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Chapter 1

Introduction

1.1 What is LibTomMath?

LibTomMath is a library of source code which provides a series of efficient
and carefully written functions for manipulating large integer numbers. It was
written in portable ISO C source code so that it will build on any platform with
a conforming C compiler.

In a nutshell the library was written from scratch with verbose comments
to help instruct computer science students how to implement “bignum” math.
However, the resulting code has proven to be very useful. It has been used by
numerous universities, commercial and open source software developers. It has
been used on a variety of platforms ranging from Linux and Windows based x86
to ARM based Gameboys and PPC based MacOS machines.

1.2 License

As of the v0.25 the library source code has been placed in the public domain with
every new release. As of the v0.28 release the textbook “Implementing Multiple
Precision Arithmetic” has been placed in the public domain with every new
release as well. This textbook is meant to compliment the project by providing
a more solid walkthrough of the development algorithms used in the library.

Since both1 are in the public domain everyone is entitled to do with them
as they see fit.

1.3 Building LibTomMath

LibTomMath is meant to be very “GCC friendly” as it comes with a makefile well
suited for GCC. However, the library will also build in MSVC, Borland C out of

1Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are
not required to use LibTomMath.

1



2 CHAPTER 1. INTRODUCTION

the box. For any other ISO C compiler a makefile will have to be made by the
end developer. Please consider to commit such a makefile to the LibTomMath
developers, currently residing at http://github.com/libtom/libtommath, if
successfully done so.

Intel’s C-compiler (ICC) is sufficiently compatible with GCC, at least the
newer versions, to replace GCC for building the static and the shared library.
Editing the makefiles is not needed, just set the shell variable CC as shown below.

CC=/home/czurnieden/intel/bin/icc make

ICC does not know all options available for GCC and LibTomMath uses two
diagnostics -Wbad-function-cast and -Wcast-align that are not supported
by ICC resulting in the warnings:

icc: command line warning #10148: option ’-Wbad-function-cast’ not supported

icc: command line warning #10148: option ’-Wcast-align’ not supported

It is possible to mute this ICC warning with the compiler flag -diag-disable=101482.

1.3.1 Static Libraries

To build as a static library for GCC issue the following

make

command. This will build the library and archive the object files in “libtom-
math.a”. Now you link against that and include “tommath.h” within your
programs. Alternatively to build with MSVC issue the following

nmake -f makefile.msvc

This will build the library and archive the object files in “tommath.lib”.
This has been tested with MSVC version 6.00 with service pack 5.

To run a program to adapt the Toom-Cook cut-off values to your architecture
type

make tune

This will take some time.

1.3.2 Shared Libraries

GNU based Operating Systems

To build as a shared library for GCC issue the following

make -f makefile.shared

2It is not recommended to suppress warnings without a very good reason but there is no
harm in doing so in this very special case.

http://github.com/libtom/libtommath
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This requires the “libtool” package (common on most Linux/BSD systems).
It will build LibTomMath as both shared and static then install (by default)
into /usr/lib as well as install the header files in /usr/include. The shared
library (resource) will be called “libtommath.la” while the static library called
“libtommath.a”. Generally you use libtool to link your application against the
shared object.

To run a program to adapt the Toom-Cook cut-off values to your architecture
type

make -f makefile.shared tune

This will take some time.

Microsoft Windows based Operating Systems

There is limited support for making a “DLL” in windows via the “makefile.cygwin dll”
makefile. It requires Cygwin to work with since it requires the auto-export/import
functionality. The resulting DLL and import library “libtommath.dll.a” can be
used to link LibTomMath dynamically to any Windows program using Cygwin.

OpenBSD

OpenBSD replaced some of their GNU-tools, especially libtool with their own,
slightly different versions. To ease the workload of LibTomMath’s developer
team, only a static library can be build with the included makefile.unix.

The wrong make will result in errors like:

*** Parse error in /home/user/GITHUB/libtommath: Need an operator in ’LIBNAME’ )

*** Parse error: Need an operator in ’endif’ (makefile.shared:8)

*** Parse error: Need an operator in ’CROSS_COMPILE’ (makefile_include.mk:16)

*** Parse error: Need an operator in ’endif’ (makefile_include.mk:18)

*** Parse error: Missing dependency operator (makefile_include.mk:22)

*** Parse error: Missing dependency operator (makefile_include.mk:23)

...

The wrong libtool will build it all fine but when it comes to the final linking
fails with

...

cc -I./ -Wall -Wsign-compare -Wextra -Wshadow -Wsystem-headers -Wdeclaration-afo...

cc -I./ -Wall -Wsign-compare -Wextra -Wshadow -Wsystem-headers -Wdeclaration-afo...

cc -I./ -Wall -Wsign-compare -Wextra -Wshadow -Wsystem-headers -Wdeclaration-afo...

libtool --mode=link --tag=CC cc bn_error.lo bn_s_mp_invmod_fast.lo bn_fast_mp_mo

libtool: link: cc bn_error.lo bn_s_mp_invmod_fast.lo bn_s_mp_montgomery_reduce_fast0

bn_error.lo: file not recognized: File format not recognized

cc: error: linker command failed with exit code 1 (use -v to see invocation)

Error while executing cc bn_error.lo bn_s_mp_invmod_fast.lo bn_fast_mp_montgomery0

gmake: *** [makefile.shared:64: libtommath.la] Error 1
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To build a shared library with OpenBSD3 the GNU versions of make and
libtool are needed.

$ sudo pkg_add gmake libtool

At this time two versions of libtool are installed and both are named libtool,
unfortunately but GNU libtool has been placed in /usr/local/bin/ and the
native version in /usr/bin/. The path might be different in other versions of
OpenBSD but both programms differ in the output of libtool --version

$ /usr/local/bin/libtool --version

libtool (GNU libtool) 2.4.2

Written by Gordon Matzigkeit <gord@gnu.ai.mit.edu>, 1996

Copyright (C) 2011 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

$ libtool --version

libtool (not (GNU libtool)) 1.5.26

The shared library should build now with

LIBTOOL="/usr/local/bin/libtool" gmake -f makefile.shared

You might need to run a gmake -f makefile.shared clean first.

NetBSD

NetBSD is not as strict as OpenBSD but still needs gmake to build the shared
library. libtool may also not exist in a fresh install.

pkg_add gmake libtool

Please check with libtool --version that installed libtool is indeed a GNU
libtool. Build the shared library by typing:

gmake -f makefile.shared

1.3.3 Testing

To build the library and the test harness type

make test

This will build the library, “test” and “mtest/mtest”. The “test” program
will accept test vectors and verify the results. “mtest/mtest” will generate test
vectors using the MPI library by Michael Fromberger4. Simply pipe mtest into
test using

3Tested with OpenBSD version 6.4
4A copy of MPI is included in the package
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mtest/mtest | test

If you do not have a “/dev/urandom” style RNG source you will have to
write your own PRNG and simply pipe that into mtest. For example, if your
PRNG program is called “myprng” simply invoke

myprng | mtest/mtest | test

This will output a row of numbers that are increasing. Each column is a
different test (such as addition, multiplication, etc) that is being performed. The
numbers represent how many times the test was invoked. If an error is detected
the program will exit with a dump of the relevant numbers it was working with.

1.4 Build Configuration

LibTomMath can configured at build time in three phases we shall call “de-
pends”, “tweaks” and “trims”. Each phase changes how the library is built and
they are applied one after another respectively.

To make the system more powerful you can tweak the build process. Classes
are defined in the file “tommath superclass.h”. By default, the symbol “LTM ALL”
shall be defined which simply instructs the system to build all of the functions.
This is how LibTomMath used to be packaged. This will give you access to
every function LibTomMath offers.

However, there are cases where such a build is not optional. For instance,
you want to perform RSA operations. You don’t need the vast majority of the
library to perform these operations. Aside from LTM ALL there is another
pre–defined class “SC RSA 1” which works in conjunction with the RSA from
LibTomCrypt. Additional classes can be defined base on the need of the user.

1.4.1 Build Depends

In the file tommath class.h you will see a large list of C “defines” followed by a
series of “ifdefs” which further define symbols. All of the symbols (technically
they’re macros . . .) represent a given C source file. For instance, BN MP ADD C
represents the file “bn mp add.c”. When a define has been enabled the function
in the respective file will be compiled and linked into the library. Accordingly
when the define is absent the file will not be compiled and not contribute any
size to the library.

You will also note that the header tommath class.h is actually recursively
included (it includes itself twice). This is to help resolve as many dependencies
as possible. In the last pass the symbol LTM LAST will be defined. This is
useful for “trims”.
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1.4.2 Build Tweaks

A tweak is an algorithm “alternative”. For example, to provide tradeoffs (usu-
ally between size and space). They can be enabled at any pass of the configu-
ration phase.

Define Purpose

BN MP DIV SMALL Enables a slower, smaller and equally
functional mp div() function

1.4.3 Build Trims

A trim is a manner of removing functionality from a function that is not required.
For instance, to perform RSA cryptography you only require exponentiation
with odd moduli so even moduli support can be safely removed. Build trims
are meant to be defined on the last pass of the configuration which means they
are to be defined only if LTM LAST has been defined.

Moduli Related

Restriction Undefine

Exponentiation with odd moduli only BN S MP EXPTMOD C
BN MP REDUCE C
BN MP REDUCE SETUP C
BN S MP MUL HIGH DIGS C
BN FAST S MP MUL HIGH DIGS C

Exponentiation with random odd moduli (The above plus the following)
BN MP REDUCE 2K C
BN MP REDUCE 2K SETUP C
BN MP REDUCE IS 2K C
BN MP DR IS MODULUS C
BN MP DR REDUCE C
BN MP DR SETUP C

Modular inverse odd moduli only BN MP INVMOD SLOW C

Modular inverse (both, smaller/slower) BN FAST MP INVMOD C

Operand Size Related

Restriction Undefine

Moduli ≤ 2560 bits BN MP MONTGOMERY REDUCE C
BN S MP MUL DIGS C
BN S MP MUL HIGH DIGS C
BN S MP SQR C

Polynomial Schmolynomial BN MP KARATSUBA MUL C
BN MP KARATSUBA SQR C
BN MP TOOM MUL C
BN MP TOOM SQR C
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1.5 Purpose of LibTomMath

Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial
kits (Miracl), LibTomMath was not written with bleeding edge performance in
mind. First and foremost LibTomMath was written to be entirely open. Not
only is the source code public domain (unlike various other GPL/etc licensed
code), not only is the code freely downloadable but the source code is also acces-
sible for computer science students attempting to learn “BigNum” or multiple
precision arithmetic techniques.

LibTomMath was written to be an instructive collection of source code. This
is why there are many comments, only one function per source file and often I
use a “middle-road” approach where I don’t cut corners for an extra 2% speed
increase.

Source code alone cannot really teach how the algorithms work which is why
I also wrote a textbook that accompanies the library (beat that!).

So you may be thinking “should I use LibTomMath?” and the answer is a
definite maybe. Let me tabulate what I think are the pros and cons of LibTom-
Math by comparing it to the math routines from GnuPG5.

5GnuPG v1.2.3 versus LibTomMath v0.28
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Criteria Pro Con Notes

Few lines of code per file X GnuPG = 300.9, LibTomMath = 71.97

Commented function prototypes X GnuPG function names are cryptic.

Speed X LibTomMath is slower.

Totally free X GPL has unfavourable restrictions.

Large function base X GnuPG is barebones.

Five modular reduction algorithms X Faster modular exponentiation for a variety of moduli.

Portable X GnuPG requires configuration to build.

Figure 1.1: LibTomMath Valuation

It may seem odd to compare LibTomMath to GnuPG since the math in
GnuPG is only a small portion of the entire application. However, LibTom-
Math was written with cryptography in mind. It provides essentially all of the
functions a cryptosystem would require when working with large integers.

So it may feel tempting to just rip the math code out of GnuPG (or GnuMP
where it was taken from originally) in your own application but I think there are
reasons not to. While LibTomMath is slower than libraries such as GnuMP it
is not normally significantly slower. On x86 machines the difference is normally
a factor of two when performing modular exponentiations. It depends largely
on the processor, compiler and the moduli being used.

Essentially the only time you wouldn’t use LibTomMath is when blazing
speed is the primary concern. However, on the other side of the coin LibTom-
Math offers you a totally free (public domain) well structured math library that
is very flexible, complete and performs well in resource constrained environ-
ments. Fast RSA for example can be performed with as little as 8KB of ram
for data (again depending on build options).



Chapter 2

Getting Started with
LibTomMath

2.1 Building Programs

In order to use LibTomMath you must include “tommath.h” and link against
the appropriate library file (typically libtommath.a). There is no library initial-
ization required and the entire library is thread safe.

2.2 Return Codes

There are three possible return codes a function may return.

Code Meaning

MP OKAY The function succeeded.

MP VAL The function input was invalid.

MP MEM Heap memory exhausted.

MP YES Response is yes.

MP NO Response is no.

Figure 2.1: Return Codes

The last two codes listed are not actually “return’ed” by a function. They
are placed in an integer (the caller must provide the address of an integer it can
store to) which the caller can access. To convert one of the three return codes
to a string use the following function.

char *mp_error_to_string(int code);

This will return a pointer to a string which describes the given error code.
It will not work for the return codes MP YES and MP NO.

9
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2.3 Data Types

The basic “multiple precision integer” type is known as the “mp int” within
LibTomMath. This data type is used to organize all of the data required to ma-
nipulate the integer it represents. Within LibTomMath it has been prototyped
as the following.

typedef struct {
int used, alloc, sign;

mp_digit *dp;

} mp_int;

Where “mp digit” is a data type that represents individual digits of the
integer. By default, an mp digit is the ISO C “unsigned long” data type and
each digit is 28−bits long. The mp digit type can be configured to suit other
platforms by defining the appropriate macros.

All LTM functions that use the mp int type will expect a pointer to mp int
structure. You must allocate memory to hold the structure itself by yourself
(whether off stack or heap it doesn’t matter). The very first thing that must be
done to use an mp int is that it must be initialized.

2.4 Function Organization

The arithmetic functions of the library are all organized to have the same style
prototype. That is source operands are passed on the left and the destination
is on the right. For instance,

mp_add(&a, &b, &c); /* c = a + b */

mp_mul(&a, &a, &c); /* c = a * a */

mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */

Another feature of the way the functions have been implemented is that
source operands can be destination operands as well. For instance,

mp_add(&a, &b, &b); /* b = a + b */

mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */

This allows operands to be re-used which can make programming simpler.

2.5 Initialization

2.5.1 Single Initialization

A single mp int can be initialized with the “mp init” function.

int mp_init (mp_int * a);
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This function expects a pointer to an mp int structure and will initialize the
members of the structure so the mp int represents the default integer which is
zero. If the functions returns MP OKAY then the mp int is ready to be used
by the other LibTomMath functions.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

return EXIT_SUCCESS;

}

2.5.2 Single Free

When you are finished with an mp int it is ideal to return the heap it used back
to the system. The following function provides this functionality.

void mp_clear (mp_int * a);

The function expects a pointer to a previously initialized mp int structure
and frees the heap it uses. It sets the pointer1 within the mp int to NULL
which is used to prevent double free situations. Is is legal to call mp clear()
twice on the same mp int in a row.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

/* We’re done with it. */

mp_clear(&number);

1The “dp” member.
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return EXIT_SUCCESS;

}

2.5.3 Multiple Initializations

Certain algorithms require more than one large integer. In these instances it is
ideal to initialize all of the mp int variables in an “all or nothing” fashion. That
is, they are either all initialized successfully or they are all not initialized.

The mp init multi() function provides this functionality.

int mp_init_multi(mp_int *mp, ...);

It accepts a NULL terminated list of pointers to mp int structures. It
will attempt to initialize them all at once. If the function returns MP OKAY
then all of the mp int variables are ready to use, otherwise none of them are
available for use. A complementary mp clear multi() function allows multiple
mp int variables to be free’d from the heap at the same time.

int main(void)

{
mp_int num1, num2, num3;

int result;

if ((result = mp_init_multi(&num1,

&num2,

&num3, NULL)) != MP OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the numbers */

/* We’re done with them. */

mp_clear_multi(&num1, &num2, &num3, NULL);

return EXIT_SUCCESS;

}

2.5.4 Other Initializers

To initialized and make a copy of an mp int the mp init copy() function has
been provided.

int mp_init_copy (mp_int * a, mp_int * b);

This function will initialize a and make it a copy of b if all goes well.
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int main(void)

{
mp_int num1, num2;

int result;

/* initialize and do work on num1 ... */

/* We want a copy of num1 in num2 now */

if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) {
printf("Error initializing the copy. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now num2 is ready and contains a copy of num1 */

/* We’re done with them. */

mp_clear_multi(&num1, &num2, NULL);

return EXIT_SUCCESS;

}

Another less common initializer is mp init size() which allows the user to ini-
tialize an mp int with a given default number of digits. By default, all initializers
allocate MP PREC digits. This function lets you override this behaviour.

int mp_init_size (mp_int * a, int size);

The size parameter must be greater than zero. If the function succeeds the
mp int a will be initialized to have size digits (which are all initially zero).

int main(void)

{
mp_int number;

int result;

/* we need a 60-digit number */

if ((result = mp_init_size(&number, 60)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

return EXIT_SUCCESS;

}
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2.6 Maintenance Functions

2.6.1 Clear Leading Zeros

This is used to ensure that leading zero digits are trimed and the leading ”used”
digit will be non-zero. It also fixes the sign if there are no more leading digits.

void mp_clamp(mp_int *a);

2.6.2 Zero Out

This function will set the “bigint” to zeros without changing the amount of
allocated memory.

void mp_zero(mp_int *a);

2.6.3 Reducing Memory Usage

When an mp int is in a state where it won’t be changed again2 excess digits can
be removed to return memory to the heap with the mp shrink() function.

int mp_shrink (mp_int * a);

This will remove excess digits of the mp int a. If the operation fails the
mp int should be intact without the excess digits being removed. Note that
you can use a shrunk mp int in further computations, however, such operations
will require heap operations which can be slow. It is not ideal to shrink mp int
variables that you will further modify in the system (unless you are seriously
low on memory).

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number [e.g. pre-computation] */

/* We’re done with it for now. */

if ((result = mp_shrink(&number)) != MP_OKAY) {
printf("Error shrinking the number. %s",

mp_error_to_string(result));

2A Diffie-Hellman modulus for instance.
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return EXIT_FAILURE;

}

/* use it .... */

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

2.6.4 Adding additional digits

Within the mp int structure are two parameters which control the limitations
of the array of digits that represent the integer the mp int is meant to equal.
The used parameter dictates how many digits are significant, that is, contribute
to the value of the mp int. The alloc parameter dictates how many digits
are currently available in the array. If you need to perform an operation that
requires more digits you will have to mp grow() the mp int to your desired size.

int mp_grow (mp_int * a, int size);

This will grow the array of digits of a to size. If the alloc parameter is
already bigger than size the function will not do anything.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

/* We need to add 20 digits to the number */

if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) {
printf("Error growing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */
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/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}



Chapter 3

Basic Operations

3.1 Copying

A so called “deep copy”, where new memory is allocated and all contents of a
are copied verbatim into b such that b = a at the end.

int mp_copy (mp_int * a, mp_int *b);

You can also just swap a and b. It does the normal pointer changing with a
temporary pointer variable, just that you do not have to.

void mp_exch (mp_int * a, mp_int *b);

3.2 Bit Counting

To get the position of the lowest bit set (LSB, the Lowest Significant Bit; the
number of bits which are zero before the first zero bit )

int mp_cnt_lsb(const mp_int *a);

To get the position of the highest bit set (MSB, the Most Significant Bit;
the number of bits in teh “bignum”)

int mp_count_bits(const mp_int *a);

3.3 Small Constants

Setting mp ints to small constants is a relatively common operation. To ac-
commodate these instances there is a small constant assignment function. This
function is used to set a single digit constant. The reason for this function is
efficiency. Setting a single digit is quick but the domain of a digit can change
(it’s always at least 0 . . . 127).

17
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3.3.1 Single Digit

Setting a single digit can be accomplished with the following function.

void mp_set (mp_int * a, mp_digit b);

This will zero the contents of a and make it represent an integer equal to the
value of b. Note that this function has a return type of void. It cannot cause
an error so it is safe to assume the function succeeded.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 5 */

mp_set(&number, 5);

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

3.3.2 Int32 and Int64 Constants

These functions can be used to set a constant with 32 or 64 bits.

void mp_set_i32 (mp_int * a, int32_t b);

void mp_set_u32 (mp_int * a, uint32_t b);

void mp_set_i64 (mp_int * a, int64_t b);

void mp_set_u64 (mp_int * a, uint64_t b);

These functions assign the sign and value of the input b to mp int a. The
value can be obtained again by calling the following functions.

int32_t mp_get_i32 (mp_int * a);

uint32_t mp_get_u32 (mp_int * a);

uint32_t mp_get_mag_u32 (mp_int * a);

int64_t mp_get_i64 (mp_int * a);

uint64_t mp_get_u64 (mp_int * a);

uint64_t mp_get_mag_u64 (mp_int * a);
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These functions return the 32 or 64 least significant bits of a respectively.
The unsigned functions return negative values in a twos complement represen-
tation. The absolute value or magnitude can be obtained using the mp get mag
functions.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 654321 (note this is bigger than 127) */

mp_set_u32(&number, 654321);

printf("number == %" PRIi32, mp_get_i32(&number));

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

This should output the following if the program succeeds.

number == 654321

3.3.3 Long Constants - platform dependant

void mp_set_l (mp_int * a, long b);

void mp_set_ul (mp_int * a, unsigned long b);

This will assign the value of the platform-dependent sized variable b to the
mp int a.

To retrieve the value, the following functions can be used.

long mp_get_l (mp_int * a);

unsigned long mp_get_ul (mp_int * a);

unsigned long mp_get_mag_ul (mp_int * a);

This will return the least significant bits of the mp int a that fit into a “long”.
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3.3.4 Long Long Constants - platform dependant

void mp_set_ll (mp_int * a, long long b);

void mp_set_ull (mp_int * a, unsigned long long b);

This will assign the value of the platform-dependent sized variable b to the
mp int a.

To retrieve the value, the following functions can be used.

long long mp_get_ll (mp_int * a);

unsigned long long mp_get_ull (mp_int * a);

unsigned long long mp_get_mag_ull (mp_int * a);

This will return the least significant bits of the mp int a that fit into a “long
long”.

3.3.5 Initialize and Setting Constants

To both initialize and set small constants the following two functions are avail-
able.

int mp_init_set (mp_int * a, mp_digit b);

int mp_init_i32 (mp_int * a, int32_t b);

int mp_init_u32 (mp_int * a, uint32_t b);

int mp_init_i64 (mp_int * a, int64_t b);

int mp_init_u64 (mp_int * a, uint64_t b);

int mp_init_l (mp_int * a, long b);

int mp_init_ul (mp_int * a, unsigned long b);

int mp_init_ll (mp_int * a, long long b);

int mp_init_ull (mp_int * a, unsigned long long b);

Both functions work like the previous counterparts except they first mp init
a before setting the values.

int main(void)

{
mp_int number1, number2;

int result;

/* initialize and set a single digit */

if ((result = mp_init_set(&number1, 100)) != MP_OKAY) {
printf("Error setting number1: %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* initialize and set a long */

if ((result = mp_init_l(&number2, 1023)) != MP_OKAY) {



3.4. COMPARISONS 21

printf("Error setting number2: %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* display */

printf("Number1, Number2 == %" PRIi32 ", %" PRIi32,

mp_get_i32(&number1), mp_get_i32(&number2));

/* clear */

mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;

}

If this program succeeds it shall output.

Number1, Number2 == 100, 1023

3.4 Comparisons

Comparisons in LibTomMath are always performed in a “left to right” fashion.
There are three possible return codes for any comparison.

Result Code Meaning
MP GT a > b
MP EQ a = b
MP LT a < b

Figure 3.1: Comparison Codes for a, b

In figure 3.1 two integers a and b are being compared. In this case a is said
to be “to the left” of b.

3.4.1 Unsigned comparison

An unsigned comparison considers only the digits themselves and not the as-
sociated sign flag of the mp int structures. This is analogous to an absolute
comparison. The function mp cmp mag() will compare two mp int variables
based on their digits only.

int mp_cmp_mag(mp_int * a, mp_int * b);

This will compare a to b placing a to the left of b. This function cannot fail and
will return one of the three compare codes listed in figure 3.1.
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int main(void)

{
mp_int number1, number2;

int result;

if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number1 to 5 */

mp_set(&number1, 5);

/* set the number2 to -6 */

mp_set(&number2, 6);

if ((result = mp_neg(&number2, &number2)) != MP_OKAY) {
printf("Error negating number2. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

switch(mp_cmp_mag(&number1, &number2)) {
case MP_GT: printf("|number1| > |number2|"); break;

case MP_EQ: printf("|number1| = |number2|"); break;

case MP_LT: printf("|number1| < |number2|"); break;

}

/* we’re done with it. */

mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;

}

If this program1 completes successfully it should print the following.

|number1| < |number2|

This is because | − 6| = 6 and obviously 5 < 6.

3.4.2 Signed comparison

To compare two mp int variables based on their signed value the mp cmp()
function is provided.

int mp_cmp(mp_int * a, mp_int * b);

1This function uses the mp neg() function which is discussed in section 3.7.1.
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This will compare a to the left of b. It will first compare the signs of the two
mp int variables. If they differ it will return immediately based on their signs.
If the signs are equal then it will compare the digits individually. This function
will return one of the compare conditions codes listed in figure 3.1.

int main(void)

{
mp_int number1, number2;

int result;

if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number1 to 5 */

mp_set(&number1, 5);

/* set the number2 to -6 */

mp_set(&number2, 6);

if ((result = mp_neg(&number2, &number2)) != MP_OKAY) {
printf("Error negating number2. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

switch(mp_cmp(&number1, &number2)) {
case MP_GT: printf("number1 > number2"); break;

case MP_EQ: printf("number1 = number2"); break;

case MP_LT: printf("number1 < number2"); break;

}

/* we’re done with it. */

mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;

}

If this program2 completes successfully it should print the following.

number1 > number2

3.4.3 Single Digit

To compare a single digit against an mp int the following function has been
provided.

2This function uses the mp neg() function which is discussed in section 3.7.1.



24 CHAPTER 3. BASIC OPERATIONS

int mp_cmp_d(mp_int * a, mp_digit b);

This will compare a to the left of b using a signed comparison. Note that it
will always treat b as positive. This function is rather handy when you have to
compare against small values such as 1 (which often comes up in cryptography).
The function cannot fail and will return one of the tree compare condition codes
listed in figure 3.1.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 5 */

mp_set(&number, 5);

switch(mp_cmp_d(&number, 7)) {
case MP_GT: printf("number > 7"); break;

case MP_EQ: printf("number = 7"); break;

case MP_LT: printf("number < 7"); break;

}

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

If this program functions properly it will print out the following.

number < 7

3.5 Logical Operations

Logical operations are operations that can be performed either with simple shifts
or boolean operators such as AND, XOR and OR directly. These operations
are very quick.

3.5.1 Multiplication by two

Multiplications and divisions by any power of two can be performed with quick
logical shifts either left or right depending on the operation.
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When multiplying or dividing by two a special case routine can be used
which are as follows.

int mp_mul_2(mp_int * a, mp_int * b);

int mp_div_2(mp_int * a, mp_int * b);

The former will assign twice a to b while the latter will assign half a to b.
These functions are fast since the shift counts and maskes are hardcoded into
the routines.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 5 */

mp_set(&number, 5);

/* multiply by two */

if ((result = mp mul 2(&number, &number)) != MP_OKAY) {
printf("Error multiplying the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}
switch(mp_cmp_d(&number, 7)) {

case MP_GT: printf("2*number > 7"); break;

case MP_EQ: printf("2*number = 7"); break;

case MP_LT: printf("2*number < 7"); break;

}

/* now divide by two */

if ((result = mp div 2(&number, &number)) != MP_OKAY) {
printf("Error dividing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}
switch(mp_cmp_d(&number, 7)) {

case MP_GT: printf("2*number/2 > 7"); break;

case MP_EQ: printf("2*number/2 = 7"); break;

case MP_LT: printf("2*number/2 < 7"); break;

}

/* we’re done with it. */

mp_clear(&number);
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return EXIT_SUCCESS;

}

If this program is successful it will print out the following text.

2*number > 7

2*number/2 < 7

Since 10 > 7 and 5 < 7.
To multiply by a power of two the following function can be used.

int mp_mul_2d(mp_int * a, int b, mp_int * c);

This will multiply a by 2b and store the result in “c”. If the value of b is
less than or equal to zero the function will copy a to “c” without performing
any further actions. The multiplication itself is implemented as a right-shift
operation of a by b bits.

To divide by a power of two use the following.

int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);

Which will divide a by 2b, store the quotient in “c” and the remainder in “d’. If
b ≤ 0 then the function simply copies a over to “c” and zeroes d. The variable
d may be passed as a NULL value to signal that the remainder is not desired.
The division itself is implemented as a left-shift operation of a by b bits.

It is also not very uncommon to need just the power of two 2b; for example
the startvalue for the Newton method.

int mp_2expt(mp_int *a, int b);

It is faster than doing it by shifting 1 with mp mul 2d.

3.5.2 Polynomial Basis Operations

Strictly speaking the organization of the integers within the mp int structures
is what is known as a “polynomial basis”. This simply means a field element is
stored by divisions of a radix. For example, if f(x) =

∑k
i=0 yix

k for any vector
~y then the array of digits in ~y are said to be the polynomial basis representation
of z if f(β) = z for a given radix β.

To multiply by the polynomial g(x) = x all you have todo is shift the digits
of the basis left one place. The following function provides this operation.

int mp_lshd (mp_int * a, int b);

This will multiply a in place by xb which is equivalent to shifting the digits
left b places and inserting zeroes in the least significant digits. Similarly to
divide by a power of x the following function is provided.
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void mp_rshd (mp_int * a, int b)

This will divide a in place by xb and discard the remainder. This function
cannot fail as it performs the operations in place and no new digits are required
to complete it.

3.5.3 AND, OR, XOR and COMPLEMENT Operations

While AND, OR and XOR operations compute arbitrary-precision bitwise op-
erations. Negative numbers are treated as if they are in two-complement repre-
sentation, while internally they are sign-magnitude however.

int mp_or (mp_int * a, mp_int * b, mp_int * c);

int mp_and (mp_int * a, mp_int * b, mp_int * c);

int mp_xor (mp_int * a, mp_int * b, mp_int * c);

int mp_complement(const mp_int *a, mp_int *b);

int mp_signed_rsh(mp_int * a, int b, mp_int * c, mp_int * d);

The function mp complement computes a two-complement b =∼ a. The func-
tion mp signed rsh performs sign extending right shift. For positive numbers
it is equivalent to mp div 2d.

3.5.4 Bit Picking

int mp_get_bit(mp_int *a, int b)

Pick a bit: returns MP YES if the bit at position b (0-index) is set, that is if
it is 1 (one), MP NO if the bit is 0 (zero) and MP VAL if b < 0.

3.6 Addition and Subtraction

To compute an addition or subtraction the following two functions can be used.

int mp_add (mp_int * a, mp_int * b, mp_int * c);

int mp_sub (mp_int * a, mp_int * b, mp_int * c)

Which perform c = a � b where � is one of signed addition or subtraction.
The operations are fully sign aware.

3.7 Sign Manipulation

3.7.1 Negation

Simple integer negation can be performed with the following.

int mp_neg (mp_int * a, mp_int * b);

Which assigns −a to b.
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3.7.2 Absolute

Simple integer absolutes can be performed with the following.

int mp_abs (mp_int * a, mp_int * b);

Which assigns |a| to b.

3.8 Integer Division and Remainder

To perform a complete and general integer division with remainder use the
following function.

int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);

This divides a by b and stores the quotient in c and d. The signed quotient is
computed such that bc+ d = a. Note that either of c or d can be set to NULL
if their value is not required. If b is zero the function returns MP VAL.
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Multiplication and Squaring

4.1 Multiplication

A full signed integer multiplication can be performed with the following.

int mp_mul (mp_int * a, mp_int * b, mp_int * c);

Which assigns the full signed product ab to c. This function actually breaks into
one of four cases which are specific multiplication routines optimized for given
parameters. First there are the Toom-Cook multiplications which should only
be used with very large inputs. This is followed by the Karatsuba multiplications
which are for moderate sized inputs. Then followed by the Comba and baseline
multipliers.

Fortunately for the developer you don’t really need to know this unless you
really want to fine tune the system. mp mul() will determine on its own1 what
routine to use automatically when it is called.

int main(void)

{
mp_int number1, number2;

int result;

/* Initialize the numbers */

if ((result = mp_init_multi(&number1,

&number2, NULL)) != MP_OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

1Some tweaking may be required but make tune will put some reasonable values in
bncore.c

29
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/* set the terms */

mp_set_i32(&number, 257);

mp_set_i32(&number2, 1023);

/* multiply them */

if ((result = mp_mul(&number1, &number2,

&number1)) != MP_OKAY) {
printf("Error multiplying terms. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* display */

printf("number1 * number2 == %" PRIi32, mp_get_i32(&number1));

/* free terms and return */

mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;

}

If this program succeeds it shall output the following.

number1 * number2 == 262911

4.2 Squaring

Since squaring can be performed faster than multiplication it is performed it’s
own function instead of just using mp mul().

int mp_sqr (mp_int * a, mp_int * b);

Will square a and store it in b. Like the case of multiplication there are four
different squaring algorithms all which can be called from mp sqr(). It is ideal
to use mp sqr over mp mul when squaring terms because of the speed difference.

4.3 Tuning Polynomial Basis Routines

Both of the Toom-Cook and Karatsuba multiplication algorithms are faster
than the traditional O(n2) approach that the Comba and baseline algorithms
use. At O(n1.464973) and O(n1.584962) running times respectively they require
considerably less work. For example, a 10000-digit multiplication would take
roughly 724,000 single precision multiplications with Toom-Cook or 100,000,000
single precision multiplications with the standard Comba (a factor of 138).

So why not always use Karatsuba or Toom-Cook? The simple answer is that
they have so much overhead that they’re not actually faster than Comba until
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you hit distinct “cutoff” points. For Karatsuba with the default configuration,
GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits
(about 70 for the Intel P4). That is, at 110 digits Karatsuba and Comba
multiplications just about break even and for 110+ digits Karatsuba is faster.

Toom-Cook has incredible overhead and is probably only useful for very large
inputs. So far no known cutoff points exist and for the most part I just set the
cutoff points very high to make sure they’re not called.

To get reasonable values for the cut-off points for your architecture, type

make tune

This will run a benchmark, computes the medians, rewrites bncore.c, and
recompiles bncore.c and relinks the library.

The benchmark itself can be fine-tuned in the file etc/tune it.sh.
The program etc/tune is also able to print a list of values for printing curves

with e.g.: gnuplot. type ./etc/tune -h to get a list of all available options.
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Chapter 5

Modular Reduction

Modular reduction is process of taking the remainder of one quantity divided by
another. Expressed as (5.1) the modular reduction is equivalent to the remainder
of b divided by c.

a ≡ b (mod c) (5.1)

Of particular interest to cryptography are reductions where b is limited to
the range 0 ≤ b < c2 since particularly fast reduction algorithms can be written
for the limited range.

Note that one of the four optimized reduction algorithms are automatically
chosen in the modular exponentiation algorithm mp exptmod when an appro-
priate modulus is detected.

5.1 Straight Division

In order to effect an arbitrary modular reduction the following algorithm is
provided.

int mp_mod(mp_int *a, mp_int *b, mp_int *c);

This reduces a modulo b and stores the result in c. The sign of c shall agree
with the sign of b. This algorithm accepts an input a of any range and is not
limited by 0 ≤ a < b2.

5.2 Barrett Reduction

Barrett reduction is a generic optimized reduction algorithm that requires pre–
computation to achieve a decent speedup over straight division. First a µ value
must be precomputed with the following function.

int mp_reduce_setup(mp_int *a, mp_int *b);
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Given a modulus in b this produces the required µ value in a. For any given
modulus this only has to be computed once. Modular reduction can now be
performed with the following.

int mp_reduce(mp_int *a, mp_int *b, mp_int *c);

This will reduce a in place modulo b with the precomputed µ value in c. a
must be in the range 0 ≤ a < b2.

int main(void)

{
mp_int a, b, c, mu;

int result;

/* initialize a,b to desired values, mp_init mu,

* c and set c to 1...we want to compute a^3 mod b

*/

/* get mu value */

if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) {
printf("Error getting mu. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* square a to get c = a^2 */

if ((result = mp_sqr(&a, &c)) != MP_OKAY) {
printf("Error squaring. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now reduce ‘c’ modulo b */

if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* multiply a to get c = a^3 */

if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now reduce ‘c’ modulo b */
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if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* c now equals a^3 mod b */

return EXIT_SUCCESS;

}

This program will calculate a3 mod b if all the functions succeed.

5.3 Montgomery Reduction

Montgomery is a specialized reduction algorithm for any odd moduli. Like
Barrett reduction a pre–computation step is required. This is accomplished
with the following.

int mp_montgomery_setup(mp_int *a, mp_digit *mp);

For the given odd moduli a the precomputation value is placed in mp. The
reduction is computed with the following.

int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);

This reduces a in place modulo m with the pre–computed value mp. a must be
in the range 0 ≤ a < b2.

Montgomery reduction is faster than Barrett reduction for moduli smaller
than the “comba” limit. With the default setup for instance, the limit is 127
digits (3556–bits). Note that this function is not limited to 127 digits just that
it falls back to a baseline algorithm after that point.

An important observation is that this reduction does not return a mod m
but aR−1 mod m where R = βn, n is the n number of digits in m and β is radix
used (default is 228).

To quickly calculate R the following function was provided.

int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);

Which calculates a = R for the odd moduli b without using multiplication or
division.

The normal modus operandi for Montgomery reductions is to normalize the
integers before entering the system. For example, to calculate a3 mod b using
Montgomery reduction the value of a can be normalized by multiplying it by R.
Consider the following code snippet.
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int main(void)

{
mp_int a, b, c, R;

mp_digit mp;

int result;

/* initialize a,b to desired values,

* mp_init R, c and set c to 1....

*/

/* get normalization */

if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) {
printf("Error getting norm. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* get mp value */

if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) {
printf("Error setting up montgomery. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* normalize ‘a’ so now a is equal to aR */

if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) {
printf("Error computing aR. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* square a to get c = a^2R^2 */

if ((result = mp_sqr(&a, &c)) != MP_OKAY) {
printf("Error squaring. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now reduce ‘c’ back down to c = a^2R^2 * R^-1 == a^2R */

if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* multiply a to get c = a^3R^2 */
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if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now reduce ‘c’ back down to c = a^3R^2 * R^-1 == a^3R */

if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now reduce (again) ‘c’ back down to c = a^3R * R^-1 == a^3 */

if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* c now equals a^3 mod b */

return EXIT_SUCCESS;

}

This particular example does not look too efficient but it demonstrates the
point of the algorithm. By normalizing the inputs the reduced results are always
of the form aR for some variable a. This allows a single final reduction to correct
for the normalization and the fast reduction used within the algorithm.

For more details consider examining the file bn mp exptmod fast.c.

5.4 Restricted Diminished Radix

“Diminished Radix” reduction refers to reduction with respect to moduli that
are amenable to simple digit shifting and small multiplications. In this case the
“restricted” variant refers to moduli of the form βk − p for some k ≥ 0 and
0 < p < β where β is the radix (default to 228).

As in the case of Montgomery reduction there is a pre–computation phase
required for a given modulus.

void mp_dr_setup(mp_int *a, mp_digit *d);

This computes the value required for the modulus a and stores it in d.
This function cannot fail and does not return any error codes. After the pre–
computation a reduction can be performed with the following.
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int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);

This reduces a in place modulo b with the pre–computed value mp. b must
be of a restricted diminished radix form and a must be in the range 0 ≤ a < b2.
Diminished radix reductions are much faster than both Barrett and Montgomery
reductions as they have a much lower asymptotic running time.

Since the moduli are restricted this algorithm is not particularly useful for
something like Rabin, RSA or BBS cryptographic purposes. This reduction al-
gorithm is useful for Diffie-Hellman and ECC where fixed primes are acceptable.

Note that unlike Montgomery reduction there is no normalization process.
The result of this function is equal to the correct residue.

5.5 Unrestricted Diminished Radix

Unrestricted reductions work much like the restricted counterparts except in this
case the moduli is of the form 2k−p for 0 < p < β. In this sense the unrestricted
reductions are more flexible as they can be applied to a wider range of numbers.

int mp_reduce_2k_setup(mp_int *a, mp_digit *d);

This will compute the required d value for the given moduli a.

int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);

This will reduce a in place modulo n with the pre–computed value d. From
my experience this routine is slower than mp dr reduce but faster for most
moduli sizes than the Montgomery reduction.

5.6 Combined Modular Reduction

Some of the combinations of an arithmetic operations followed by a modular
reduction can be done in a faster way. The ones implemented are:

Addition d = (a+ b) mod c

int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);

Subtraction d = (a− b) mod c

int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);

Multiplication d = (ab) mod c

int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);

Squaring d = (a2) mod c

int mp_sqrmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
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Exponentiation

6.1 Single Digit Exponentiation

int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)

This function computes c = ab.

6.2 Modular Exponentiation

int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)

This computes Y ≡ GX (mod P ) using a variable width sliding window algo-
rithm. This function will automatically detect the fastest modular reduction
technique to use during the operation. For negative values of X the operation
is performed as Y ≡ (G−1 mod P )|X| (mod P ) provided that gcd(G,P ) = 1.

This function is actually a shell around the two internal exponentiation func-
tions. This routine will automatically detect when Barrett, Montgomery, Re-
stricted and Unrestricted Diminished Radix based exponentiation can be used.
Generally moduli of the a “restricted diminished radix” form lead to the fastest
modular exponentiations. Followed by Montgomery and the other two algo-
rithms.

6.3 Modulus a Power of Two

int mp_mod_2d(const mp_int *a, int b, mp_int *c)

It calculates c = a mod 2b.

6.4 Root Finding

int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
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This computes c = a1/b such that cb ≤ a and (c+1)b > a. Will return a positive
root only for even roots and return a root with the sign of the input for odd
roots. For example, performing 41/2 will return 2 whereas (−8)1/3 will return
−2.

This algorithm uses the “Newton Approximation” method and will converge
on the correct root fairly quickly.

The square root c = a1/2 (with the same conditions c2 ≤ a and (c+ 1)2 > a)
is implemented with a faster algorithm.

int mp_sqrt (mp_int * a, mp_digit b, mp_int * c)
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Logarithm

7.1 Integer Logarithm

A logarithm function for positive integer input a, base computing blogbxc such
that (logbx)b ≤ x.

int mp_ilogb(mp_int *a, mp_digit base, mp_int *c)

7.1.1 Example

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <tommath.h>

int main(int argc, char **argv)

mp_int x, output;

mp_digit base;

int e;

if (argc != 3)

fprintf(stderr,"Usage %s base x\n", argv[0]);

exit(EXIT_FAILURE);

if ((e = mp_init_multi(&x, &output, NULL)) != MP_OKAY)

fprintf(stderr,"mp_init failed: \"%s\"\n",
mp_error_to_string(e));

exit(EXIT_FAILURE);

errno = 0;
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#ifdef MP_64BIT

base = (mp_digit)strtoull(argv[1], NULL, 10);

#else

base = (mp_digit)strtoul(argv[1], NULL, 10);

#endif

if ((errno == ERANGE) || (base > (base & MP_MASK)))

fprintf(stderr,"strtoul(l) failed: input out of range\n");
exit(EXIT_FAILURE);

if ((e = mp_read_radix(&x, argv[2], 10)) != MP_OKAY)

fprintf(stderr,"mp_read_radix failed: \"%s\"\n",
mp_error_to_string(e));

exit(EXIT_FAILURE);

if ((e = mp_ilogb(&x, base, &output)) != MP_OKAY)

fprintf(stderr,"mp_ilogb failed: \"%s\"\n",
mp_error_to_string(e));

exit(EXIT_FAILURE);

if ((e = mp_fwrite(&output, 10, stdout)) != MP_OKAY)

fprintf(stderr,"mp_fwrite failed: \"%s\"\n",
mp_error_to_string(e));

exit(EXIT_FAILURE);

putchar(’\n’);

mp_clear_multi(&x, &output, NULL);

exit(EXIT_SUCCESS);
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Prime Numbers

8.1 Trial Division

int mp_prime_is_divisible (mp_int * a, int *result)

This will attempt to evenly divide a by a list of primes1 and store the outcome in
“result”. That is if result = 0 then a is not divisible by the primes, otherwise it
is. Note that if the function does not return MP OKAY the value in “result”
should be considered undefined2.

8.2 Fermat Test

int mp_prime_fermat (mp_int * a, mp_int * b, int *result)

Performs a Fermat primality test to the base b. That is it computes ba mod a
and tests whether the value is equal to b or not. If the values are equal then a
is probably prime and result is set to one. Otherwise result is set to zero.

8.3 Miller-Rabin Test

int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)

Performs a Miller-Rabin test to the base b of a. This test is much stronger than
the Fermat test and is very hard to fool (besides with Carmichael numbers). If
a passes the test (therefore is probably prime) result is set to one. Otherwise
result is set to zero.

Note that is suggested that you use the Miller-Rabin test instead of the
Fermat test since all of the failures of Miller-Rabin are a subset of the failures
of the Fermat test.

1Default is the first 256 primes.
2Currently the default is to set it to zero first.
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8.3.1 Required Number of Tests

Generally to ensure a number is very likely to be prime you have to perform
the Miller-Rabin with at least a half-dozen or so unique bases. However, it has
been proven that the probability of failure goes down as the size of the input
goes up. This is why a simple function has been provided to help out.

int mp_prime_rabin_miller_trials(int size)

This returns the number of trials required for a low probability of failure for
a given “size” expressed in bits. This comes in handy specially since larger
numbers are slower to test. For example, a 512-bit number would require 18
tests for a probability of 2−160 whereas a 1024-bit number would only require
12 tests for a probability of 2−192. The exact values as implemented are listed
in table 8.1.

bits Rounds Error
80 -1 Use deterministic algorithm for size ¡= 80 bits
81 37 2−96

96 32 2−96

128 40 2−112

160 35 2−112

256 27 2−128

384 16 2−128

512 18 2−160

768 11 2−160

896 10 2−160

1024 12 2−192

1536 8 2−192

2048 6 2−192

3072 4 2−192

4096 5 2−256

5120 4 2−256

6144 4 2−256

8192 3 2−256

9216 3 2−256

10240 2 2−256

Table 8.1: Number of Miller-Rabin rounds as implemented

You should always still perform a trial division before a Miller-Rabin test
though.

A small table, broke in two for typographical reasons, with the number of
rounds of Miller-Rabin tests is shown below. The numbers have been compute
with a PARI/GP script listed in appendix A. The first column is the number of
bits b in the prime p = 2b, the numbers in the first row represent the probability
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that the number that all of the Miller-Rabin tests deemed a pseudoprime is
actually a composite. There is a deterministic test for numbers smaller than
280.

bits 2−80 2−96 2−112 2−128 2−160 2−192

80 31 39 47 55 71 87
96 29 37 45 53 69 85
128 24 32 40 48 64 80
160 19 27 35 43 59 75
192 15 21 29 37 53 69
256 10 15 20 27 43 59
384 7 9 12 16 25 38
512 5 7 9 12 18 26
768 4 5 6 8 11 16
1024 3 4 5 6 9 12
1536 2 3 3 4 6 8
2048 2 2 3 3 4 6
3072 1 2 2 2 3 4
4096 1 1 2 2 2 3
6144 1 1 1 1 2 2
8192 1 1 1 1 2 2
12288 1 1 1 1 1 1
16384 1 1 1 1 1 1
24576 1 1 1 1 1 1
32768 1 1 1 1 1 1

Table 8.2: Number of Miller-Rabin rounds. Part I



46 CHAPTER 8. PRIME NUMBERS

bits 2−224 2−256 2−288 2−320 2−352 2−384 2−416

80 103 119 135 151 167 183 199
96 101 117 133 149 165 181 197
128 96 112 128 144 160 176 192
160 91 107 123 139 155 171 187
192 85 101 117 133 149 165 181
256 75 91 107 123 139 155 171
384 54 70 86 102 118 134 150
512 36 49 65 81 97 113 129
768 22 29 37 47 58 70 86
1024 16 21 26 33 40 48 58
1536 10 13 17 21 25 30 35
2048 8 10 13 15 18 22 26
3072 5 7 8 10 12 14 17
4096 4 5 6 8 9 11 12
6144 3 4 4 5 6 7 8
8192 2 3 3 4 5 6 6
12288 2 2 2 3 3 4 4
16384 1 2 2 2 3 3 3
24576 1 1 2 2 2 2 2
32768 1 1 1 1 2 2 2

Table 8.3: Number of Miller-Rabin rounds. Part II

Determining the probability needed to pick the right column is a bit harder.
Fips 186.4, for example has 2−80 for 512 bit large numbers, 2−112 for 1024 bits,
and 2128 for 1536 bits. It can be seen in table 8.2 that those combinations
follow the diagonal from (512, 2−80) downwards and to the right to gain a lower
probabilty of getting a composite declared a pseudoprime for the same amount
of work or less.

If this version of the library has the strong Lucas-Selfridge and/or the
Frobenius-Underwood test implemented only one or two rounds of the Miller-
Rabin test with a random base is necesssary for numbers larger than or equal
to 1024 bits.

This function is meant for RSA. The number of rounds for DSA is d−log2(p)/2e
with p the probability which is just the half of the absolute value of p if given
as a power of two. E.g.: with p = 2−128, d−log2(p)/2e = 64.

This function can be used to test a DSA prime directly if these rounds are
followed by a Lucas test.

See also table C.1 in FIPS 186-4.

8.4 Strong Lucas-Selfridge Test

int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
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Performs a strong Lucas-Selfridge test. The strong Lucas-Selfridge test together
with the Rabin-Miler test with bases 2 and 3 resemble the BPSW test. The
single internal use is a compile-time option in mp prime is prime and can be
excluded from the Libtommath build if not needed.

8.5 Frobenius (Underwood) Test

int mp_prime_frobenius_underwood(const mp_int *N, int *result)

Performs the variant of the Frobenius test as described by Paul Underwood. The
single internal use is in mp prime is prime for MP 8BIT only but can be included
at build-time for all other sizes if the preprocessor macro LTM USE FROBENIUS TEST

is defined.
It returns MP ITER if the number of iterations is exhausted, assumes a com-

posite as the input and sets result accordingly. This will reduce the set of
available pseudoprimes by a very small amount: test with large datasets (more
than 1010 numbers, both randomly chosen and sequences of odd numbers with
a random start point) found only 31 (thirty-one) numbers with a > 120 and
none at all with just an additional simple check for divisors d < 28.

8.6 Primality Testing

Testing if a number is a square can be done a bit faster than just by calculating
the square root. It is used by the primality testing function described below.

int mp_is_square(const mp_int *arg, int *ret);

int mp_prime_is_prime (mp_int * a, int t, int *result)

This will perform a trial division followed by two rounds of Miller-Rabin with
bases 2 and 3 and a Lucas-Selfridge test. The Lucas-Selfridge test is replaced
with a Frobenius-Underwood for MP 8BIT. The Frobenius-Underwood test for
all other sizes is available as a compile-time option with the preprocessor macro
LTM USE FROBENIUS TEST. See file bn mp prime is prime.c for the necessary
details. It shall be noted that both functions are much slower than the Miller-
Rabin test and if speed is an essential issue, the macro LTM USE ONLY MR switches
both functions, the Frobenius-Underwood test and the Lucas-Selfridge test off
and their code will not even be compiled into the library.

If t is set to a positive value t additional rounds of the Miller-Rabin test
with random bases will be performed to allow for Fips 186.4 (vid. p. 126ff)
compliance. The function mp prime rabin miller trials can be used to de-
termine the number of rounds. It is vital that the function mp rand() has a
cryptographically strong random number generator available.

One Miller-Rabin tests with a random base will be run automatically, so by
setting t to a positive value this function will run t+ 1 Miller-Rabin tests with
random bases.
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If t is set to a negative value the test will run the deterministic Miller-Rabin
test for the primes up to 3317044064679887385961981. That limit has to be
checked by the caller.

If a passes all of the tests result is set to one, otherwise it is set to zero.

8.7 Next Prime

int mp_prime_next_prime(mp_int *a, int t, int bbs_style)

This finds the next prime after a that passes mp prime is prime() with t tests
but see the documentation for mp prime is prime for details regarding the use of
the argument t. Set bbs style to one if you want only the next prime congruent
to 3 mod 4, otherwise set it to zero to find any next prime.

8.8 Random Primes

int mp_prime_rand(mp_int *a, int t,

int size, int flags);

This will generate a prime in a using t tests of the primality testing algorithms.
See the documentation for mp prime is prime for details regarding the use of
the argument t. The variable size specifies the bit length of the prime desired.
The variable flags specifies one of several options available (see fig. 8.1) which
can be OR’ed together.

The function mp prime rand() is suitable for generating primes which must
be secret (as in the case of RSA) since there is no skew on the least significant
bits.

Note: This function replaces the deprecated mp prime random and mp prime random ex
functions.

Flag Meaning

LTM PRIME BBS Make the prime congruent to 3 modulo 4

LTM PRIME SAFE Make a prime p such that (p− 1)/2 is also prime.
This option implies LTM PRIME BBS as well.

LTM PRIME 2MSB OFF Makes sure that the bit adjacent to the most significant bit
Is forced to zero.

LTM PRIME 2MSB ON Makes sure that the bit adjacent to the most significant bit
Is forced to one.

Figure 8.1: Primality Generation Options
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Random Number
Generation

9.1 PRNG

int mp_rand_digit(mp_digit *r)

This function generates a random number in r of the size given in r (that is,
the variable is used for in- and output) but not more than MP MASK bits.

int mp_rand(mp_int *a, int digits)

This function generates a random number of digits bits.
The random number generated with these two functions is cryptographi-

cally secure if the source of random numbers the operating systems offers is
cryptographically secure. It will use arc4random() if the OS is a BSD flavor,
Wincrypt on Windows, or /dev/urandom on all operating systems that have it.

49



50 CHAPTER 9. RANDOM NUMBER GENERATION



Chapter 10

Input and Output

10.1 ASCII Conversions

10.1.1 To ASCII

int mp_to_radix (mp_int *a, char *str, size_t maxlen, size_t *written, int radix);

This stores a in str of maximum length maxlen as a base-radix string of ASCII
chars and appends a NUL character to terminate the string.

Valid values of radix line in the range [2, 64].
The exact number of characters in str plus the NUL will be put in written

if that variable is not set to NULL.
If str is not big enough to hold a, str will be filled with the least-significant

digits of length maxlen-1, then str will be NUL terminated and the error MP VAL

is returned.
Please be aware that this function cannot evaluate the actual size of the

buffer, it relies on the correctness of maxlen!

int mp_radix_size (mp_int * a, int radix, int *size)

This stores in “size” the number of characters (including space for the NUL
terminator) required. Upon error this function returns an error code and “size”
will be zero.

If LTM NO FILE is not defined a function to write to a file is also available.

int mp_fwrite(const mp_int *a, int radix, FILE *stream);

10.1.2 From ASCII

int mp_read_radix (mp_int * a, char *str, int radix);

This will read the base-“radix” NUL terminated string from “str” into a. It will
stop reading when it reads a character it does not recognize (which happens to
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include th NUL char... imagine that...). A single leading − sign can be used to
denote a negative number.

If LTM NO FILE is not defined a function to read from a file is also available.

int mp_fread(mp_int *a, int radix, FILE *stream);

10.2 Binary Conversions

Converting an mp int to and from binary is another keen idea.

size_t mp_ubin_size(mp_int *a);

This will return the number of bytes (octets) required to store the unsigned
copy of the integer a.

int mp_to_unsigned_bin(mp_int *a, unsigned char *b, size_t maxlen, size_t *len);

This will store a into the buffer b of size maxlen in big–endian format storing
the number of bytes written in len. Fortunately this is exactly what DER (or
is it ASN?) requires. It does not store the sign of the integer.

int mp_from_ubin(mp_int *a, unsigned char *b, size_t size);

This will read in an unsigned big–endian array of bytes (octets) from b of length
size into a. The resulting big-integer a will always be positive.

For those who acknowledge the existence of negative numbers (heretic!)
there are “signed” versions of the previous functions.

int mp_sbin_size(mp_int *a);

int mp_from_sbin(mp_int *a, unsigned char *b, size_t size);

int mp_to_sbin(mp_int *a, unsigned char *b, size_t maxsize, size_t *len);

They operate essentially the same as the unsigned copies except they prefix the
data with zero or non–zero byte depending on the sign. If the sign is zpos (e.g.
not negative) the prefix is zero, otherwise the prefix is non–zero.

The two functions mp unpack (get your gifts out of the box, import binary
data) and mp pack (put your gifts into the box, export binary data) imple-
ment the similarly working GMP functions as described at http://gmplib.org/
manual/Integer-Import-and-Export.html with the exception that mp pack

will not allocate memory if rop is NULL.

int mp_unpack(mp_int *rop, size_t count, mp_order order, size_t size,

mp_endian endian, size_t nails, const void *op, size_t maxsize);

int mp_pack(void *rop, size_t *countp, mp_order order, size_t size,

mp_endian endian, size_t nails, const mp_int *op);

The function mp pack has the additional variable maxsize which must hold the
size of the buffer rop in bytes. Use

http://gmplib.org/manual/Integer-Import-and-Export.html
http://gmplib.org/manual/Integer-Import-and-Export.html
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/* Parameters "nails" and "size" are the same as in mp_pack */

size_t mp_pack_size(mp_int *a, size_t nails, size_t size);

To get the size in bytes necessary to be put in maxsize).
To enhance the readability of your code, the following enums have been

wrought for your convenience.

typedef enum

MP_LSB_FIRST = -1,

MP_MSB_FIRST = 1

mp_order;

typedef enum

MP_LITTLE_ENDIAN = -1,

MP_NATIVE_ENDIAN = 0,

MP_BIG_ENDIAN = 1

mp_endian;
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Chapter 11

Algebraic Functions

11.1 Extended Euclidean Algorithm

int mp_exteuclid(mp_int *a, mp_int *b,

mp_int *U1, mp_int *U2, mp_int *U3);

This finds the triple U1/U2/U3 using the Extended Euclidean algorithm
such that the following equation holds.

a · U1 + b · U2 = U3 (11.1)

Any of the U1/U2/U3 parameters can be set to NULL if they are not
desired.

11.2 Greatest Common Divisor

int mp_gcd (mp_int * a, mp_int * b, mp_int * c)

This will compute the greatest common divisor of a and b and store it in c.

11.3 Least Common Multiple

int mp_lcm (mp_int * a, mp_int * b, mp_int * c)

This will compute the least common multiple of a and b and store it in c.

11.4 Jacobi Symbol

int mp_jacobi (mp_int * a, mp_int * p, int *c)
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This will compute the Jacobi symbol for a with respect to p. If p is prime this
essentially computes the Legendre symbol. The result is stored in c and can
take on one of three values {−1, 0, 1}. If p is prime then the result will be −1
when a is not a quadratic residue modulo p. The result will be 0 if a divides p
and the result will be 1 if a is a quadratic residue modulo p.

11.5 Kronecker Symbol

int mp_kronecker (mp_int * a, mp_int * p, int *c)

Extension of the Jacoby symbol to all {a, p} ∈ Z .

11.6 Modular square root

int mp_sqrtmod_prime(mp_int *n, mp_int *p, mp_int *r)

This will solve the modular equatioon r2 = n mod p where p is a prime
number greater than 2 (odd prime). The result is returned in the third argument
r, the function returns MP OKAY on success, other return values indicate
failure.

The implementation is split for two different cases:
1. if p mod 4 == 3 we apply Handbook of Applied Cryptography algorithm

3.36 and compute r directly as r = n(p+1)/4 mod p
2. otherwise we use Tonelli-Shanks algorithm
The function does not check the primality of parameter p thus it is up

to the caller to assure that this parameter is a prime number. When p is
a composite the function behaviour is undefined, it may even return a false-
positive MP OKAY.

11.7 Modular Inverse

int mp_invmod (mp_int * a, mp_int * b, mp_int * c)

Computes the multiplicative inverse of a modulo b and stores the result in c
such that ac ≡ 1 (mod b).

11.8 Single Digit Functions

For those using small numbers (snicker snicker) there are several “helper” func-
tions

int mp_add_d(mp_int *a, mp_digit b, mp_int *c);

int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);

int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);

http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm
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int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);

int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);

These work like the full mp int capable variants except the second parameter
b is a mp digit. These functions fairly handy if you have to work with relatively
small numbers since you will not have to allocate an entire mp int to store a
number like 1 or 2.

The functions mp incr and mp decr mimic the postfix operators ++ and
-- respectively, to increment the input by one. They call the full single-digit
functions if the addition would carry. Both functions need to be included in
a minimized library because they call each other in case of a negative input,
These functions change the inputs!

int mp_incr(mp_int *a);

int mp_decr(mp_int *a);

The division by three can be made faster by replacing the division with a
multiplication by the multiplicative inverse of three.

int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
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Chapter 12

Little Helpers

It is never wrong to have some useful little shortcuts at hand.

12.1 Function Macros

To make this overview simpler the macros are given as function prototypes. The
return of logic macros is MP NO or MP YES respectively.

int mp_iseven(mp_int *a)

Checks if a = 0mod2

int mp_isodd(mp_int *a)

Checks if a = 1mod2

int mp_isneg(mp_int *a)

Checks if a < 0

int mp_iszero(mp_int *a)

Checks if a = 0. It does not check if the amount of memory allocated for a is
also minimal.

Other macros which are either shortcuts to normal functions or just other
names for them do have their place in a programmer’s life, too!

12.1.1 Renamings

#define mp_mag_size(mp) mp_unsigned_bin_size(mp)

#define mp_raw_size(mp) mp_signed_bin_size(mp)
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#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))

#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))

#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))

12.1.2 Shortcuts

#define mp_to_binary(M, S, N) mp_to_radix((M), (S), (N), 2)

#define mp_to_octal(M, S, N) mp_to_radix((M), (S), (N), 8)

#define mp_to_decimal(M, S, N) mp_to_radix((M), (S), (N), 10)

#define mp_to_hex(M, S, N) mp_to_radix((M), (S), (N), 16)
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Appendix A

Computing Number of
Miller-Rabin Trials

The number of Miller-Rabin rounds in the tables ??, ??, and ?? have been
calculated with the formula in FIPS 186-4 appendix F.1 (page 117) implemented
as a PARI/GP script.

log2(x) = log(x)/log(2)

fips_f1_sums(k, M, t) =

local(s = 0);

s = sum(m=3,M,

2^(m-t*(m-1)) *

sum(j=2,m,

1/ ( 2^( j + (k-1)/j ) )

)

);

return(s);

fips_f1_2(k, t, M) =

local(common_factor, t1, t2, f1, f2, ds, res);

common_factor = 2.00743 * log(2) * k * 2^(-k);

t1 = 2^(k - 2 - M*t);

f1 = (8 * ((Pi^2) - 6))/3;

f2 = 2^(k - 2);

ds = t1 + f1 * f2 * fips_f1_sums(k, M, t);

res = common_factor * ds;

return(res);
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fips_f1_1(prime_length, ptarget)=

local(t, t_end, M, M_end, pkt);

t_end = ceil(-log2(ptarget)/2);

M_end = floor(2 * sqrt(prime_length-1) - 1);

for(t = 1, t_end,

for(M = 3, M_end,

pkt = fips_f1_2(prime_length, t, M);

if(pkt <= ptarget,

return(t);

);

);

);

To get the number of rounds for a 1024 bit large prime with a probability
of 2−160:

? fips_f1_1(1024,2^(-160))

%1 = 9
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