7 The most current version of this document is available at
8 http://samba.org/ftp/unpacked/samba4/source/lib/talloc/talloc_guide.txt
10 If you are used to the "old" talloc from Samba3 before 3.0.20 then please read
11 this carefully, as talloc has changed a lot. With 3.0.20 (or 3.0.14?) the
12 Samba4 talloc has been ported back to Samba3, so this guide applies to both.
14 The new talloc is a hierarchical, reference counted memory pool system
15 with destructors. Quite a mounthful really, but not too bad once you
18 Perhaps the biggest change from Samba3 is that there is no distinction
19 between a "talloc context" and a "talloc pointer". Any pointer
20 returned from talloc() is itself a valid talloc context. This means
23 struct foo *X = talloc(mem_ctx, struct foo);
24 X->name = talloc_strdup(X, "foo");
26 and the pointer X->name would be a "child" of the talloc context "X"
27 which is itself a child of mem_ctx. So if you do talloc_free(mem_ctx)
28 then it is all destroyed, whereas if you do talloc_free(X) then just X
29 and X->name are destroyed, and if you do talloc_free(X->name) then
30 just the name element of X is destroyed.
32 If you think about this, then what this effectively gives you is an
33 n-ary tree, where you can free any part of the tree with
36 If you find this confusing, then I suggest you run the testsuite to
37 watch talloc in action. You may also like to add your own tests to
38 testsuite.c to clarify how some particular situation is handled.
44 All the additional features of talloc() over malloc() do come at a
45 price. We have a simple performance test in Samba4 that measures
46 talloc() versus malloc() performance, and it seems that talloc() is
47 about 4% slower than malloc() on my x86 Debian Linux box. For Samba,
48 the great reduction in code complexity that we get by using talloc
49 makes this worthwhile, especially as the total overhead of
50 talloc/malloc in Samba is already quite small.
56 The following is a complete guide to the talloc API. Read it all at
60 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
61 (type *)talloc(const void *context, type);
63 The talloc() macro is the core of the talloc library. It takes a
64 memory context and a type, and returns a pointer to a new area of
65 memory of the given type.
67 The returned pointer is itself a talloc context, so you can use it as
68 the context argument to more calls to talloc if you wish.
70 The returned pointer is a "child" of the supplied context. This means
71 that if you talloc_free() the context then the new child disappears as
72 well. Alternatively you can free just the child.
74 The context argument to talloc() can be NULL, in which case a new top
75 level context is created.
78 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
79 void *talloc_size(const void *context, size_t size);
81 The function talloc_size() should be used when you don't have a
82 convenient type to pass to talloc(). Unlike talloc(), it is not type
83 safe (as it returns a void *), so you are on your own for type checking.
85 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
86 (typeof(ptr)) talloc_ptrtype(const void *ctx, ptr);
88 The talloc_ptrtype() macro should be used when you have a pointer and
89 want to allocate memory to point at with this pointer. When compiling
90 with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
91 and talloc_get_name() will return the current location in the source file.
94 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
95 int talloc_free(void *ptr);
97 The talloc_free() function frees a piece of talloc memory, and all its
98 children. You can call talloc_free() on any pointer returned by
101 The return value of talloc_free() indicates success or failure, with 0
102 returned for success and -1 for failure. The only possible failure
103 condition is if the pointer had a destructor attached to it and the
104 destructor returned -1. See talloc_set_destructor() for details on
107 If this pointer has an additional parent when talloc_free() is called
108 then the memory is not actually released, but instead the most
109 recently established parent is destroyed. See talloc_reference() for
110 details on establishing additional parents.
112 For more control on which parent is removed, see talloc_unlink()
114 talloc_free() operates recursively on its children.
117 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
118 int talloc_free_children(void *ptr);
120 The talloc_free_children() walks along the list of all children of a
121 talloc context and talloc_free()s only the children, not the context
125 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
126 void *talloc_reference(const void *context, const void *ptr);
128 The talloc_reference() function makes "context" an additional parent
131 The return value of talloc_reference() is always the original pointer
132 "ptr", unless talloc ran out of memory in creating the reference in
133 which case it will return NULL (each additional reference consumes
134 around 48 bytes of memory on intel x86 platforms).
136 If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
138 After creating a reference you can free it in one of the following
141 - you can talloc_free() any parent of the original pointer. That
142 will reduce the number of parents of this pointer by 1, and will
143 cause this pointer to be freed if it runs out of parents.
145 - you can talloc_free() the pointer itself. That will destroy the
146 most recently established parent to the pointer and leave the
147 pointer as a child of its current parent.
149 For more control on which parent to remove, see talloc_unlink()
152 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
153 int talloc_unlink(const void *context, const void *ptr);
155 The talloc_unlink() function removes a specific parent from ptr. The
156 context passed must either be a context used in talloc_reference()
157 with this pointer, or must be a direct parent of ptr.
159 Note that if the parent has already been removed using talloc_free()
160 then this function will fail and will return -1. Likewise, if "ptr"
161 is NULL, then the function will make no modifications and return -1.
163 Usually you can just use talloc_free() instead of talloc_unlink(), but
164 sometimes it is useful to have the additional control on which parent
168 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
169 void talloc_set_destructor(const void *ptr, int (*destructor)(void *));
171 The function talloc_set_destructor() sets the "destructor" for the
172 pointer "ptr". A destructor is a function that is called when the
173 memory used by a pointer is about to be released. The destructor
174 receives the pointer as an argument, and should return 0 for success
177 The destructor can do anything it wants to, including freeing other
178 pieces of memory. A common use for destructors is to clean up
179 operating system resources (such as open file descriptors) contained
180 in the structure the destructor is placed on.
182 You can only place one destructor on a pointer. If you need more than
183 one destructor then you can create a zero-length child of the pointer
184 and place an additional destructor on that.
186 To remove a destructor call talloc_set_destructor() with NULL for the
189 If your destructor attempts to talloc_free() the pointer that it is
190 the destructor for then talloc_free() will return -1 and the free will
191 be ignored. This would be a pointless operation anyway, as the
192 destructor is only called when the memory is just about to go away.
195 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
196 void talloc_increase_ref_count(const void *ptr);
198 The talloc_increase_ref_count(ptr) function is exactly equivalent to:
200 talloc_reference(NULL, ptr);
202 You can use either syntax, depending on which you think is clearer in
206 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
207 void talloc_set_name(const void *ptr, const char *fmt, ...);
209 Each talloc pointer has a "name". The name is used principally for
210 debugging purposes, although it is also possible to set and get the
211 name on a pointer in as a way of "marking" pointers in your code.
213 The main use for names on pointer is for "talloc reports". See
214 talloc_report() and talloc_report_full() for details. Also see
215 talloc_enable_leak_report() and talloc_enable_leak_report_full().
217 The talloc_set_name() function allocates memory as a child of the
218 pointer. It is logically equivalent to:
219 talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
221 Note that multiple calls to talloc_set_name() will allocate more
222 memory without releasing the name. All of the memory is released when
223 the ptr is freed using talloc_free().
226 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
227 void talloc_set_name_const(const void *ptr, const char *name);
229 The function talloc_set_name_const() is just like talloc_set_name(),
230 but it takes a string constant, and is much faster. It is extensively
231 used by the "auto naming" macros, such as talloc_p().
233 This function does not allocate any memory. It just copies the
234 supplied pointer into the internal representation of the talloc
235 ptr. This means you must not pass a name pointer to memory that will
236 disappear before the ptr is freed with talloc_free().
239 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
240 void *talloc_named(const void *context, size_t size, const char *fmt, ...);
242 The talloc_named() function creates a named talloc pointer. It is
245 ptr = talloc_size(context, size);
246 talloc_set_name(ptr, fmt, ....);
249 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
250 void *talloc_named_const(const void *context, size_t size, const char *name);
252 This is equivalent to:
254 ptr = talloc_size(context, size);
255 talloc_set_name_const(ptr, name);
258 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
259 const char *talloc_get_name(const void *ptr);
261 This returns the current name for the given talloc pointer. See
262 talloc_set_name() for details.
265 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
266 void *talloc_init(const char *fmt, ...);
268 This function creates a zero length named talloc context as a top
269 level context. It is equivalent to:
271 talloc_named(NULL, 0, fmt, ...);
274 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
275 void *talloc_new(void *ctx);
277 This is a utility macro that creates a new memory context hanging
278 off an exiting context, automatically naming it "talloc_new: __location__"
279 where __location__ is the source line it is called from. It is
280 particularly useful for creating a new temporary working context.
283 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
284 (type *)talloc_realloc(const void *context, void *ptr, type, count);
286 The talloc_realloc() macro changes the size of a talloc
287 pointer. The "count" argument is the number of elements of type "type"
288 that you want the resulting pointer to hold.
290 talloc_realloc() has the following equivalences:
292 talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
293 talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
294 talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
296 The "context" argument is only used if "ptr" is NULL, otherwise it is
299 talloc_realloc() returns the new pointer, or NULL on failure. The call
300 will fail either due to a lack of memory, or because the pointer has
301 more than one parent (see talloc_reference()).
304 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
305 void *talloc_realloc_size(const void *context, void *ptr, size_t size);
307 the talloc_realloc_size() function is useful when the type is not
308 known so the typesafe talloc_realloc() cannot be used.
311 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
312 void *talloc_steal(const void *new_ctx, const void *ptr);
314 The talloc_steal() function changes the parent context of a talloc
315 pointer. It is typically used when the context that the pointer is
316 currently a child of is going to be freed and you wish to keep the
317 memory for a longer time.
319 The talloc_steal() function returns the pointer that you pass it. It
320 does not have any failure modes.
322 NOTE: It is possible to produce loops in the parent/child relationship
323 if you are not careful with talloc_steal(). No guarantees are provided
324 as to your sanity or the safety of your data if you do this.
326 talloc_steal (new_ctx, NULL) will return NULL with no sideeffects.
328 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
329 size_t talloc_total_size(const void *ptr);
331 The talloc_total_size() function returns the total size in bytes used
332 by this pointer and all child pointers. Mostly useful for debugging.
334 Passing NULL is allowed, but it will only give a meaningful result if
335 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
339 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
340 size_t talloc_total_blocks(const void *ptr);
342 The talloc_total_blocks() function returns the total memory block
343 count used by this pointer and all child pointers. Mostly useful for
346 Passing NULL is allowed, but it will only give a meaningful result if
347 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
351 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
352 void talloc_report(const void *ptr, FILE *f);
354 The talloc_report() function prints a summary report of all memory
355 used by ptr. One line of report is printed for each immediate child of
356 ptr, showing the total memory and number of blocks used by that child.
358 You can pass NULL for the pointer, in which case a report is printed
359 for the top level memory context, but only if
360 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
364 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
365 void talloc_report_full(const void *ptr, FILE *f);
367 This provides a more detailed report than talloc_report(). It will
368 recursively print the ensire tree of memory referenced by the
369 pointer. References in the tree are shown by giving the name of the
370 pointer that is referenced.
372 You can pass NULL for the pointer, in which case a report is printed
373 for the top level memory context, but only if
374 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
378 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
379 void talloc_enable_leak_report(void);
381 This enables calling of talloc_report(NULL, stderr) when the program
382 exits. In Samba4 this is enabled by using the --leak-report command
385 For it to be useful, this function must be called before any other
386 talloc function as it establishes a "null context" that acts as the
387 top of the tree. If you don't call this function first then passing
388 NULL to talloc_report() or talloc_report_full() won't give you the
391 Here is a typical talloc report:
393 talloc report on 'null_context' (total 267 bytes in 15 blocks)
394 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
395 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
396 iconv(UTF8,CP850) contains 42 bytes in 2 blocks
397 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
398 iconv(CP850,UTF8) contains 42 bytes in 2 blocks
399 iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
400 iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
403 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
404 void talloc_enable_leak_report_full(void);
406 This enables calling of talloc_report_full(NULL, stderr) when the
407 program exits. In Samba4 this is enabled by using the
408 --leak-report-full command line option.
410 For it to be useful, this function must be called before any other
411 talloc function as it establishes a "null context" that acts as the
412 top of the tree. If you don't call this function first then passing
413 NULL to talloc_report() or talloc_report_full() won't give you the
416 Here is a typical full report:
418 full talloc report on 'root' (total 18 bytes in 8 blocks)
419 p1 contains 18 bytes in 7 blocks (ref 0)
420 r1 contains 13 bytes in 2 blocks (ref 0)
422 p2 contains 1 bytes in 1 blocks (ref 1)
423 x3 contains 1 bytes in 1 blocks (ref 0)
424 x2 contains 1 bytes in 1 blocks (ref 0)
425 x1 contains 1 bytes in 1 blocks (ref 0)
428 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
429 void talloc_enable_null_tracking(void);
431 This enables tracking of the NULL memory context without enabling leak
432 reporting on exit. Useful for when you want to do your own leak
433 reporting call via talloc_report_null_full();
436 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
437 (type *)talloc_zero(const void *ctx, type);
439 The talloc_zero() macro is equivalent to:
441 ptr = talloc(ctx, type);
442 if (ptr) memset(ptr, 0, sizeof(type));
445 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
446 void *talloc_zero_size(const void *ctx, size_t size)
448 The talloc_zero_size() function is useful when you don't have a known type
451 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
452 void *talloc_memdup(const void *ctx, const void *p, size_t size);
454 The talloc_memdup() function is equivalent to:
456 ptr = talloc_size(ctx, size);
457 if (ptr) memcpy(ptr, p, size);
460 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
461 char *talloc_strdup(const void *ctx, const char *p);
463 The talloc_strdup() function is equivalent to:
465 ptr = talloc_size(ctx, strlen(p)+1);
466 if (ptr) memcpy(ptr, p, strlen(p)+1);
468 This functions sets the name of the new pointer to the passed
469 string. This is equivalent to:
470 talloc_set_name_const(ptr, ptr)
472 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
473 char *talloc_strndup(const void *t, const char *p, size_t n);
475 The talloc_strndup() function is the talloc equivalent of the C
476 library function strndup()
478 This functions sets the name of the new pointer to the passed
479 string. This is equivalent to:
480 talloc_set_name_const(ptr, ptr)
483 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
484 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap);
486 The talloc_vasprintf() function is the talloc equivalent of the C
487 library function vasprintf()
490 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
491 char *talloc_asprintf(const void *t, const char *fmt, ...);
493 The talloc_asprintf() function is the talloc equivalent of the C
494 library function asprintf()
496 This functions sets the name of the new pointer to the passed
497 string. This is equivalent to:
498 talloc_set_name_const(ptr, ptr)
501 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
502 char *talloc_asprintf_append(char *s, const char *fmt, ...);
504 The talloc_asprintf_append() function appends the given formatted
505 string to the given string.
508 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
509 (type *)talloc_array(const void *ctx, type, uint_t count);
511 The talloc_array() macro is equivalent to:
513 (type *)talloc_size(ctx, sizeof(type) * count);
515 except that it provides integer overflow protection for the multiply,
516 returning NULL if the multiply overflows.
519 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
520 void *talloc_array_size(const void *ctx, size_t size, uint_t count);
522 The talloc_array_size() function is useful when the type is not
523 known. It operates in the same way as talloc_array(), but takes a size
526 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
527 (typeof(ptr)) talloc_array_ptrtype(const void *ctx, ptr, uint_t count);
529 The talloc_ptrtype() macro should be used when you have a pointer to an array
530 and want to allocate memory of an array to point at with this pointer. When compiling
531 with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
532 and talloc_get_name() will return the current location in the source file.
535 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
536 void *talloc_realloc_fn(const void *ctx, void *ptr, size_t size);
538 This is a non-macro version of talloc_realloc(), which is useful
539 as libraries sometimes want a ralloc function pointer. A realloc()
540 implementation encapsulates the functionality of malloc(), free() and
541 realloc() in one call, which is why it is useful to be able to pass
542 around a single function pointer.
545 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
546 void *talloc_autofree_context(void);
548 This is a handy utility function that returns a talloc context
549 which will be automatically freed on program exit. This can be used
550 to reduce the noise in memory leak reports.
553 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
554 void *talloc_check_name(const void *ptr, const char *name);
556 This function checks if a pointer has the specified name. If it does
557 then the pointer is returned. It it doesn't then NULL is returned.
560 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
561 (type *)talloc_get_type(const void *ptr, type);
563 This macro allows you to do type checking on talloc pointers. It is
564 particularly useful for void* private pointers. It is equivalent to
567 (type *)talloc_check_name(ptr, #type)
570 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
571 talloc_set_type(const void *ptr, type);
573 This macro allows you to force the name of a pointer to be a
574 particular type. This can be used in conjunction with
575 talloc_get_type() to do type checking on void* pointers.
577 It is equivalent to this:
578 talloc_set_name_const(ptr, #type)
580 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
581 talloc_get_size(const void *ctx);
583 This function lets you know the amount of memory alloced so far by
584 this context. It does NOT account for subcontext memory.
585 This can be used to calculate the size of an array.
587 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
588 void *talloc_find_parent_byname(const void *ctx, const char *name);
590 Find a parent memory context of the current context that has the given
591 name. This can be very useful in complex programs where it may be
592 difficult to pass all information down to the level you need, but you
593 know the structure you want is a parent of another context.
595 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
596 (type *)talloc_find_parent_bytype(ctx, type);
598 Like talloc_find_parent_byname() but takes a type, making it typesafe.