CVE-2023-4154 libcli/security: add security_descriptor_[s|d]acl_insert() helpers
[metze/samba/wip.git] / libcli / security / security_descriptor.c
1 /* 
2    Unix SMB/CIFS implementation.
3
4    security descriptror utility functions
5
6    Copyright (C) Andrew Tridgell                2004
7       
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12    
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17    
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "includes.h"
23 #include "libcli/security/security.h"
24
25 /*
26   return a blank security descriptor (no owners, dacl or sacl)
27 */
28 struct security_descriptor *security_descriptor_initialise(TALLOC_CTX *mem_ctx)
29 {
30         struct security_descriptor *sd;
31
32         sd = talloc(mem_ctx, struct security_descriptor);
33         if (!sd) {
34                 return NULL;
35         }
36
37         sd->revision = SD_REVISION;
38         /* we mark as self relative, even though it isn't while it remains
39            a pointer in memory because this simplifies the ndr code later.
40            All SDs that we store/emit are in fact SELF_RELATIVE
41         */
42         sd->type = SEC_DESC_SELF_RELATIVE;
43
44         sd->owner_sid = NULL;
45         sd->group_sid = NULL;
46         sd->sacl = NULL;
47         sd->dacl = NULL;
48
49         return sd;
50 }
51
52 struct security_acl *security_acl_dup(TALLOC_CTX *mem_ctx,
53                                              const struct security_acl *oacl)
54 {
55         struct security_acl *nacl;
56
57         if (oacl == NULL) {
58                 return NULL;
59         }
60
61         if (oacl->aces == NULL && oacl->num_aces > 0) {
62                 return NULL;
63         }
64
65         nacl = talloc (mem_ctx, struct security_acl);
66         if (nacl == NULL) {
67                 return NULL;
68         }
69
70         *nacl = (struct security_acl) {
71                 .revision = oacl->revision,
72                 .size     = oacl->size,
73                 .num_aces = oacl->num_aces,
74         };
75         if (nacl->num_aces == 0) {
76                 return nacl;
77         }
78
79         nacl->aces = (struct security_ace *)talloc_memdup (nacl, oacl->aces, sizeof(struct security_ace) * oacl->num_aces);
80         if (nacl->aces == NULL) {
81                 goto failed;
82         }
83
84         return nacl;
85
86  failed:
87         talloc_free (nacl);
88         return NULL;
89         
90 }
91
92 struct security_acl *security_acl_concatenate(TALLOC_CTX *mem_ctx,
93                                               const struct security_acl *acl1,
94                                               const struct security_acl *acl2)
95 {
96         struct security_acl *nacl;
97         uint32_t i;
98
99         if (!acl1 && !acl2)
100                 return NULL;
101
102         if (!acl1){
103                 nacl = security_acl_dup(mem_ctx, acl2);
104                 return nacl;
105         }
106
107         if (!acl2){
108                 nacl = security_acl_dup(mem_ctx, acl1);
109                 return nacl;
110         }
111
112         nacl = talloc (mem_ctx, struct security_acl);
113         if (nacl == NULL) {
114                 return NULL;
115         }
116
117         nacl->revision = acl1->revision;
118         nacl->size = acl1->size + acl2->size;
119         nacl->num_aces = acl1->num_aces + acl2->num_aces;
120
121         if (nacl->num_aces == 0)
122                 return nacl;
123
124         nacl->aces = (struct security_ace *)talloc_array (mem_ctx, struct security_ace, acl1->num_aces+acl2->num_aces);
125         if ((nacl->aces == NULL) && (nacl->num_aces > 0)) {
126                 goto failed;
127         }
128
129         for (i = 0; i < acl1->num_aces; i++)
130                 nacl->aces[i] = acl1->aces[i];
131         for (i = 0; i < acl2->num_aces; i++)
132                 nacl->aces[i + acl1->num_aces] = acl2->aces[i];
133
134         return nacl;
135
136  failed:
137         talloc_free (nacl);
138         return NULL;
139
140 }
141
142 /* 
143    talloc and copy a security descriptor
144  */
145 struct security_descriptor *security_descriptor_copy(TALLOC_CTX *mem_ctx, 
146                                                      const struct security_descriptor *osd)
147 {
148         struct security_descriptor *nsd;
149
150         nsd = talloc_zero(mem_ctx, struct security_descriptor);
151         if (!nsd) {
152                 return NULL;
153         }
154
155         if (osd->owner_sid) {
156                 nsd->owner_sid = dom_sid_dup(nsd, osd->owner_sid);
157                 if (nsd->owner_sid == NULL) {
158                         goto failed;
159                 }
160         }
161         
162         if (osd->group_sid) {
163                 nsd->group_sid = dom_sid_dup(nsd, osd->group_sid);
164                 if (nsd->group_sid == NULL) {
165                         goto failed;
166                 }
167         }
168
169         if (osd->sacl) {
170                 nsd->sacl = security_acl_dup(nsd, osd->sacl);
171                 if (nsd->sacl == NULL) {
172                         goto failed;
173                 }
174         }
175
176         if (osd->dacl) {
177                 nsd->dacl = security_acl_dup(nsd, osd->dacl);
178                 if (nsd->dacl == NULL) {
179                         goto failed;
180                 }
181         }
182
183         nsd->revision = osd->revision;
184         nsd->type = osd->type;
185
186         return nsd;
187
188  failed:
189         talloc_free(nsd);
190
191         return NULL;
192 }
193
194 NTSTATUS security_descriptor_for_client(TALLOC_CTX *mem_ctx,
195                                         const struct security_descriptor *ssd,
196                                         uint32_t sec_info,
197                                         uint32_t access_granted,
198                                         struct security_descriptor **_csd)
199 {
200         struct security_descriptor *csd = NULL;
201         uint32_t access_required = 0;
202
203         *_csd = NULL;
204
205         if (sec_info & (SECINFO_OWNER|SECINFO_GROUP)) {
206                 access_required |= SEC_STD_READ_CONTROL;
207         }
208         if (sec_info & SECINFO_DACL) {
209                 access_required |= SEC_STD_READ_CONTROL;
210         }
211         if (sec_info & SECINFO_SACL) {
212                 access_required |= SEC_FLAG_SYSTEM_SECURITY;
213         }
214
215         if (access_required & (~access_granted)) {
216                 return NT_STATUS_ACCESS_DENIED;
217         }
218
219         /*
220          * make a copy...
221          */
222         csd = security_descriptor_copy(mem_ctx, ssd);
223         if (csd == NULL) {
224                 return NT_STATUS_NO_MEMORY;
225         }
226
227         /*
228          * ... and remove everthing not wanted
229          */
230
231         if (!(sec_info & SECINFO_OWNER)) {
232                 TALLOC_FREE(csd->owner_sid);
233                 csd->type &= ~SEC_DESC_OWNER_DEFAULTED;
234         }
235         if (!(sec_info & SECINFO_GROUP)) {
236                 TALLOC_FREE(csd->group_sid);
237                 csd->type &= ~SEC_DESC_GROUP_DEFAULTED;
238         }
239         if (!(sec_info & SECINFO_DACL)) {
240                 TALLOC_FREE(csd->dacl);
241                 csd->type &= ~(
242                         SEC_DESC_DACL_PRESENT |
243                         SEC_DESC_DACL_DEFAULTED|
244                         SEC_DESC_DACL_AUTO_INHERIT_REQ |
245                         SEC_DESC_DACL_AUTO_INHERITED |
246                         SEC_DESC_DACL_PROTECTED |
247                         SEC_DESC_DACL_TRUSTED);
248         }
249         if (!(sec_info & SECINFO_SACL)) {
250                 TALLOC_FREE(csd->sacl);
251                 csd->type &= ~(
252                         SEC_DESC_SACL_PRESENT |
253                         SEC_DESC_SACL_DEFAULTED |
254                         SEC_DESC_SACL_AUTO_INHERIT_REQ |
255                         SEC_DESC_SACL_AUTO_INHERITED |
256                         SEC_DESC_SACL_PROTECTED |
257                         SEC_DESC_SERVER_SECURITY);
258         }
259
260         *_csd = csd;
261         return NT_STATUS_OK;
262 }
263
264 /*
265   add an ACE to an ACL of a security_descriptor
266 */
267
268 static NTSTATUS security_descriptor_acl_add(struct security_descriptor *sd,
269                                             bool add_to_sacl,
270                                             const struct security_ace *ace,
271                                             ssize_t _idx)
272 {
273         struct security_acl *acl = NULL;
274         ssize_t idx;
275
276         if (add_to_sacl) {
277                 acl = sd->sacl;
278         } else {
279                 acl = sd->dacl;
280         }
281
282         if (acl == NULL) {
283                 acl = talloc(sd, struct security_acl);
284                 if (acl == NULL) {
285                         return NT_STATUS_NO_MEMORY;
286                 }
287                 acl->revision = SECURITY_ACL_REVISION_NT4;
288                 acl->size     = 0;
289                 acl->num_aces = 0;
290                 acl->aces     = NULL;
291         }
292
293         if (_idx < 0) {
294                 idx = (acl->num_aces + 1) + _idx;
295         } else {
296                 idx = _idx;
297         }
298
299         if (idx < 0) {
300                 return NT_STATUS_ARRAY_BOUNDS_EXCEEDED;
301         } else if (idx > acl->num_aces) {
302                 return NT_STATUS_ARRAY_BOUNDS_EXCEEDED;
303         }
304
305         acl->aces = talloc_realloc(acl, acl->aces,
306                                    struct security_ace, acl->num_aces+1);
307         if (acl->aces == NULL) {
308                 return NT_STATUS_NO_MEMORY;
309         }
310
311         ARRAY_INSERT_ELEMENT(acl->aces, acl->num_aces, *ace, idx);
312         acl->num_aces++;
313
314         switch (acl->aces[idx].type) {
315         case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
316         case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
317         case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
318         case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
319                 acl->revision = SECURITY_ACL_REVISION_ADS;
320                 break;
321         default:
322                 break;
323         }
324
325         if (add_to_sacl) {
326                 sd->sacl = acl;
327                 sd->type |= SEC_DESC_SACL_PRESENT;
328         } else {
329                 sd->dacl = acl;
330                 sd->type |= SEC_DESC_DACL_PRESENT;
331         }
332
333         return NT_STATUS_OK;
334 }
335
336 /*
337   add an ACE to the SACL of a security_descriptor
338 */
339
340 NTSTATUS security_descriptor_sacl_add(struct security_descriptor *sd,
341                                       const struct security_ace *ace)
342 {
343         return security_descriptor_acl_add(sd, true, ace, -1);
344 }
345
346 /*
347   insert an ACE at a given index to the SACL of a security_descriptor
348
349   idx can be negative, which means it's related to the new size from the
350   end, so -1 means the ace is appended at the end.
351 */
352
353 NTSTATUS security_descriptor_sacl_insert(struct security_descriptor *sd,
354                                          const struct security_ace *ace,
355                                          ssize_t idx)
356 {
357         return security_descriptor_acl_add(sd, true, ace, idx);
358 }
359
360 /*
361   add an ACE to the DACL of a security_descriptor
362 */
363
364 NTSTATUS security_descriptor_dacl_add(struct security_descriptor *sd,
365                                       const struct security_ace *ace)
366 {
367         return security_descriptor_acl_add(sd, false, ace, -1);
368 }
369
370 /*
371   insert an ACE at a given index to the DACL of a security_descriptor
372
373   idx can be negative, which means it's related to the new size from the
374   end, so -1 means the ace is appended at the end.
375 */
376
377 NTSTATUS security_descriptor_dacl_insert(struct security_descriptor *sd,
378                                          const struct security_ace *ace,
379                                          ssize_t idx)
380 {
381         return security_descriptor_acl_add(sd, false, ace, idx);
382 }
383
384 /*
385   delete the ACE corresponding to the given trustee in an ACL of a
386   security_descriptor
387 */
388
389 static NTSTATUS security_descriptor_acl_del(struct security_descriptor *sd,
390                                             bool sacl_del,
391                                             const struct dom_sid *trustee)
392 {
393         uint32_t i;
394         bool found = false;
395         struct security_acl *acl = NULL;
396
397         if (sacl_del) {
398                 acl = sd->sacl;
399         } else {
400                 acl = sd->dacl;
401         }
402
403         if (acl == NULL) {
404                 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
405         }
406
407         /* there can be multiple ace's for one trustee */
408         for (i=0;i<acl->num_aces;i++) {
409                 if (dom_sid_equal(trustee, &acl->aces[i].trustee)) {
410                         ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
411                         acl->num_aces--;
412                         if (acl->num_aces == 0) {
413                                 acl->aces = NULL;
414                         }
415                         found = true;
416                 }
417         }
418
419         if (!found) {
420                 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
421         }
422
423         acl->revision = SECURITY_ACL_REVISION_NT4;
424
425         for (i=0;i<acl->num_aces;i++) {
426                 switch (acl->aces[i].type) {
427                 case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
428                 case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
429                 case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
430                 case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
431                         acl->revision = SECURITY_ACL_REVISION_ADS;
432                         return NT_STATUS_OK;
433                 default:
434                         break; /* only for the switch statement */
435                 }
436         }
437
438         return NT_STATUS_OK;
439 }
440
441 /*
442   delete the ACE corresponding to the given trustee in the DACL of a
443   security_descriptor
444 */
445
446 NTSTATUS security_descriptor_dacl_del(struct security_descriptor *sd,
447                                       const struct dom_sid *trustee)
448 {
449         return security_descriptor_acl_del(sd, false, trustee);
450 }
451
452 /*
453   delete the ACE corresponding to the given trustee in the SACL of a
454   security_descriptor
455 */
456
457 NTSTATUS security_descriptor_sacl_del(struct security_descriptor *sd,
458                                       const struct dom_sid *trustee)
459 {
460         return security_descriptor_acl_del(sd, true, trustee);
461 }
462
463 /*
464   delete the given ACE in the SACL or DACL of a security_descriptor
465 */
466 static NTSTATUS security_descriptor_acl_del_ace(struct security_descriptor *sd,
467                                                 bool sacl_del,
468                                                 const struct security_ace *ace)
469 {
470         uint32_t i;
471         bool found = false;
472         struct security_acl *acl = NULL;
473
474         if (sacl_del) {
475                 acl = sd->sacl;
476         } else {
477                 acl = sd->dacl;
478         }
479
480         if (acl == NULL) {
481                 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
482         }
483
484         for (i=0;i<acl->num_aces;i++) {
485                 if (security_ace_equal(ace, &acl->aces[i])) {
486                         ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
487                         acl->num_aces--;
488                         if (acl->num_aces == 0) {
489                                 acl->aces = NULL;
490                         }
491                         found = true;
492                         i--;
493                 }
494         }
495
496         if (!found) {
497                 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
498         }
499
500         acl->revision = SECURITY_ACL_REVISION_NT4;
501
502         for (i=0;i<acl->num_aces;i++) {
503                 switch (acl->aces[i].type) {
504                 case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
505                 case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
506                 case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
507                 case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
508                         acl->revision = SECURITY_ACL_REVISION_ADS;
509                         return NT_STATUS_OK;
510                 default:
511                         break; /* only for the switch statement */
512                 }
513         }
514
515         return NT_STATUS_OK;
516 }
517
518 NTSTATUS security_descriptor_dacl_del_ace(struct security_descriptor *sd,
519                                           const struct security_ace *ace)
520 {
521         return security_descriptor_acl_del_ace(sd, false, ace);
522 }
523
524 NTSTATUS security_descriptor_sacl_del_ace(struct security_descriptor *sd,
525                                           const struct security_ace *ace)
526 {
527         return security_descriptor_acl_del_ace(sd, true, ace);
528 }
529 /*
530   compare two security ace structures
531 */
532 bool security_ace_equal(const struct security_ace *ace1,
533                         const struct security_ace *ace2)
534 {
535         if (ace1 == ace2) {
536                 return true;
537         }
538         if ((ace1 == NULL) || (ace2 == NULL)) {
539                 return false;
540         }
541         if (ace1->type != ace2->type) {
542                 return false;
543         }
544         if (ace1->flags != ace2->flags) {
545                 return false;
546         }
547         if (ace1->access_mask != ace2->access_mask) {
548                 return false;
549         }
550         if (!dom_sid_equal(&ace1->trustee, &ace2->trustee)) {
551                 return false;
552         }
553
554         return true;
555 }
556
557
558 /*
559   compare two security acl structures
560 */
561 bool security_acl_equal(const struct security_acl *acl1, 
562                         const struct security_acl *acl2)
563 {
564         uint32_t i;
565
566         if (acl1 == acl2) return true;
567         if (!acl1 || !acl2) return false;
568         if (acl1->revision != acl2->revision) return false;
569         if (acl1->num_aces != acl2->num_aces) return false;
570
571         for (i=0;i<acl1->num_aces;i++) {
572                 if (!security_ace_equal(&acl1->aces[i], &acl2->aces[i])) return false;
573         }
574         return true;    
575 }
576
577 /*
578   compare two security descriptors.
579 */
580 bool security_descriptor_equal(const struct security_descriptor *sd1, 
581                                const struct security_descriptor *sd2)
582 {
583         if (sd1 == sd2) return true;
584         if (!sd1 || !sd2) return false;
585         if (sd1->revision != sd2->revision) return false;
586         if (sd1->type != sd2->type) return false;
587
588         if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
589         if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
590         if (!security_acl_equal(sd1->sacl, sd2->sacl))      return false;
591         if (!security_acl_equal(sd1->dacl, sd2->dacl))      return false;
592
593         return true;    
594 }
595
596 /*
597   compare two security descriptors, but allow certain (missing) parts
598   to be masked out of the comparison
599 */
600 bool security_descriptor_mask_equal(const struct security_descriptor *sd1, 
601                                     const struct security_descriptor *sd2, 
602                                     uint32_t mask)
603 {
604         if (sd1 == sd2) return true;
605         if (!sd1 || !sd2) return false;
606         if (sd1->revision != sd2->revision) return false;
607         if ((sd1->type & mask) != (sd2->type & mask)) return false;
608
609         if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
610         if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
611         if ((mask & SEC_DESC_DACL_PRESENT) && !security_acl_equal(sd1->dacl, sd2->dacl))      return false;
612         if ((mask & SEC_DESC_SACL_PRESENT) && !security_acl_equal(sd1->sacl, sd2->sacl))      return false;
613
614         return true;    
615 }
616
617
618 static struct security_descriptor *security_descriptor_appendv(struct security_descriptor *sd,
619                                                                bool add_ace_to_sacl,
620                                                                va_list ap)
621 {
622         const char *sidstr;
623
624         while ((sidstr = va_arg(ap, const char *))) {
625                 struct dom_sid *sid;
626                 struct security_ace *ace = talloc_zero(sd, struct security_ace);
627                 NTSTATUS status;
628
629                 if (ace == NULL) {
630                         talloc_free(sd);
631                         return NULL;
632                 }
633                 ace->type = va_arg(ap, unsigned int);
634                 ace->access_mask = va_arg(ap, unsigned int);
635                 ace->flags = va_arg(ap, unsigned int);
636                 sid = dom_sid_parse_talloc(ace, sidstr);
637                 if (sid == NULL) {
638                         talloc_free(sd);
639                         return NULL;
640                 }
641                 ace->trustee = *sid;
642                 if (add_ace_to_sacl) {
643                         status = security_descriptor_sacl_add(sd, ace);
644                 } else {
645                         status = security_descriptor_dacl_add(sd, ace);
646                 }
647                 /* TODO: check: would talloc_free(ace) here be correct? */
648                 if (!NT_STATUS_IS_OK(status)) {
649                         talloc_free(sd);
650                         return NULL;
651                 }
652         }
653
654         return sd;
655 }
656
657 static struct security_descriptor *security_descriptor_createv(TALLOC_CTX *mem_ctx,
658                                                                uint16_t sd_type,
659                                                                const char *owner_sid,
660                                                                const char *group_sid,
661                                                                bool add_ace_to_sacl,
662                                                                va_list ap)
663 {
664         struct security_descriptor *sd;
665
666         sd = security_descriptor_initialise(mem_ctx);
667         if (sd == NULL) {
668                 return NULL;
669         }
670
671         sd->type |= sd_type;
672
673         if (owner_sid) {
674                 sd->owner_sid = dom_sid_parse_talloc(sd, owner_sid);
675                 if (sd->owner_sid == NULL) {
676                         talloc_free(sd);
677                         return NULL;
678                 }
679         }
680         if (group_sid) {
681                 sd->group_sid = dom_sid_parse_talloc(sd, group_sid);
682                 if (sd->group_sid == NULL) {
683                         talloc_free(sd);
684                         return NULL;
685                 }
686         }
687
688         return security_descriptor_appendv(sd, add_ace_to_sacl, ap);
689 }
690
691 /*
692   create a security descriptor using string SIDs. This is used by the
693   torture code to allow the easy creation of complex ACLs
694   This is a varargs function. The list of DACL ACEs ends with a NULL sid.
695
696   Each ACE contains a set of 4 parameters:
697   SID, ACCESS_TYPE, MASK, FLAGS
698
699   a typical call would be:
700
701     sd = security_descriptor_dacl_create(mem_ctx,
702                                          sd_type_flags,
703                                          mysid,
704                                          mygroup,
705                                          SID_NT_AUTHENTICATED_USERS,
706                                          SEC_ACE_TYPE_ACCESS_ALLOWED,
707                                          SEC_FILE_ALL,
708                                          SEC_ACE_FLAG_OBJECT_INHERIT,
709                                          NULL);
710   that would create a sd with one DACL ACE
711 */
712
713 struct security_descriptor *security_descriptor_dacl_create(TALLOC_CTX *mem_ctx,
714                                                             uint16_t sd_type,
715                                                             const char *owner_sid,
716                                                             const char *group_sid,
717                                                             ...)
718 {
719         struct security_descriptor *sd = NULL;
720         va_list ap;
721         va_start(ap, group_sid);
722         sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
723                                          group_sid, false, ap);
724         va_end(ap);
725
726         return sd;
727 }
728
729 struct security_descriptor *security_descriptor_sacl_create(TALLOC_CTX *mem_ctx,
730                                                             uint16_t sd_type,
731                                                             const char *owner_sid,
732                                                             const char *group_sid,
733                                                             ...)
734 {
735         struct security_descriptor *sd = NULL;
736         va_list ap;
737         va_start(ap, group_sid);
738         sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
739                                          group_sid, true, ap);
740         va_end(ap);
741
742         return sd;
743 }
744
745 struct security_ace *security_ace_create(TALLOC_CTX *mem_ctx,
746                                          const char *sid_str,
747                                          enum security_ace_type type,
748                                          uint32_t access_mask,
749                                          uint8_t flags)
750
751 {
752         struct security_ace *ace;
753         bool ok;
754
755         ace = talloc_zero(mem_ctx, struct security_ace);
756         if (ace == NULL) {
757                 return NULL;
758         }
759
760         ok = dom_sid_parse(sid_str, &ace->trustee);
761         if (!ok) {
762                 talloc_free(ace);
763                 return NULL;
764         }
765         ace->type = type;
766         ace->access_mask = access_mask;
767         ace->flags = flags;
768
769         return ace;
770 }
771
772 /*******************************************************************
773  Check for MS NFS ACEs in a sd
774 *******************************************************************/
775 bool security_descriptor_with_ms_nfs(const struct security_descriptor *psd)
776 {
777         uint32_t i;
778
779         if (psd->dacl == NULL) {
780                 return false;
781         }
782
783         for (i = 0; i < psd->dacl->num_aces; i++) {
784                 if (dom_sid_compare_domain(
785                             &global_sid_Unix_NFS,
786                             &psd->dacl->aces[i].trustee) == 0) {
787                         return true;
788                 }
789         }
790
791         return false;
792 }