifdef CONFIG_THUMB2_KERNEL
641
642 static struct undef_hook kprobes_thumb16_break_hook = {
643         .instr_mask     = 0xffff,
644         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
645         .cpsr_mask      = MODE_MASK,
646         .cpsr_val       = SVC_MODE,
647         .fn             = kprobe_trap_handler,
648 };
649
650 static struct undef_hook kprobes_thumb32_break_hook = {
651         .instr_mask     = 0xffffffff,
652         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
653         .cpsr_mask      = MODE_MASK,
654         .cpsr_val       = SVC_MODE,
655         .fn             = kprobe_trap_handler,
656 };
657
658 #else  /* !CONFIG_THUMB2_KERNEL */
659
660 static struct undef_hook kprobes_arm_break_hook = {
661         .instr_mask     = 0x0fffffff,
662         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
663         .cpsr_mask      = MODE_MASK,
664         .cpsr_val       = SVC_MODE,
665         .fn             = kprobe_trap_handler,
666 };
667
668 #endif /* !CONFIG_THUMB2_KERNEL */
669
670 int __init arch_init_kprobes()
671 {
672         arm_probes_decode_init();
673 #ifdef CONFIG_THUMB2_KERNEL
674         register_undef_hook(&kprobes_thumb16_break_hook);
675         register_undef_hook(&kprobes_thumb32_break_hook);
676 #else
677         register_undef_hook(&kprobes_arm_break_hook);
678 #endif
679         return 0;
680 }
681
682 bool arch_within_kprobe_blacklist(unsigned long addr)
683 {
684         void *a = (void *)addr;
685
686         return __in_irqentry_text(addr) ||
687                in_entry_text(addr) ||
688                in_idmap_text(addr) ||
689                memory_contains(__kprobes_text_start, __kprobes_text_end, a, 1);
690 }