
SAMBA Developers Guide

SAMBA Team

1st July 2003

Last Update : Fri Jun 6 00:45:54 CEST 2003

This book is a collection of documents that might be useful for people developing samba or
those interested in doing so. It’s nothing more than a collection of documents written by
samba developers about the internals of various parts of samba and the SMB protocol. It’s still
incomplete. The most recent version of this document can be found at http://devel.samba.
org/. Please send updates to Jelmer Vernooij.

This documentation is distributed under the GNU General Public License (GPL) version 2. A
copy of the license is included with the Samba source distribution. A copy can be found on-line
at http://www.fsf.org/licenses/gpl.txt

http://devel.samba.org/
http://devel.samba.org/
mailto:jelmer@samba.org
http://www.fsf.org/licenses/gpl.txt

Legal Notice

Attributions

Definition of NetBIOS Protocol and Name Resolution Modes

• Luke Leighton
Samba Architecture

• Dan Shearer
The samba DEBUG system

• Chris Hertel
Coding Suggestions

• Steve French
• Simo Sorce
• Andrew Bartlett
• Tim Potter
• Martin Pool

Samba Internals

• David Chappell <David.Chappell@mail.trincoll.edu>

The smb.conf file

• Chris Hertel
NetBIOS in a Unix World

• Andrew Tridgell
Tracing samba system calls

• Andrew Tridgell
Finding useful information on windows

• Jelmer Vernooij <jelmer@samba.org>
• Andrew Tridgell <tridge@samba.org>

NT Domain RPC’s

• Luke Leighton <lkcl@switchboard.net>
• Paul Ashton <paul@argo.demon.co.uk>
• Duncan Stansfield <duncans@sco.com>

Samba Printing Internals

• Gerald Carter
Samba WINS Internals

• Gerald Carter
The Upcoming SAM System

• Andrew Bartlett
LanMan and NT Password Encryption

• Jeremy Allison <samba@samba.org>

Modules

• Jelmer Vernooij <jelmer@samba.org>

RPC Pluggable Modules

• Anthony Liguori <aliguor@us.ibm.com>
• Jelmer Vernooij <jelmer@samba.org>

VFS Modules

• Alexander Bokovoy <ab@samba.org>
• Stefan Metzmacher <metze@metzemix.de>

Notes to packagers

• Jelmer Vernooij
Contributing code

• Jelmer Vernooij <jelmer@samba.org>

3

mailto:David.Chappell@mail.trincoll.edu
mailto:jelmer@samba.org
mailto:tridge@samba.org
mailto:lkcl@switchboard.net
mailto:paul@argo.demon.co.uk
mailto:duncans@sco.com
mailto:samba@samba.org
mailto:jelmer@samba.org
mailto:aliguor@us.ibm.com
mailto:jelmer@samba.org
mailto:ab@samba.org
mailto:metze@metzemix.de
mailto:jelmer@samba.org

Contents

1 Definition of NetBIOS Protocol and Name Resolution Modes 9
1.1 NETBIOS . 9
1.2 BROADCAST NetBIOS . 9
1.3 NBNS NetBIOS . 10

2 Samba Architecture 11
2.1 Introduction . 11
2.2 Multithreading and Samba . 11
2.3 Threading smbd . 11
2.4 Threading nmbd . 12
2.5 nbmd Design . 12

3 The samba DEBUG system 13
3.1 New Output Syntax . 13
3.2 The DEBUG() Macro . 14
3.3 The DEBUGADD() Macro . 15
3.4 The DEBUGLVL() Macro . 15
3.5 New Functions . 16

3.5.1 dbgtext() . 16
3.5.2 dbghdr() . 16
3.5.3 format debug text() . 16

4 Coding Suggestions 17

5 Samba Internals 19
5.1 Character Handling . 19
5.2 The new functions . 19
5.3 Macros in byteorder.h . 20

5.3.1 CVAL(buf,pos) . 20
5.3.2 PVAL(buf,pos) . 20
5.3.3 SCVAL(buf,pos,val) . 20
5.3.4 SVAL(buf,pos) . 20
5.3.5 IVAL(buf,pos) . 20
5.3.6 SVALS(buf,pos) . 20
5.3.7 IVALS(buf,pos) . 20
5.3.8 SSVAL(buf,pos,val) . 20
5.3.9 SIVAL(buf,pos,val) . 21
5.3.10 SSVALS(buf,pos,val) . 21
5.3.11 SIVALS(buf,pos,val) . 21
5.3.12 RSVAL(buf,pos) . 21
5.3.13 RIVAL(buf,pos) . 21
5.3.14 RSSVAL(buf,pos,val) . 21
5.3.15 RSIVAL(buf,pos,val) . 21

5.4 LAN Manager Samba API . 21

4

Contents

5.4.1 Parameters . 21
5.4.2 Return value . 22

5.5 Code character table . 23

6 The smb.conf file 24
6.1 Lexical Analysis . 24

6.1.1 Handling of Whitespace . 24
6.1.2 Handling of Line Continuation 24
6.1.3 Line Continuation Quirks . 25

6.2 Syntax . 25
6.2.1 About params.c . 26

7 NetBIOS in a Unix World 27
7.1 Introduction . 27
7.2 Usernames . 27
7.3 File Ownership . 27
7.4 Passwords . 28
7.5 Locking . 28
7.6 Deny Modes . 29
7.7 Trapdoor UIDs . 29
7.8 Port numbers . 29
7.9 Protocol Complexity . 29

8 Tracing samba system calls 31

9 Finding useful information on windows 33
9.1 Netlogon debugging output . 33

10 NT Domain RPC’s 34
10.1 Introduction . 34

10.1.1 Sources . 35
10.1.2 Credits . 35

10.2 Notes and Structures . 35
10.2.1 Notes . 35
10.2.2 Enumerations . 35

10.2.2.1 MSRPC Header type 35
10.2.2.2 MSRPC Packet info 36

10.2.3 Structures . 36
10.2.3.1 VOID * . 36
10.2.3.2 char . 36
10.2.3.3 UTIME . 36
10.2.3.4 NTTIME . 36
10.2.3.5 DOM SID (domain SID structure) 36
10.2.3.6 STR (string) . 36
10.2.3.7 UNIHDR (unicode string header) 36
10.2.3.8 UNIHDR2 (unicode string header plus buffer pointer) 37
10.2.3.9 UNISTR (unicode string) 37
10.2.3.10 NAME (length-indicated unicode string) 37
10.2.3.11 UNISTR2 (aligned unicode string) 37
10.2.3.12 OBJ ATTR (object attributes) 37
10.2.3.13 POL HND (LSA policy handle) 37
10.2.3.14 DOM SID2 (domain SID structure, SIDS stored in

unicode) . 37

5

Contents

10.2.3.15 DOM RID (domain RID structure) 37
10.2.3.16 LOG INFO (server, account, client structure) 38
10.2.3.17 CLNT SRV (server, client names structure) 38
10.2.3.18 CREDS (credentials + time stamp) 38
10.2.3.19 CLNT INFO2 (server, client structure, client creden-

tials) . 38
10.2.3.20 CLNT INFO (server, account, client structure, client

credentials) . 38
10.2.3.21 ID INFO 1 (id info structure, auth level 1) 38
10.2.3.22 SAM INFO (sam logon/logoff id info structure) . . . 39
10.2.3.23 GID (group id info) 39
10.2.3.24 DOM REF (domain reference info) 39
10.2.3.25 DOM INFO (domain info, levels 3 and 5 are the same)) 39
10.2.3.26 USER INFO (user logon info) 39
10.2.3.27 SH INFO 1 PTR (pointers to level 1 share info strings) 40
10.2.3.28 SH INFO 1 STR (level 1 share info strings) 40
10.2.3.29 SHARE INFO 1 CTR 41
10.2.3.30 SERVER INFO 101 41

10.3 MSRPC over Transact Named Pipe . 42
10.3.1 MSRPC Pipes . 42
10.3.2 Header . 42

10.3.2.1 RPC Packet for request, response, bind and bind ac-
knowledgement . 43

10.3.2.2 Interface identification 43
10.3.2.3 RPC Iface RW . 43
10.3.2.4 RPC ReqBind RW . 43
10.3.2.5 RPC Address RW . 44
10.3.2.6 RPC ResBind RW . 44
10.3.2.7 RPC ReqNorm RW 44
10.3.2.8 RPC ResNorm RW 44

10.3.3 Tail . 44
10.3.4 RPC Bind / Bind Ack . 44
10.3.5 NTLSA Transact Named Pipe 45
10.3.6 LSA Open Policy . 45

10.3.6.1 Request . 45
10.3.6.2 Response . 46

10.3.7 LSA Query Info Policy . 46
10.3.7.1 Request . 46
10.3.7.2 Response . 46

10.3.8 LSA Enumerate Trusted Domains 46
10.3.8.1 Request . 46
10.3.8.2 Response . 46

10.3.9 LSA Open Secret . 46
10.3.9.1 Request . 46
10.3.9.2 Response . 46

10.3.10LSA Close . 47
10.3.10.1 Request . 47
10.3.10.2 Response . 47

10.3.11LSA Lookup SIDS . 47
10.3.11.1 Request . 47
10.3.11.2 Response . 47

10.3.12LSA Lookup Names . 47

6

Contents

10.3.12.1 Request . 47
10.3.12.2 Response . 48

10.4 NETLOGON rpc Transact Named Pipe 48
10.4.1 LSA Request Challenge . 48

10.4.1.1 Request . 48
10.4.1.2 Response . 48

10.4.2 LSA Authenticate 2 . 49
10.4.2.1 Request . 49
10.4.2.2 Response . 49

10.4.3 LSA Server Password Set . 49
10.4.3.1 Request . 49
10.4.3.2 Response . 49

10.4.4 LSA SAM Logon . 49
10.4.4.1 Request . 49
10.4.4.2 Response . 50

10.4.5 LSA SAM Logoff . 50
10.4.5.1 Request . 50
10.4.5.2 Response . 50

10.5 \\MAILSLOT\NET\NTLOGON . 50
10.5.1 Query for PDC . 50

10.5.1.1 Request . 51
10.5.1.2 Response . 51

10.5.2 SAM Logon . 51
10.5.2.1 Request . 51
10.5.2.2 Response . 51

10.6 SRVSVC Transact Named Pipe . 52
10.6.1 Net Share Enum . 52

10.6.1.1 Request . 52
10.6.1.2 Response . 52

10.6.2 Net Server Get Info . 52
10.6.2.1 Request . 52
10.6.2.2 Response . 52

10.7 Cryptographic side of NT Domain Authentication 53
10.7.1 Definitions . 53
10.7.2 Protocol . 53
10.7.3 Comments . 54

10.8 SIDs and RIDs . 54
10.8.1 Well-known SIDs . 54

10.8.1.1 Universal well-known SIDs 54
10.8.1.2 NT well-known SIDs 54

10.8.2 Well-known RIDS . 55
10.8.2.1 Well-known RID users 55
10.8.2.2 Well-known RID groups 55
10.8.2.3 Well-known RID aliases 55

11 Samba Printing Internals 56
11.1 Abstract . 56
11.2 Printing Interface to Various Back ends 56
11.3 Print Queue TDB’s . 56
11.4 ChangeID and Client Caching of Printer Information 58
11.5 Windows NT/2K Printer Change Notify 58

7

Contents

12 Samba WINS Internals 61
12.1 WINS Failover . 61

13 The Upcoming SAM System 62
13.1 Security in the ’new SAM’ . 62
13.2 Standalone from UNIX . 63
13.3 Handles and Races in the new SAM 63
13.4 Layers . 63

13.4.1 Application . 63
13.4.2 SAM Interface . 63
13.4.3 SAM Modules . 64

13.5 SAM Modules . 64
13.5.1 Special Module: sam passdb 64
13.5.2 sam ads . 64

13.6 Memory Management . 64
13.7 Testing . 65

14 LanMan and NT Password Encryption 66
14.1 Introduction . 66
14.2 How does it work? . 66
14.3 The smbpasswd file . 67

15 Modules 69
15.1 Advantages . 69
15.2 Loading modules . 69

15.2.1 Static modules . 69
15.2.2 Shared modules . 69

15.3 Writing modules . 70
15.3.1 Static/Shared selection in configure.in 70

16 RPC Pluggable Modules 71
16.1 About . 71
16.2 General Overview . 71

17 VFS Modules 72
17.1 The Samba (Posix) VFS layer . 72

17.1.1 The general interface . 72
17.1.2 Possible VFS operation layers 74

17.2 The Interaction between the Samba VFS subsystem and the modules . 74
17.2.1 Initialization and registration 74
17.2.2 How the Modules handle per connection data 75

17.3 Upgrading to the New VFS Interface 78
17.3.1 Upgrading from 2.2.* and 3.0aplha modules 78

17.4 Some Notes . 83
17.4.1 Implement TRANSPARENT functions 83
17.4.2 Implement OPAQUE functions 83

18 Notes to packagers 84
18.1 Versioning . 84
18.2 Modules . 84

19 Contributing code 85

8

1 Definition of NetBIOS Protocol and
Name Resolution Modes

1.1 NETBIOS

NetBIOS runs over the following tranports: TCP/IP; NetBEUI and IPX/SPX.
Samba only uses NetBIOS over TCP/IP. For details on the TCP/IP NetBIOS Ses-
sion Service NetBIOS Datagram Service, and NetBIOS Names, see rfc1001.txt and
rfc1002.txt.

NetBEUI is a raw NetBIOS frame protocol implementation that allows NetBIOS
datagrams to be sent out over the ’wire’ embedded within LLC frames. NetBEUI is
not required when using NetBIOS over TCP/IP protocols and it is preferable NOT
to install NetBEUI if it can be avoided.

IPX/SPX is also not required when using NetBIOS over TCP/IP, and it is prefer-
able NOT to install the IPX/SPX transport unless you are using Novell servers. At
the very least, it is recommended that you do not install ’NetBIOS over IPX/SPX’.

[When installing Windows 95, you will find that NetBEUI and IPX/SPX are
installed as the default protocols. This is because they are the simplest to manage:
no Windows 95 user-configuration is required].

NetBIOS applications (such as samba) offer their services (for example, SMB file
and print sharing) on a NetBIOS name. They must claim this name on the network
before doing so. The NetBIOS session service will then accept connections on the
application’s behalf (on the NetBIOS name claimed by the application). A NetBIOS
session between the application and the client can then commence.

NetBIOS names consist of 15 characters plus a ’type’ character. This is similar, in
concept, to an IP address and a TCP port number, respectively. A NetBIOS-aware
application on a host will offer different services under different NetBIOS name types,
just as a host will offer different TCP/IP services on different port numbers.

NetBIOS names must be claimed on a network, and must be defended. The use
of NetBIOS names is most suitable on a single subnet; a Local Area Network or a
Wide Area Network.

NetBIOS names are either UNIQUE or GROUP. Only one application can claim
a UNIQUE NetBIOS name on a network.

There are two kinds of NetBIOS Name resolution: Broadcast and Point-to-Point.

1.2 BROADCAST NetBIOS

Clients can claim names, and therefore offer services on successfully claimed names,
on their broadcast-isolated subnet. One way to get NetBIOS services (such as brows-
ing: see ftp.microsoft.com/drg/developr/CIFS/browdiff.txt; and SMB file/print shar-
ing: see cifs4.txt) working on a LAN or WAN is to make your routers forward all
broadcast packets from TCP/IP ports 137, 138 and 139.

This, however, is not recommended. If you have a large LAN or WAN, you will
find that some of your hosts spend 95 percent of their time dealing with broadcast
traffic. [If you have IPX/SPX on your LAN or WAN, you will find that this is already

9

CHAPTER 1. DEFINITION OF NETBIOS PROTOCOL AND NAME RESOLUTION
MODES

happening: a packet analyzer will show, roughly every twelve minutes, great swathes
of broadcast traffic!].

1.3 NBNS NetBIOS

rfc1001.txt describes, amongst other things, the implementation and use of, a ’Net-
BIOS Name Service’. NT/AS offers ’Windows Internet Name Service’ which is fully
rfc1001/2 compliant, but has had to take specific action with certain NetBIOS names
in order to make it useful. (for example, it deals with the registration of <1c> <1d>
<1e> names all in different ways. I recommend the reading of the Microsoft WINS
Server Help files for full details).

The use of a WINS server cuts down on broadcast network traffic for NetBIOS
name resolution. It has the effect of pulling all the broadcast isolated subnets to-
gether into a single NetBIOS scope, across your LAN or WAN, while avoiding the
use of TCP/IP broadcast packets.

When you have a WINS server on your LAN, WINS clients will be able to contact
the WINS server to resolve NetBIOS names. Note that only those WINS clients that
have registered with the same WINS server will be visible. The WINS server can
have static NetBIOS entries added to its database (usually for security reasons you
might want to consider putting your domain controllers or other important servers
as static entries, but you should not rely on this as your sole means of security), but
for the most part, NetBIOS names are registered dynamically.

This provides some confusion for lots of people, and is worth mentioning here: a
Browse Server is NOT a WINS Server, even if these services are implemented in the
same application. A Browse Server needs a WINS server because a Browse Server
is a WINS client, which is not the same thing].

Clients can claim names, and therefore offer services on successfully claimed names,
on their broadcast-isolated subnet. One way to get NetBIOS services (such as brows-
ing: see ftp.microsoft.com/drg/developr/CIFS/browdiff.txt; and SMB file/print shar-
ing: see cifs6.txt) working on a LAN or WAN is to make your routers forward all
broadcast packets from TCP/IP ports 137, 138 and 139. You will find, however, if
you do this on a large LAN or a WAN, that your network is completely swamped by
NetBIOS and browsing packets, which is why WINS was developed to minimise the
necessity of broadcast traffic.

WINS Clients therefore claim names from the WINS server. If the WINS server
allows them to register a name, the client’s NetBIOS session service can then offer
services on this name. Other WINS clients will then contact the WINS server to
resolve a NetBIOS name.

10

2 Samba Architecture

2.1 Introduction

This document gives a general overview of how Samba works internally. The Samba
Team has tried to come up with a model which is the best possible compromise
between elegance, portability, security and the constraints imposed by the very messy
SMB and CIFS protocol.

It also tries to answer some of the frequently asked questions such as:
1. Is Samba secure when running on Unix? The xyz platform? What about the

root priveliges issue?
2. Pros and cons of multithreading in various parts of Samba
3. Why not have a separate process for name resolution, WINS, and browsing?

2.2 Multithreading and Samba

People sometimes tout threads as a uniformly good thing. They are very nice in
their place but are quite inappropriate for smbd. nmbd is another matter, and
multi-threading it would be very nice.

The short version is that smbd is not multithreaded, and alternative servers that
take this approach under Unix (such as Syntax, at the time of writing) suffer tremen-
dous performance penalties and are less robust. nmbd is not threaded either, but
this is because it is not possible to do it while keeping code consistent and portable
across 35 or more platforms. (This drawback also applies to threading smbd.)

The longer versions is that there are very good reasons for not making smbd multi-
threaded. Multi-threading would actually make Samba much slower, less scalable,
less portable and much less robust. The fact that we use a separate process for each
connection is one of Samba’s biggest advantages.

2.3 Threading smbd

A few problems that would arise from a threaded smbd are:
1. It’s not only to create threads instead of processes, but you must care about

all variables if they have to be thread specific (currently they would be global).
2. if one thread dies (eg. a seg fault) then all threads die. We can immediately

throw robustness out the window.
3. many of the system calls we make are blocking. Non-blocking equivalents of

many calls are either not available or are awkward (and slow) to use. So while
we block in one thread all clients are waiting. Imagine if one share is a slow
NFS filesystem and the others are fast, we will end up slowing all clients to the
speed of NFS.

4. you can’t run as a different uid in different threads. This means we would have
to switch uid/gid on every SMB packet. It would be horrendously slow.

5. the per process file descriptor limit would mean that we could only support a
limited number of clients.

11

CHAPTER 2. SAMBA ARCHITECTURE

6. we couldn’t use the system locking calls as the locking context of fcntl() is a
process, not a thread.

2.4 Threading nmbd

This would be ideal, but gets sunk by portability requirements.
Andrew tried to write a test threads library for nmbd that used only ansi-C con-

structs (using setjmp and longjmp). Unfortunately some OSes defeat this by re-
stricting longjmp to calling addresses that are shallower than the current address on
the stack (apparently AIX does this). This makes a truly portable threads library
impossible. So to support all our current platforms we would have to code nmbd
both with and without threads, and as the real aim of threads is to make the code
clearer we would not have gained anything. (it is a myth that threads make things
faster. threading is like recursion, it can make things clear but the same thing can
always be done faster by some other method)

Chris tried to spec out a general design that would abstract threading vs separate
processes (vs other methods?) and make them accessible through some general API.
This doesn’t work because of the data sharing requirements of the protocol (packets
in the future depending on packets now, etc.) At least, the code would work but
would be very clumsy, and besides the fork() type model would never work on Unix.
(Is there an OS that it would work on, for nmbd?)

A fork() is cheap, but not nearly cheap enough to do on every UDP packet that
arrives. Having a pool of processes is possible but is nasty to program cleanly due to
the enormous amount of shared data (in complex structures) between the processes.
We can’t rely on each platform having a shared memory system.

2.5 nbmd Design

Originally Andrew used recursion to simulate a multi-threaded environment, which
use the stack enormously and made for really confusing debugging sessions. Luke
Leighton rewrote it to use a queuing system that keeps state information on each
packet. The first version used a single structure which was used by all the pending
states. As the initialisation of this structure was done by adding arguments, as the
functionality developed, it got pretty messy. So, it was replaced with a higher-order
function and a pointer to a user-defined memory block. This suddenly made things
much simpler: large numbers of functions could be made static, and modularised.
This is the same principle as used in NT’s kernel, and achieves the same effect as
threads, but in a single process.

Then Jeremy rewrote nmbd. The packet data in nmbd isn’t what’s on the wire.
It’s a nice format that is very amenable to processing but still keeps the idea of a
distinct packet. See ”struct packet struct” in nameserv.h. It has all the detail but
none of the on-the-wire mess. This makes it ideal for using in disk or memory-based
databases for browsing and WINS support.

12

3 The samba DEBUG system

3.1 New Output Syntax

The syntax of a debugging log file is represented as:

>debugfile< :== { >debugmsg< }

>debugmsg< :== >debughdr< ’\n’ >debugtext<

>debughdr< :== ’[’ TIME ’,’ LEVEL ’]’ FILE ’:’ [FUNCTION] ’(’ LINE ’)’

>debugtext< :== { >debugline< }

>debugline< :== TEXT ’\n’

TEXT is a string of characters excluding the newline character.
LEVEL is the DEBUG level of the message (an integer in the range 0..10).
TIME is a timestamp.
FILE is the name of the file from which the debug message was generated.
FUNCTION is the function from which the debug message was generated.
LINE is the line number of the debug statement that generated the message.
Basically, what that all means is:
1. A debugging log file is made up of debug messages.
2. Each debug message is made up of a header and text. The header is separated

from the text by a newline.
3. The header begins with the timestamp and debug level of the message enclosed

in brackets. The filename, function, and line number at which the message was
generated follow. The filename is terminated by a colon, and the function name
is terminated by the parenthesis which contain the line number. Depending
upon the compiler, the function name may be missing (it is generated by the
FUNCTION macro, which is not universally implemented, dangit).

4. The message text is made up of zero or more lines, each terminated by a
newline.

Here’s some example output:

[1998/08/03 12:55:25, 1] nmbd.c:(659)
Netbios nameserver version 1.9.19-prealpha started.
Copyright Andrew Tridgell 1994-1997

[1998/08/03 12:55:25, 3] loadparm.c:(763)
Initializing global parameters

Note that in the above example the function names are not listed on the header
line. That’s because the example above was generated on an SGI Indy, and the SGI
compiler doesn’t support the FUNCTION macro.

13

CHAPTER 3. THE SAMBA DEBUG SYSTEM

3.2 The DEBUG() Macro

Use of the DEBUG() macro is unchanged. DEBUG() takes two parameters. The
first is the message level, the second is the body of a function call to the Debug1()
function.

That’s confusing.
Here’s an example which may help a bit. If you would write

printf("This is a %s message.\n", "debug");

to send the output to stdout, then you would write

DEBUG(0, ("This is a %s message.\n", "debug"));

to send the output to the debug file. All of the normal printf() formatting escapes
work.

Note that in the above example the DEBUG message level is set to 0. Messages
at level 0 always print. Basically, if the message level is less than or equal to the
global value DEBUGLEVEL, then the DEBUG statement is processed.

The output of the above example would be something like:

[1998/07/30 16:00:51, 0] file.c:function(128)
This is a debug message.

Each call to DEBUG() creates a new header *unless* the output produced by the
previous call to DEBUG() did not end with a ’\n’. Output to the debug file is passed
through a formatting buffer which is flushed every time a newline is encountered. If
the buffer is not empty when DEBUG() is called, the new input is simply appended.

...but that’s really just a Kludge. It was put in place because DEBUG() has been
used to write partial lines. Here’s a simple (dumb) example of the kind of thing I’m
talking about:

DEBUG(0, ("The test returned "));
if(test())
DEBUG(0, ("True"));

else
DEBUG(0, ("False"));

DEBUG(0, (".\n"));

Without the format buffer, the output (assuming test() returned true) would look
like this:

[1998/07/30 16:00:51, 0] file.c:function(256)
The test returned

[1998/07/30 16:00:51, 0] file.c:function(258)
True

[1998/07/30 16:00:51, 0] file.c:function(261)
.

Which isn’t much use. The format buffer kludge fixes this problem.

14

CHAPTER 3. THE SAMBA DEBUG SYSTEM

3.3 The DEBUGADD() Macro

In addition to the kludgey solution to the broken line problem described above,
there is a clean solution. The DEBUGADD() macro never generates a header. It
will append new text to the current debug message even if the format buffer is empty.
The syntax of the DEBUGADD() macro is the same as that of the DEBUG() macro.

DEBUG(0, ("This is the first line.\n"));
DEBUGADD(0, ("This is the second line.\nThis is the third line.\n"));

Produces

[1998/07/30 16:00:51, 0] file.c:function(512)
This is the first line.
This is the second line.
This is the third line.

3.4 The DEBUGLVL() Macro

One of the problems with the DEBUG() macro was that DEBUG() lines tended to
get a bit long. Consider this example from nmbd sendannounce.c:

DEBUG(3,("send_local_master_announcement: type %x for name %s on subnet %s for workgroup %s\n",
type, global_myname, subrec->subnet_name, work->work_group));

One solution to this is to break it down using DEBUG() and DEBUGADD(), as
follows:

DEBUG(3, ("send_local_master_announcement: "));
DEBUGADD(3, ("type %x for name %s ", type, global_myname));
DEBUGADD(3, ("on subnet %s ", subrec->subnet_name));
DEBUGADD(3, ("for workgroup %s\n", work->work_group));

A similar, but arguably nicer approach is to use the DEBUGLVL() macro. This
macro returns True if the message level is less than or equal to the global DEBU-
GLEVEL value, so:

if(DEBUGLVL(3))
{
dbgtext("send_local_master_announcement: ");
dbgtext("type %x for name %s ", type, global_myname);
dbgtext("on subnet %s ", subrec->subnet_name);
dbgtext("for workgroup %s\n", work->work_group);
}

(The dbgtext() function is explained below.)
There are a few advantages to this scheme:
1. The test is performed only once.

15

CHAPTER 3. THE SAMBA DEBUG SYSTEM

2. You can allocate variables off of the stack that will only be used within the
DEBUGLVL() block.

3. Processing that is only relevant to debug output can be contained within the
DEBUGLVL() block.

3.5 New Functions

3.5.1 dbgtext()

This function prints debug message text to the debug file (and possibly to syslog)
via the format buffer. The function uses a variable argument list just like printf() or
Debug1(). The input is printed into a buffer using the vslprintf() function, and then
passed to format debug text(). If you use DEBUGLVL() you will probably print the
body of the message using dbgtext().

3.5.2 dbghdr()

This is the function that writes a debug message header. Headers are not processed
via the format buffer. Also note that if the format buffer is not empty, a call to
dbghdr() will not produce any output. See the comments in dbghdr() for more info.

It is not likely that this function will be called directly. It is used by DEBUG()
and DEBUGADD().

3.5.3 format debug text()

This is a static function in debug.c. It stores the output text for the body of the
message in a buffer until it encounters a newline. When the newline character is
found, the buffer is written to the debug file via the Debug1() function, and the
buffer is reset. This allows us to add the indentation at the beginning of each line of
the message body, and also ensures that the output is written a line at a time (which
cleans up syslog output).

16

4 Coding Suggestions

So you want to add code to Samba ...
One of the daunting tasks facing a programmer attempting to write code for

Samba is understanding the various coding conventions used by those most active in
the project. These conventions were mostly unwritten and helped improve either the
portability, stability or consistency of the code. This document will attempt to doc-
ument a few of the more important coding practices used at this time on the Samba
project. The coding practices are expected to change slightly over time, and even
to grow as more is learned about obscure portability considerations. Two existing
documents samba/source/internals.doc and samba/source/architecture.doc
provide additional information.

The loosely related question of coding style is very personal and this document
does not attempt to address that subject, except to say that I have observed that
eight character tabs seem to be preferred in Samba source. If you are interested in
the topic of coding style, two oft-quoted documents are:
http://lxr.linux.no/source/Documentation/CodingStyle
http://www.fsf.org/prep/standards_toc.html
But note that coding style in Samba varies due to the many different programmers

who have contributed.
Following are some considerations you should use when adding new code to Samba.

First and foremost remember that:
Portability is a primary consideration in adding function, as is network compata-

bility with de facto, existing, real world CIFS/SMB implementations. There are lots
of platforms that Samba builds on so use caution when adding a call to a library
function that is not invoked in existing Samba code. Also note that there are many
quite different SMB/CIFS clients that Samba tries to support, not all of which follow
the SNIA CIFS Technical Reference (or the earlier Microsoft reference documents or
the X/Open book on the SMB Standard) perfectly.

Here are some other suggestions:
1. use d printf instead of printf for display text reason: enable auto-substitution

of translated language text
2. use SAFE FREE instead of free reason: reduce traps due to null pointers
3. don’t use bzero use memset, or ZERO STRUCT and ZERO STRUCTP macros

reason: not POSIX
4. don’t use strcpy and strlen (use safe * equivalents) reason: to avoid traps due

to buffer overruns
5. don’t use getopt long, use popt functions instead reason: portability
6. explicitly add const qualifiers on parm passing in functions where parm is input

only (somewhat controversial but const can be #defined away)
7. when passing a va list as an arg, or assigning one to another please use the

VA COPY() macro reason: on some platforms, va list is a struct that must be
initialized in each function...can SEGV if you don’t.

8. discourage use of threads reason: portability (also see architecture.doc)
9. don’t explicitly include new header files in C files - new h files should be included

by adding them once to includes.h reason: consistency

17

http://lxr.linux.no/source/Documentation/CodingStyle
http://www.fsf.org/prep/standards_toc.html

CHAPTER 4. CODING SUGGESTIONS

10. don’t explicitly extern functions (they are autogenerated by ”make proto” into
proto.h) reason: consistency

11. use endian safe macros when unpacking SMBs (see byteorder.h and inter-
nals.doc) reason: not everyone uses Intel

12. Note Unicode implications of charset handling (see internals.doc). See pull *
and push * and convert string functions. reason: Internationalization

13. Don’t assume English only reason: See above
14. Try to avoid using in/out parameters (functions that return data which over-

writes input parameters) reason: Can cause stability problems
15. Ensure copyright notices are correct, don’t append Tridge’s name to code that

he didn’t write. If you did not write the code, make sure that it can coexist
with the rest of the Samba GPLed code.

16. Consider usage of DATA BLOBs for length specified byte-data. reason: sta-
bility

17. Take advantage of tdbs for database like function reason: consistency
18. Don’t access the SAM ACCOUNT structure directly, they should be accessed

via pdb get...() and pdb set...() functions. reason: stability, consistency
19. Don’t check a password directly against the passdb, always use the check password()

interface. reason: long term pluggability
20. Try to use asprintf rather than pstrings and fstrings where possible
21. Use normal C comments / * instead of C++ comments // like this. Although

the C++ comment format is part of the C99 standard, some older vendor C
compilers do not accept it.

22. Try to write documentation for API functions and structures explaining the
point of the code, the way it should be used, and any special conditions or
results. Mark these with a double-star comment start / ** so that they can be
picked up by Doxygen, as in this file.

23. Keep the scope narrow. This means making functions/variables static when-
ever possible. We don’t want our namespace polluted. Each module should
have a minimal number of externally visible functions or variables.

24. Use function pointers to keep knowledge about particular pieces of code isolated
in one place. We don’t want a particular piece of functionality to be spread out
across lots of places - that makes for fragile, hand to maintain code. Instead,
design an interface and use tables containing function pointers to implement
specific functionality. This is particularly important for command interpreters.

25. Think carefully about what it will be like for someone else to add to and
maintain your code. If it would be hard for someone else to maintain then do
it another way.

The suggestions above are simply that, suggestions, but the information may help
in reducing the routine rework done on new code. The preceeding list is expected to
change routinely as new support routines and macros are added.

18

5 Samba Internals

5.1 Character Handling

This section describes character set handling in Samba, as implemented in Samba
3.0 and above

In the past Samba had very ad-hoc character set handling. Scattered throughout
the code were numerous calls which converted particular strings to/from DOS code-
pages. The problem is that there was no way of telling if a particular char* is in dos
codepage or unix codepage. This led to a nightmare of code that tried to cope with
particular cases without handlingt the general case.

5.2 The new functions

The new system works like this:
1. all char* strings inside Samba are ”unix” strings. These are multi-byte strings

that are in the charset defined by the ”unix charset” option in smb.conf.
2. there is no single fixed character set for unix strings, but any character set that

is used does need the following properties:
a) must not contain NULLs except for termination
b) must be 7-bit compatible with C strings, so that a constant string or

character in C will be byte-for-byte identical to the equivalent string in
the chosen character set.

c) when you uppercase or lowercase a string it does not become longer than
the original string

d) must be able to correctly hold all characters that your client will throw
at it

For example, UTF-8 is fine, and most multi-byte asian character sets are fine,
but UCS2 could not be used for unix strings as they contain nulls.

3. when you need to put a string into a buffer that will be sent on the wire,
or you need a string in a character set format that is compatible with the
clients character set then you need to use a pull or push function. The pull
functions pull a string from a wire buffer into a (multi-byte) unix string. The
push functions push a string out to a wire buffer.

4. the two main pull and push functions you need to understand are pull string
and push string. These functions take a base pointer that should point at the
start of the SMB packet that the string is in. The functions will check the
flags field in this packet to automatically determine if the packet is marked as
a unicode packet, and they will choose whether to use unicode for this string
based on that flag. You may also force this decision using the STR UNICODE
or STR ASCII flags. For use in smbd/ and libsmb/ there are wrapper functions
clistr and srvstr that call the pull /push functions with the appropriate first
argument.
You may also call the pull ascii/pull ucs2 or push ascii/push ucs2 functions if
you know that a particular string is ascii or unicode. There are also a number
of other convenience functions in charcnv.c that call the pull /push functions
with particularly common arguments, such as pull ascii pstring()

19

CHAPTER 5. SAMBA INTERNALS

5. The biggest thing to remember is that internal (unix) strings in Samba may now
contain multi-byte characters. This means you cannot assume that characters
are always 1 byte long. Often this means that you will have to convert strings to
ucs2 and back again in order to do some (seemingly) simple task. For examples
of how to do this see functions like strchr m(). I know this is very slow, and we
will eventually speed it up but right now we want this stuff correct not fast.

6. all lp functions now return unix strings. The magic ”DOS” flag on parameters
is gone.

7. all vfs functions take unix strings. Don’t convert when passing to them

5.3 Macros in byteorder.h

This section describes the macros defined in byteorder.h. These macros are used
extensively in the Samba code.

5.3.1 CVAL(buf,pos)

returns the byte at offset pos within buffer buf as an unsigned character.

5.3.2 PVAL(buf,pos)

returns the value of CVAL(buf,pos) cast to type unsigned integer.

5.3.3 SCVAL(buf,pos,val)

sets the byte at offset pos within buffer buf to value val.

5.3.4 SVAL(buf,pos)

returns the value of the unsigned short (16 bit) little-endian integer at offset pos
within buffer buf. An integer of this type is sometimes refered to as ”USHORT”.

5.3.5 IVAL(buf,pos)

returns the value of the unsigned 32 bit little-endian integer at offset pos within
buffer buf.

5.3.6 SVALS(buf,pos)

returns the value of the signed short (16 bit) little-endian integer at offset pos within
buffer buf.

5.3.7 IVALS(buf,pos)

returns the value of the signed 32 bit little-endian integer at offset pos within buffer
buf.

5.3.8 SSVAL(buf,pos,val)

sets the unsigned short (16 bit) little-endian integer at offset pos within buffer buf
to value val.

20

CHAPTER 5. SAMBA INTERNALS

5.3.9 SIVAL(buf,pos,val)

sets the unsigned 32 bit little-endian integer at offset pos within buffer buf to the
value val.

5.3.10 SSVALS(buf,pos,val)

sets the short (16 bit) signed little-endian integer at offset pos within buffer buf to
the value val.

5.3.11 SIVALS(buf,pos,val)

sets the signed 32 bit little-endian integer at offset pos withing buffer buf to the value
val.

5.3.12 RSVAL(buf,pos)

returns the value of the unsigned short (16 bit) big-endian integer at offset pos within
buffer buf.

5.3.13 RIVAL(buf,pos)

returns the value of the unsigned 32 bit big-endian integer at offset pos within buffer
buf.

5.3.14 RSSVAL(buf,pos,val)

sets the value of the unsigned short (16 bit) big-endian integer at offset pos within
buffer buf to value val. refered to as ”USHORT”.

5.3.15 RSIVAL(buf,pos,val)

sets the value of the unsigned 32 bit big-endian integer at offset pos within buffer
buf to value val.

5.4 LAN Manager Samba API

This section describes the functions need to make a LAN Manager RPC call. This
information had been obtained by examining the Samba code and the LAN Manager
2.0 API documentation. It should not be considered entirely reliable.

call_api(int prcnt, int drcnt, int mprcnt, int mdrcnt,
char *param, char *data, char **rparam, char **rdata);

This function is defined in client.c. It uses an SMB transaction to call a remote
api.

5.4.1 Parameters

The parameters are as follows:
1. prcnt: the number of bytes of parameters begin sent.
2. drcnt: the number of bytes of data begin sent.
3. mprcnt: the maximum number of bytes of parameters which should be returned
4. mdrcnt: the maximum number of bytes of data which should be returned

21

CHAPTER 5. SAMBA INTERNALS

5. param: a pointer to the parameters to be sent.
6. data: a pointer to the data to be sent.
7. rparam: a pointer to a pointer which will be set to point to the returned

paramters. The caller of call api() must deallocate this memory.
8. rdata: a pointer to a pointer which will be set to point to the returned data.

The caller of call api() must deallocate this memory.
These are the parameters which you ought to send, in the order of their appearance

in the parameter block:
1. An unsigned 16 bit integer API number. You should set this value with SS-

VAL(). I do not know where these numbers are described.
2. An ASCIIZ string describing the parameters to the API function as defined

in the LAN Manager documentation. The first parameter, which is the server
name, is ommited. This string is based uppon the API function as described
in the manual, not the data which is actually passed.

3. An ASCIIZ string describing the data structure which ought to be returned.
4. Any parameters which appear in the function call, as defined in the LAN

Manager API documentation, after the ”Server” and up to and including the
”uLevel” parameters.

5. An unsigned 16 bit integer which gives the size in bytes of the buffer we will
use to receive the returned array of data structures. Presumably this should
be the same as mdrcnt. This value should be set with SSVAL().

6. An ASCIIZ string describing substructures which should be returned. If no
substructures apply, this string is of zero length.

The code in client.c always calls call api() with no data. It is unclear when a
non-zero length data buffer would be sent.

5.4.2 Return value

The returned parameters (pointed to by rparam), in their order of appearance are:
1. An unsigned 16 bit integer which contains the API function’s return code. This

value should be read with SVAL().
2. An adjustment which tells the amount by which pointers in the returned data

should be adjusted. This value should be read with SVAL(). Basically, the
address of the start of the returned data buffer should have the returned pointer
value added to it and then have this value subtracted from it in order to obtain
the currect offset into the returned data buffer.

3. A count of the number of elements in the array of structures returned. It is
also possible that this may sometimes be the number of bytes returned.

When call api() returns, rparam points to the returned parameters. The first if
these is the result code. It will be zero if the API call suceeded. This value by be
read with ”SVAL(rparam,0)”.

The second parameter may be read as ”SVAL(rparam,2)”. It is a 16 bit offset
which indicates what the base address of the returned data buffer was when it was
built on the server. It should be used to correct pointer before use.

The returned data buffer contains the array of returned data structures. Note that
all pointers must be adjusted before use. The function fix char ptr() in client.c can
be used for this purpose.

The third parameter (which may be read as ”SVAL(rparam,4)”) has something
to do with indicating the amount of data returned or possibly the amount of data
which can be returned if enough buffer space is allowed.

22

CHAPTER 5. SAMBA INTERNALS

5.5 Code character table

Certain data structures are described by means of ASCIIz strings containing code
characters. These are the code characters:

1. W a type byte little-endian unsigned integer
2. N a count of substructures which follow
3. D a four byte little-endian unsigned integer
4. B a byte (with optional count expressed as trailing ASCII digits)
5. z a four byte offset to a NULL terminated string
6. l a four byte offset to non-string user data
7. b an offset to data (with count expressed as trailing ASCII digits)
8. r pointer to returned data buffer???
9. L length in bytes of returned data buffer???

10. h number of bytes of information available???

23

6 The smb.conf file

6.1 Lexical Analysis

Basically, the file is processed on a line by line basis. There are four types of lines
that are recognized by the lexical analyzer (params.c):

1. Blank lines - Lines containing only whitespace.
2. Comment lines - Lines beginning with either a semi-colon or a pound sign (’;’

or ’#’).
3. Section header lines - Lines beginning with an open square bracket (’[’).
4. Parameter lines - Lines beginning with any other character. (The default line

type.)
The first two are handled exclusively by the lexical analyzer, which ignores them.

The latter two line types are scanned for
1. - Section names
2. - Parameter names
3. - Parameter values
These are the only tokens passed to the parameter loader (loadparm.c). Parameter

names and values are divided from one another by an equal sign: ’=’.

6.1.1 Handling of Whitespace

Whitespace is defined as all characters recognized by the isspace() function (see
ctype(3C)) except for the newline character (’\n’) The newline is excluded because
it identifies the end of the line.

1. The lexical analyzer scans past white space at the beginning of a line.
2. Section and parameter names may contain internal white space. All whitespace

within a name is compressed to a single space character.
3. Internal whitespace within a parameter value is kept verbatim with the excep-

tion of carriage return characters (’\r’), all of which are removed.
4. Leading and trailing whitespace is removed from names and values.

6.1.2 Handling of Line Continuation

Long section header and parameter lines may be extended across multiple lines by
use of the backslash character (’\\’). Line continuation is ignored for blank and
comment lines.

If the last (non-whitespace) character within a section header or on a parameter
line is a backslash, then the next line will be (logically) concatonated with the current
line by the lexical analyzer. For example:

param name = parameter value string \
with line continuation.

Would be read as

24

CHAPTER 6. THE SMB.CONF FILE

param name = parameter value string with line continuation.

Note that there are five spaces following the word ’string’, representing the one
space between ’string’ and ’\\’ in the top line, plus the four preceeding the word
’with’ in the second line. (Yes, I’m counting the indentation.)

Line continuation characters are ignored on blank lines and at the end of comments.
They are *only* recognized within section and parameter lines.

6.1.3 Line Continuation Quirks

Note the following example:

param name = parameter value string \
\
with line continuation.

The middle line is *not* parsed as a blank line because it is first concatonated
with the top line. The result is

param name = parameter value string with line continuation.

The same is true for comment lines.

param name = parameter value string \
; comment \
with a comment.

This becomes:

param name = parameter value string ; comment with a comment.

On a section header line, the closing bracket (’]’) is considered a terminating
character, and the rest of the line is ignored. The lines

[section name] garbage \
param name = value

are read as

[section name]
param name = value

6.2 Syntax

The syntax of the smb.conf file is as follows:

<file> :== { <section> } EOF
<section> :== <section header> { <parameter line> }

25

CHAPTER 6. THE SMB.CONF FILE

<section header> :== ’[’ NAME ’]’
<parameter line> :== NAME ’=’ VALUE NL

Basically, this means that
1. a file is made up of zero or more sections, and is terminated by an EOF (we

knew that).
2. A section is made up of a section header followed by zero or more parameter

lines.
3. A section header is identified by an opening bracket and terminated by the

closing bracket. The enclosed NAME identifies the section.
4. A parameter line is divided into a NAME and a VALUE. The *first* equal sign

on the line separates the NAME from the VALUE. The VALUE is terminated
by a newline character (NL = ’\n’).

6.2.1 About params.c

The parsing of the config file is a bit unusual if you are used to lex, yacc, bison, etc.
Both lexical analysis (scanning) and parsing are performed by params.c. Values are
loaded via callbacks to loadparm.c.

26

7 NetBIOS in a Unix World

7.1 Introduction

This is a short document that describes some of the issues that confront a SMB
implementation on unix, and how Samba copes with them. They may help people
who are looking at unix<->PC interoperability.

It was written to help out a person who was writing a paper on unix to PC
connectivity.

7.2 Usernames

The SMB protocol has only a loose username concept. Early SMB protocols (such
as CORE and COREPLUS) have no username concept at all. Even in later proto-
cols clients often attempt operations (particularly printer operations) without first
validating a username on the server.

Unix security is based around username/password pairs. A unix box should not
allow clients to do any substantive operation without some sort of validation.

The problem mostly manifests itself when the unix server is in ”share level” security
mode. This is the default mode as the alternative ”user level” security mode usually
forces a client to connect to the server as the same user for each connected share,
which is inconvenient in many sites.

In ”share level” security the client normally gives a username in the ”session setup”
protocol, but does not supply an accompanying password. The client then connects
to resources using the ”tree connect” protocol, and supplies a password. The problem
is that the user on the PC types the username and the password in different contexts,
unaware that they need to go together to give access to the server. The username is
normally the one the user typed in when they ”logged onto” the PC (this assumes
Windows for Workgroups). The password is the one they chose when connecting to
the disk or printer.

The user often chooses a totally different username for their login as for the drive
connection. Often they also want to access different drives as different usernames.
The unix server needs some way of divining the correct username to combine with
each password.

Samba tries to avoid this problem using several methods. These succeed in the vast
majority of cases. The methods include username maps, the service%user syntax,
the saving of session setup usernames for later validation and the derivation of the
username from the service name (either directly or via the user= option).

7.3 File Ownership

The commonly used SMB protocols have no way of saying ”you can’t do that because
you don’t own the file”. They have, in fact, no concept of file ownership at all.

This brings up all sorts of interesting problems. For example, when you copy a file
to a unix drive, and the file is world writeable but owned by another user the file will
transfer correctly but will receive the wrong date. This is because the utime() call
under unix only succeeds for the owner of the file, or root, even if the file is world

27

CHAPTER 7. NETBIOS IN A UNIX WORLD

writeable. For security reasons Samba does all file operations as the validated user,
not root, so the utime() fails. This can stuff up shared development diectories as
programs like ”make” will not get file time comparisons right.

There are several possible solutions to this problem, including username mapping,
and forcing a specific username for particular shares.

7.4 Passwords

Many SMB clients uppercase passwords before sending them. I have no idea why they
do this. Interestingly WfWg uppercases the password only if the server is running a
protocol greater than COREPLUS, so obviously it isn’t just the data entry routines
that are to blame.

Unix passwords are case sensitive. So if users use mixed case passwords they are
in trouble.

Samba can try to cope with this by either using the ”password level” option which
causes Samba to try the offered password with up to the specified number of case
changes, or by using the ”password server” option which allows Samba to do its
validation via another machine (typically a WinNT server).

Samba supports the password encryption method used by SMB clients. Note that
the use of password encryption in Microsoft networking leads to password hashes
that are ”plain text equivalent”. This means that it is *VERY* important to ensure
that the Samba smbpasswd file containing these password hashes is only readable by
the root user. See the documentation ENCRYPTION.txt for more details.

7.5 Locking

Since samba 2.2, samba supports other types of locking as well. This section is
outdated.

The locking calls available under a DOS/Windows environment are much richer
than those available in unix. This means a unix server (like Samba) choosing to
use the standard fcntl() based unix locking calls to implement SMB locking has to
improvise a bit.

One major problem is that dos locks can be in a 32 bit (unsigned) range. Unix
locking calls are 32 bits, but are signed, giving only a 31 bit range. Unfortunately
OLE2 clients use the top bit to select a locking range used for OLE semaphores.

To work around this problem Samba compresses the 32 bit range into 31 bits by
appropriate bit shifting. This seems to work but is not ideal. In a future version a
separate SMB lockd may be added to cope with the problem.

It also doesn’t help that many unix lockd daemons are very buggy and crash at
the slightest provocation. They normally go mostly unused in a unix environment
because few unix programs use byte range locking. The stress of huge numbers of
lock requests from dos/windows clients can kill the daemon on some systems.

The second major problem is the ”opportunistic locking” requested by some clients.
If a client requests opportunistic locking then it is asking the server to notify it if
anyone else tries to do something on the same file, at which time the client will say if
it is willing to give up its lock. Unix has no simple way of implementing opportunistic
locking, and currently Samba has no support for it.

28

CHAPTER 7. NETBIOS IN A UNIX WORLD

7.6 Deny Modes

When a SMB client opens a file it asks for a particular ”deny mode” to be placed on
the file. These modes (DENY NONE, DENY READ, DENY WRITE, DENY ALL,
DENY FCB and DENY DOS) specify what actions should be allowed by anyone else
who tries to use the file at the same time. If DENY READ is placed on the file, for
example, then any attempt to open the file for reading should fail.

Unix has no equivalent notion. To implement this Samba uses either lock files
based on the files inode and placed in a separate lock directory or a shared memory
implementation. The lock file method is clumsy and consumes processing and file
resources, the shared memory implementation is vastly prefered and is turned on by
default for those systems that support it.

7.7 Trapdoor UIDs

A SMB session can run with several uids on the one socket. This happens when a
user connects to two shares with different usernames. To cope with this the unix
server needs to switch uids within the one process. On some unixes (such as SCO)
this is not possible. This means that on those unixes the client is restricted to a
single uid.

Note that you can also get the ”trapdoor uid” message for other reasons. Please
see the FAQ for details.

7.8 Port numbers

There is a convention that clients on sockets use high ”unprivilaged” port numbers
(>1000) and connect to servers on low ”privilaged” port numbers. This is enforced
in Unix as non-root users can’t open a socket for listening on port numbers less than
1000.

Most PC based SMB clients (such as WfWg and WinNT) don’t follow this con-
vention completely. The main culprit is the netbios nameserving on udp port 137.
Name query requests come from a source port of 137. This is a problem when you
combine it with the common firewalling technique of not allowing incoming packets
on low port numbers. This means that these clients can’t query a netbios nameserver
on the other side of a low port based firewall.

The problem is more severe with netbios node status queries. I’ve found that
WfWg, Win95 and WinNT3.5 all respond to netbios node status queries on port 137
no matter what the source port was in the request. This works between machines
that are both using port 137, but it means it’s not possible for a unix user to do a
node status request to any of these OSes unless they are running as root. The answer
comes back, but it goes to port 137 which the unix user can’t listen on. Interestingly
WinNT3.1 got this right - it sends node status responses back to the source port in
the request.

7.9 Protocol Complexity

There are many ”protocol levels” in the SMB protocol. It seems that each time new
functionality was added to a Microsoft operating system, they added the equivalent
functions in a new protocol level of the SMB protocol to ”externalise” the new
capabilities.

This means the protocol is very ”rich”, offering many ways of doing each file
operation. This means SMB servers need to be complex and large. It also means

29

CHAPTER 7. NETBIOS IN A UNIX WORLD

it is very difficult to make them bug free. It is not just Samba that suffers from
this problem, other servers such as WinNT don’t support every variation of every
call and it has almost certainly been a headache for MS developers to support the
myriad of SMB calls that are available.

There are about 65 ”top level” operations in the SMB protocol (things like SM-
Bread and SMBwrite). Some of these include hundreds of sub-functions (SMBtrans
has at least 120 sub-functions, like DosPrintQAdd and NetSessionEnum). All of
them take several options that can change the way they work. Many take dozens of
possible ”information levels” that change the structures that need to be returned.
Samba supports all but 2 of the ”top level” functions. It supports only 8 (so far) of
the SMBtrans sub-functions. Even NT doesn’t support them all.

Samba currently supports up to the ”NT LM 0.12” protocol, which is the one
preferred by Win95 and WinNT3.5. Luckily this protocol level has a ”capabilities”
field which specifies which super-duper new-fangled options the server suports. This
helps to make the implementation of this protocol level much easier.

There is also a problem with the SMB specications. SMB is a X/Open spec,
but the X/Open book is far from ideal, and fails to cover many important issues,
leaving much to the imagination. Microsoft recently renamed the SMB protocol
CIFS (Common Internet File System) and have published new specifications. These
are far superior to the old X/Open documents but there are still undocumented calls
and features. This specification is actively being worked on by a CIFS developers
mailing list hosted by Microsft.

30

8 Tracing samba system calls

This file describes how to do a system call trace on Samba to work out what its
doing wrong. This is not for the faint of heart, but if you are reading this then you
are probably desperate.

Actually its not as bad as the the above makes it sound, just don’t expect the
output to be very pretty :-)

Ok, down to business. One of the big advantages of unix systems is that they
nearly all come with a system trace utility that allows you to monitor all system
calls that a program is making. This is extremely using for debugging and also helps
when trying to work out why something is slower than you expect. You can use
system tracing without any special compilation options.

The system trace utility is called different things on different systems. On Linux
systems its called strace. Under SunOS 4 its called trace. Under SVR4 style systems
(including solaris) its called truss. Under many BSD systems its called ktrace.

The first thing you should do is read the man page for your native system call
tracer. In the discussion below I’ll assume its called strace as strace is the only
portable system tracer (its available for free for many unix types) and its also got
some of the nicest features.

Next, try using strace on some simple commands. For example, strace ls or
strace echo hello.

You’ll notice that it produces a LOT of output. It is showing you the arguments
to every system call that the program makes and the result. Very little happens in
a program without a system call so you get lots of output. You’ll also find that it
produces a lot of ”preamble” stuff showing the loading of shared libraries etc. Ignore
this (unless its going wrong!)

For example, the only line that really matters in the strace echo hello output is:

write(1, "hello\n", 6) = 6

all the rest is just setting up to run the program.
Ok, now you’re familiar with strace. To use it on Samba you need to strace the

running smbd daemon. The way I tend ot use it is to first login from my Windows
PC to the Samba server, then use smbstatus to find which process ID that client is
attached to, then as root I do strace -p PID to attach to that process. I normally
redirect the stderr output from this command to a file for later perusal. For example,
if I’m using a csh style shell:

strace -f -p 3872 >& strace.out
or with a sh style shell:
strace -f -p 3872 > strace.out 2>&1
Note the ”-f” option. This is only available on some systems, and allows you to

trace not just the current process, but any children it forks. This is great for finding
printing problems caused by the ”print command” being wrong.

Once you are attached you then can do whatever it is on the client that is causing
problems and you will capture all the system calls that smbd makes.

So how do you interpret the results? Generally I search through the output for
strings that I know will appear when the problem happens. For example, if I am

31

CHAPTER 8. TRACING SAMBA SYSTEM CALLS

having touble with permissions on a file I would search for that files name in the
strace output and look at the surrounding lines. Another trick is to match up file
descriptor numbers and ”follow” what happens to an open file until it is closed.

Beyond this you will have to use your initiative. To give you an idea of what you
are looking for here is a piece of strace output that shows that /dev/null is not
world writeable, which causes printing to fail with Samba:

[pid 28268] open("/dev/null", O_RDWR) = -1 EACCES (Permission denied)
[pid 28268] open("/dev/null", O_WRONLY) = -1 EACCES (Permission denied)

The process is trying to first open /dev/null read-write then read-only. Both fail.
This means /dev/null has incorrect permissions.

32

9 Finding useful information on windows

9.1 Netlogon debugging output

1. stop netlogon service on PDC
2. rename original netlogon.dll to netlogon.dll.original
3. copy checked version of netlogon.dll to system32 directory
4. set HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters\DBFlag

to 0x20000004
5. start netlogon service on PDC

33

10 NT Domain RPC’s

10.1 Introduction

This document contains information to provide an NT workstation with login ser-
vices, without the need for an NT server. It is the sgml version of http://mailhost.
cb1.com/~lkcl/cifsntdomain.txt, controlled by Luke.

It should be possible to select a domain instead of a workgroup (in the NT work-
station’s TCP/IP settings) and after the obligatory reboot, type in a username,
password, select a domain and successfully log in. I would appreciate any feedback
on your experiences with this process, and any comments, corrections and additions
to this document.

The packets described here can be easily derived from (and are probably better
understood using) Netmon.exe. You will need to use the version of Netmon that
matches your system, in order to correctly decode the NETLOGON, lsarpc and
srvsvc Transact pipes. This document is derived from NT Service Pack 1 and its
corresponding version of Netmon. It is intended that an annotated packet trace be
produced, which will likely be more instructive than this document.

Also needed, to fully implement NT Domain Login Services, is the document de-
scribing the cryptographic part of the NT authentication. This document is available
from comp.protocols.smb; from the ntsecurity.net digest and from the samba digest,
amongst other sources.

A copy is available from:
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;

P=2935
http://mailhost.cb1.com/~lkcl/crypt.html
A c-code implementation, provided by Linus Nordberg of this protocol is available

from:
http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html
http://mailhost.cb1.com/~lkcl/crypt.txt
Also used to provide debugging information is the Check Build version of NT

workstation, and enabling full debugging in NETLOGON. This is achieved by setting
the following REG SZ registry key to 0x1ffffff:
HKLM\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters
Incorrect direct editing of the registry can cause your machine to fail. Then again,

so can incorrect implementation of this protocol. See ”Liability:” above.
Bear in mind that each packet over-the-wire will have its origin in an API call.

Therefore, there are likely to be structures, enumerations and defines that are usefully
documented elsewhere.

This document is by no means complete or authoritative. Missing sections include,
but are not limited to:

1. Mappings of RIDs to usernames (and vice-versa).
2. What a User ID is and what a Group ID is.
3. The exact meaning/definition of various magic constants or enumerations.
4. The reply error code and use of that error code when a workstation becomes a

member of a domain (to be described later). Failure to return this error code
will make the workstation report that it is already a member of the domain.

34

http://mailhost.cb1.com/~lkcl/cifsntdomain.txt
http://mailhost.cb1.com/~lkcl/cifsntdomain.txt
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935
http://mailhost.cb1.com/~lkcl/crypt.html
mailto:linus@incolumitas.se
http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html
http://mailhost.cb1.com/~lkcl/crypt.txt

CHAPTER 10. NT DOMAIN RPC’S

5. the cryptographic side of the NetrServerPasswordSet command, which would
allow the workstation to change its password. This password is used to generate
the long-term session key. [It is possible to reject this command, and keep the
default workstation password].

10.1.1 Sources

cket Traces from Netmonitor (Service Pack 1 and above)
ul Ashton and Luke Leighton’s other ”NT Domain” doc.
FS documentation - cifs6.txt
FS documentation - cifsrap2.txt

10.1.2 Credits

Paul Ashton: loads of work with Net Monitor; understanding the NT authen-
tication system; reference implementation of the NT domain support on which
this document is originally based.
Duncan Stansfield: low-level analysis of MSRPC Pipes.
Linus Nordberg: producing c-code from Paul’s crypto spec.
Windows Sourcer development team

10.2 Notes and Structures

10.2.1 Notes

1. In the SMB Transact pipes, some ”Structures”, described here, appear to be 4-
byte aligned with the SMB header, at their start. Exactly which ”Structures”
need aligning is not precisely known or documented.

2. In the UDP NTLOGON Mailslots, some ”Structures”, described here, appear
to be 2-byte aligned with the start of the mailslot, at their start.

3. Domain SID is of the format S-revision-version-auth1-auth2...authN. e.g S-1-
5-123-456-789-123-456. the 5 could be a sub-revision.

4. any undocumented buffer pointers must be non-zero if the string buffer it refers
to contains characters. exactly what value they should be is unknown. 0x0000
0002 seems to do the trick to indicate that the buffer exists. a NULL buffer
pointer indicates that the string buffer is of zero length. If the buffer pointer
is NULL, then it is suspected that the structure it refers to is NOT put into
(or taken out of) the SMB data stream. This is empirically derived from, for
example, the LSA SAM Logon response packet, where if the buffer pointer is
NULL, the user information is not inserted into the data stream. Exactly what
happens with an array of buffer pointers is not known, although an educated
guess can be made.

5. an array of structures (a container) appears to have a count and a pointer. if
the count is zero, the pointer is also zero. no further data is put into or taken
out of the SMB data stream. if the count is non-zero, then the pointer is also
non-zero. immediately following the pointer is the count again, followed by an
array of container sub-structures. the count appears a third time after the last
sub-structure.

10.2.2 Enumerations

10.2.2.1 MSRPC Header type

command number in the msrpc packet header

35

CHAPTER 10. NT DOMAIN RPC’S

MSRPC Request: 0x00
MSRPC Response: 0x02
MSRPC Bind: 0x0B
MSRPC BindAck: 0x0C

10.2.2.2 MSRPC Packet info

The meaning of these flags is undocumented
FirstFrag: 0x01
LastFrag: 0x02
NotaFrag: 0x04
RecRespond: 0x08
NoMultiplex: 0x10
NotForIdemp: 0x20
NotforBcast: 0x40
NoUuid: 0x80

10.2.3 Structures

10.2.3.1 VOID *

sizeof VOID* is 32 bits.

10.2.3.2 char

sizeof char is 8 bits.

10.2.3.3 UTIME

UTIME is 32 bits, indicating time in seconds since 01jan1970. documented in
cifs6.txt (section 3.5 page, page 30).

10.2.3.4 NTTIME

NTTIME is 64 bits. documented in cifs6.txt (section 3.5 page, page 30).

10.2.3.5 DOM SID (domain SID structure)

UINT32 num of sub-authorities in domain SID
UINT8 SID revision number
UINT8 num of sub-authorities in domain SID
UINT8[6] 6 bytes for domain SID - Identifier Authority.
UINT16[n subauths] domain SID sub-authorities

Note: the domain SID is documented elsewhere.

10.2.3.6 STR (string)

STR (string) is a char[] : a null-terminated string of ascii characters.

10.2.3.7 UNIHDR (unicode string header)

UINT16 length of unicode string
UINT16 max length of unicode string
UINT32 4 - undocumented.

36

CHAPTER 10. NT DOMAIN RPC’S

10.2.3.8 UNIHDR2 (unicode string header plus buffer pointer)

UNIHDR unicode string header
VOID* undocumented buffer pointer

10.2.3.9 UNISTR (unicode string)

UINT16[] null-terminated string of unicode characters.

10.2.3.10 NAME (length-indicated unicode string)

UINT32 length of unicode string
UINT16[] null-terminated string of unicode characters.

10.2.3.11 UNISTR2 (aligned unicode string)

UINT8[] padding to get unicode string 4-byte aligned with the start of the SMB
header.

UINT32 max length of unicode string
UINT32 0 - undocumented
UINT32 length of unicode string
UINT16[] string of uncode characters

10.2.3.12 OBJ ATTR (object attributes)

UINT32 0x18 - length (in bytes) including the length field.
VOID* 0 - root directory (pointer)
VOID* 0 - object name (pointer)
UINT32 0 - attributes (undocumented)
VOID* 0 - security descriptior (pointer)
UINT32 0 - security quality of service

10.2.3.13 POL HND (LSA policy handle)

char[20] policy handle

10.2.3.14 DOM SID2 (domain SID structure, SIDS stored in unicode)

UINT32 5 - SID type
UINT32 0 - undocumented
UNIHDR2 domain SID unicode string header
UNISTR domain SID unicode string

Note: there is a conflict between the unicode string header and the unicode string
itself as to which to use to indicate string length. this will need to be resolved.

Note: the SID type indicates, for example, an alias; a well-known group etc. this
is documented somewhere.

10.2.3.15 DOM RID (domain RID structure)

UINT32 5 - well-known SID. 1 - user SID (see ShowACLs)
UINT32 5 - undocumented
UINT32 domain RID
UINT32 0 - domain index out of above reference domains

37

CHAPTER 10. NT DOMAIN RPC’S

10.2.3.16 LOG INFO (server, account, client structure)

Note: logon server name starts with two ’\’ characters and is upper case.
Note: account name is the logon client name from the LSA Request Challenge,

with a $ on the end of it, in upper case.
VOID* undocumented buffer pointer
UNISTR2 logon server unicode string
UNISTR2 account name unicode string
UINT16 sec chan - security channel type
UNISTR2 logon client machine unicode string

10.2.3.17 CLNT SRV (server, client names structure)

Note: logon server name starts with two ’\’ characters and is upper case.
VOID* undocumented buffer pointer
UNISTR2 logon server unicode string
VOID* undocumented buffer pointer
UNISTR2 logon client machine unicode string

10.2.3.18 CREDS (credentials + time stamp)

char[8] credentials
UTIME time stamp

10.2.3.19 CLNT INFO2 (server, client structure, client credentials)

Note: whenever this structure appears in a request, you must take a copy of the
client-calculated credentials received, because they will beused in subsequent credential
checks. the presumed intention is to maintain an authenticated request/response trail.
CLNT SRV client and server names
UINT8[] ???? padding, for 4-byte alignment with SMB header.
VOID* pointer to client credentials.
CREDS client-calculated credentials + client time

10.2.3.20 CLNT INFO (server, account, client structure, client credentials)

Note: whenever this structure appears in a request, you must take a copy of the
client-calculated credentials received, because they will be used in subsequent credential
checks. the presumed intention is to maintain an authenticated request/response trail.
LOG INFO logon account info
CREDS client-calculated credentials + client time

10.2.3.21 ID INFO 1 (id info structure, auth level 1)

VOID* ptr id info 1
UNIHDR domain name unicode header
UINT32 param control
UINT64 logon ID
UNIHDR user name unicode header
UNIHDR workgroup name unicode header
char[16] arc4 LM OWF Password
char[16] arc4 NT OWF Password
UNISTR2 domain name unicode string

38

CHAPTER 10. NT DOMAIN RPC’S

UNISTR2 user name unicode string
UNISTR2 workstation name unicode string

10.2.3.22 SAM INFO (sam logon/logoff id info structure)

Note: presumably, the return credentials is supposedly for the server to verify that
the credential chain hasn’t been compromised.
CLNT INFO2 client identification/authentication info
VOID* pointer to return credentials.
CRED return credentials - ignored.
UINT16 logon level
UINT16 switch value

switch (switch_value)
case 1:
{

ID_INFO_1 id_info_1;
}

10.2.3.23 GID (group id info)

UINT32 group id
UINT32 user attributes (only used by NT 3.1 and 3.51)

10.2.3.24 DOM REF (domain reference info)

VOID* undocumented buffer pointer.
UINT32 num referenced domains?
VOID* undocumented domain name buffer pointer.
UINT32 32 - max number of entries
UINT32 4 - num referenced domains?
UNIHDR2 domain name unicode string header
UNIHDR2[num ref doms-1] referenced domain unicode string headers
UNISTR domain name unicode string
DOM SID[num ref doms] referenced domain SIDs

10.2.3.25 DOM INFO (domain info, levels 3 and 5 are the same))

UINT8[] ??? padding to get 4-byte alignment with start of SMB header
UINT16 domain name string length * 2
UINT16 domain name string length * 2
VOID* undocumented domain name string buffer pointer
VOID* undocumented domain SID string buffer pointer
UNISTR2 domain name (unicode string)
DOM SID domain SID

10.2.3.26 USER INFO (user logon info)

Note: it would be nice to know what the 16 byte user session key is for.
NTTIME logon time
NTTIME logoff time
NTTIME kickoff time

39

CHAPTER 10. NT DOMAIN RPC’S

NTTIME password last set time
NTTIME password can change time
NTTIME password must change time
UNIHDR username unicode string header
UNIHDR user’s full name unicode string header
UNIHDR logon script unicode string header
UNIHDR profile path unicode string header
UNIHDR home directory unicode string header
UNIHDR home directory drive unicode string header
UINT16 logon count
UINT16 bad password count
UINT32 User ID
UINT32 Group ID
UINT32 num groups
VOID* undocumented buffer pointer to groups.
UINT32 user flags
char[16] user session key
UNIHDR logon server unicode string header
UNIHDR logon domain unicode string header
VOID* undocumented logon domain id pointer
char[40] 40 undocumented padding bytes. future expansion?
UINT32 0 - num other sids?
VOID* NULL - undocumented pointer to other domain SIDs.
UNISTR2 username unicode string
UNISTR2 user’s full name unicode string
UNISTR2 logon script unicode string
UNISTR2 profile path unicode string
UNISTR2 home directory unicode string
UNISTR2 home directory drive unicode string
UINT32 num groups
GID[num groups] group info
UNISTR2 logon server unicode string
UNISTR2 logon domain unicode string
DOM SID domain SID
DOM SID[num sids] other domain SIDs?

10.2.3.27 SH INFO 1 PTR (pointers to level 1 share info strings)

Note: see cifsrap2.txt section5, page 10.
0 for shi1 type indicates a Disk.
1 for shi1 type indicates a Print Queue.
2 for shi1 type indicates a Device.
3 for shi1 type indicates an IPC pipe.
0x8000 0000 (top bit set in shi1 type) indicates a hidden share.

VOID* shi1 netname - pointer to net name
UINT32 shi1 type - type of share. 0 - undocumented.
VOID* shi1 remark - pointer to comment.

10.2.3.28 SH INFO 1 STR (level 1 share info strings)

UNISTR2 shi1 netname - unicode string of net name
UNISTR2 shi1 remark - unicode string of comment.

40

CHAPTER 10. NT DOMAIN RPC’S

10.2.3.29 SHARE INFO 1 CTR

share container with 0 entries:
UINT32 0 - EntriesRead
UINT32 0 - Buffer

share container with > 0 entries:
UINT32 EntriesRead
UINT32 non-zero - Buffer
UINT32 EntriesRead
SH INFO 1 PTR[EntriesRead] share entry pointers
SH INFO 1 STR[EntriesRead] share entry strings
UINT8[] padding to get unicode string 4-byte aligned with start of the SMB header.
UINT32 EntriesRead
UINT32 0 - padding

10.2.3.30 SERVER INFO 101

Note: see cifs6.txt section 6.4 - the fields described therein will be of assistance here.
for example, the type listed below is the same as fServerType, which is described in
6.4.1.
SV TYPE WORKSTATION 0x00000001 All workstations
SV TYPE SERVER 0x00000002 All servers
SV TYPE SQLSERVER 0x00000004 Any server running with SQL server
SV TYPE DOMAIN CTRL 0x00000008 Primary domain controller
SV TYPE DOMAIN BAKCTRL 0x00000010 Backup domain controller
SV TYPE TIME SOURCE 0x00000020 Server running the timesource service
SV TYPE AFP 0x00000040 Apple File Protocol servers
SV TYPE NOVELL 0x00000080 Novell servers
SV TYPE DOMAIN MEMBER 0x00000100 Domain Member
SV TYPE PRINTQ SERVER 0x00000200 Server sharing print queue
SV TYPE DIALIN SERVER 0x00000400 Server running dialin service.
SV TYPE XENIX SERVER 0x00000800 Xenix server
SV TYPE NT 0x00001000 NT server
SV TYPE WFW 0x00002000 Server running Windows for
SV TYPE SERVER NT 0x00008000 Windows NT non DC server
SV TYPE POTENTIAL BROWSER 0x00010000 Server that can run the browser

service
SV TYPE BACKUP BROWSER 0x00020000 Backup browser server
SV TYPE MASTER BROWSER 0x00040000 Master browser server
SV TYPE DOMAIN MASTER 0x00080000 Domain Master Browser server
SV TYPE LOCAL LIST ONLY 0x40000000 Enumerate only entries marked ”lo-

cal”
SV TYPE DOMAIN ENUM 0x80000000 Enumerate Domains. The pszServer and

pszDomain parameters must be NULL.

UINT32 500 - platform id
VOID* pointer to name
UINT32 5 - major version
UINT32 4 - minor version
UINT32 type (SV TYPE ... bit field)
VOID* pointer to comment
UNISTR2 sv101 name - unicode string of server name
UNISTR2 sv 101 comment - unicode string of server comment.

41

CHAPTER 10. NT DOMAIN RPC’S

UINT8[] padding to get unicode string 4-byte aligned with start of the SMB header.

10.3 MSRPC over Transact Named Pipe

For details on the SMB Transact Named Pipe, see cifs6.txt

10.3.1 MSRPC Pipes

The MSRPC is conducted over an SMB Transact Pipe with a name of \PIPE\. You
must first obtain a 16 bit file handle, by sending a SMBopenX with the pipe name
\PIPE\srvsvc for example. You can then perform an SMB Trans, and must carry
out an SMBclose on the file handle once you are finished.

Trans Requests must be sent with two setup UINT16s, no UINT16 params (none
known about), and UINT8 data parameters sufficient to contain the MSRPC header,
and MSRPC data. The first UINT16 setup parameter must be either 0x0026 to
indicate an RPC, or 0x0001 to indicate Set Named Pipe Handle state. The second
UINT16 parameter must be the file handle for the pipe, obtained above.

The Data section for an API Command of 0x0026 (RPC pipe) in the Trans Re-
quest is the RPC Header, followed by the RPC Data. The Data section for an API
Command of 0x0001 (Set Named Pipe Handle state) is two bytes. The only value
seen for these two bytes is 0x00 0x43.

MSRPC Responses are sent as response data inside standard SMB Trans responses,
with the MSRPC Header, MSRPC Data and MSRPC tail.

It is suspected that the Trans Requests will need to be at least 2-byte aligned
(probably 4-byte). This is standard practice for SMBs. It is also independent of
the observed 4-byte alignments with the start of the MSRPC header, including the
4-byte alignment between the MSRPC header and the MSRPC data.

First, an SMBtconX connection is made to the IPC$ share. The connection must
be made using encrypted passwords, not clear-text. Then, an SMBopenX is made
on the pipe. Then, a Set Named Pipe Handle State must be sent, after which the
pipe is ready to accept API commands. Lastly, and SMBclose is sent.

To be resolved:
lkcl/01nov97 there appear to be two additional bytes after the null-terminated

\PIPE\ name for the RPC pipe. Values seen so far are listed below:

initial SMBopenX request: RPC API command 0x26 params:
"\\PIPE\\lsarpc" 0x65 0x63; 0x72 0x70; 0x44 0x65;
"\\PIPE\\srvsvc" 0x73 0x76; 0x4E 0x00; 0x5C 0x43;

10.3.2 Header

[section to be rewritten, following receipt of work by Duncan Stansfield]
Interesting note: if you set packed data representation to 0x0100 0000 then all

4-byte and 2-byte word ordering is turned around!
The start of each of the NTLSA and NETLOGON named pipes begins with: off-

set: 00 Variable type: UINT8 Variable data: 5 - RPC major version
offset: 01 Variable type: UINT8 Variable data: 0 - RPC minor version
offset: 02 Variable type: UINT8 Variable data: 2 - RPC response packet
offset: 03 Variable type: UINT8 Variable data: 3 - (FirstFrag bit-wise or with Last-
Frag)

42

CHAPTER 10. NT DOMAIN RPC’S

offset: 04 Variable type: UINT32 Variable data: 0x1000 0000 - packed data repre-
sentation
offset: 08 Variable type: UINT16 Variable data: fragment length - data size (bytes)
inc header and tail.
offset: 0A Variable type: UINT16 Variable data: 0 - authentication length
offset: 0C Variable type: UINT32 Variable data: call identifier. matches 12th
UINT32 of incoming RPC data.
offset: 10 Variable type: UINT32 Variable data: allocation hint - data size (bytes)
minus header and tail.
offset: 14 Variable type: UINT16 Variable data: 0 - presentation context identifier
offset: 16 Variable type: UINT8 Variable data: 0 - cancel count
offset: 17 Variable type: UINT8 Variable data: in replies: 0 - reserved; in requests:
opnum - see #defines.
offset: 18 Variable type: Variable data: start of data (goes on for allocation hint
bytes)

10.3.2.1 RPC Packet for request, response, bind and bind acknowledgement

UINT8 versionmaj reply same as request (0x05)
UINT8 versionmin reply same as request (0x00)
UINT8 type one of the MSRPC Type enums
UINT8 flags reply same as request (0x00 for Bind, 0x03 for Request)
UINT32 representation reply same as request (0x00000010)
UINT16 fraglength the length of the data section of the SMB trans packet
UINT16 authlength
UINT32 callid call identifier. (e.g. 0x00149594)
* stub USE TvPacket the remainder of the packet depending on the ”type”

10.3.2.2 Interface identification

the interfaces are numbered. as yet I haven’t seen more than one interface used on
the same pipe name srvsvc

abstract (0x4B324FC8, 0x01D31670, 0x475A7812, 0x88E16EBF, 0x00000003)
transfer (0x8A885D04, 0x11C91CEB, 0x0008E89F, 0x6048102B, 0x00000002)

10.3.2.3 RPC Iface RW

UINT8 byte[16] 16 bytes of number
UINT32 version the interface number

10.3.2.4 RPC ReqBind RW

the remainder of the packet after the header if ”type” was Bind in the response
header, ”type” should be BindAck
UINT16 maxtsize maximum transmission fragment size (0x1630)
UINT16 maxrsize max receive fragment size (0x1630)
UINT32 assocgid associated group id (0x0)
UINT32 numelements the number of elements (0x1)
UINT16 contextid presentation context identifier (0x0)
UINT8 numsyntaxes the number of syntaxes (has always been 1?)(0x1)
UINT8[] 4-byte alignment padding, against SMB header

43

CHAPTER 10. NT DOMAIN RPC’S

* abstractint USE RPC Iface num and vers. of interface client is using
* transferint USE RPC Iface num and vers. of interface to use for replies

10.3.2.5 RPC Address RW

UINT16 length length of the string including null terminator
* port USE string the string above in single byte, null terminated form

10.3.2.6 RPC ResBind RW

the response to place after the header in the reply packet
UINT16 maxtsize same as request
UINT16 maxrsize same as request
UINT32 assocgid zero
* secondaddr USE RPC Address the address string, as described earlier
UINT8[] 4-byte alignment padding, against SMB header
UINT8 numresults the number of results (0x01)
UINT8[] 4-byte alignment padding, against SMB header
UINT16 result result (0x00 = accept)
UINT16 reason reason (0x00 = no reason specified)
* transfersyntax USE RPC Iface the transfer syntax from the request

10.3.2.7 RPC ReqNorm RW

the remainder of the packet after the header for every other other request
UINT32 allochint the size of the stub data in bytes
UINT16 prescontext presentation context identifier (0x0)
UINT16 opnum operation number (0x15)
* stub USE TvPacket a packet dependent on the pipe name (probably the inter-

face) and the op number)

10.3.2.8 RPC ResNorm RW

UINT32 allochint # size of the stub data in bytes
UINT16 prescontext # presentation context identifier (same as request)
UINT8 cancelcount # cancel count? (0x0)
UINT8 reserved # 0 - one byte padding
* stub USE TvPacket # the remainder of the reply

10.3.3 Tail

The end of each of the NTLSA and NETLOGON named pipes ends with:
...... end of data
UINT32 return code

10.3.4 RPC Bind / Bind Ack

RPC Binds are the process of associating an RPC pipe (e.g \PIPE\lsarpc) with a
”transfer syntax” (see RPC Iface structure). The purpose for doing this is unknown.

Note: The RPC ResBind SMB Transact request is sent with two uint16 setup pa-
rameters. The first is 0x0026; the second is the file handle returned by the SMBopenX
Transact response.

44

CHAPTER 10. NT DOMAIN RPC’S

Note: The RPC ResBind members maxtsize, maxrsize and assocgid are the same in
the response as the same members in the RPC ReqBind. The RPC ResBind member
transfersyntax is the same in the response as the

Note: The RPC ResBind response member secondaddr contains the name of what
is presumed to be the service behind the RPC pipe. The mapping identified so far is:
initial SMBopenX request: RPC ResBind response:
”\\PIPE\\srvsvc” ”\\PIPE\\ntsvcs”
”\\PIPE\\samr” ”\\PIPE\\lsass”
”\\PIPE\\lsarpc” ”\\PIPE\\lsass”
”\\PIPE\\wkssvc” ”\\PIPE\\wksvcs”
”\\PIPE\\NETLOGON” ”\\PIPE\\NETLOGON”

Note: The RPC Packet fraglength member in both the Bind Request and Bind
Acknowledgment must contain the length of the entire RPC data, including the
RPC Packet header.

Request:
RPC Packet
RPC ReqBind

Response:
RPC Packet
RPC ResBind

10.3.5 NTLSA Transact Named Pipe

The sequence of actions taken on this pipe are:
Establish a connection to the IPC$ share (SMBtconX). use encrypted pass-
words.
Open an RPC Pipe with the name ”\\PIPE\\lsarpc”. Store the file handle.
Using the file handle, send a Set Named Pipe Handle state to 0x4300.
Send an LSA Open Policy request. Store the Policy Handle.
Using the Policy Handle, send LSA Query Info Policy requests, etc.
Using the Policy Handle, send an LSA Close.
Close the IPC$ share.

Defines for this pipe, identifying the query are:
LSA Open Policy: 0x2c
LSA Query Info Policy: 0x07
LSA Enumerate Trusted Domains: 0x0d
LSA Open Secret: 0xff
LSA Lookup SIDs: 0xfe
LSA Lookup Names: 0xfd
LSA Close: 0x00

10.3.6 LSA Open Policy

Note: The policy handle can be anything you like.

10.3.6.1 Request

VOID* buffer pointer
UNISTR2 server name - unicode string starting with two ’\’s
OBJ ATTR object attributes
UINT32 1 - desired access

45

CHAPTER 10. NT DOMAIN RPC’S

10.3.6.2 Response

POL HND LSA policy handle
return 0 - indicates success

10.3.7 LSA Query Info Policy

Note: The info class in response must be the same as that in the request.

10.3.7.1 Request

POL HND LSA policy handle
UINT16 info class (also a policy handle?)

10.3.7.2 Response

VOID* undocumented buffer pointer
UINT16 info class (same as info class in request).

switch (info class)
case 3:
case 5:
{
DOM_INFO domain info, levels 3 and 5 (are the same).
}

return 0 - indicates success

10.3.8 LSA Enumerate Trusted Domains

10.3.8.1 Request

no extra data

10.3.8.2 Response

UINT32 0 - enumeration context
UINT32 0 - entries read
UINT32 0 - trust information
return 0x8000 001a - ”no trusted domains” success code

10.3.9 LSA Open Secret

10.3.9.1 Request

no extra data

10.3.9.2 Response

UINT32 0 - undocumented
UINT32 0 - undocumented
UINT32 0 - undocumented
UINT32 0 - undocumented
UINT32 0 - undocumented

46

CHAPTER 10. NT DOMAIN RPC’S

return 0x0C00 0034 - ”no such secret” success code

10.3.10 LSA Close

10.3.10.1 Request

POL HND policy handle to be closed

10.3.10.2 Response

POL HND 0s - closed policy handle (all zeros)
return 0 - indicates success

10.3.11 LSA Lookup SIDS

Note: num entries in response must be same as num entries in request.

10.3.11.1 Request

POL HND LSA policy handle
UINT32 num entries
VOID* undocumented domain SID buffer pointer
VOID* undocumented domain name buffer pointer
VOID*[num entries undocumented domain SID pointers to be looked up.] DOM SID[num entries]

domain SIDs to be looked up.
char[16] completely undocumented 16 bytes.

10.3.11.2 Response

DOM REF domain reference response
UINT32 num entries (listed above)
VOID* undocumented buffer pointer
UINT32 num entries (listed above)
DOM SID2[num entries] domain SIDs (from Request, listed above).
UINT32 num entries (listed above)

return 0 - indicates success

10.3.12 LSA Lookup Names

Note: num entries in response must be same as num entries in request.

10.3.12.1 Request

POL HND LSA policy handle
UINT32 num entries
UINT32 num entries
VOID* undocumented domain SID buffer pointer
VOID* undocumented domain name buffer pointer
NAME[num entries] names to be looked up.
char[] undocumented bytes - falsely translated SID structure?

47

CHAPTER 10. NT DOMAIN RPC’S

10.3.12.2 Response

DOM REF domain reference response
UINT32 num entries (listed above)
VOID* undocumented buffer pointer
UINT32 num entries (listed above)
DOM RID[num entries] domain SIDs (from Request, listed above).
UINT32 num entries (listed above)

return 0 - indicates success

10.4 NETLOGON rpc Transact Named Pipe

The sequence of actions taken on this pipe are:
tablish a connection to the IPC$ share (SMBtconX). use encrypted passwords.
en an RPC Pipe with the name ”\\PIPE\\NETLOGON”. Store the file han-
dle.
ing the file handle, send a Set Named Pipe Handle state to 0x4300.
eate Client Challenge. Send LSA Request Challenge. Store Server Challenge.
lculate Session Key. Send an LSA Auth 2 Challenge. Store Auth2 Challenge.
lc/Verify Client Creds. Send LSA Srv PW Set. Calc/Verify Server Creds.
lc/Verify Client Creds. Send LSA SAM Logon . Calc/Verify Server Creds.
lc/Verify Client Creds. Send LSA SAM Logoff. Calc/Verify Server Creds.
ose the IPC$ share.

Defines for this pipe, identifying the query are
LSA Request Challenge: 0x04
LSA Server Password Set: 0x06
LSA SAM Logon: 0x02
LSA SAM Logoff: 0x03
LSA Auth 2: 0x0f
LSA Logon Control: 0x0e

10.4.1 LSA Request Challenge

Note: logon server name starts with two ’\’ characters and is upper case.
Note: logon client is the machine, not the user.
Note: the initial LanManager password hash, against which the challenge is is-

sued, is the machine name itself (lower case). there will becalls issued (LSA Server
Password Set) which will change this, later. refusing these calls allows you to always
deal with the same password (i.e the LM# of the machine name in lower case).

10.4.1.1 Request

VOID* undocumented buffer pointer
UNISTR2 logon server unicode string
UNISTR2 logon client unicode string
char[8] client challenge

10.4.1.2 Response

char[8] server challenge
return 0 - indicates success

48

CHAPTER 10. NT DOMAIN RPC’S

10.4.2 LSA Authenticate 2

Note: in between request and response, calculate the client credentials, and check
them against the client-calculated credentials (this process uses the previously received
client credentials).

Note: neg flags in the response is the same as that in the request.
Note: you must take a copy of the client-calculated credentials received here, be-

cause they will be used in subsequent authentication packets.

10.4.2.1 Request

LOG INFO client identification info
char[8] client-calculated credentials
UINT8[] padding to 4-byte align with start of SMB header.
UINT32 neg flags - negotiated flags (usual value is 0x0000 01ff)

10.4.2.2 Response

char[8] server credentials.
UINT32 neg flags - same as neg flags in request.

return 0 - indicates success. failure value unknown.

10.4.3 LSA Server Password Set

Note: the new password is suspected to be a DES encryption using the old password
to generate the key.

Note: in between request and response, calculate the client credentials, and check
them against the client-calculated credentials (this process uses the previously received
client credentials).

Note: the server credentials are constructed from the client-calculated credentials
and the client time + 1 second.

Note: you must take a copy of the client-calculated credentials received here, be-
cause they will be used in subsequent authentication packets.

10.4.3.1 Request

CLNT INFO client identification/authentication info
char[] new password - undocumented.

10.4.3.2 Response

CREDS server credentials. server time stamp appears to be ignored.
return 0 - indicates success; 0xC000 006a indicates failure

10.4.4 LSA SAM Logon

Note: valid user is True iff the username and password hash are valid for the re-
quested domain.

10.4.4.1 Request

SAM INFO sam id structure

49

CHAPTER 10. NT DOMAIN RPC’S

10.4.4.2 Response

VOID* undocumented buffer pointer
CREDS server credentials. server time stamp appears to be ignored.

if (valid_user)
{

UINT16 3 - switch value indicating USER_INFO structure.
VOID* non-zero - pointer to USER_INFO structure
USER_INFO user logon information

UINT32 1 - Authoritative response; 0 - Non-Auth?

return 0 - indicates success
}
else
{

UINT16 0 - switch value. value to indicate no user presumed.
VOID* 0x0000 0000 - indicates no USER_INFO structure.

UINT32 1 - Authoritative response; 0 - Non-Auth?

return 0xC000 0064 - NT_STATUS_NO_SUCH_USER.
}

10.4.5 LSA SAM Logoff

Note: presumably, the SAM INFO structure is validated, and a (currently undocu-
mented) error code returned if the Logoff is invalid.

10.4.5.1 Request

SAM INFO sam id structure

10.4.5.2 Response

VOID* undocumented buffer pointer
CREDS server credentials. server time stamp appears to be ignored.

return 0 - indicates success. undocumented failure indication.

10.5 \\MAILSLOT\NET\NTLOGON

Note: mailslots will contain a response mailslot, to which the response should be sent.
the target NetBIOS name is REQUEST NAME<20>, where REQUEST NAME is
the name of the machine that sent the request.

10.5.1 Query for PDC

Note: NTversion, LMNTtoken, LM20token in response are the same as those given
in the request.

50

CHAPTER 10. NT DOMAIN RPC’S

10.5.1.1 Request

UINT16 0x0007 - Query for PDC
STR machine name
STR response mailslot
UINT8[] padding to 2-byte align with start of mailslot.
UNISTR machine name
UINT32 NTversion
UINT16 LMNTtoken
UINT16 LM20token

10.5.1.2 Response

UINT16 0x000A - Respose to Query for PDC
STR machine name (in uppercase)
UINT8[] padding to 2-byte align with start of mailslot.
UNISTR machine name
UNISTR domain name
UINT32 NTversion (same as received in request)
UINT16 LMNTtoken (same as received in request)
UINT16 LM20token (same as received in request)

10.5.2 SAM Logon

Note: machine name in response is preceded by two ’\’ characters.
Note: NTversion, LMNTtoken, LM20token in response are the same as those given

in the request.
Note: user name in the response is presumably the same as that in the request.

10.5.2.1 Request

UINT16 0x0012 - SAM Logon
UINT16 request count
UNISTR machine name
UNISTR user name
STR response mailslot
UINT32 alloweable account
UINT32 domain SID size
char[sid size] domain SID, of sid size bytes.
UINT8[] ???? padding to 4? 2? -byte align with start of mailslot.
UINT32 NTversion
UINT16 LMNTtoken
UINT16 LM20token

10.5.2.2 Response

UINT16 0x0013 - Response to SAM Logon
UNISTR machine name
UNISTR user name - workstation trust account
UNISTR domain name
UINT32 NTversion
UINT16 LMNTtoken
UINT16 LM20token

51

CHAPTER 10. NT DOMAIN RPC’S

10.6 SRVSVC Transact Named Pipe

Defines for this pipe, identifying the query are:
Net Share Enum 0x0f
Net Server Get Info 0x15

10.6.1 Net Share Enum

Note: share level and switch value in the response are presumably the same as those
in the request.

Note: cifsrap2.txt (section 5) may be of limited assistance here.

10.6.1.1 Request

VOID* pointer (to server name?)
UNISTR2 server name
UINT8[] padding to get unicode string 4-byte aligned with the start of the SMB

header.
UINT32 share level
UINT32 switch value
VOID* pointer to SHARE INFO 1 CTR
SHARE INFO 1 CTR share info with 0 entries
UINT32 preferred maximum length (0xffff ffff)

10.6.1.2 Response

UINT32 share level
UINT32 switch value
VOID* pointer to SHARE INFO 1 CTR
SHARE INFO 1 CTR share info (only added if share info ptr is non-zero)

return 0 - indicates success

10.6.2 Net Server Get Info

Note: level is the same value as in the request.

10.6.2.1 Request

UNISTR2 server name
UINT32 switch level

10.6.2.2 Response

UINT32 switch level
VOID* pointer to SERVER INFO 101
SERVER INFO 101 server info (only added if server info ptr is non-zero)

return 0 - indicates success

52

CHAPTER 10. NT DOMAIN RPC’S

10.7 Cryptographic side of NT Domain Authentication

10.7.1 Definitions

Add(A1,A2) Intel byte ordered addition of corresponding 4 byte words in arrays
A1 and A2

E(K,D) DES ECB encryption of 8 byte data D using 7 byte key K
lmowf() Lan man hash
ntowf() NT hash
PW md4(machine password) == md4(lsadump $machine.acc) == pwdump(machine$)

(initially) == md4(lmowf(unicode(machine)))
ARC4(K,Lk,D,Ld) ARC4 encryption of data D of length Ld with key K of length

Lk
v[m..n(,l)] subset of v from bytes m to n, optionally padded with zeroes to length l
Cred(K,D) E(K[7..7,7],E(K[0..6],D)) computes a credential
Time() 4 byte current time
Cc,Cs 8 byte client and server challenges Rc,Rs: 8 byte client and server credentials

10.7.2 Protocol

C->S ReqChal,Cc
S->C Cs

C & S compute session key Ks = E(PW[9..15],E(PW[0..6],Add(Cc,Cs)))

C: Rc = Cred(Ks,Cc)
C->S Authenticate,Rc
S: Rs = Cred(Ks,Cs), assert(Rc == Cred(Ks,Cc))
S->C Rs
C: assert(Rs == Cred(Ks,Cs))

On joining the domain the client will optionally attempt to change its password
and the domain controller may refuse to update it depending on registry settings.
This will also occur weekly afterwards.

C: Tc = Time(), Rc’ = Cred(Ks,Rc+Tc)
C->S ServerPasswordSet,Rc’,Tc,arc4(Ks[0..7,16],lmowf(randompassword())
C: Rc = Cred(Ks,Rc+Tc+1)
S: assert(Rc’ == Cred(Ks,Rc+Tc)), Ts = Time()
S: Rs’ = Cred(Ks,Rs+Tc+1)
S->C Rs’,Ts
C: assert(Rs’ == Cred(Ks,Rs+Tc+1))
S: Rs = Rs’

User: U with password P wishes to login to the domain (incidental data such as
workstation and domain omitted)

C: Tc = Time(), Rc’ = Cred(Ks,Rc+Tc)
C->S NetLogonSamLogon,Rc’,Tc,U,arc4(Ks[0..7,16],16,ntowf(P),16), arc4(Ks[0..7,16],16,lmowf(P),16)

53

CHAPTER 10. NT DOMAIN RPC’S

S: assert(Rc’ == Cred(Ks,Rc+Tc)) assert(passwords match those in SAM)
S: Ts = Time()

S->C Cred(Ks,Cred(Ks,Rc+Tc+1)),userinfo(logon script,UID,SIDs,etc)
C: assert(Rs == Cred(Ks,Cred(Rc+Tc+1))
C: Rc = Cred(Ks,Rc+Tc+1)

10.7.3 Comments

On first joining the domain the session key could be computed by anyone listening in
on the network as the machine password has a well known value. Until the machine
is rebooted it will use this session key to encrypt NT and LM one way functions of
passwords which are password equivalents. Any user who logs in before the machine
has been rebooted a second time will have their password equivalent exposed. Of
course the new machine password is exposed at this time anyway.

None of the returned user info such as logon script, profile path and SIDs *appear*
to be protected by anything other than the TCP checksum.

The server time stamps appear to be ignored.
The client sends a ReturnAuthenticator in the SamLogon request which I can’t

find a use for. However its time is used as the timestamp returned by the server.
The password OWFs should NOT be sent over the network reversibly encrypted.

They should be sent using ARC4(Ks,md4(owf)) with the server computing the same
function using the owf values in the SAM.

10.8 SIDs and RIDs

SIDs and RIDs are well documented elsewhere.
A SID is an NT Security ID (see DOM SID structure). They are of the form:

revision-NN-SubAuth1-SubAuth2-SubAuth3...
revision-0xNNNNNNNNNNNN-SubAuth1-SubAuth2-SubAuth3...

currently, the SID revision is 1. The Sub-Authorities are known as Relative IDs
(RIDs).

10.8.1 Well-known SIDs

10.8.1.1 Universal well-known SIDs

Null SID S-1-0-0
World S-1-1-0
Local S-1-2-0
Creator Owner ID S-1-3-0
Creator Group ID S-1-3-1
Creator Owner Server ID S-1-3-2
Creator Group Server ID S-1-3-3
(Non-unique IDs) S-1-4

10.8.1.2 NT well-known SIDs

NT Authority S-1-5
Dialup S-1-5-1

54

CHAPTER 10. NT DOMAIN RPC’S

Network S-1-5-2
Batch S-1-5-3
Interactive S-1-5-4
Service S-1-5-6
AnonymousLogon(aka null logon session) S-1-5-7
Proxy S-1-5-8
ServerLogon(aka domain controller account) S-1-5-8
(Logon IDs) S-1-5-5-X-Y
(NT non-unique IDs) S-1-5-0x15-...
(Built-in domain) s-1-5-0x20

10.8.2 Well-known RIDS

A RID is a sub-authority value, as part of either a SID, or in the case of Group RIDs,
part of the DOM GID structure, in the USER INFO 1 structure, in the LSA SAM
Logon response.

10.8.2.1 Well-known RID users

Groupname: DOMAIN USER RID ADMIN ????: 0x0000 RID: 01F4
Groupname: DOMAIN USER RID GUEST ????: 0x0000 RID: 01F5

10.8.2.2 Well-known RID groups

Groupname: DOMAIN GROUP RID ADMINS ????: 0x0000 RID: 0200
Groupname: DOMAIN GROUP RID USERS ????: 0x0000 RID: 0201
Groupname: DOMAIN GROUP RID GUESTS ????: 0x0000 RID: 0202

10.8.2.3 Well-known RID aliases

Groupname: DOMAIN ALIAS RID ADMINS ????: 0x0000 RID: 0220
Groupname: DOMAIN ALIAS RID USERS ????: 0x0000 RID: 0221
Groupname: DOMAIN ALIAS RID GUESTS ????: 0x0000 RID: 0222
Groupname: DOMAIN ALIAS RID POWER USERS ????: 0x0000 RID: 0223
Groupname: DOMAIN ALIAS RID ACCOUNT OPS ????: 0x0000 RID: 0224
Groupname: DOMAIN ALIAS RID SYSTEM OPS ????: 0x0000 RID: 0225
Groupname: DOMAIN ALIAS RID PRINT OPS ????: 0x0000 RID: 0226
Groupname: DOMAIN ALIAS RID BACKUP OPS ????: 0x0000 RID: 0227
Groupname: DOMAIN ALIAS RID REPLICATOR ????: 0x0000 RID: 0228

55

11 Samba Printing Internals

11.1 Abstract

The purpose of this document is to provide some insight into Samba’s printing func-
tionality and also to describe the semantics of certain features of Windows client
printing.

11.2 Printing Interface to Various Back ends

Samba uses a table of function pointers to seven functions. The function prototypes
are defined in the printif structure declared in printing.h.

• retrieve the contents of a print queue
• pause the print queue
• resume a paused print queue
• delete a job from the queue
• pause a job in the print queue
• result a paused print job in the queue
• submit a job to the print queue

Currently there are only two printing back end implementations defined.
• a generic set of functions for working with standard UNIX printing subsystems
• a set of CUPS specific functions (this is only enabled if the CUPS libraries

were located at compile time).

11.3 Print Queue TDB’s

Samba provides periodic caching of the output from the ”lpq command” for perfor-
mance reasons. This cache time is configurable in seconds. Obviously the longer the
cache time the less often smbd will be required to exec a copy of lpq. However, the
accuracy of the print queue contents displayed to clients will be diminished as well.

The list of currently opened print queue TDB’s can be found be examining the
list of tdb print db structures (see print db head in printing.c). A queue TDB is
opened using the wrapper function printing.c:get print db byname(). The function
ensures that smbd does not open more than MAX PRINT DBS OPEN in an effort
to prevent a large print server from exhausting all available file descriptors. If the
number of open queue TDB’s exceeds the MAX PRINT DBS OPEN limit, smbd
falls back to a most recently used algorithm for maintaining a list of open TDB’s.

There are two ways in which a a print job can be entered into a print queue’s
TDB. The first is to submit the job from a Windows client which will insert the
job information directly into the TDB. The second method is to have the print job
picked up by executing the ”lpq command”.

/* included from printing.h */
struct printjob {

pid_t pid; /* which process launched the job */
int sysjob; /* the system (lp) job number */

56

CHAPTER 11. SAMBA PRINTING INTERNALS

int fd; /* file descriptor of open file if open */
time_t starttime; /* when the job started spooling */
int status; /* the status of this job */
size_t size; /* the size of the job so far */
int page_count; /* then number of pages so far */
BOOL spooled; /* has it been sent to the spooler yet? */
BOOL smbjob; /* set if the job is a SMB job */
fstring filename; /* the filename used to spool the file */
fstring jobname; /* the job name given to us by the client */
fstring user; /* the user who started the job */
fstring queuename; /* service number of printer for this job */
NT_DEVICEMODE *nt_devmode;

};

The current manifestation of the printjob structure contains a field for the UNIX
job id returned from the ”lpq command” and a Windows job ID (32-bit bounded
by PRINT MAX JOBID). When a print job is returned by the ”lpq command”
that does not match an existing job in the queue’s TDB, a 32-bit job ID above
the <*vance doesn’t know what word is missing here*> is generating by adding
UNIX JOB START to the id reported by lpq.

In order to match a 32-bit Windows jobid onto a 16-bit lanman print job id, smbd
uses an in memory TDB to match the former to a number appropriate for old lanman
clients.

When updating a print queue, smbd will perform the following steps (refer to
print.c:print queue update()):

1. Check to see if another smbd is currently in the process of updating the queue
contents by checking the pid stored in LOCK/printer name. If so, then do not
update the TDB.

2. Lock the mutex entry in the TDB and store our own pid. Check that this
succeeded, else fail.

3. Store the updated time stamp for the new cache listing
4. Retrieve the queue listing via ”lpq command”
5.

foreach job in the queue
{
if the job is a UNIX job, create a new entry;
if the job has a Windows based jobid, then
{

Lookup the record by the jobid;
if the lookup failed, then

treat it as a UNIX job;
else

update the job status only
}

}

6. Delete any jobs in the TDB that are not in the in the lpq listing
7. Store the print queue status in the TDB
8. update the cache time stamp again
Note that it is the contents of this TDB that is returned to Windows clients and

not the actual listing from the ”lpq command”.
The NT DEVICEMODE stored as part of the printjob structure is used to store

a pointer to a non-default DeviceMode associated with the print job. The pointer

57

CHAPTER 11. SAMBA PRINTING INTERNALS

will be non-null when the client included a Device Mode in the OpenPrinterEx() call
and subsequently submitted a job for printing on that same handle. If the client did
not include a Device Mode in the OpenPrinterEx() request, the nt devmode field is
NULL and the job has the printer’s device mode associated with it by default.

Only non-default Device Mode are stored with print jobs in the print queue TDB.
Otherwise, the Device Mode is obtained from the printer object when the client
issues a GetJob(level == 2) request.

11.4 ChangeID and Client Caching of Printer Information

[To be filled in later]

11.5 Windows NT/2K Printer Change Notify

When working with Windows NT+ clients, it is possible for a print server to use
RPC to send asynchronous change notification events to clients for certain printer
and print job attributes. This can be useful when the client needs to know that a new
job has been added to the queue for a given printer or that the driver for a printer
has been changed. Note that this is done entirely orthogonal to cache updates based
on a new ChangeID for a printer object.

The basic set of RPC’s used to implement change notification are
• RemoteFindFirstPrinterChangeNotifyEx (RFFPCN)
• RemoteFindNextPrinterChangeNotifyEx (RFNPCN)
• FindClosePrinterChangeNotify(FCPCN)
• ReplyOpenPrinter
• ReplyClosePrinter
• RouteRefreshPrinterChangeNotify (RRPCN)

One additional RPC is available to a server, but is never used by the Windows
spooler service:

• RouteReplyPrinter()
The opnum for all of these RPC’s are defined in include/rpc spoolss.h
Windows NT print servers use a bizarre method of sending print notification event

to clients. The process of registering a new change notification handle is as follows.
The ’C’ is for client and the ’S’ is for server. All error conditions have been eliminated.

C: Obtain handle to printer or to the printer
server via the standard OpenPrinterEx() call.

S: Respond with a valid handle to object

C: Send a RFFPCN request with the previously obtained
handle with either (a) set of flags for change events
to monitor, or (b) a PRINTER_NOTIFY_OPTIONS structure
containing the event information to monitor. The windows
spooler has only been observed to use (b).

S: The <* another missing word*> opens a new TCP session to the client (thus requiring
all print clients to be CIFS servers as well) and sends
a ReplyOpenPrinter() request to the client.

C: The client responds with a printer handle that can be used to
send event notification messages.

S: The server replies success to the RFFPCN request.

58

CHAPTER 11. SAMBA PRINTING INTERNALS

C: The windows spooler follows the RFFPCN with a RFNPCN
request to fetch the current values of all monitored
attributes.

S: The server replies with an array SPOOL_NOTIFY_INFO_DATA
structures (contained in a SPOOL_NOTIFY_INFO structure).

C: If the change notification handle is ever released by the
client via a FCPCN request, the server sends a ReplyClosePrinter()
request back to the client first. However a request of this
nature from the client is often an indication that the previous
notification event was not marshalled correctly by the server
or a piece of data was wrong.

S: The server closes the internal change notification handle
(POLICY_HND) and does not send any further change notification
events to the client for that printer or job.

The current list of notification events supported by Samba can be found by exam-
ining the internal tables in srv spoolss nt.c

• printer notify table[]
• job notify table[]

When an event occurs that could be monitored, smbd sends a message to itself
about the change. The list of events to be transmitted are queued by the smbd
process sending the message to prevent an overload of TDB usage and the internal
message is sent during smbd’s idle loop (refer to printing/notify.c and the functions
send spoolss notify2 msg() and print notify send messages()).

The decision of whether or not the change is to be sent to connected clients is made
by the routine which actually sends the notification. (refer to srv spoolss nt.c:recieve notify2 message()
).

Because it possible to receive a listing of multiple changes for multiple printers,
the notification events must be split into categories by the printer name. This makes
it possible to group multiple change events to be sent in a single RPC according to
the printer handle obtained via a ReplyOpenPrinter().

The actual change notification is performed using the RRPCN request RPC. This
packet contains

• the printer handle registered with the client’s spooler on which the change
occurred

• The change low value which was sent as part of the last RFNPCN request from
the client

• The SPOOL NOTIFY INFO container with the event information
A SPOOL NOTIFY INFO contains:
• the version and flags field are predefined and should not be changed
• The count field is the number of entries in the SPOOL NOTIFY INFO DATA

array
The SPOOL NOTIFY INFO DATA entries contain:
• The type defines whether or not this event is for a printer or a print job
• The field is the flag identifying the event
• the notify data union contains the new valuie of the attribute
• The enc type defines the size of the structure for marshalling and unmarshalling
• (a) the id must be 0 for a printer event on a printer handle. (b) the id must be

the job id for an event on a printer job (c) the id must be the matching number
of the printer index used in the response packet to the RFNPCN when using

59

CHAPTER 11. SAMBA PRINTING INTERNALS

a print server handle for notification. Samba currently uses the snum of the
printer for this which can break if the list of services has been modified since
the notification handle was registered.

• The size is either (a) the string length in UNICODE for strings, (b) the size in
bytes of the security descriptor, or (c) 0 for data values.

60

12 Samba WINS Internals

12.1 WINS Failover

The current Samba codebase possesses the capability to use groups of WINS servers
that share a common namespace for NetBIOS name registration and resolution. The
formal parameter syntax is

WINS_SERVER_PARAM = SERVER [SEPARATOR SERVER_LIST]
WINS_SERVER_PARAM = "wins server"
SERVER = ADDR[:TAG]
ADDR = ip_addr | fqdn
TAG = string
SEPARATOR = comma | \s+
SERVER_LIST = SERVER [SEPARATOR SERVER_LIST]

A simple example of a valid wins server setting is

[global]
wins server = 192.168.1.2 192.168.1.3

In the event that no TAG is defined in for a SERVER in the list, smbd assigns a
default TAG of ”*”. A TAG is used to group servers of a shared NetBIOS namespace
together. Upon startup, nmbd will attempt to register the netbios name value with
one server in each tagged group.

An example using tags to group WINS servers together is show here. Note that
the use of interface names in the tags is only by convention and is not a technical
requirement.

[global]
wins server = 192.168.1.2:eth0 192.168.1.3:eth0 192.168.2.2:eth1

Using this configuration, nmbd would attempt to register the server’s NetBIOS
name with one WINS server in each group. Because the ”eth0” group has two servers,
the second server would only be used when a registration (or resolution) request to
the first server in that group timed out.

NetBIOS name resolution follows a similar pattern as name registration. When
resolving a NetBIOS name via WINS, smbd and other Samba programs will attempt
to query a single WINS server in a tagged group until either a positive response
is obtained at least once or until a server from every tagged group has responded
negatively to the name query request. If a timeout occurs when querying a specific
WINS server, that server is marked as down to prevent further timeouts and the
next server in the WINS group is contacted. Once marked as dead, Samba will not
attempt to contact that server for name registration/resolution queries for a period
of 10 minutes.

61

13 The Upcoming SAM System

13.1 Security in the ’new SAM’

One of the biggest problems with passdb is it’s implementation of ’security’. Access
control is on a ’are you root at the moment’ basis, and it has no concept of NT
ACLs. Things like ldapsam had to add ’magic’ ’are you root’ checks.

We took this very seriously when we started work, and the new structure is
designed with this in mind, from the ground up. Each call to the SAM has a
NT TOKEN and (if relevant) an ’access desired’. This is either provided as a pa-
rameter, or implicitly supplied by the object being accessed.

For example, when you call

NTSTATUS sam_get_account_by_name(const SAM_CONTEXT *context, const
NT_USER_TOKEN *access_token, uint32 access_desired, const char *domain,
const char *name, SAM_ACCOUNT_HANDLE **account)

The context can be NULL (and is used to allow import/export by setting up 2
contexts, and allowing calls on both simultaneously)

The access token *must* be specified. Normally the user’s token out of cur-
rent user, this can also be a global ’system’ context.

The access desired is as per the ACL, for passing to the seaccess stuff.
The domain/username are standard. Even if we only have one domain, keeping

this ensures that we don’t get ’unqualified’ usernames (same problem as we had with
unqualified SIDs).

We return a ’handle’. This is opaque to the rest of Samba, but is operated on by
get/set routines, all of which return NTSTATUS.

The access checking is done by the SAM module. The reason it is not done
’above’ the interface is to ensure a ’choke point’. I put a lot of effort into the auth
subsystem to ensure we never ’accidentally’ forgot to check for null passwords, missed
a restriction etc. I intend the SAM to be written with the same caution.

The reason the access checking is not handled by the interface itself is due to the
different implementations it make take on. For example, on ADS, you cannot set a
password over a non-SSL connection. Other backends may have similar requirements
- we need to leave this policy up to the modules. They will naturally have access to
’helper’ procedures and good examples to avoid mishaps.

(Furthermore, some backends my actually chose to push the whole ACL issue to
the remote server, and - assuming ldap for this example - bind as the user directly)

Each returned handle has an internal ’access permitted’, which allows the ’get’
and ’set’ routines to return ’ACCESS DENIED’ for things that were not able to be
retrieved from the backend. This removes the need to specify the NT TOKEN on
every operation, and allows for ’object not present’ to be easily distinguished from
’access denied’.

When you ’set’ an object (calling sam update account) the internal details are
again used. Each change that has been made to the object has been flagged, so as to
avoid race conditions (on unmodified components) and to avoid violating any extra
ACL requirements on the actual data store (like the LDAP server).

62

CHAPTER 13. THE UPCOMING SAM SYSTEM

Finally, we have generic get sec desc() and set sec desc() routines to allow external
ACL manipulation. These do lookups based on SID.

13.2 Standalone from UNIX

One of the primary tenants of the ’new SAM’ is that it would not attempt to deal
with ’what unix id for that’. This would be left to the ’SMS’ (Sid Mapping System’)
or SID farm, and probably administered via winbind. We have had constructive
discussion on how ’basic’ unix accounts like ’root’ would be handled, and we think
this can work. Accounts not preexisting in unix would be served up via winbind.

This is an *optional* part, and my preferred end-game. We have a fare way to go
before things like winbind up to it however.

13.3 Handles and Races in the new SAM

One of the things that the ’new SAM’ work has tried to face is both compatibility
with existing code, and a closer alignment to the SAMR interface. I consider SAMR
to be a ’primary customer’ to the this work, because if we get alignment with that
wrong, things get more, rather than less complex. Also, most other parts of Samba
are much more flexible with what they can allow.

In any case, that was a decision taken as to how the general design would progress.
BTW, my understanding of SAMR may be completely flawed.

One of the most race-prone areas of the new code is the conflicting update problem.
We have taken two approaches:

• ’Not conflicting’ conflicts. Due to the way usrmgr operates, it will open a user,
display all the properties and *save* them all, even if you don’t change any.
For this, see what I’ve done in rpc server/srv samr util.c. I intend to take this
one step further, and operate on the ’handle’ that the values were read from.
This should mean that we only update things that have *really* changed.

• ’conflicting’ updates: Currently we don’t deal with this (in passdb or the new
sam stuff), but the design is sufficiently flexible to ’deny’ a second update. I
don’t foresee locking records however.

13.4 Layers

13.4.1 Application

This is where smbd, samtest and whatever end-user replacement we have for pdbedit
sits. They use only the SAM interface, and do not get ’special knowledge’ of what
is below them.

13.4.2 SAM Interface

This level ’owns’ the various handle structures, the get/set routines on those struc-
tures and provides the public interface. The application layer may initialize a ’con-
text’ to be passed to all interface routines, else a default, self-initialising context will
be supplied. This layser finds the appropriate backend module for the task, and
tries very hard not to need to much ’knowledge’. It should just provide the required
abstraction to the modules below, and arrange for their initial loading.

We could possibly add ACL checking at this layer, to avoid discrepancies in im-
plementation modules.

63

CHAPTER 13. THE UPCOMING SAM SYSTEM

13.4.3 SAM Modules

These do not communicate with the application directly, only by setting values in the
handles, and receiving requests from the interface. These modules are responsible for
translating values from the handle’s .private into (say) an LDAP modification list.
The module is expected to ’know’ things like it’s own domain SID, domain name,
and any other state attached to the SAM. Simpler modules may call back to some
helper routine.

13.5 SAM Modules

13.5.1 Special Module: sam passdb

In order for there to be a smooth transition, kai is writing a module that reads
existing passdb backends, and translates them into SAM replies. (Also pulling data
from the account policy DB etc). We also intend to write a module that does the
reverse - gives the SAM a passdb interface.

13.5.2 sam ads

This is the first of the SAM modules to be committed to the tree - mainly because I
needed to coordinate work with metze (who authored most of it). This module aims
to use Samba’s libads code to provide an Active Directory LDAP client, suitable for
use on a mixed-mode DC. While it is currently being tested against Win2k servers
(with a password in the smb.conf file) it is expected to eventually use a (possibly
modified) OpenLDAP server. We hope that this will assist in the construction of an
Samba AD DC.

We also intend to construct a Samba 2.2/3.0 compatible ldap module, again using
libads code.

13.6 Memory Management

The ’new SAM’ development effort also concerned itself with getting a sane imple-
mentation of memory management. It was decided that we would be (as much as
possible) talloc based, using an ’internal talloc context’ on many objects. That is,
the creation of an object would initiate it’s own internal talloc context, and this
would be used for all operations on that object. Much of this is already implemented
in passdb. Also, like passdb, it will be possible to specify that some object actually
be created on a specified context.

Memory management is important here because the APIs in the ’new SAM’ do not
use ’pdb init()’ or an equivalent. They always allocate new objects. Enumeration’s
are slightly different, and occur on a supplied context that ’owns’ the entire list,
rather than per-element. (the enumeration functions return an array of all elements
- not full handles just basic (and public) info) Likewise for things that fill in a char
**.

For example:

NTSTATUS sam_lookup_sid(const SAM_CONTEXT *context, const NT_USER_TOKEN
*access_token, TALLOC_CTX *mem_ctx, const DOM_SID *sid, char **name,
uint32 *type)

Takes a context to allocate the ’name’ on, while:

64

CHAPTER 13. THE UPCOMING SAM SYSTEM

NTSTATUS sam_get_account_by_sid(const SAM_CONTEXT *context, const
NT_USER_TOKEN *access_token, uint32 access_desired, const DOM_SID
*accountsid, SAM_ACCOUNT_HANDLE **account)

Allocates a handle and stores the allocation context on that handle.
I think that the following:

NTSTATUS sam_enum_accounts(const SAM_CONTEXT *context, const
NT_USER_TOKEN *access_token, const DOM_SID *domainsid, uint16 acct_ctrl,
int32 *account_count, SAM_ACCOUNT_ENUM **accounts)

13.7 Testing

Testing is vital in any piece of software, and Samba is certainly no exception. In
designing this new subsystem, we have taken care to ensure it is easily tested, inde-
pendent of outside protocols.

To this end, Jelmer has constructed ’samtest’.
This utility (see torture/samtest.c) is structured like rpcclient, but instead operates

on the SAM subsystem. It creates a ’custom’ SAM context, that may be distinct
from the default values used by the rest of the system, and can load a separate
configuration file.

A small number of commands are currently implemented, but these have already
proved vital in testing. I expect SAM module authors will find it particularly valu-
able.

Example useage:
$ bin/samtest

> context ads:ldap://192.168.1.96

(this loads a new context, using the new ADS module. The parameter is the ’location’
of the ldap server)

> lookup_name DOMAIN abartlet

(returns a sid).
Because the ’new SAM’ is NT ACL based, there will be a command to specify an

arbitrary NT ACL, but for now it uses ’system’ by default.

65

14 LanMan and NT Password Encryption

14.1 Introduction

With the development of LanManager and Windows NT compatible password en-
cryption for Samba, it is now able to validate user connections in exactly the same
way as a LanManager or Windows NT server.

This document describes how the SMB password encryption algorithm works and
what issues there are in choosing whether you want to use it. You should read it
carefully, especially the part about security and the ”PROS and CONS” section.

14.2 How does it work?

LanManager encryption is somewhat similar to UNIX password encryption. The
server uses a file containing a hashed value of a user’s password. This is created
by taking the user’s plaintext password, capitalising it, and either truncating to 14
bytes or padding to 14 bytes with null bytes. This 14 byte value is used as two 56
bit DES keys to encrypt a ’magic’ eight byte value, forming a 16 byte value which is
stored by the server and client. Let this value be known as the ”hashed password”.

Windows NT encryption is a higher quality mechanism, consisting of doing an
MD4 hash on a Unicode version of the user’s password. This also produces a 16 byte
hash value that is non-reversible.

When a client (LanManager, Windows for WorkGroups, Windows 95 or Windows
NT) wishes to mount a Samba drive (or use a Samba resource), it first requests a
connection and negotiates the protocol that the client and server will use. In the
reply to this request the Samba server generates and appends an 8 byte, random
value - this is stored in the Samba server after the reply is sent and is known as the
”challenge”. The challenge is different for every client connection.

The client then uses the hashed password (16 byte values described above), ap-
pended with 5 null bytes, as three 56 bit DES keys, each of which is used to encrypt
the challenge 8 byte value, forming a 24 byte value known as the ”response”.

In the SMB call SMBsessionsetupX (when user level security is selected) or the call
SMBtconX (when share level security is selected), the 24 byte response is returned by
the client to the Samba server. For Windows NT protocol levels the above calculation
is done on both hashes of the user’s password and both responses are returned in
the SMB call, giving two 24 byte values.

The Samba server then reproduces the above calculation, using its own stored
value of the 16 byte hashed password (read from the smbpasswd file - described
later) and the challenge value that it kept from the negotiate protocol reply. It then
checks to see if the 24 byte value it calculates matches the 24 byte value returned to
it from the client.

If these values match exactly, then the client knew the correct password (or the
16 byte hashed value - see security note below) and is thus allowed access. If not,
then the client did not know the correct password and is denied access.

Note that the Samba server never knows or stores the cleartext of the user’s pass-
word - just the 16 byte hashed values derived from it. Also note that the cleartext

66

CHAPTER 14. LANMAN AND NT PASSWORD ENCRYPTION

password or 16 byte hashed values are never transmitted over the network - thus
increasing security.

14.3 The smbpasswd file

In order for Samba to participate in the above protocol it must be able to look up
the 16 byte hashed values given a user name. Unfortunately, as the UNIX password
value is also a one way hash function (ie. it is impossible to retrieve the clear-
text of the user’s password given the UNIX hash of it), a separate password file
containing this 16 byte value must be kept. To minimise problems with these two
password files, getting out of sync, the UNIX /etc/passwd and the smbpasswd file,
a utility, mksmbpasswd.sh, is provided to generate a smbpasswd file from a UNIX
/etc/passwd file.

To generate the smbpasswd file from your /etc/passwd file use the following com-
mand:
$cat /etc/passwd — mksmbpasswd.sh > /usr/local/samba/private/smbpasswd
If you are running on a system that uses NIS, use
$ypcat passwd — mksmbpasswd.sh > /usr/local/samba/private/smbpasswd
The mksmbpasswd.sh program is found in the Samba source directory. By

default, the smbpasswd file is stored in :
/usr/local/samba/private/smbpasswd
The owner of the /usr/local/samba/private/ directory should be set to root,

and the permissions on it should be set to 0500 (chmod 500 /usr/local/samba/private).
Likewise, the smbpasswd file inside the private directory should be owned by root

and the permissions on is should be set to 0600 (chmod 600 smbpasswd).
The format of the smbpasswd file is (The line has been wrapped here. It should

appear as one entry per line in your smbpasswd file.)

username:uid:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
[Account type]:LCT-<last-change-time>:Long name

Although only the username, uid, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX,
[Account type] and last-change-time sections are significant and are looked at in the
Samba code.

It is VITALLY important that there by 32 ’X’ characters between the two ’:’
characters in the XXX sections - the smbpasswd and Samba code will fail to validate
any entries that do not have 32 characters between ’:’ characters. The first XXX
section is for the Lanman password hash, the second is for the Windows NT version.

When the password file is created all users have password entries consisting of 32
’X’ characters. By default this disallows any access as this user. When a user has
a password set, the ’X’ characters change to 32 ascii hexadecimal digits (0-9, A-F).
These are an ascii representation of the 16 byte hashed value of a user’s password.

To set a user to have no password (not recommended), edit the file using vi, and
replace the first 11 characters with the ascii text "NO PASSWORD" (minus the quotes).

For example, to clear the password for user bob, his smbpasswd file entry would
look like :

bob:100:NO PASSWORDXXXXXXXXXXXXXXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
[U]:LCT-00000000:Bob’s full name:/bobhome:/bobshell

67

CHAPTER 14. LANMAN AND NT PASSWORD ENCRYPTION

If you are allowing users to use the smbpasswd command to set their own pass-
words, you may want to give users NO PASSWORD initially so they do not have to
enter a previous password when changing to their new password (not recommended).
In order for you to allow this the smbpasswd program must be able to connect to
the smbd daemon as that user with no password. Enable this by adding the line :

null passwords = yes
to the [global] section of the smb.conf file (this is why the above scenario is not

recommended). Preferably, allocate your users a default password to begin with, so
you do not have to enable this on your server.

Note :This file should be protected very carefully. Anyone with access to this file
can (with enough knowledge of the protocols) gain access to your SMB server. The
file is thus more sensitive than a normal unix /etc/passwd file.

68

15 Modules

15.1 Advantages

The new modules system has the following advantages:
Transparent loading of static and shared modules (no need for a subsystem to
know about modules)
Simple selection between shared and static modules at configure time
”preload modules” option for increasing performance for stable modules
No nasty #define stuff anymore
All backends are available as plugin now (including pdb ldap and pdb tdb)

15.2 Loading modules

Some subsystems in samba use different backends. These backends can be either
statically linked in to samba or available as a plugin. A subsystem should have a
function that allows a module to register itself. For example, the passdb subsystem
has:

NTSTATUS smb_register_passdb(int version, const char *name, pdb_init_function init);

This function will be called by the initialisation function of the module to register
itself.

15.2.1 Static modules

The modules system compiles a list of initialisation functions for the static mod-
ules of each subsystem. This is a define. For example, it is here currently (from
include/config.h):

/* Static init functions */
#define static_init_pdb { pdb_mysql_init(); pdb_ldap_init(); pdb_smbpasswd_init(); pdb_tdbsam_init(); pdb_guest_init();}

These functions should be called before the subsystem is used. That should be
done when the subsystem is initialised or first used.

15.2.2 Shared modules

If a subsystem needs a certain backend, it should check if it has already been reg-
istered. If the backend hasn’t been registered already, the subsystem should call
smb probe module(char *subsystem, char *backend). This function tries to load the
correct module from a certain path ($LIBDIR/subsystem/backend.so). If the first
character in ’backend’ is a slash, smb probe module() tries to load the module from
the absolute path specified in ’backend’.

After smb probe module() has been executed, the subsystem should check again
if the module has been registered.

69

CHAPTER 15. MODULES

15.3 Writing modules

Each module has an initialisation function. For modules that are included with
samba this name is ’subsystem backend init’. For external modules (that will never
be built-in, but only available as a module) this name is always ’init module’. (In
the case of modules included with samba, the configure system will add a #define
subsystem backend init() init module()). The prototype for these functions is:

NTSTATUS init_module(void);

This function should call one or more registration functions. The function should
return NT STATUS OK on success and NT STATUS UNSUCCESSFUL or a more
useful nt error code on failure.

For example, pdb ldap init() contains:

NTSTATUS pdb_ldap_init(void)
{
smb_register_passdb(PASSDB_INTERFACE_VERSION, "ldapsam", pdb_init_ldapsam);
smb_register_passdb(PASSDB_INTERFACE_VERSION, "ldapsam_nua", pdb_init_ldapsam_nua);

return NT_STATUS_OK;
}

15.3.1 Static/Shared selection in configure.in

Some macros in configure.in generate the various defines and substs that are nec-
essary for the system to work correct. All modules that should be built by default
have to be added to the variable ’default modules’. For example, if ldap is found,
pdb ldap is added to this variable.

On the bottom of configure.in, SMB MODULE() should be called for each module
and SMB SUBSYSTEM() for each subsystem.

Syntax:

SMB_MODULE(subsystem_backend, object files, plugin name, subsystem name, static_action, shared_action)
SMB_SUBSYSTEM(subsystem)

Also, make sure to add the correct directives to Makefile.in. @SUBSYSTEM STATIC@
will be replaced with a list of objects files of the modules that need to be linked in
statically. @SUBSYSTEM MODULES@ will be replaced with the names of the
plugins to build.

You must make sure all .c files that contain defines that can be changed by ./con-
figure are rebuilded in the ’modules clean’ make target. Practically, this means all c
files that contain static init subsystem; calls need to be rebuilded.

70

16 RPC Pluggable Modules

16.1 About

This document describes how to make use the new RPC Pluggable Modules features
of Samba 3.0. This architecture was added to increase the maintainability of Samba
allowing RPC Pipes to be worked on separately from the main CVS branch. The
RPM architecture will also allow third-party vendors to add functionality to Samba
through plug-ins.

16.2 General Overview

When an RPC call is sent to smbd, smbd tries to load a shared library by the name
librpc <pipename>.so to handle the call if it doesn’t know how to handle the call
internally. For instance, LSA calls are handled by librpc lsass.so.. These shared
libraries should be located in the <sambaroot>/lib/rpc. smbd then attempts to
call the init module function within the shared library. Check the chapter on modules
for more information.

In the init module function, the library should call rpc pipe register commands().
This function takes the following arguments:

NTSTATUS rpc_pipe_register_commands(int version, const char *clnt, const char *srv,
const struct api_struct *cmds, int size);

version Version number of the RPC interface. Use the define SMB RPC INTERFACE VERSION
for this argument.

clnt the Client name of the named pipe
srv the Server name of the named pipe
cmds a list of api structs that map RPC ordinal numbers to function calls
size the number of api structs contained in cmds

See rpc server/srv reg.c and rpc server/srv reg nt.c for a small example of how to
use this library.

71

17 VFS Modules

17.1 The Samba (Posix) VFS layer

17.1.1 The general interface

Each VFS operation has a vfs op type, a function pointer and a handle pointer in
the struct vfs ops and tree macros to make it easier to call the operations. (Take a
look at include/vfs.h and include/vfs macros.h.)

typedef enum _vfs_op_type {
SMB_VFS_OP_NOOP = -1,

...

/* File operations */

SMB_VFS_OP_OPEN,
SMB_VFS_OP_CLOSE,
SMB_VFS_OP_READ,
SMB_VFS_OP_WRITE,
SMB_VFS_OP_LSEEK,
SMB_VFS_OP_SENDFILE,

...

SMB_VFS_OP_LAST
} vfs_op_type;

This struct contains the function and handle pointers for all operations.

struct vfs_ops {
struct vfs_fn_pointers {

...

/* File operations */

int (*open)(struct vfs_handle_struct *handle,
struct connection_struct *conn,
const char *fname, int flags, mode_t mode);

int (*close)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd);

ssize_t (*read)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd, void *data, size_t n);

ssize_t (*write)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd,
const void *data, size_t n);

72

CHAPTER 17. VFS MODULES

SMB_OFF_T (*lseek)(struct vfs_handle_struct *handle,
struct files_struct *fsp, int fd,
SMB_OFF_T offset, int whence);

ssize_t (*sendfile)(struct vfs_handle_struct *handle,
int tofd, files_struct *fsp, int fromfd,
const DATA_BLOB *header, SMB_OFF_T offset, size_t count);

...
} ops;

struct vfs_handles_pointers {
...

/* File operations */

struct vfs_handle_struct *open;
struct vfs_handle_struct *close;
struct vfs_handle_struct *read;
struct vfs_handle_struct *write;
struct vfs_handle_struct *lseek;
struct vfs_handle_struct *sendfile;

...
} handles;

};

This macros SHOULD be used to call any vfs operation. DO NOT ACCESS
conn->vfs.ops.* directly !!!

...

/* File operations */
#define SMB_VFS_OPEN(conn, fname, flags, mode) \

((conn)->vfs.ops.open((conn)->vfs.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_CLOSE(fsp, fd) \
((fsp)->conn->vfs.ops.close(\
(fsp)->conn->vfs.handles.close, (fsp), (fd)))

#define SMB_VFS_READ(fsp, fd, data, n) \
((fsp)->conn->vfs.ops.read(\
(fsp)->conn->vfs.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_WRITE(fsp, fd, data, n) \
((fsp)->conn->vfs.ops.write(\
(fsp)->conn->vfs.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_LSEEK(fsp, fd, offset, whence) \
((fsp)->conn->vfs.ops.lseek(\
(fsp)->conn->vfs.handles.lseek,\
(fsp), (fd), (offset), (whence)))

#define SMB_VFS_SENDFILE(tofd, fsp, fromfd, header, offset, count) \
((fsp)->conn->vfs.ops.sendfile(\

73

CHAPTER 17. VFS MODULES

(fsp)->conn->vfs.handles.sendfile,\
(tofd), (fsp), (fromfd), (header), (offset), (count)))

...

17.1.2 Possible VFS operation layers

These values are used by the VFS subsystem when building the conn->vfs and conn-
>vfs opaque structs for a connection with multiple VFS modules. Internally, Samba
differentiates only opaque and transparent layers at this process. Other types are
used for providing better diagnosing facilities.

Most modules will provide transparent layers. Opaque layer is for modules which
implement actual file system calls (like DB-based VFS). For example, default POSIX
VFS which is built in into Samba is an opaque VFS module.

Other layer types (logger, splitter, scanner) were designed to provide different
degree of transparency and for diagnosing VFS module behaviour.

Each module can implement several layers at the same time provided that only
one layer is used per each operation.

typedef enum _vfs_op_layer {
SMB_VFS_LAYER_NOOP = -1, /* - For using in VFS module to indicate end of array */

/* of operations description */
SMB_VFS_LAYER_OPAQUE = 0, /* - Final level, does not call anything beyond itself */
SMB_VFS_LAYER_TRANSPARENT, /* - Normal operation, calls underlying layer after */

/* possibly changing passed data */
SMB_VFS_LAYER_LOGGER, /* - Logs data, calls underlying layer, logging may not */

/* use Samba VFS */
SMB_VFS_LAYER_SPLITTER, /* - Splits operation, calls underlying layer _and_ own facility, */

/* then combines result */
SMB_VFS_LAYER_SCANNER /* - Checks data and possibly initiates additional */

/* file activity like logging to files _inside_ samba VFS */
} vfs_op_layer;

17.2 The Interaction between the Samba VFS subsystem
and the modules

17.2.1 Initialization and registration

As each Samba module a VFS module should have a
NTSTATUS vfs_example_init(void);
function if it’s staticly linked to samba or
NTSTATUS init_module(void);

function if it’s a shared module.
This should be the only non static function inside the module. Global variables

should also be static!
The module should register its functions via the

NTSTATUS smb_register_vfs(int version, const char *name, vfs_op_tuple *vfs_op_tuples);

function.

74

CHAPTER 17. VFS MODULES

version should be filled with SMB VFS INTERFACE VERSION
name this is the name witch can be listed in the vfs objects parameter to use this

module.
vfs op tuples this is an array of vfs op tuple’s. (vfs op tuples is descripted in details

below.)
For each operation the module wants to provide it has a entry in the vfs op tuple

array.

typedef struct _vfs_op_tuple {
void* op;
vfs_op_type type;
vfs_op_layer layer;

} vfs_op_tuple;

op the function pointer to the specified function.
type the vfs op type of the function to specified witch operation the function pro-

vides.
layer the vfs op layer in whitch the function operates.

A simple example:

static vfs_op_tuple example_op_tuples[] = {
{SMB_VFS_OP(example_connect), SMB_VFS_OP_CONNECT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_disconnect), SMB_VFS_OP_DISCONNECT, SMB_VFS_LAYER_TRANSPARENT},

{SMB_VFS_OP(example_rename), SMB_VFS_OP_RENAME, SMB_VFS_LAYER_OPAQUE},

/* This indicates the end of the array */
{SMB_VFS_OP(NULL), SMB_VFS_OP_NOOP, SMB_VFS_LAYER_NOOP}

};

NTSTATUS init_module(void)
{

return smb_register_vfs(SMB_VFS_INTERFACE_VERSION, "example", example_op_tuples);
}

17.2.2 How the Modules handle per connection data

Each VFS function has as first parameter a pointer to the modules vfs handle struct.

typedef struct vfs_handle_struct {
struct vfs_handle_struct *next, *prev;
const char *param;
struct vfs_ops vfs_next;
struct connection_struct *conn;
void *data;
void (*free_data)(void **data);

} vfs_handle_struct;

param this is the module parameter specified in the vfs objects parameter.
e.g. for ’vfs objects = example:test’ param would be ”test”.

75

CHAPTER 17. VFS MODULES

vfs next This vfs ops struct contains the information for calling the next module op-
erations. Use the SMB VFS NEXT * macros to call a next module operations
and don’t access handle->vfs next.ops.* directly!

conn This is a pointer back to the connection struct to witch the handle belongs.
data This is a pointer for holding module private data. You can alloc data with

connection life time on the handle->conn->mem ctx TALLOC CTX. But you
can also manage the memory allocation yourself.

free data This is a function pointer to a function that free’s the module private
data. If you talloc your private data on the TALLOC CTX handle->conn-
>mem ctx, you can set this function pointer to NULL.

Some useful MACROS for handle private data.

#define SMB_VFS_HANDLE_GET_DATA(handle, datap, type, ret) { \
if (!(handle)||((datap=(type *)(handle)->data)==NULL)) { \

DEBUG(0,("%s() failed to get vfs_handle->data!\n",FUNCTION_MACRO)); \
ret; \

} \
}

#define SMB_VFS_HANDLE_SET_DATA(handle, datap, free_fn, type, ret) { \
if (!(handle)) { \

DEBUG(0,("%s() failed to set handle->data!\n",FUNCTION_MACRO)); \
ret; \

} else { \
if ((handle)->free_data) { \

(handle)->free_data(&(handle)->data); \
} \
(handle)->data = (void *)datap; \
(handle)->free_data = free_fn; \

} \
}

#define SMB_VFS_HANDLE_FREE_DATA(handle) { \
if ((handle) && (handle)->free_data) { \

(handle)->free_data(&(handle)->data); \
} \

}

How SMB VFS LAYER TRANSPARENT functions can call the SMB VFS LAYER OPAQUE
functions.

The easiest way to do this is to use the SMB VFS OPAQUE * macros.

...
/* File operations */
#define SMB_VFS_OPAQUE_OPEN(conn, fname, flags, mode) \

((conn)->vfs_opaque.ops.open(\
(conn)->vfs_opaque.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_OPAQUE_CLOSE(fsp, fd) \
((fsp)->conn->vfs_opaque.ops.close(\
(fsp)->conn->vfs_opaque.handles.close,\
(fsp), (fd)))

76

CHAPTER 17. VFS MODULES

#define SMB_VFS_OPAQUE_READ(fsp, fd, data, n) \
((fsp)->conn->vfs_opaque.ops.read(\
(fsp)->conn->vfs_opaque.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_OPAQUE_WRITE(fsp, fd, data, n) \
((fsp)->conn->vfs_opaque.ops.write(\
(fsp)->conn->vfs_opaque.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_OPAQUE_LSEEK(fsp, fd, offset, whence) \
((fsp)->conn->vfs_opaque.ops.lseek(\
(fsp)->conn->vfs_opaque.handles.lseek,\
(fsp), (fd), (offset), (whence)))

#define SMB_VFS_OPAQUE_SENDFILE(tofd, fsp, fromfd, header, offset, count) \
((fsp)->conn->vfs_opaque.ops.sendfile(\
(fsp)->conn->vfs_opaque.handles.sendfile,\
(tofd), (fsp), (fromfd), (header), (offset), (count)))

...

How SMB VFS LAYER TRANSPARENT functions can call the next modules
functions.

The easiest way to do this is to use the SMB VFS NEXT * macros.

...
/* File operations */
#define SMB_VFS_NEXT_OPEN(handle, conn, fname, flags, mode) \

((handle)->vfs_next.ops.open(\
(handle)->vfs_next.handles.open,\
(conn), (fname), (flags), (mode)))

#define SMB_VFS_NEXT_CLOSE(handle, fsp, fd) \
((handle)->vfs_next.ops.close(\
(handle)->vfs_next.handles.close,\
(fsp), (fd)))

#define SMB_VFS_NEXT_READ(handle, fsp, fd, data, n) \
((handle)->vfs_next.ops.read(\
(handle)->vfs_next.handles.read,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_NEXT_WRITE(handle, fsp, fd, data, n) \
((handle)->vfs_next.ops.write(\
(handle)->vfs_next.handles.write,\
(fsp), (fd), (data), (n)))

#define SMB_VFS_NEXT_LSEEK(handle, fsp, fd, offset, whence) \
((handle)->vfs_next.ops.lseek(\
(handle)->vfs_next.handles.lseek,\
(fsp), (fd), (offset), (whence)))

#define SMB_VFS_NEXT_SENDFILE(handle, tofd, fsp, fromfd, header, offset, count) \
((handle)->vfs_next.ops.sendfile(\
(handle)->vfs_next.handles.sendfile,\
(tofd), (fsp), (fromfd), (header), (offset), (count)))

...

77

CHAPTER 17. VFS MODULES

17.3 Upgrading to the New VFS Interface

17.3.1 Upgrading from 2.2.* and 3.0aplha modules

1. Add ”vfs handle struct *handle, ” as first parameter to all vfs operation func-
tions. e.g. example connect(connection struct *conn, const char *service,
const char *user); -> example connect(vfs handle struct *handle, connection struct
*conn, const char *service, const char *user);

2. Replace ”default vfs ops.” with ”smb vfs next ”. e.g. default vfs ops.connect(conn,
service, user); -> smb vfs next connect(conn, service, user);

3. Uppercase all ”smb vfs next *” functions. e.g. smb vfs next connect(conn,
service, user); -> SMB VFS NEXT CONNECT(conn, service, user);

4. Add ”handle, ” as first parameter to all SMB VFS NEXT *() calls. e.g.
SMB VFS NEXT CONNECT(conn, service, user); -> SMB VFS NEXT CONNECT(handle,
conn, service, user);

5. (Only for 2.2.* modules) Convert the old struct vfs ops example ops to a
vfs op tuple example op tuples[] array. e.g.

struct vfs_ops example_ops = {
/* Disk operations */
example_connect, /* connect */
example_disconnect, /* disconnect */
NULL, /* disk free *
/* Directory operations */
NULL, /* opendir */
NULL, /* readdir */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* closedir */
/* File operations */
NULL, /* open */
NULL, /* close */
NULL, /* read */
NULL, /* write */
NULL, /* lseek */
NULL, /* sendfile */
NULL, /* rename */
NULL, /* fsync */
example_stat, /* stat */
example_fstat, /* fstat */
example_lstat, /* lstat */
NULL, /* unlink */
NULL, /* chmod */
NULL, /* fchmod */
NULL, /* chown */
NULL, /* fchown */
NULL, /* chdir */
NULL, /* getwd */
NULL, /* utime */
NULL, /* ftruncate */
NULL, /* lock */
NULL, /* symlink */
NULL, /* readlink */

78

CHAPTER 17. VFS MODULES

NULL, /* link */
NULL, /* mknod */
NULL, /* realpath */
NULL, /* fget_nt_acl */
NULL, /* get_nt_acl */
NULL, /* fset_nt_acl */
NULL, /* set_nt_acl */

NULL, /* chmod_acl */
NULL, /* fchmod_acl */

NULL, /* sys_acl_get_entry */
NULL, /* sys_acl_get_tag_type */
NULL, /* sys_acl_get_permset */
NULL, /* sys_acl_get_qualifier */
NULL, /* sys_acl_get_file */
NULL, /* sys_acl_get_fd */
NULL, /* sys_acl_clear_perms */
NULL, /* sys_acl_add_perm */
NULL, /* sys_acl_to_text */
NULL, /* sys_acl_init */
NULL, /* sys_acl_create_entry */
NULL, /* sys_acl_set_tag_type */
NULL, /* sys_acl_set_qualifier */
NULL, /* sys_acl_set_permset */
NULL, /* sys_acl_valid */
NULL, /* sys_acl_set_file */
NULL, /* sys_acl_set_fd */
NULL, /* sys_acl_delete_def_file */
NULL, /* sys_acl_get_perm */
NULL, /* sys_acl_free_text */
NULL, /* sys_acl_free_acl */
NULL /* sys_acl_free_qualifier */

};

->

static vfs_op_tuple example_op_tuples[] = {
{SMB_VFS_OP(example_connect), SMB_VFS_OP_CONNECT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_disconnect), SMB_VFS_OP_DISCONNECT, SMB_VFS_LAYER_TRANSPARENT},

{SMB_VFS_OP(example_fstat), SMB_VFS_OP_FSTAT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_stat), SMB_VFS_OP_STAT, SMB_VFS_LAYER_TRANSPARENT},
{SMB_VFS_OP(example_lstat), SMB_VFS_OP_LSTAT, SMB_VFS_LAYER_TRANSPARENT},

{SMB_VFS_OP(NULL), SMB_VFS_OP_NOOP, SMB_VFS_LAYER_NOOP}
};

6. Move the example op tuples[] array to the end of the file.
7. Add the init module() function at the end of the file. e.g.

NTSTATUS init_module(void)

79

CHAPTER 17. VFS MODULES

{
return smb_register_vfs(SMB_VFS_INTERFACE_VERSION,"example",example_op_tuples);

}

8. Check if your vfs init() function does more then just prepare the vfs ops structs
or remember the struct smb vfs handle struct.

If NOT you can remove the vfs init() function.
If YES decide if you want to move the code to the example connect()
operation or to the init module(). And then remove vfs init(). e.g. a
debug class registration should go into init module() and the allocation
of private data should go to example connect().

9. (Only for 3.0alpha* modules) Check if your vfs done() function contains needed
code.

If NOT you can remove the vfs done() function.
If YES decide if you can move the code to the example disconnect() opera-
tion. Otherwise register a SMB EXIT EVENT with smb register exit event();
(Described in the modules section) And then remove vfs done(). e.g. the
freeing of private data should go to example disconnect().

10. Check if you have any global variables left. Decide if it wouldn’t be better to
have this data on a connection basis.

If NOT leave them as they are. (e.g. this could be the variable for the
private debug class.)
If YES pack all this data into a struct. You can use handle->data to point
to such a struct on a per connection basis.

e.g. if you have such a struct:

struct example_privates {
char *some_string;
int db_connection;

};

first way of doing it:

static int example_connect(vfs_handle_struct *handle,
connection_struct *conn, const char *service,
const char* user)

{
struct example_privates *data = NULL;

/* alloc our private data */
data = (struct example_privates *)talloc_zero(conn->mem_ctx, sizeof(struct example_privates));
if (!data) {

DEBUG(0,("talloc_zero() failed\n"));
return -1;

}

/* init out private data */
data->some_string = talloc_strdup(conn->mem_ctx,"test");
if (!data->some_string) {

DEBUG(0,("talloc_strdup() failed\n"));
return -1;

}

80

CHAPTER 17. VFS MODULES

data->db_connection = open_db_conn();

/* and now store the private data pointer in handle->data
* we don’t need to specify a free_function here because
* we use the connection TALLOC context.
* (return -1 if something failed.)
*/
VFS_HANDLE_SET_DATA(handle, data, NULL, struct example_privates, return -1);

return SMB_VFS_NEXT_CONNECT(handle,conn,service,user);
}

static int example_close(vfs_handle_struct *handle, files_struct *fsp, int fd)
{

struct example_privates *data = NULL;

/* get the pointer to our private data
* return -1 if something failed
*/
SMB_VFS_HANDLE_GET_DATA(handle, data, struct example_privates, return -1);

/* do something here...*/
DEBUG(0,("some_string: %s\n",data->some_string));

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

second way of doing it:

static void free_example_privates(void **datap)
{

struct example_privates *data = (struct example_privates *)*datap;

SAFE_FREE(data->some_string);
SAFE_FREE(data);

datap = NULL;

return;
}

static int example_connect(vfs_handle_struct *handle,
connection_struct *conn, const char *service,
const char* user)

{
struct example_privates *data = NULL;

/* alloc our private data */
data = (struct example_privates *)malloc(sizeof(struct example_privates));
if (!data) {

DEBUG(0,("malloc() failed\n"));

81

CHAPTER 17. VFS MODULES

return -1;
}

/* init out private data */
data->some_string = strdup(conn->mem_ctx,"test");
if (!data->some_string) {

DEBUG(0,("strdup() failed\n"));
return -1;

}

data->db_connection = open_db_conn();

/* and now store the private data pointer in handle->data
* we need to specify a free_function because we used malloc() and strdup().
* (return -1 if something failed.)
*/
SMB_VFS_HANDLE_SET_DATA(handle, data, NULL, struct example_privates, return -1);

return SMB_VFS_NEXT_CONNECT(handle,conn,service,user);
}

static int example_close(vfs_handle_struct *handle, files_struct *fsp, int fd)
{

struct example_privates *data = NULL;

/* get the pointer to our private data
* return -1 if something failed
*/
SMB_VFS_HANDLE_GET_DATA(handle, data, struct example_privates, return -1);

/* do something here...*/
DEBUG(0,("some_string: %s\n",data->some_string));

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

11. To make it easy to build 3rd party modules it would be usefull to provide
configure.in, (configure), install.sh and Makefile.in with the module. (Take a
look at the example in examples/VFS.)
The configure script accepts --with-samba-source to specify the path to the
samba source tree. It also accept --enable-developer which lets the compiler
give you more warnings.
The idea is that you can extend this configure.in and Makefile.in scripts
for your module.

12. Compiling & Testing...
./configure --enable-developer ...
make
Try to fix all compiler warnings
make
Testing, Testing, Testing ...

82

CHAPTER 17. VFS MODULES

17.4 Some Notes

17.4.1 Implement TRANSPARENT functions

Avoid writing functions like this:

static int example_close(vfs_handle_struct *handle, files_struct *fsp, int fd)
{

return SMB_VFS_NEXT_CLOSE(handle, fsp, fd);
}

Overload only the functions you really need to!

17.4.2 Implement OPAQUE functions

If you want to just implement a better version of a default samba opaque function
(e.g. like a disk free() function for a special filesystem) it’s ok to just overload that
specific function.

If you want to implement a database filesystem or something different from a posix
filesystem. Make sure that you overload every vfs operation!!!

Functions your FS does not support should be overloaded by something like this:
e.g. for a readonly filesystem.

static int example_rename(vfs_handle_struct *handle, connection_struct *conn,
char *oldname, char *newname)

{
DEBUG(10,("function rename() not allowed on vfs ’example’\n"));
errno = ENOSYS;
return -1;

}

83

18 Notes to packagers

18.1 Versioning

Please, please update the version number in source/include/version.h to include
the versioning of your package. This makes it easier to distinguish standard samba
builds from custom-build samba builds (distributions often patch packages). For
example, a good version would be:

Version 2.999+3.0.alpha21-5 for Debian

18.2 Modules

Samba now has support for building parts of samba as plugins. This makes it possible
to, for example, put ldap or mysql support in a seperate package, thus making it
possible to have a normal samba package not depending on ldap or mysql. To build
as much parts of samba as a plugin, run:

./configure --with-shared-modules=rpc,vfs,auth,pdb,charset

84

19 Contributing code

Here are a few tips and notes that might be useful if you are interested in modifying
samba source code and getting it into samba’s main branch.
Retrieving the source In order to contribute code to samba, make sure you have

the latest source. Retrieving the samba source code from CVS is documented
in the appendix of the Samba HOWTO Collection.

Discuss large modifications with team members Please discuss large modifications
you are going to make with members of the samba team. Some parts of the
samba code have one or more ’owners’ - samba developers who wrote most of
the code and maintain it.
This way you can avoid spending your time and effort on something that is
not going to make it into the main samba branch because someone else was
working on the same thing or because your implementation is not the correct
one.

Patch format Patches to the samba tree should be in unified diff format, e.g. files
generated by diff -u.
If you are modifying a copy of samba you retrieved from CVS, you can easily
generate a diff file of these changes by running cvs diff -u.

Points of attention when modifying samba source code

Don’t simply copy code from other places and modify it until it works.
Code needs to be clean and logical. Duplicate code is to be avoided.
Test your patch. It might take a while before one of us looks at your
patch so it will take longer before your patch when your patch needs to
go thru the review cycle again.
Don’t put seperate patches in one large diff file. This makes it harder to
read, understand and test the patch. You might also risk not getting a
good patch committed because you mixed it with one that had issues.
Make sure your patch complies to the samba coding style as suggested in
the coding-suggestions chapter.

Sending in bugfixes Bugfixes to bugs in samba should be submitted to samba’s
bugzilla system, along with a description of the bug.

Sending in feature patches Send feature patches along with a description of what
the patch is supposed to do to the Samba-technical mailinglist and possibly
to a samba team member who is (one of the) ’owners’ of the code you made
modifications to. We are all busy people so everybody tends to ’let one of the
others handle it’. If nobody responded to your patch for a week, try to send it
again until you get a response from one of us.

Feedback on your patch One of the team members will look at your patch and
either commit your patch or give comments why he won’t apply it. In the
latter case you can fix your patch and re-send it until your patch is approved.

85

https://bugzilla.samba.org/
mailto:samba-technical@samba.org

	1 Definition of NetBIOS Protocol and Name Resolution Modes
	1.1 NETBIOS
	1.2 BROADCAST NetBIOS
	1.3 NBNS NetBIOS

	2 Samba Architecture
	2.1 Introduction
	2.2 Multithreading and Samba
	2.3 Threading smbd
	2.4 Threading nmbd
	2.5 nbmd Design

	3 The samba DEBUG system
	3.1 New Output Syntax
	3.2 The DEBUG() Macro
	3.3 The DEBUGADD() Macro
	3.4 The DEBUGLVL() Macro
	3.5 New Functions
	3.5.1 dbgtext()
	3.5.2 dbghdr()
	3.5.3 format_debug_text()

	4 Coding Suggestions
	5 Samba Internals
	5.1 Character Handling
	5.2 The new functions
	5.3 Macros in byteorder.h
	5.3.1 CVAL(buf,pos)
	5.3.2 PVAL(buf,pos)
	5.3.3 SCVAL(buf,pos,val)
	5.3.4 SVAL(buf,pos)
	5.3.5 IVAL(buf,pos)
	5.3.6 SVALS(buf,pos)
	5.3.7 IVALS(buf,pos)
	5.3.8 SSVAL(buf,pos,val)
	5.3.9 SIVAL(buf,pos,val)
	5.3.10 SSVALS(buf,pos,val)
	5.3.11 SIVALS(buf,pos,val)
	5.3.12 RSVAL(buf,pos)
	5.3.13 RIVAL(buf,pos)
	5.3.14 RSSVAL(buf,pos,val)
	5.3.15 RSIVAL(buf,pos,val)

	5.4 LAN Manager Samba API
	5.4.1 Parameters
	5.4.2 Return value

	5.5 Code character table

	6 The smb.conf file
	6.1 Lexical Analysis
	6.1.1 Handling of Whitespace
	6.1.2 Handling of Line Continuation
	6.1.3 Line Continuation Quirks

	6.2 Syntax
	6.2.1 About params.c

	7 NetBIOS in a Unix World
	7.1 Introduction
	7.2 Usernames
	7.3 File Ownership
	7.4 Passwords
	7.5 Locking
	7.6 Deny Modes
	7.7 Trapdoor UIDs
	7.8 Port numbers
	7.9 Protocol Complexity

	8 Tracing samba system calls
	9 Finding useful information on windows
	9.1 Netlogon debugging output

	10 NT Domain RPC's
	10.1 Introduction
	10.1.1 Sources
	10.1.2 Credits

	10.2 Notes and Structures
	10.2.1 Notes
	10.2.2 Enumerations
	10.2.2.1 MSRPC Header type
	10.2.2.2 MSRPC Packet info

	10.2.3 Structures
	10.2.3.1 VOID *
	10.2.3.2 char
	10.2.3.3 UTIME
	10.2.3.4 NTTIME
	10.2.3.5 DOM_SID (domain SID structure)
	10.2.3.6 STR (string)
	10.2.3.7 UNIHDR (unicode string header)
	10.2.3.8 UNIHDR2 (unicode string header plus buffer pointer)
	10.2.3.9 UNISTR (unicode string)
	10.2.3.10 NAME (length-indicated unicode string)
	10.2.3.11 UNISTR2 (aligned unicode string)
	10.2.3.12 OBJ_ATTR (object attributes)
	10.2.3.13 POL_HND (LSA policy handle)
	10.2.3.14 DOM_SID2 (domain SID structure, SIDS stored in unicode)
	10.2.3.15 DOM_RID (domain RID structure)
	10.2.3.16 LOG_INFO (server, account, client structure)
	10.2.3.17 CLNT_SRV (server, client names structure)
	10.2.3.18 CREDS (credentials + time stamp)
	10.2.3.19 CLNT_INFO2 (server, client structure, client credentials)
	10.2.3.20 CLNT_INFO (server, account, client structure, client credentials)
	10.2.3.21 ID_INFO_1 (id info structure, auth level 1)
	10.2.3.22 SAM_INFO (sam logon/logoff id info structure)
	10.2.3.23 GID (group id info)
	10.2.3.24 DOM_REF (domain reference info)
	10.2.3.25 DOM_INFO (domain info, levels 3 and 5 are the same))
	10.2.3.26 USER_INFO (user logon info)
	10.2.3.27 SH_INFO_1_PTR (pointers to level 1 share info strings)
	10.2.3.28 SH_INFO_1_STR (level 1 share info strings)
	10.2.3.29 SHARE_INFO_1_CTR
	10.2.3.30 SERVER_INFO_101

	10.3 MSRPC over Transact Named Pipe
	10.3.1 MSRPC Pipes
	10.3.2 Header
	10.3.2.1 RPC_Packet for request, response, bind and bind acknowledgement
	10.3.2.2 Interface identification
	10.3.2.3 RPC_Iface RW
	10.3.2.4 RPC_ReqBind RW
	10.3.2.5 RPC_Address RW
	10.3.2.6 RPC_ResBind RW
	10.3.2.7 RPC_ReqNorm RW
	10.3.2.8 RPC_ResNorm RW

	10.3.3 Tail
	10.3.4 RPC Bind / Bind Ack
	10.3.5 NTLSA Transact Named Pipe
	10.3.6 LSA Open Policy
	10.3.6.1 Request
	10.3.6.2 Response

	10.3.7 LSA Query Info Policy
	10.3.7.1 Request
	10.3.7.2 Response

	10.3.8 LSA Enumerate Trusted Domains
	10.3.8.1 Request
	10.3.8.2 Response

	10.3.9 LSA Open Secret
	10.3.9.1 Request
	10.3.9.2 Response

	10.3.10 LSA Close
	10.3.10.1 Request
	10.3.10.2 Response

	10.3.11 LSA Lookup SIDS
	10.3.11.1 Request
	10.3.11.2 Response

	10.3.12 LSA Lookup Names
	10.3.12.1 Request
	10.3.12.2 Response

	10.4 NETLOGON rpc Transact Named Pipe
	10.4.1 LSA Request Challenge
	10.4.1.1 Request
	10.4.1.2 Response

	10.4.2 LSA Authenticate 2
	10.4.2.1 Request
	10.4.2.2 Response

	10.4.3 LSA Server Password Set
	10.4.3.1 Request
	10.4.3.2 Response

	10.4.4 LSA SAM Logon
	10.4.4.1 Request
	10.4.4.2 Response

	10.4.5 LSA SAM Logoff
	10.4.5.1 Request
	10.4.5.2 Response

	10.5 \\MAILSLOT\NET\NTLOGON
	10.5.1 Query for PDC
	10.5.1.1 Request
	10.5.1.2 Response

	10.5.2 SAM Logon
	10.5.2.1 Request
	10.5.2.2 Response

	10.6 SRVSVC Transact Named Pipe
	10.6.1 Net Share Enum
	10.6.1.1 Request
	10.6.1.2 Response

	10.6.2 Net Server Get Info
	10.6.2.1 Request
	10.6.2.2 Response

	10.7 Cryptographic side of NT Domain Authentication
	10.7.1 Definitions
	10.7.2 Protocol
	10.7.3 Comments

	10.8 SIDs and RIDs
	10.8.1 Well-known SIDs
	10.8.1.1 Universal well-known SIDs
	10.8.1.2 NT well-known SIDs

	10.8.2 Well-known RIDS
	10.8.2.1 Well-known RID users
	10.8.2.2 Well-known RID groups
	10.8.2.3 Well-known RID aliases

	11 Samba Printing Internals
	11.1 Abstract
	11.2 Printing Interface to Various Back ends
	11.3 Print Queue TDB's
	11.4 ChangeID and Client Caching of Printer Information
	11.5 Windows NT/2K Printer Change Notify

	12 Samba WINS Internals
	12.1 WINS Failover

	13 The Upcoming SAM System
	13.1 Security in the 'new SAM'
	13.2 Standalone from UNIX
	13.3 Handles and Races in the new SAM
	13.4 Layers
	13.4.1 Application
	13.4.2 SAM Interface
	13.4.3 SAM Modules

	13.5 SAM Modules
	13.5.1 Special Module: sam_passdb
	13.5.2 sam_ads

	13.6 Memory Management
	13.7 Testing

	14 LanMan and NT Password Encryption
	14.1 Introduction
	14.2 How does it work?
	14.3 The smbpasswd file

	15 Modules
	15.1 Advantages
	15.2 Loading modules
	15.2.1 Static modules
	15.2.2 Shared modules

	15.3 Writing modules
	15.3.1 Static/Shared selection in configure.in

	16 RPC Pluggable Modules
	16.1 About
	16.2 General Overview

	17 VFS Modules
	17.1 The Samba (Posix) VFS layer
	17.1.1 The general interface
	17.1.2 Possible VFS operation layers

	17.2 The Interaction between the Samba VFS subsystem and the modules
	17.2.1 Initialization and registration
	17.2.2 How the Modules handle per connection data

	17.3 Upgrading to the New VFS Interface
	17.3.1 Upgrading from 2.2.* and 3.0aplha modules

	17.4 Some Notes
	17.4.1 Implement TRANSPARENT functions
	17.4.2 Implement OPAQUE functions

	18 Notes to packagers
	18.1 Versioning
	18.2 Modules

	19 Contributing code

