
Source code management

COMP8440: FOSSD
Lecture 3



Early approaches

● Simple tools
● diff, patch and tar
● Patches sent by email
● Each developer maintains their own tree
● Distribution by ftp and usenet



Patches

 a/source3/rpc_server/srv_svcctl_nt.c
+++ b/source3/rpc_server/srv_svcctl_nt.c
@@ 466,9 +466,7 @@ WERROR _svcctl_EnumServicesStatusW(pipes_struct *p,
                }

                blob = ndr_push_blob(ndr);
               if (blob.length >= r>in.offered) {
                       memcpy(r>out.service, blob.data, r>in.offered);
               }
+               memcpy(r>out.service, blob.data, r>in.offered);
        }

        

● Basic tool of code exchange
● several formats available – unidiff now the norm
● contains short context for each change
● main tools: diff, patch, diffstat



Sending patches

● Common rules
● use diff -up, exclude generated files
● include diffstat output
● include an explanation of your patch
● [PATCH] at start of subject
● use inline or plain text encoding for patch
● break up your patches on logical boundaries
● use a patch series if needed
● check you've followed the project coding style
● be sure you are sending to the right place
● be patient, and follow up if need be
● Add Signed-off-by (for some projects)

Let's look at some examples on the kernel list ...



First generation SCM systems

● RCS and SCCS
● Manages files individually
● Only one person editing at a time
● No merge capability
● Provides development history
● Key data is who, what and when



The rise of CVS

● Concurrent Versions System
● Built on top of RCS
● Allowed for parallel development
● Included merge and conflict resolution

● based on diff/patch
● Hugely popular in the FOSS world

● Dominated FOSS development from 1991 to 2005
● Still very widely used, but less so each year

● Many limitations
● Poor rename and directory support
● Contacts centralised server for most operations
● Poor branch merging support

Let's see a demo ...



Centralised vs Distributed

● Where is the project hosted?
● CVS hosts in a central fashion
● Each developer has a 'checkout'
● Most project meta-data is only stored on the central 

server
● Distributed version control

● All project history is locally available to all developers
● Most systems aim for easy branching/merging



Subversion

● 'CVS done right'
● Attempt to re-invent centralised source code control
● Fixes many of the limitations in CVS
● Adds project-wide revisions
● Widely chosen to replace CVS in FOSS projects from 

2001 onwards
● Still very widely used

● Centralised design
● Use of non-distributed design has been criticised
● Distributed add-ons available (svk), but not widely 

used



Distributed Systems

● Early systems
● Code Co-Op (windows based) in 1997
● GNU Arch (aka TLA or Tom Lord's Arch) in 2001

● Bitkeeper
● Adopted by Linux kernel in 2002
● Unusual licensing model
● Huge impact on speed of kernel development

● Newer systems
● Lots of new systems starting in 2003
● bazaar, darcs, mecurial, git, monotone
● git has gained widest following



Bitkeeper and git

● Controversial choice
● Linux kernel adopted bitkeeper in 2002
● Led to acceleration of kernel development
● Proprietary tool, with freeware client
● License terms included a strong non-compete clause

● Move to git
● Makers of bitkeeper disapproved of free client
● Free bitkeeper withdrawn in 2005
● Replaced by new system 'git' in June 2005



SCM Interfaces

● Command line dominates
● Most FOSS users use command line interfaces
● Tools aim to produce a very fast workflow
● Most SCM tools also offer GUI or editor interfaces

● Web Interfaces
● Many SCM tools provide web interfaces
● Mostly used to browse development history
● cvsweb, gitweb both very popular
● Custom web interfaces are often built

● Interfaces with other systems
● Tools to integrate with bug tracking systems
● Integration with build management and build farms



Build Farms

● Integrating SCM with testing
● Automating testing can help find bugs faster
● Especially important for portability

● A build farm
● Wide range of machines/OSes
● Automatically run regressions tests on commit
● Usually results are available publicly
● Build/test failures may be reported by email

● Examples
● Tinderbox
● Samba build farm
● Build-bot



Public SCM Hosting

● Canned hosting
● Many/most FOSS projects used a canned hosting 

solution
● Canned project hosting can make project 

maintainence much easier
● usually less flexible than running your own

● DVCS public hosting
● DVCS workflow created a demand for easier hosting
● Many sites have sprung up for all the DVCS systems
● See for example 

● Git: repo.oz.cz, github.com
● Hg: bitbucket.org, freehg.org
● bzr: launchpad.net



SCM Compatibility

● Two SCMs, one project
● Some projects offer multiple SCMs for the same code
● Gateway tools offer interoperability
● As a new developer, choose the SCM that most of the 

existing developers in the project use
● Conversion tools

● Many newer SCMs offer automated conversion
● Allows project history to be preserved
● Often requires some manual tweaking
● Best known general converter is 'tailor'


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

