emem -> wmem conversion:
[metze/wireshark/wip.git] / epan / dissectors / packet-sna.c
1 /* packet-sna.c
2  * Routines for SNA
3  * Gilbert Ramirez <gram@alumni.rice.edu>
4  * Jochen Friedrich <jochen@scram.de>
5  *
6  * $Id$
7  *
8  * Wireshark - Network traffic analyzer
9  * By Gerald Combs <gerald@wireshark.org>
10  * Copyright 1998 Gerald Combs
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25  */
26
27 #include "config.h"
28
29 #include <glib.h>
30 #include <epan/packet.h>
31 #include <epan/llcsaps.h>
32 #include <epan/ppptypes.h>
33 #include <epan/sna-utils.h>
34 #include <epan/charsets.h>
35 #include <epan/prefs.h>
36 #include <epan/reassemble.h>
37
38 /*
39  * http://www.wanresources.com/snacell.html
40  * ftp://ftp.software.ibm.com/networking/pub/standards/aiw/formats/
41  *
42  */
43
44 static int proto_sna = -1;
45 static int proto_sna_xid = -1;
46 static int hf_sna_th = -1;
47 static int hf_sna_th_0 = -1;
48 static int hf_sna_th_fid = -1;
49 static int hf_sna_th_mpf = -1;
50 static int hf_sna_th_odai = -1;
51 static int hf_sna_th_efi = -1;
52 static int hf_sna_th_daf = -1;
53 static int hf_sna_th_oaf = -1;
54 static int hf_sna_th_snf = -1;
55 static int hf_sna_th_dcf = -1;
56 static int hf_sna_th_lsid = -1;
57 static int hf_sna_th_tg_sweep = -1;
58 static int hf_sna_th_er_vr_supp_ind = -1;
59 static int hf_sna_th_vr_pac_cnt_ind = -1;
60 static int hf_sna_th_ntwk_prty = -1;
61 static int hf_sna_th_tgsf = -1;
62 static int hf_sna_th_mft = -1;
63 static int hf_sna_th_piubf = -1;
64 static int hf_sna_th_iern = -1;
65 static int hf_sna_th_nlpoi = -1;
66 static int hf_sna_th_nlp_cp = -1;
67 static int hf_sna_th_ern = -1;
68 static int hf_sna_th_vrn = -1;
69 static int hf_sna_th_tpf = -1;
70 static int hf_sna_th_vr_cwi = -1;
71 static int hf_sna_th_tg_nonfifo_ind = -1;
72 static int hf_sna_th_vr_sqti = -1;
73 static int hf_sna_th_tg_snf = -1;
74 static int hf_sna_th_vrprq = -1;
75 static int hf_sna_th_vrprs = -1;
76 static int hf_sna_th_vr_cwri = -1;
77 static int hf_sna_th_vr_rwi = -1;
78 static int hf_sna_th_vr_snf_send = -1;
79 static int hf_sna_th_dsaf = -1;
80 static int hf_sna_th_osaf = -1;
81 static int hf_sna_th_snai = -1;
82 static int hf_sna_th_def = -1;
83 static int hf_sna_th_oef = -1;
84 static int hf_sna_th_sa = -1;
85 static int hf_sna_th_cmd_fmt = -1;
86 static int hf_sna_th_cmd_type = -1;
87 static int hf_sna_th_cmd_sn = -1;
88
89 static int hf_sna_nlp_nhdr = -1;
90 static int hf_sna_nlp_nhdr_0 = -1;
91 static int hf_sna_nlp_sm = -1;
92 static int hf_sna_nlp_tpf = -1;
93 static int hf_sna_nlp_nhdr_1 = -1;
94 static int hf_sna_nlp_ft = -1;
95 static int hf_sna_nlp_tspi = -1;
96 static int hf_sna_nlp_slowdn1 = -1;
97 static int hf_sna_nlp_slowdn2 = -1;
98 static int hf_sna_nlp_fra = -1;
99 static int hf_sna_nlp_anr = -1;
100 static int hf_sna_nlp_frh = -1;
101 static int hf_sna_nlp_thdr = -1;
102 static int hf_sna_nlp_tcid = -1;
103 static int hf_sna_nlp_thdr_8 = -1;
104 static int hf_sna_nlp_setupi = -1;
105 static int hf_sna_nlp_somi = -1;
106 static int hf_sna_nlp_eomi = -1;
107 static int hf_sna_nlp_sri = -1;
108 static int hf_sna_nlp_rasapi = -1;
109 static int hf_sna_nlp_retryi = -1;
110 static int hf_sna_nlp_thdr_9 = -1;
111 static int hf_sna_nlp_lmi = -1;
112 static int hf_sna_nlp_cqfi = -1;
113 static int hf_sna_nlp_osi = -1;
114 static int hf_sna_nlp_offset = -1;
115 static int hf_sna_nlp_dlf = -1;
116 static int hf_sna_nlp_bsn = -1;
117 static int hf_sna_nlp_opti_len = -1;
118 static int hf_sna_nlp_opti_type = -1;
119 static int hf_sna_nlp_opti_0d_version = -1;
120 static int hf_sna_nlp_opti_0d_4 = -1;
121 static int hf_sna_nlp_opti_0d_target = -1;
122 static int hf_sna_nlp_opti_0d_arb = -1;
123 static int hf_sna_nlp_opti_0d_reliable = -1;
124 static int hf_sna_nlp_opti_0d_dedicated = -1;
125 static int hf_sna_nlp_opti_0e_stat = -1;
126 static int hf_sna_nlp_opti_0e_gap = -1;
127 static int hf_sna_nlp_opti_0e_idle = -1;
128 static int hf_sna_nlp_opti_0e_nabsp = -1;
129 static int hf_sna_nlp_opti_0e_sync = -1;
130 static int hf_sna_nlp_opti_0e_echo = -1;
131 static int hf_sna_nlp_opti_0e_rseq = -1;
132 /* static int hf_sna_nlp_opti_0e_abspbeg = -1; */
133 /* static int hf_sna_nlp_opti_0e_abspend = -1; */
134 static int hf_sna_nlp_opti_0f_bits = -1;
135 static int hf_sna_nlp_opti_10_tcid = -1;
136 static int hf_sna_nlp_opti_12_sense = -1;
137 static int hf_sna_nlp_opti_14_si_len = -1;
138 static int hf_sna_nlp_opti_14_si_key = -1;
139 static int hf_sna_nlp_opti_14_si_2 = -1;
140 static int hf_sna_nlp_opti_14_si_refifo = -1;
141 static int hf_sna_nlp_opti_14_si_mobility = -1;
142 static int hf_sna_nlp_opti_14_si_dirsearch = -1;
143 static int hf_sna_nlp_opti_14_si_limitres = -1;
144 static int hf_sna_nlp_opti_14_si_ncescope = -1;
145 static int hf_sna_nlp_opti_14_si_mnpsrscv = -1;
146 static int hf_sna_nlp_opti_14_si_maxpsize = -1;
147 static int hf_sna_nlp_opti_14_si_switch = -1;
148 static int hf_sna_nlp_opti_14_si_alive = -1;
149 static int hf_sna_nlp_opti_14_rr_len = -1;
150 static int hf_sna_nlp_opti_14_rr_key = -1;
151 static int hf_sna_nlp_opti_14_rr_2 = -1;
152 static int hf_sna_nlp_opti_14_rr_bfe = -1;
153 static int hf_sna_nlp_opti_14_rr_num = -1;
154 static int hf_sna_nlp_opti_22_2 = -1;
155 static int hf_sna_nlp_opti_22_type = -1;
156 static int hf_sna_nlp_opti_22_raa = -1;
157 static int hf_sna_nlp_opti_22_parity = -1;
158 static int hf_sna_nlp_opti_22_arb = -1;
159 static int hf_sna_nlp_opti_22_3 = -1;
160 static int hf_sna_nlp_opti_22_ratereq = -1;
161 static int hf_sna_nlp_opti_22_raterep = -1;
162 static int hf_sna_nlp_opti_22_field1 = -1;
163 static int hf_sna_nlp_opti_22_field2 = -1;
164 static int hf_sna_nlp_opti_22_field3 = -1;
165 static int hf_sna_nlp_opti_22_field4 = -1;
166
167 static int hf_sna_rh = -1;
168 static int hf_sna_rh_0 = -1;
169 static int hf_sna_rh_1 = -1;
170 static int hf_sna_rh_2 = -1;
171 static int hf_sna_rh_rri = -1;
172 static int hf_sna_rh_ru_category = -1;
173 static int hf_sna_rh_fi = -1;
174 static int hf_sna_rh_sdi = -1;
175 static int hf_sna_rh_bci = -1;
176 static int hf_sna_rh_eci = -1;
177 static int hf_sna_rh_dr1 = -1;
178 static int hf_sna_rh_lcci = -1;
179 static int hf_sna_rh_dr2 = -1;
180 static int hf_sna_rh_eri = -1;
181 static int hf_sna_rh_rti = -1;
182 static int hf_sna_rh_rlwi = -1;
183 static int hf_sna_rh_qri = -1;
184 static int hf_sna_rh_pi = -1;
185 static int hf_sna_rh_bbi = -1;
186 static int hf_sna_rh_ebi = -1;
187 static int hf_sna_rh_cdi = -1;
188 static int hf_sna_rh_csi = -1;
189 static int hf_sna_rh_edi = -1;
190 static int hf_sna_rh_pdi = -1;
191 static int hf_sna_rh_cebi = -1;
192 /*static int hf_sna_ru = -1;*/
193
194 static int hf_sna_gds = -1;
195 static int hf_sna_gds_len = -1;
196 static int hf_sna_gds_type = -1;
197 static int hf_sna_gds_cont = -1;
198
199 /* static int hf_sna_xid = -1; */
200 static int hf_sna_xid_0 = -1;
201 static int hf_sna_xid_id = -1;
202 static int hf_sna_xid_format = -1;
203 static int hf_sna_xid_type = -1;
204 static int hf_sna_xid_len = -1;
205 static int hf_sna_xid_idblock = -1;
206 static int hf_sna_xid_idnum = -1;
207 static int hf_sna_xid_3_8 = -1;
208 static int hf_sna_xid_3_init_self = -1;
209 static int hf_sna_xid_3_stand_bind = -1;
210 static int hf_sna_xid_3_gener_bind = -1;
211 static int hf_sna_xid_3_recve_bind = -1;
212 static int hf_sna_xid_3_actpu = -1;
213 static int hf_sna_xid_3_nwnode = -1;
214 static int hf_sna_xid_3_cp = -1;
215 static int hf_sna_xid_3_cpcp = -1;
216 static int hf_sna_xid_3_state = -1;
217 static int hf_sna_xid_3_nonact = -1;
218 static int hf_sna_xid_3_cpchange = -1;
219 static int hf_sna_xid_3_10 = -1;
220 static int hf_sna_xid_3_asend_bind = -1;
221 static int hf_sna_xid_3_arecv_bind = -1;
222 static int hf_sna_xid_3_quiesce = -1;
223 static int hf_sna_xid_3_pucap = -1;
224 static int hf_sna_xid_3_pbn = -1;
225 static int hf_sna_xid_3_pacing = -1;
226 static int hf_sna_xid_3_11 = -1;
227 static int hf_sna_xid_3_tgshare = -1;
228 static int hf_sna_xid_3_dedsvc = -1;
229 static int hf_sna_xid_3_12 = -1;
230 static int hf_sna_xid_3_negcsup = -1;
231 static int hf_sna_xid_3_negcomp = -1;
232 static int hf_sna_xid_3_15 = -1;
233 static int hf_sna_xid_3_partg = -1;
234 static int hf_sna_xid_3_dlur = -1;
235 static int hf_sna_xid_3_dlus = -1;
236 static int hf_sna_xid_3_exbn = -1;
237 static int hf_sna_xid_3_genodai = -1;
238 static int hf_sna_xid_3_branch = -1;
239 static int hf_sna_xid_3_brnn = -1;
240 static int hf_sna_xid_3_tg = -1;
241 static int hf_sna_xid_3_dlc = -1;
242 static int hf_sna_xid_3_dlen = -1;
243
244 static int hf_sna_control_len = -1;
245 static int hf_sna_control_key = -1;
246 static int hf_sna_control_hprkey = -1;
247 static int hf_sna_control_05_delay = -1;
248 static int hf_sna_control_05_type = -1;
249 static int hf_sna_control_05_ptp = -1;
250 static int hf_sna_control_0e_type = -1;
251 static int hf_sna_control_0e_value = -1;
252
253 static gint ett_sna = -1;
254 static gint ett_sna_th = -1;
255 static gint ett_sna_th_fid = -1;
256 static gint ett_sna_nlp_nhdr = -1;
257 static gint ett_sna_nlp_nhdr_0 = -1;
258 static gint ett_sna_nlp_nhdr_1 = -1;
259 static gint ett_sna_nlp_thdr = -1;
260 static gint ett_sna_nlp_thdr_8 = -1;
261 static gint ett_sna_nlp_thdr_9 = -1;
262 static gint ett_sna_nlp_opti_un = -1;
263 static gint ett_sna_nlp_opti_0d = -1;
264 static gint ett_sna_nlp_opti_0d_4 = -1;
265 static gint ett_sna_nlp_opti_0e = -1;
266 static gint ett_sna_nlp_opti_0e_stat = -1;
267 static gint ett_sna_nlp_opti_0e_absp = -1;
268 static gint ett_sna_nlp_opti_0f = -1;
269 static gint ett_sna_nlp_opti_10 = -1;
270 static gint ett_sna_nlp_opti_12 = -1;
271 static gint ett_sna_nlp_opti_14 = -1;
272 static gint ett_sna_nlp_opti_14_si = -1;
273 static gint ett_sna_nlp_opti_14_si_2 = -1;
274 static gint ett_sna_nlp_opti_14_rr = -1;
275 static gint ett_sna_nlp_opti_14_rr_2 = -1;
276 static gint ett_sna_nlp_opti_22 = -1;
277 static gint ett_sna_nlp_opti_22_2 = -1;
278 static gint ett_sna_nlp_opti_22_3 = -1;
279 static gint ett_sna_rh = -1;
280 static gint ett_sna_rh_0 = -1;
281 static gint ett_sna_rh_1 = -1;
282 static gint ett_sna_rh_2 = -1;
283 static gint ett_sna_gds = -1;
284 static gint ett_sna_xid_0 = -1;
285 static gint ett_sna_xid_id = -1;
286 static gint ett_sna_xid_3_8 = -1;
287 static gint ett_sna_xid_3_10 = -1;
288 static gint ett_sna_xid_3_11 = -1;
289 static gint ett_sna_xid_3_12 = -1;
290 static gint ett_sna_xid_3_15 = -1;
291 static gint ett_sna_control_un = -1;
292 static gint ett_sna_control_05 = -1;
293 static gint ett_sna_control_05hpr = -1;
294 static gint ett_sna_control_05hpr_type = -1;
295 static gint ett_sna_control_0e = -1;
296
297 static dissector_handle_t data_handle;
298
299 /* Defragment fragmented SNA BIUs*/
300 static gboolean sna_defragment = TRUE;
301 static reassembly_table sna_reassembly_table;
302
303 /* Format Identifier */
304 static const value_string sna_th_fid_vals[] = {
305         { 0x0,  "SNA device <--> Non-SNA Device" },
306         { 0x1,  "Subarea Nodes, without ER or VR" },
307         { 0x2,  "Subarea Node <--> PU2" },
308         { 0x3,  "Subarea Node or SNA host <--> Subarea Node" },
309         { 0x4,  "Subarea Nodes, supporting ER and VR" },
310         { 0x5,  "HPR RTP endpoint nodes" },
311         { 0xa,  "HPR NLP Frame Routing" },
312         { 0xb,  "HPR NLP Frame Routing" },
313         { 0xc,  "HPR NLP Automatic Network Routing" },
314         { 0xd,  "HPR NLP Automatic Network Routing" },
315         { 0xf,  "Adjacent Subarea Nodes, supporting ER and VR" },
316         { 0x0,  NULL }
317 };
318
319 /* Mapping Field */
320 #define MPF_MIDDLE_SEGMENT  0
321 #define MPF_LAST_SEGMENT    1
322 #define MPF_FIRST_SEGMENT   2
323 #define MPF_WHOLE_BIU       3
324
325 static const value_string sna_th_mpf_vals[] = {
326         { MPF_MIDDLE_SEGMENT,   "Middle segment of a BIU" },
327         { MPF_LAST_SEGMENT,     "Last segment of a BIU" },
328         { MPF_FIRST_SEGMENT,    "First segment of a BIU" },
329         { MPF_WHOLE_BIU,        "Whole BIU" },
330         { 0,   NULL }
331 };
332
333 /* Expedited Flow Indicator */
334 static const value_string sna_th_efi_vals[] = {
335         { 0, "Normal Flow" },
336         { 1, "Expedited Flow" },
337         { 0x0,  NULL }
338 };
339
340 /* Request/Response Indicator */
341 static const value_string sna_rh_rri_vals[] = {
342         { 0, "Request" },
343         { 1, "Response" },
344         { 0x0,  NULL }
345 };
346
347 /* Request/Response Unit Category */
348 static const value_string sna_rh_ru_category_vals[] = {
349         { 0, "Function Management Data (FMD)" },
350         { 1, "Network Control (NC)" },
351         { 2, "Data Flow Control (DFC)" },
352         { 3, "Session Control (SC)" },
353         { 0x0,  NULL }
354 };
355
356 /* Format Indicator */
357 static const true_false_string sna_rh_fi_truth =
358         { "FM Header", "No FM Header" };
359
360 /* Sense Data Included */
361 static const true_false_string sna_rh_sdi_truth =
362         { "Included", "Not Included" };
363
364 /* Begin Chain Indicator */
365 static const true_false_string sna_rh_bci_truth =
366         { "First in Chain", "Not First in Chain" };
367
368 /* End Chain Indicator */
369 static const true_false_string sna_rh_eci_truth =
370         { "Last in Chain", "Not Last in Chain" };
371
372 /* Lengith-Checked Compression Indicator */
373 static const true_false_string sna_rh_lcci_truth =
374         { "Compressed", "Not Compressed" };
375
376 /* Response Type Indicator */
377 static const true_false_string sna_rh_rti_truth =
378         { "Negative", "Positive" };
379
380 /* Queued Response Indicator */
381 static const true_false_string sna_rh_qri_truth =
382         { "Enqueue response in TC queues", "Response bypasses TC queues" };
383
384 /* Code Selection Indicator */
385 static const value_string sna_rh_csi_vals[] = {
386         { 0, "EBCDIC" },
387         { 1, "ASCII" },
388         { 0x0,  NULL }
389 };
390
391 /* TG Sweep */
392 static const value_string sna_th_tg_sweep_vals[] = {
393         { 0, "This PIU may overtake any PU ahead of it." },
394         { 1, "This PIU does not overtake any PIU ahead of it." },
395         { 0x0,  NULL }
396 };
397
398 /* ER_VR_SUPP_IND */
399 static const value_string sna_th_er_vr_supp_ind_vals[] = {
400         { 0, "Each node supports ER and VR protocols" },
401         { 1, "Includes at least one node that does not support ER and VR"
402             " protocols"  },
403         { 0x0,  NULL }
404 };
405
406 /* VR_PAC_CNT_IND */
407 static const value_string sna_th_vr_pac_cnt_ind_vals[] = {
408         { 0, "Pacing count on the VR has not reached 0" },
409         { 1, "Pacing count on the VR has reached 0" },
410         { 0x0,  NULL }
411 };
412
413 /* NTWK_PRTY */
414 static const value_string sna_th_ntwk_prty_vals[] = {
415         { 0, "PIU flows at a lower priority" },
416         { 1, "PIU flows at network priority (highest transmission priority)" },
417         { 0x0,  NULL }
418 };
419
420 /* TGSF */
421 static const value_string sna_th_tgsf_vals[] = {
422         { 0, "Not segmented" },
423         { 1, "Last segment" },
424         { 2, "First segment" },
425         { 3, "Middle segment" },
426         { 0x0,  NULL }
427 };
428
429 /* PIUBF */
430 static const value_string sna_th_piubf_vals[] = {
431         { 0, "Single PIU frame" },
432         { 1, "Last PIU of a multiple PIU frame" },
433         { 2, "First PIU of a multiple PIU frame" },
434         { 3, "Middle PIU of a multiple PIU frame" },
435         { 0x0,  NULL }
436 };
437
438 /* NLPOI */
439 static const value_string sna_th_nlpoi_vals[] = {
440         { 0, "NLP starts within this FID4 TH" },
441         { 1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" },
442         { 0x0,  NULL }
443 };
444
445 /* TPF */
446 static const value_string sna_th_tpf_vals[] = {
447         { 0, "Low Priority" },
448         { 1, "Medium Priority" },
449         { 2, "High Priority" },
450         { 3, "Network Priority" },
451         { 0x0,  NULL }
452 };
453
454 /* VR_CWI */
455 static const value_string sna_th_vr_cwi_vals[] = {
456         { 0, "Increment window size" },
457         { 1, "Decrement window size" },
458         { 0x0,  NULL }
459 };
460
461 /* TG_NONFIFO_IND */
462 static const true_false_string sna_th_tg_nonfifo_ind_truth =
463         { "TG FIFO is not required", "TG FIFO is required" };
464
465 /* VR_SQTI */
466 static const value_string sna_th_vr_sqti_vals[] = {
467         { 0, "Non-sequenced, Non-supervisory" },
468         { 1, "Non-sequenced, Supervisory" },
469         { 2, "Singly-sequenced" },
470         { 0x0,  NULL }
471 };
472
473 /* VRPRQ */
474 static const true_false_string sna_th_vrprq_truth = {
475         "VR pacing request is sent asking for a VR pacing response",
476         "No VR pacing response is requested",
477 };
478
479 /* VRPRS */
480 static const true_false_string sna_th_vrprs_truth = {
481         "VR pacing response is sent in response to a VRPRQ bit set",
482         "No pacing response sent",
483 };
484
485 /* VR_CWRI */
486 static const value_string sna_th_vr_cwri_vals[] = {
487         { 0, "Increment window size by 1" },
488         { 1, "Decrement window size by 1" },
489         { 0x0,  NULL }
490 };
491
492 /* VR_RWI */
493 static const true_false_string sna_th_vr_rwi_truth = {
494         "Reset window size to the minimum specified in NC_ACTVR",
495         "Do not reset window size",
496 };
497
498 /* Switching Mode */
499 static const value_string sna_nlp_sm_vals[] = {
500         { 5, "Function routing" },
501         { 6, "Automatic network routing" },
502         { 0x0,  NULL }
503 };
504
505 static const true_false_string sna_nlp_tspi_truth =
506         { "Time sensitive", "Not time sensitive" };
507
508 static const true_false_string sna_nlp_slowdn1_truth =
509         { "Minor congestion", "No minor congestion" };
510
511 static const true_false_string sna_nlp_slowdn2_truth =
512         { "Major congestion", "No major congestion" };
513
514 /* Function Type */
515 static const value_string sna_nlp_ft_vals[] = {
516         { 0x10, "LDLC" },
517         { 0x0,  NULL }
518 };
519
520 static const value_string sna_nlp_frh_vals[] = {
521         { 0x03, "XID complete request" },
522         { 0x04, "XID complete response" },
523         { 0x0,  NULL }
524 };
525
526 static const true_false_string sna_nlp_setupi_truth =
527         { "Connection setup segment present", "Connection setup segment not"
528             " present" };
529
530 static const true_false_string sna_nlp_somi_truth =
531         { "Start of message", "Not start of message" };
532
533 static const true_false_string sna_nlp_eomi_truth =
534         { "End of message", "Not end of message" };
535
536 static const true_false_string sna_nlp_sri_truth =
537         { "Status requested", "No status requested" };
538
539 static const true_false_string sna_nlp_rasapi_truth =
540         { "Reply as soon as possible", "No need to reply as soon as possible" };
541
542 static const true_false_string sna_nlp_retryi_truth =
543         { "Undefined", "Sender will retransmit" };
544
545 static const true_false_string sna_nlp_lmi_truth =
546         { "Last message", "Not last message" };
547
548 static const true_false_string sna_nlp_cqfi_truth =
549         { "CQFI included", "CQFI not included" };
550
551 static const true_false_string sna_nlp_osi_truth =
552         { "Optional segments present", "No optional segments present" };
553
554 static const value_string sna_xid_3_state_vals[] = {
555         { 0x00, "Exchange state indicators not supported" },
556         { 0x01, "Negotiation-proceeding exchange" },
557         { 0x02, "Prenegotiation exchange" },
558         { 0x03, "Nonactivation exchange" },
559         { 0x0, NULL }
560 };
561
562 static const value_string sna_xid_3_branch_vals[] = {
563         { 0x00, "Sender does not support branch extender" },
564         { 0x01, "TG is branch uplink" },
565         { 0x02, "TG is branch downlink" },
566         { 0x03, "TG is neither uplink nor downlink" },
567         { 0x0, NULL }
568 };
569
570 static const value_string sna_xid_type_vals[] = {
571         { 0x01, "T1 node" },
572         { 0x02, "T2.0 or T2.1 node" },
573         { 0x03, "Reserved" },
574         { 0x04, "T4 or T5 node" },
575         { 0x0, NULL }
576 };
577
578 static const value_string sna_nlp_opti_vals[] = {
579         { 0x0d, "Connection Setup Segment" },
580         { 0x0e, "Status Segment" },
581         { 0x0f, "Client Out Of Band Bits Segment" },
582         { 0x10, "Connection Identifier Exchange Segment" },
583         { 0x12, "Connection Fault Segment" },
584         { 0x14, "Switching Information Segment" },
585         { 0x22, "Adaptive Rate-Based Segment" },
586         { 0x0, NULL }
587 };
588
589 static const value_string sna_nlp_opti_0d_version_vals[] = {
590         { 0x0101, "Version 1.1" },
591         { 0x0, NULL }
592 };
593
594 static const value_string sna_nlp_opti_0f_bits_vals[] = {
595         { 0x0001, "Request Deactivation" },
596         { 0x8000, "Reply - OK" },
597         { 0x8004, "Reply - Reject" },
598         { 0x0, NULL }
599 };
600
601 static const value_string sna_nlp_opti_22_type_vals[] = {
602         { 0x00, "Setup" },
603         { 0x01, "Rate Reply" },
604         { 0x02, "Rate Request" },
605         { 0x03, "Rate Request/Rate Reply" },
606         { 0x0, NULL }
607 };
608
609 static const value_string sna_nlp_opti_22_raa_vals[] = {
610         { 0x00, "Normal" },
611         { 0x01, "Restraint" },
612         { 0x02, "Slowdown1" },
613         { 0x03, "Slowdown2" },
614         { 0x04, "Critical" },
615         { 0x0, NULL }
616 };
617
618 static const value_string sna_nlp_opti_22_arb_vals[] = {
619         { 0x00, "Base Mode ARB" },
620         { 0x01, "Responsive Mode ARB" },
621         { 0x0, NULL }
622 };
623
624 /* GDS Variable Type */
625 static const value_string sna_gds_var_vals[] = {
626         { 0x1210, "Change Number Of Sessions" },
627         { 0x1211, "Exchange Log Name" },
628         { 0x1212, "Control Point Management Services Unit" },
629         { 0x1213, "Compare States" },
630         { 0x1214, "LU Names Position" },
631         { 0x1215, "LU Name" },
632         { 0x1217, "Do Know" },
633         { 0x1218, "Partner Restart" },
634         { 0x1219, "Don't Know" },
635         { 0x1220, "Sign-Off" },
636         { 0x1221, "Sign-On" },
637         { 0x1222, "SNMP-over-SNA" },
638         { 0x1223, "Node Address Service" },
639         { 0x12C1, "CP Capabilities" },
640         { 0x12C2, "Topology Database Update" },
641         { 0x12C3, "Register Resource" },
642         { 0x12C4, "Locate" },
643         { 0x12C5, "Cross-Domain Initiate" },
644         { 0x12C9, "Delete Resource" },
645         { 0x12CA, "Find Resource" },
646         { 0x12CB, "Found Resource" },
647         { 0x12CC, "Notify" },
648         { 0x12CD, "Initiate-Other Cross-Domain" },
649         { 0x12CE, "Route Setup" },
650         { 0x12E1, "Error Log" },
651         { 0x12F1, "Null Data" },
652         { 0x12F2, "User Control Date" },
653         { 0x12F3, "Map Name" },
654         { 0x12F4, "Error Data" },
655         { 0x12F6, "Authentication Token Data" },
656         { 0x12F8, "Service Flow Authentication Token Data" },
657         { 0x12FF, "Application Data" },
658         { 0x1310, "MDS Message Unit" },
659         { 0x1311, "MDS Routing Information" },
660         { 0x1500, "FID2 Encapsulation" },
661         { 0x0,    NULL }
662 };
663
664 /* Control Vector Type */
665 static const value_string sna_control_vals[] = {
666         { 0x00,   "SSCP-LU Session Capabilities Control Vector" },
667         { 0x01,   "Date-Time Control Vector" },
668         { 0x02,   "Subarea Routing Control Vector" },
669         { 0x03,   "SDLC Secondary Station Control Vector" },
670         { 0x04,   "LU Control Vector" },
671         { 0x05,   "Channel Control Vector" },
672         { 0x06,   "Cross-Domain Resource Manager (CDRM) Control Vector" },
673         { 0x07,   "PU FMD-RU-Usage Control Vector" },
674         { 0x08,   "Intensive Mode Control Vector" },
675         { 0x09,   "Activation Request / Response Sequence Identifier Control"
676             " Vector" },
677         { 0x0a,   "User Request Correlator Control Vector" },
678         { 0x0b,   "SSCP-PU Session Capabilities Control Vector" },
679         { 0x0c,   "LU-LU Session Capabilities Control Vector" },
680         { 0x0d,   "Mode / Class-of-Service / Virtual-Route-Identifier List"
681             " Control Vector" },
682         { 0x0e,   "Network Name Control Vector" },
683         { 0x0f,   "Link Capabilities and Status Control Vector" },
684         { 0x10,   "Product Set ID Control Vector" },
685         { 0x11,   "Load Module Correlation Control Vector" },
686         { 0x12,   "Network Identifier Control Vector" },
687         { 0x13,   "Gateway Support Capabilities Control Vector" },
688         { 0x14,   "Session Initiation Control Vector" },
689         { 0x15,   "Network-Qualified Address Pair Control Vector" },
690         { 0x16,   "Names Substitution Control Vector" },
691         { 0x17,   "SSCP Identifier Control Vector" },
692         { 0x18,   "SSCP Name Control Vector" },
693         { 0x19,   "Resource Identifier Control Vector" },
694         { 0x1a,   "NAU Address Control Vector" },
695         { 0x1b,   "VRID List Control Vector" },
696         { 0x1c,   "Network-Qualified Name Pair Control Vector" },
697         { 0x1e,   "VR-ER Mapping Data Control Vector" },
698         { 0x1f,   "ER Configuration Control Vector" },
699         { 0x23,   "Local-Form Session Identifier Control Vector" },
700         { 0x24,   "IPL Load Module Request Control Vector" },
701         { 0x25,   "Security ID Control Control Vector" },
702         { 0x26,   "Network Connection Endpoint Identifier Control Vector" },
703         { 0x27,   "XRF Session Activation Control Vector" },
704         { 0x28,   "Related Session Identifier Control Vector" },
705         { 0x29,   "Session State Data Control Vector" },
706         { 0x2a,   "Session Information Control Vector" },
707         { 0x2b,   "Route Selection Control Vector" },
708         { 0x2c,   "COS/TPF Control Vector" },
709         { 0x2d,   "Mode Control Vector" },
710         { 0x2f,   "LU Definition Control Vector" },
711         { 0x30,   "Assign LU Characteristics Control Vector" },
712         { 0x31,   "BIND Image Control Vector" },
713         { 0x32,   "Short-Hold Mode Control Vector" },
714         { 0x33,   "ENCP Search Control Control Vector" },
715         { 0x34,   "LU Definition Override Control Vector" },
716         { 0x35,   "Extended Sense Data Control Vector" },
717         { 0x36,   "Directory Error Control Vector" },
718         { 0x37,   "Directory Entry Correlator Control Vector" },
719         { 0x38,   "Short-Hold Mode Emulation Control Vector" },
720         { 0x39,   "Network Connection Endpoint (NCE) Instance Identifier"
721             " Control Vector" },
722         { 0x3a,   "Route Status Data Control Vector" },
723         { 0x3b,   "VR Congestion Data Control Vector" },
724         { 0x3c,   "Associated Resource Entry Control Vector" },
725         { 0x3d,   "Directory Entry Control Vector" },
726         { 0x3e,   "Directory Entry Characteristic Control Vector" },
727         { 0x3f,   "SSCP (SLU) Capabilities Control Vector" },
728         { 0x40,   "Real Associated Resource Control Vector" },
729         { 0x41,   "Station Parameters Control Vector" },
730         { 0x42,   "Dynamic Path Update Data Control Vector" },
731         { 0x43,   "Extended SDLC Station Control Vector" },
732         { 0x44,   "Node Descriptor Control Vector" },
733         { 0x45,   "Node Characteristics Control Vector" },
734         { 0x46,   "TG Descriptor Control Vector" },
735         { 0x47,   "TG Characteristics Control Vector" },
736         { 0x48,   "Topology Resource Descriptor Control Vector" },
737         { 0x49,   "Multinode Persistent Sessions (MNPS) LU Names Control"
738             " Vector" },
739         { 0x4a,   "Real Owning Control Point Control Vector" },
740         { 0x4b,   "RTP Transport Connection Identifier Control Vector" },
741         { 0x51,   "DLUR/S Capabilities Control Vector" },
742         { 0x52,   "Primary Send Pacing Window Size Control Vector" },
743         { 0x56,   "Call Security Verification Control Vector" },
744         { 0x57,   "DLC Connection Data Control Vector" },
745         { 0x59,   "Installation-Defined CDINIT Data Control Vector" },
746         { 0x5a,   "Session Services Extension Support Control Vector" },
747         { 0x5b,   "Interchange Node Support Control Vector" },
748         { 0x5c,   "APPN Message Transport Control Vector" },
749         { 0x5d,   "Subarea Message Transport Control Vector" },
750         { 0x5e,   "Related Request Control Vector" },
751         { 0x5f,   "Extended Fully Qualified PCID Control Vector" },
752         { 0x60,   "Fully Qualified PCID Control Vector" },
753         { 0x61,   "HPR Capabilities Control Vector" },
754         { 0x62,   "Session Address Control Vector" },
755         { 0x63,   "Cryptographic Key Distribution Control Vector" },
756         { 0x64,   "TCP/IP Information Control Vector" },
757         { 0x65,   "Device Characteristics Control Vector" },
758         { 0x66,   "Length-Checked Compression Control Vector" },
759         { 0x67,   "Automatic Network Routing (ANR) Path Control Vector" },
760         { 0x68,   "XRF/Session Cryptography Control Vector" },
761         { 0x69,   "Switched Parameters Control Vector" },
762         { 0x6a,   "ER Congestion Data Control Vector" },
763         { 0x71,   "Triple DES Cryptography Key Continuation Control Vector" },
764         { 0xfe,   "Control Vector Keys Not Recognized" },
765         { 0x0,    NULL }
766 };
767
768 static const value_string sna_control_hpr_vals[] = {
769         { 0x00,   "Node Identifier Control Vector" },
770         { 0x03,   "Network ID Control Vector" },
771         { 0x05,   "Network Address Control Vector" },
772         { 0x0,    NULL }
773 };
774
775 static const value_string sna_control_0e_type_vals[] = {
776         { 0xF1,   "PU Name" },
777         { 0xF3,   "LU Name" },
778         { 0xF4,   "CP Name" },
779         { 0xF5,   "SSCP Name" },
780         { 0xF6,   "NNCP Name" },
781         { 0xF7,   "Link Station Name" },
782         { 0xF8,   "CP Name of CP(PLU)" },
783         { 0xF9,   "CP Name of CP(SLU)" },
784         { 0xFA,   "Generic Name" },
785         { 0x0,    NULL }
786 };
787
788 /* Values to direct the top-most dissector what to dissect
789  * after the TH. */
790 enum next_dissection_enum {
791     stop_here,
792     rh_only,
793     everything
794 };
795
796 enum parse {
797     LT,
798     KL
799 };
800
801 typedef enum next_dissection_enum next_dissection_t;
802
803 static void dissect_xid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
804 static void dissect_fid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
805 static void dissect_nlp (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
806 static void dissect_gds (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
807 static void dissect_rh (tvbuff_t*, int, proto_tree*);
808 static void dissect_control(tvbuff_t*, int, int, proto_tree*, int, enum parse);
809
810 /* --------------------------------------------------------------------
811  * Chapter 2 High-Performance Routing (HPR) Headers
812  * --------------------------------------------------------------------
813  */
814
815 static void
816 dissect_optional_0d(tvbuff_t *tvb, proto_tree *tree)
817 {
818         int             bits, offset, len, pad;
819         proto_tree      *sub_tree;
820         proto_item      *sub_ti = NULL;
821
822         if (!tree)
823                 return;
824
825         proto_tree_add_item(tree, hf_sna_nlp_opti_0d_version, tvb, 2, 2, ENC_BIG_ENDIAN);
826         bits = tvb_get_guint8(tvb, 4);
827
828         sub_ti = proto_tree_add_uint(tree, hf_sna_nlp_opti_0d_4,
829             tvb, 4, 1, bits);
830         sub_tree = proto_item_add_subtree(sub_ti,
831             ett_sna_nlp_opti_0d_4);
832
833         proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_target,
834             tvb, 4, 1, bits);
835         proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_arb,
836             tvb, 4, 1, bits);
837         proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_reliable,
838             tvb, 4, 1, bits);
839         proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_dedicated,
840             tvb, 4, 1, bits);
841
842         proto_tree_add_text(tree, tvb, 5, 3, "Reserved");
843
844         offset = 8;
845
846         while (tvb_offset_exists(tvb, offset)) {
847                 len = tvb_get_guint8(tvb, offset+0);
848                 if (len) {
849                         dissect_control(tvb, offset, len, tree, 1, LT);
850                         pad = (len+3) & 0xfffc;
851                         if (pad > len)
852                                 proto_tree_add_text(tree, tvb, offset+len,
853                                     pad-len, "Padding");
854                         offset += pad;
855                 } else {
856                         /* Avoid endless loop */
857                         return;
858                 }
859         }
860 }
861
862 static void
863 dissect_optional_0e(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
864 {
865         int             bits, offset;
866         proto_tree      *sub_tree;
867         proto_item      *sub_ti = NULL;
868
869         bits = tvb_get_guint8(tvb, 2);
870         offset = 20;
871
872         if (tree) {
873                 sub_ti = proto_tree_add_item(tree, hf_sna_nlp_opti_0e_stat,
874                     tvb, 2, 1, ENC_BIG_ENDIAN);
875                 sub_tree = proto_item_add_subtree(sub_ti,
876                     ett_sna_nlp_opti_0e_stat);
877
878                 proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0e_gap,
879                     tvb, 2, 1, bits);
880                 proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0e_idle,
881                     tvb, 2, 1, bits);
882                 proto_tree_add_item(tree, hf_sna_nlp_opti_0e_nabsp,
883                     tvb, 3, 1, ENC_BIG_ENDIAN);
884                 proto_tree_add_item(tree, hf_sna_nlp_opti_0e_sync,
885                     tvb, 4, 2, ENC_BIG_ENDIAN);
886                 proto_tree_add_item(tree, hf_sna_nlp_opti_0e_echo,
887                     tvb, 6, 2, ENC_BIG_ENDIAN);
888                 proto_tree_add_item(tree, hf_sna_nlp_opti_0e_rseq,
889                     tvb, 8, 4, ENC_BIG_ENDIAN);
890                 proto_tree_add_text(tree, tvb, 12, 8, "Reserved");
891
892                 if (tvb_offset_exists(tvb, offset))
893                         call_dissector(data_handle,
894                             tvb_new_subset_remaining(tvb, 4), pinfo, tree);
895         }
896         if (bits & 0x40) {
897                 col_set_str(pinfo->cinfo, COL_INFO, "HPR Idle Message");
898         } else {
899                 col_set_str(pinfo->cinfo, COL_INFO, "HPR Status Message");
900         }
901 }
902
903 static void
904 dissect_optional_0f(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
905 {
906         if (!tree)
907                 return;
908
909         proto_tree_add_item(tree, hf_sna_nlp_opti_0f_bits, tvb, 2, 2, ENC_BIG_ENDIAN);
910         if (tvb_offset_exists(tvb, 4))
911                 call_dissector(data_handle,
912                     tvb_new_subset_remaining(tvb, 4), pinfo, tree);
913 }
914
915 static void
916 dissect_optional_10(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
917 {
918         if (!tree)
919                 return;
920
921         proto_tree_add_text(tree, tvb, 2, 2, "Reserved");
922         proto_tree_add_item(tree, hf_sna_nlp_opti_10_tcid, tvb, 4, 8, ENC_NA);
923         if (tvb_offset_exists(tvb, 12))
924                 call_dissector(data_handle,
925                     tvb_new_subset_remaining(tvb, 12), pinfo, tree);
926 }
927
928 static void
929 dissect_optional_12(tvbuff_t *tvb, proto_tree *tree)
930 {
931         if (!tree)
932                 return;
933
934         proto_tree_add_text(tree, tvb, 2, 2, "Reserved");
935         proto_tree_add_item(tree, hf_sna_nlp_opti_12_sense, tvb, 4, -1, ENC_NA);
936 }
937
938 static void
939 dissect_optional_14(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
940 {
941         proto_tree      *sub_tree, *bf_tree;
942         proto_item      *sub_item, *bf_item;
943         int             len, pad, type, bits, offset, num, sublen;
944
945         if (!tree)
946                 return;
947
948         proto_tree_add_text(tree, tvb, 2, 2, "Reserved");
949
950         offset = 4;
951
952         len = tvb_get_guint8(tvb, offset);
953         type = tvb_get_guint8(tvb, offset+1);
954
955         if ((type != 0x83) || (len <= 16)) {
956                 /* Invalid */
957                 call_dissector(data_handle,
958                     tvb_new_subset_remaining(tvb, offset), pinfo, tree);
959                 return;
960         }
961         sub_item = proto_tree_add_text(tree, tvb, offset, len,
962             "Switching Information Control Vector");
963         sub_tree = proto_item_add_subtree(sub_item, ett_sna_nlp_opti_14_si);
964
965         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_len,
966             tvb, offset, 1, len);
967         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_key,
968             tvb, offset+1, 1, type);
969
970         bits = tvb_get_guint8(tvb, offset+2);
971         bf_item = proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_2,
972             tvb, offset+2, 1, bits);
973         bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_14_si_2);
974
975         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_refifo,
976             tvb, offset+2, 1, bits);
977         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_mobility,
978             tvb, offset+2, 1, bits);
979         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_dirsearch,
980             tvb, offset+2, 1, bits);
981         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_limitres,
982             tvb, offset+2, 1, bits);
983         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_ncescope,
984             tvb, offset+2, 1, bits);
985         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_mnpsrscv,
986             tvb, offset+2, 1, bits);
987
988         proto_tree_add_text(sub_tree, tvb, offset+3, 1, "Reserved");
989         proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_maxpsize,
990             tvb, offset+4, 4, ENC_BIG_ENDIAN);
991         proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_switch,
992             tvb, offset+8, 4, ENC_BIG_ENDIAN);
993         proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_alive,
994             tvb, offset+12, 4, ENC_BIG_ENDIAN);
995
996         dissect_control(tvb, offset+16, len-16, sub_tree, 1, LT);
997
998         pad = (len+3) & 0xfffc;
999         if (pad > len)
1000                 proto_tree_add_text(sub_tree, tvb, offset+len, pad-len,
1001                     "Padding");
1002         offset += pad;
1003
1004         len = tvb_get_guint8(tvb, offset);
1005         type = tvb_get_guint8(tvb, offset+1);
1006
1007         if ((type != 0x85) || ( len < 4))  {
1008                 /* Invalid */
1009                 call_dissector(data_handle,
1010                     tvb_new_subset_remaining(tvb, offset), pinfo, tree);
1011                 return;
1012         }
1013         sub_item = proto_tree_add_text(tree, tvb, offset, len,
1014             "Return Route TG Descriptor Control Vector");
1015         sub_tree = proto_item_add_subtree(sub_item, ett_sna_nlp_opti_14_rr);
1016
1017         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_len,
1018             tvb, offset, 1, len);
1019         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_key,
1020             tvb, offset+1, 1, type);
1021
1022         bits = tvb_get_guint8(tvb, offset+2);
1023         bf_item = proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_2,
1024             tvb, offset+2, 1, bits);
1025         bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_14_rr_2);
1026
1027         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_rr_bfe,
1028             tvb, offset+2, 1, bits);
1029
1030         num = tvb_get_guint8(tvb, offset+3);
1031
1032         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_num,
1033             tvb, offset+3, 1, num);
1034
1035         offset += 4;
1036
1037         while (num) {
1038                 sublen = tvb_get_guint8(tvb, offset);
1039                 if (sublen) {
1040                         dissect_control(tvb, offset, sublen, sub_tree, 1, LT);
1041                 } else {
1042                         /* Invalid */
1043                         call_dissector(data_handle,
1044                             tvb_new_subset_remaining(tvb, offset), pinfo, tree);
1045                         return;
1046                 }
1047                 /* No padding here */
1048                 offset += sublen;
1049                 num--;
1050         }
1051 }
1052
1053 static void
1054 dissect_optional_22(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
1055 {
1056         proto_tree      *bf_tree;
1057         proto_item      *bf_item;
1058         int             bits, type;
1059
1060         if (!tree)
1061                 return;
1062
1063         bits = tvb_get_guint8(tvb, 2);
1064         type = (bits & 0xc0) >> 6;
1065
1066         bf_item = proto_tree_add_uint(tree, hf_sna_nlp_opti_22_2,
1067             tvb, 2, 1, bits);
1068         bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_22_2);
1069
1070         proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_type,
1071             tvb, 2, 1, bits);
1072         proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_raa,
1073             tvb, 2, 1, bits);
1074         proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_22_parity,
1075             tvb, 2, 1, bits);
1076         proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_arb,
1077             tvb, 2, 1, bits);
1078
1079         bits = tvb_get_guint8(tvb, 3);
1080
1081         bf_item = proto_tree_add_uint(tree, hf_sna_nlp_opti_22_3,
1082             tvb, 3, 1, bits);
1083         bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_22_3);
1084
1085         proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_ratereq,
1086             tvb, 3, 1, bits);
1087         proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_raterep,
1088             tvb, 3, 1, bits);
1089
1090         proto_tree_add_item(tree, hf_sna_nlp_opti_22_field1,
1091             tvb, 4, 4, ENC_BIG_ENDIAN);
1092         proto_tree_add_item(tree, hf_sna_nlp_opti_22_field2,
1093             tvb, 8, 4, ENC_BIG_ENDIAN);
1094
1095         if (type == 0) {
1096                 proto_tree_add_item(tree, hf_sna_nlp_opti_22_field3,
1097                     tvb, 12, 4, ENC_BIG_ENDIAN);
1098                 proto_tree_add_item(tree, hf_sna_nlp_opti_22_field4,
1099                     tvb, 16, 4, ENC_BIG_ENDIAN);
1100
1101                 if (tvb_offset_exists(tvb, 20))
1102                         call_dissector(data_handle,
1103                             tvb_new_subset_remaining(tvb, 20), pinfo, tree);
1104         } else {
1105                 if (tvb_offset_exists(tvb, 12))
1106                         call_dissector(data_handle,
1107                             tvb_new_subset_remaining(tvb, 12), pinfo, tree);
1108         }
1109 }
1110
1111 static void
1112 dissect_optional(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
1113 {
1114         proto_tree      *sub_tree;
1115         proto_item      *sub_item;
1116         int             offset, type, len;
1117         gint            ett;
1118
1119         sub_tree = NULL;
1120
1121         offset = 0;
1122
1123         while (tvb_offset_exists(tvb, offset)) {
1124                 len = tvb_get_guint8(tvb, offset);
1125                 type = tvb_get_guint8(tvb, offset+1);
1126
1127                 /* Prevent loop for invalid crap in packet */
1128                 if (len == 0) {
1129                         if (tree)
1130                                 call_dissector(data_handle,
1131                                     tvb_new_subset_remaining(tvb, offset), pinfo, tree);
1132                         return;
1133                 }
1134
1135                 ett = ett_sna_nlp_opti_un;
1136                 if(type == 0x0d) ett = ett_sna_nlp_opti_0d;
1137                 if(type == 0x0e) ett = ett_sna_nlp_opti_0e;
1138                 if(type == 0x0f) ett = ett_sna_nlp_opti_0f;
1139                 if(type == 0x10) ett = ett_sna_nlp_opti_10;
1140                 if(type == 0x12) ett = ett_sna_nlp_opti_12;
1141                 if(type == 0x14) ett = ett_sna_nlp_opti_14;
1142                 if(type == 0x22) ett = ett_sna_nlp_opti_22;
1143                 if (tree) {
1144                         sub_item = proto_tree_add_text(tree, tvb,
1145                             offset, len << 2, "%s",
1146                             val_to_str(type, sna_nlp_opti_vals,
1147                             "Unknown Segment Type"));
1148                         sub_tree = proto_item_add_subtree(sub_item, ett);
1149                         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_len,
1150                             tvb, offset, 1, len);
1151                         proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_type,
1152                             tvb, offset+1, 1, type);
1153                 }
1154                 switch(type) {
1155                         case 0x0d:
1156                                 dissect_optional_0d(tvb_new_subset(tvb, offset,
1157                                     len << 2, -1), sub_tree);
1158                                 break;
1159                         case 0x0e:
1160                                 dissect_optional_0e(tvb_new_subset(tvb, offset,
1161                                     len << 2, -1), pinfo, sub_tree);
1162                                 break;
1163                         case 0x0f:
1164                                 dissect_optional_0f(tvb_new_subset(tvb, offset,
1165                                     len << 2, -1), pinfo, sub_tree);
1166                                 break;
1167                         case 0x10:
1168                                 dissect_optional_10(tvb_new_subset(tvb, offset,
1169                                     len << 2, -1), pinfo, sub_tree);
1170                                 break;
1171                         case 0x12:
1172                                 dissect_optional_12(tvb_new_subset(tvb, offset,
1173                                     len << 2, -1), sub_tree);
1174                                 break;
1175                         case 0x14:
1176                                 dissect_optional_14(tvb_new_subset(tvb, offset,
1177                                     len << 2, -1), pinfo, sub_tree);
1178                                 break;
1179                         case 0x22:
1180                                 dissect_optional_22(tvb_new_subset(tvb, offset,
1181                                     len << 2, -1), pinfo, sub_tree);
1182                                 break;
1183                         default:
1184                                 call_dissector(data_handle,
1185                                     tvb_new_subset(tvb, offset,
1186                                     len << 2, -1), pinfo, sub_tree);
1187                 }
1188                 offset += (len << 2);
1189         }
1190 }
1191
1192 static void
1193 dissect_nlp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
1194     proto_tree *parent_tree)
1195 {
1196         proto_tree      *nlp_tree, *bf_tree;
1197         proto_item      *nlp_item, *bf_item;
1198         guint8          nhdr_0, nhdr_1, nhdr_x, thdr_8, thdr_9, fid;
1199         guint32         thdr_len, thdr_dlf;
1200         guint16         subindx;
1201
1202         int indx = 0, counter = 0;
1203
1204         nlp_tree = NULL;
1205         nlp_item = NULL;
1206
1207         nhdr_0 = tvb_get_guint8(tvb, indx);
1208         nhdr_1 = tvb_get_guint8(tvb, indx+1);
1209
1210         col_set_str(pinfo->cinfo, COL_INFO, "HPR NLP Packet");
1211
1212         if (tree) {
1213                 /* Don't bother setting length. We'll set it later after we
1214                  * find the lengths of NHDR */
1215                 nlp_item = proto_tree_add_item(tree, hf_sna_nlp_nhdr, tvb,
1216                     indx, -1, ENC_NA);
1217                 nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_nhdr);
1218
1219                 bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_0, tvb,
1220                     indx, 1, nhdr_0);
1221                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_0);
1222
1223                 proto_tree_add_uint(bf_tree, hf_sna_nlp_sm, tvb, indx, 1,
1224                     nhdr_0);
1225                 proto_tree_add_uint(bf_tree, hf_sna_nlp_tpf, tvb, indx, 1,
1226                     nhdr_0);
1227
1228                 bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_1, tvb,
1229                     indx+1, 1, nhdr_1);
1230                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_1);
1231
1232                 proto_tree_add_uint(bf_tree, hf_sna_nlp_ft, tvb,
1233                     indx+1, 1, nhdr_1);
1234                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_tspi, tvb,
1235                     indx+1, 1, nhdr_1);
1236                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn1, tvb,
1237                     indx+1, 1, nhdr_1);
1238                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn2, tvb,
1239                     indx+1, 1, nhdr_1);
1240         }
1241         /* ANR or FR lists */
1242
1243         indx += 2;
1244         counter = 0;
1245
1246         if ((nhdr_0 & 0xe0) == 0xa0) {
1247                 do {
1248                         nhdr_x = tvb_get_guint8(tvb, indx + counter);
1249                         counter ++;
1250                 } while (nhdr_x != 0xff);
1251                 if (tree)
1252                         proto_tree_add_item(nlp_tree,
1253                             hf_sna_nlp_fra, tvb, indx, counter, ENC_NA);
1254                 indx += counter;
1255                 if (tree)
1256                         proto_tree_add_text(nlp_tree, tvb, indx, 1,
1257                             "Reserved");
1258                 indx++;
1259
1260                 if (tree)
1261                         proto_item_set_len(nlp_item, indx);
1262
1263                 if ((nhdr_1 & 0xf0) == 0x10) {
1264                         nhdr_x = tvb_get_guint8(tvb, indx);
1265                         if (tree)
1266                                 proto_tree_add_uint(tree, hf_sna_nlp_frh,
1267                                     tvb, indx, 1, nhdr_x);
1268                         indx ++;
1269
1270                         if (tvb_offset_exists(tvb, indx))
1271                                 call_dissector(data_handle,
1272                                         tvb_new_subset_remaining(tvb, indx),
1273                                         pinfo, parent_tree);
1274                         return;
1275                 }
1276         }
1277         if ((nhdr_0 & 0xe0) == 0xc0) {
1278                 do {
1279                         nhdr_x = tvb_get_guint8(tvb, indx + counter);
1280                         counter ++;
1281                 } while (nhdr_x != 0xff);
1282                 if (tree)
1283                         proto_tree_add_item(nlp_tree, hf_sna_nlp_anr,
1284                             tvb, indx, counter, ENC_NA);
1285                 indx += counter;
1286
1287                 if (tree)
1288                         proto_tree_add_text(nlp_tree, tvb, indx, 1,
1289                             "Reserved");
1290                 indx++;
1291
1292                 if (tree)
1293                         proto_item_set_len(nlp_item, indx);
1294         }
1295
1296         thdr_8 = tvb_get_guint8(tvb, indx+8);
1297         thdr_9 = tvb_get_guint8(tvb, indx+9);
1298         thdr_len = tvb_get_ntohs(tvb, indx+10);
1299         thdr_dlf = tvb_get_ntohl(tvb, indx+12);
1300
1301         if (tree) {
1302                 nlp_item = proto_tree_add_item(tree, hf_sna_nlp_thdr, tvb,
1303                     indx, thdr_len << 2, ENC_NA);
1304                 nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_thdr);
1305
1306                 proto_tree_add_item(nlp_tree, hf_sna_nlp_tcid, tvb,
1307                     indx, 8, ENC_NA);
1308                 bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_8, tvb,
1309                     indx+8, 1, thdr_8);
1310                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_8);
1311
1312                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_setupi, tvb,
1313                     indx+8, 1, thdr_8);
1314                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_somi, tvb, indx+8,
1315                     1, thdr_8);
1316                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_eomi, tvb, indx+8,
1317                     1, thdr_8);
1318                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_sri, tvb, indx+8,
1319                     1, thdr_8);
1320                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_rasapi, tvb,
1321                     indx+8, 1, thdr_8);
1322                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_retryi, tvb,
1323                     indx+8, 1, thdr_8);
1324
1325                 bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_9, tvb,
1326                     indx+9, 1, thdr_9);
1327                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_9);
1328
1329                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_lmi, tvb, indx+9,
1330                     1, thdr_9);
1331                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_cqfi, tvb, indx+9,
1332                     1, thdr_9);
1333                 proto_tree_add_boolean(bf_tree, hf_sna_nlp_osi, tvb, indx+9,
1334                     1, thdr_9);
1335
1336                 proto_tree_add_uint(nlp_tree, hf_sna_nlp_offset, tvb, indx+10,
1337                     2, thdr_len);
1338                 proto_tree_add_uint(nlp_tree, hf_sna_nlp_dlf, tvb, indx+12,
1339                     4, thdr_dlf);
1340                 proto_tree_add_item(nlp_tree, hf_sna_nlp_bsn, tvb, indx+16,
1341                     4, ENC_BIG_ENDIAN);
1342         }
1343         subindx = 20;
1344
1345         if (((thdr_9 & 0x18) == 0x08) && ((thdr_len << 2) > subindx)) {
1346                 counter = tvb_get_guint8(tvb, indx + subindx);
1347                 if (tvb_get_guint8(tvb, indx+subindx+1) == 5)
1348                         dissect_control(tvb, indx + subindx, counter+2, nlp_tree, 1, LT);
1349                 else
1350                         call_dissector(data_handle,
1351                             tvb_new_subset(tvb, indx + subindx, counter+2,
1352                             -1), pinfo, nlp_tree);
1353
1354                 subindx += (counter+2);
1355         }
1356         if ((thdr_9 & 0x04) && ((thdr_len << 2) > subindx))
1357                 dissect_optional(
1358                     tvb_new_subset(tvb, indx + subindx,
1359                     (thdr_len << 2) - subindx, -1),
1360                     pinfo, nlp_tree);
1361
1362         indx += (thdr_len << 2);
1363         if (((thdr_8 & 0x20) == 0) && thdr_dlf) {
1364                 col_set_str(pinfo->cinfo, COL_INFO, "HPR Fragment");
1365                 if (tvb_offset_exists(tvb, indx)) {
1366                         call_dissector(data_handle,
1367                             tvb_new_subset_remaining(tvb, indx), pinfo,
1368                             parent_tree);
1369                 }
1370                 return;
1371         }
1372         if (tvb_offset_exists(tvb, indx)) {
1373                 /* Transmission Header Format Identifier */
1374                 fid = hi_nibble(tvb_get_guint8(tvb, indx));
1375                 if (fid == 5) /* Only FID5 allowed for HPR */
1376                         dissect_fid(tvb_new_subset_remaining(tvb, indx), pinfo,
1377                             tree, parent_tree);
1378                 else {
1379                         if (tvb_get_ntohs(tvb, indx+2) == 0x12ce) {
1380                                 /* Route Setup */
1381                                 col_set_str(pinfo->cinfo, COL_INFO, "HPR Route Setup");
1382                                 dissect_gds(tvb_new_subset_remaining(tvb, indx),
1383                                     pinfo, tree, parent_tree);
1384                         } else
1385                                 call_dissector(data_handle,
1386                                     tvb_new_subset_remaining(tvb, indx),
1387                                     pinfo, parent_tree);
1388                 }
1389         }
1390 }
1391
1392 /* --------------------------------------------------------------------
1393  * Chapter 3 Exchange Identification (XID) Information Fields
1394  * --------------------------------------------------------------------
1395  */
1396
1397 static void
1398 dissect_xid1(tvbuff_t *tvb, proto_tree *tree)
1399 {
1400         if (!tree)
1401                 return;
1402
1403         proto_tree_add_text(tree, tvb, 0, 2, "Reserved");
1404
1405 }
1406
1407 static void
1408 dissect_xid2(tvbuff_t *tvb, proto_tree *tree)
1409 {
1410         guint           dlen, offset;
1411
1412         if (!tree)
1413                 return;
1414
1415         dlen = tvb_get_guint8(tvb, 0);
1416
1417         offset = dlen;
1418
1419         while (tvb_offset_exists(tvb, offset)) {
1420                 dlen = tvb_get_guint8(tvb, offset+1);
1421                 dissect_control(tvb, offset, dlen+2, tree, 0, KL);
1422                 offset += (dlen + 2);
1423         }
1424 }
1425
1426 static void
1427 dissect_xid3(tvbuff_t *tvb, proto_tree *tree)
1428 {
1429         proto_tree      *sub_tree;
1430         proto_item      *sub_ti = NULL;
1431         guint           val, dlen, offset;
1432
1433         if (!tree)
1434                 return;
1435
1436         proto_tree_add_text(tree, tvb, 0, 2, "Reserved");
1437
1438         val = tvb_get_ntohs(tvb, 2);
1439
1440         sub_ti = proto_tree_add_uint(tree, hf_sna_xid_3_8, tvb,
1441             2, 2, val);
1442         sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_8);
1443
1444         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_init_self, tvb, 2, 2,
1445             val);
1446         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_stand_bind, tvb, 2, 2,
1447             val);
1448         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_gener_bind, tvb, 2, 2,
1449             val);
1450         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_recve_bind, tvb, 2, 2,
1451             val);
1452         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_actpu, tvb, 2, 2, val);
1453         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_nwnode, tvb, 2, 2, val);
1454         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_cp, tvb, 2, 2, val);
1455         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_cpcp, tvb, 2, 2, val);
1456         proto_tree_add_uint(sub_tree, hf_sna_xid_3_state, tvb, 2, 2, val);
1457         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_nonact, tvb, 2, 2, val);
1458         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_cpchange, tvb, 2, 2,
1459             val);
1460
1461         val = tvb_get_guint8(tvb, 4);
1462
1463         sub_ti = proto_tree_add_uint(tree, hf_sna_xid_3_10, tvb,
1464             4, 1, val);
1465         sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_10);
1466
1467         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_asend_bind, tvb, 4, 1,
1468             val);
1469         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_arecv_bind, tvb, 4, 1,
1470             val);
1471         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_quiesce, tvb, 4, 1, val);
1472         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_pucap, tvb, 4, 1, val);
1473         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_pbn, tvb, 4, 1, val);
1474         proto_tree_add_uint(sub_tree, hf_sna_xid_3_pacing, tvb, 4, 1, val);
1475
1476         val = tvb_get_guint8(tvb, 5);
1477
1478         sub_ti = proto_tree_add_uint(tree, hf_sna_xid_3_11, tvb,
1479             5, 1, val);
1480         sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_11);
1481
1482         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_tgshare, tvb, 5, 1, val);
1483         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_dedsvc, tvb, 5, 1, val);
1484
1485         val = tvb_get_guint8(tvb, 6);
1486
1487         sub_ti = proto_tree_add_item(tree, hf_sna_xid_3_12, tvb,
1488             6, 1, ENC_BIG_ENDIAN);
1489         sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_12);
1490
1491         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_negcsup, tvb, 6, 1, val);
1492         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_negcomp, tvb, 6, 1, val);
1493
1494         proto_tree_add_text(tree, tvb, 7, 2, "Reserved");
1495
1496         val = tvb_get_guint8(tvb, 9);
1497
1498         sub_ti = proto_tree_add_item(tree, hf_sna_xid_3_15, tvb,
1499             9, 1, ENC_BIG_ENDIAN);
1500         sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_15);
1501
1502         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_partg, tvb, 9, 1, val);
1503         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_dlur, tvb, 9, 1, val);
1504         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_dlus, tvb, 9, 1, val);
1505         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_exbn, tvb, 9, 1, val);
1506         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_genodai, tvb, 9, 1, val);
1507         proto_tree_add_uint(sub_tree, hf_sna_xid_3_branch, tvb, 9, 1, val);
1508         proto_tree_add_boolean(sub_tree, hf_sna_xid_3_brnn, tvb, 9, 1, val);
1509
1510         proto_tree_add_item(tree, hf_sna_xid_3_tg, tvb, 10, 1, ENC_BIG_ENDIAN);
1511         proto_tree_add_item(tree, hf_sna_xid_3_dlc, tvb, 11, 1, ENC_BIG_ENDIAN);
1512
1513         dlen = tvb_get_guint8(tvb, 12);
1514
1515         proto_tree_add_uint(tree, hf_sna_xid_3_dlen, tvb, 12, 1, dlen);
1516
1517         /* FIXME: DLC Dependent Data Go Here */
1518
1519         offset = 12 + dlen;
1520
1521         while (tvb_offset_exists(tvb, offset)) {
1522                 dlen = tvb_get_guint8(tvb, offset+1);
1523                 dissect_control(tvb, offset, dlen+2, tree, 0, KL);
1524                 offset += (dlen+2);
1525         }
1526 }
1527
1528 static void
1529 dissect_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
1530     proto_tree *parent_tree)
1531 {
1532         proto_tree      *sub_tree;
1533         proto_item      *sub_ti = NULL;
1534         int             format, type, len;
1535         guint32         id;
1536
1537         len = tvb_get_guint8(tvb, 1);
1538         type = tvb_get_guint8(tvb, 0);
1539         id = tvb_get_ntohl(tvb, 2);
1540         format = hi_nibble(type);
1541
1542         /* Summary information */
1543         col_add_fstr(pinfo->cinfo, COL_INFO,
1544                     "SNA XID Format:%d Type:%s", format,
1545                     val_to_str_const(lo_nibble(type), sna_xid_type_vals,
1546                     "Unknown Type"));
1547
1548         if (tree) {
1549                 sub_ti = proto_tree_add_item(tree, hf_sna_xid_0, tvb,
1550                     0, 1, ENC_BIG_ENDIAN);
1551                 sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_0);
1552
1553                 proto_tree_add_uint(sub_tree, hf_sna_xid_format, tvb, 0, 1,
1554                     type);
1555                 proto_tree_add_uint(sub_tree, hf_sna_xid_type, tvb, 0, 1,
1556                     type);
1557
1558                 proto_tree_add_uint(tree, hf_sna_xid_len, tvb, 1, 1, len);
1559
1560                 sub_ti = proto_tree_add_item(tree, hf_sna_xid_id, tvb,
1561                     2, 4, ENC_BIG_ENDIAN);
1562                 sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_id);
1563
1564                 proto_tree_add_uint(sub_tree, hf_sna_xid_idblock, tvb, 2, 4,
1565                     id);
1566                 proto_tree_add_uint(sub_tree, hf_sna_xid_idnum, tvb, 2, 4,
1567                     id);
1568
1569                 switch(format) {
1570                         case 0:
1571                                 break;
1572                         case 1:
1573                                 dissect_xid1(tvb_new_subset(tvb, 6, len-6, -1),
1574                                     tree);
1575                                 break;
1576                         case 2:
1577                                 dissect_xid2(tvb_new_subset(tvb, 6, len-6, -1),
1578                                     tree);
1579                                 break;
1580                         case 3:
1581                                 dissect_xid3(tvb_new_subset(tvb, 6, len-6, -1),
1582                                     tree);
1583                                 break;
1584                         default:
1585                                 /* external standards organizations */
1586                                 call_dissector(data_handle,
1587                                     tvb_new_subset(tvb, 6, len-6, -1),
1588                                     pinfo, tree);
1589                 }
1590         }
1591
1592         if (format == 0)
1593                 len = 6;
1594
1595         if (tvb_offset_exists(tvb, len))
1596                 call_dissector(data_handle,
1597                     tvb_new_subset_remaining(tvb, len), pinfo, parent_tree);
1598 }
1599
1600 /* --------------------------------------------------------------------
1601  * Chapter 4 Transmission Headers (THs)
1602  * --------------------------------------------------------------------
1603  */
1604
1605 #define RH_LEN  3
1606
1607 static unsigned int
1608 mpf_value(guint8 th_byte)
1609 {
1610         return (th_byte & 0x0c) >> 2;
1611 }
1612
1613 #define FIRST_FRAG_NUMBER       0
1614 #define MIDDLE_FRAG_NUMBER      1
1615 #define LAST_FRAG_NUMBER        2
1616
1617 /* FID2 is defragged by sequence. The weird thing is that we have neither
1618  * absolute sequence numbers, nor byte offets. Other FIDs have byte offsets
1619  * (the DCF field), but not FID2. The only thing we have to go with is "FIRST",
1620  * "MIDDLE", or "LAST". If the BIU is split into 3 frames, then everything is
1621  * fine, * "FIRST", "MIDDLE", and "LAST" map nicely onto frag-number 0, 1,
1622  * and 2. However, if the BIU is split into 2 frames, then we only have
1623  * "FIRST" and "LAST", and the mapping *should* be frag-number 0 and 1,
1624  * *NOT* 0 and 2.
1625  *
1626  * The SNA docs say "FID2 PIUs cannot be blocked because there is no DCF in the
1627  * TH format for deblocking" (note on Figure 4-2 in the IBM SNA documention,
1628  * see the FTP URL in the comment near the top of this file). I *think*
1629  * this means that the fragmented frames cannot arrive out of order.
1630  * Well, I *want* it to mean this, because w/o this limitation, if you
1631  * get a "FIRST" frame and a "LAST" frame, how long should you wait to
1632  * see if a "MIDDLE" frame every arrives????? Thus, if frames *have* to
1633  * arrive in order, then we're saved.
1634  *
1635  * The problem then boils down to figuring out if "LAST" means frag-number 1
1636  * (in the case of a BIU split into 2 frames) or frag-number 2
1637  * (in the case of a BIU split into 3 frames).
1638  *
1639  * Assuming fragmented FID2 BIU frames *do* arrive in order, the obvious
1640  * way to handle the mapping of "LAST" to either frag-number 1 or
1641  * frag-number 2 is to keep a hash which tracks the frames seen, etc.
1642  * This consumes resources. A trickier way, but a way which works, is to
1643  * always map the "LAST" BIU segment to frag-number 2. Here's the trickery:
1644  * if we add frag-number 2, which we know to be the "LAST" BIU segment,
1645  * and the reassembly code tells us that the the BIU is still not reassmebled,
1646  * then, owing to the, ahem, /fact/, that fragmented BIU segments arrive
1647  * in order :), we know that 1) "FIRST" did come, and 2) there's no "MIDDLE",
1648  * because this BIU was fragmented into 2 frames, not 3. So, we'll be
1649  * tricky and add a zero-length "MIDDLE" BIU frame (i.e, frag-number 1)
1650  * to complete the reassembly.
1651  */
1652 static tvbuff_t*
1653 defragment_by_sequence(packet_info *pinfo, tvbuff_t *tvb, int offset, int mpf,
1654     int id)
1655 {
1656         fragment_head *fd_head;
1657         int frag_number = -1;
1658         int more_frags = TRUE;
1659         tvbuff_t *rh_tvb = NULL;
1660         gint frag_len;
1661
1662         /* Determine frag_number and more_frags */
1663         switch(mpf) {
1664                 case MPF_WHOLE_BIU:
1665                         /* nothing */
1666                         break;
1667                 case MPF_FIRST_SEGMENT:
1668                         frag_number = FIRST_FRAG_NUMBER;
1669                         break;
1670                 case MPF_MIDDLE_SEGMENT:
1671                         frag_number = MIDDLE_FRAG_NUMBER;
1672                         break;
1673                 case MPF_LAST_SEGMENT:
1674                         frag_number = LAST_FRAG_NUMBER;
1675                         more_frags = FALSE;
1676                         break;
1677                 default:
1678                         DISSECTOR_ASSERT_NOT_REACHED();
1679         }
1680
1681         /* If sna_defragment is on, and this is a fragment.. */
1682         if (frag_number > -1) {
1683                 /* XXX - check length ??? */
1684                 frag_len = tvb_reported_length_remaining(tvb, offset);
1685                 if (tvb_bytes_exist(tvb, offset, frag_len)) {
1686                         fd_head = fragment_add_seq(&sna_reassembly_table,
1687                             tvb, offset, pinfo, id, NULL,
1688                             frag_number, frag_len, more_frags, 0);
1689
1690                         /* We added the LAST segment and reassembly didn't
1691                          * complete. Insert a zero-length MIDDLE segment to
1692                          * turn a 2-frame BIU-fragmentation into a 3-frame
1693                          * BIU-fragmentation (empty middle frag).
1694                          * See above long comment about this trickery. */
1695
1696                         if (mpf == MPF_LAST_SEGMENT && !fd_head) {
1697                                 fd_head = fragment_add_seq(&sna_reassembly_table,
1698                                     tvb, offset, pinfo, id, NULL,
1699                                     MIDDLE_FRAG_NUMBER, 0, TRUE, 0);
1700                         }
1701
1702                         if (fd_head != NULL) {
1703                                 /* We have the complete reassembled payload. */
1704                                 rh_tvb = tvb_new_chain(tvb, fd_head->tvb_data);
1705
1706                                 /* Add the defragmented data to the data
1707                                  * source list. */
1708                                 add_new_data_source(pinfo, rh_tvb,
1709                                     "Reassembled SNA BIU");
1710                         }
1711                 }
1712         }
1713         return rh_tvb;
1714 }
1715
1716 #define SNA_FID01_ADDR_LEN      2
1717
1718 /* FID Types 0 and 1 */
1719 static int
1720 dissect_fid0_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
1721 {
1722         proto_tree      *bf_tree;
1723         proto_item      *bf_item;
1724         guint8          th_0;
1725         const guint8    *ptr;
1726
1727         const int bytes_in_header = 10;
1728
1729         if (tree) {
1730                 /* Byte 0 */
1731                 th_0 = tvb_get_guint8(tvb, 0);
1732                 bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1,
1733                     th_0);
1734                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1735
1736                 proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
1737                 proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
1738                 proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
1739
1740                 /* Byte 1 */
1741                 proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
1742
1743                 /* Bytes 2-3 */
1744                 proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 2, ENC_BIG_ENDIAN);
1745         }
1746
1747         /* Set DST addr */
1748         ptr = tvb_get_ptr(tvb, 2, SNA_FID01_ADDR_LEN);
1749         SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
1750         SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
1751
1752         if (tree)
1753                 proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 4, 2, ENC_BIG_ENDIAN);
1754
1755         /* Set SRC addr */
1756         ptr = tvb_get_ptr(tvb, 4, SNA_FID01_ADDR_LEN);
1757         SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
1758         SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
1759
1760         /* If we're not filling a proto_tree, return now */
1761         if (tree)
1762                 return bytes_in_header;
1763
1764         proto_tree_add_item(tree, hf_sna_th_snf, tvb, 6, 2, ENC_BIG_ENDIAN);
1765         proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 8, 2, ENC_BIG_ENDIAN);
1766
1767         return bytes_in_header;
1768 }
1769
1770 #define SNA_FID2_ADDR_LEN       1
1771
1772 /* FID Type 2 */
1773 static int
1774 dissect_fid2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
1775         tvbuff_t **rh_tvb_ptr, next_dissection_t *continue_dissecting)
1776 {
1777         proto_tree      *bf_tree;
1778         proto_item      *bf_item;
1779         guint8          th_0;
1780         const guint8    *ptr;
1781         unsigned int    mpf, id;
1782
1783         const int bytes_in_header = 6;
1784
1785         th_0 = tvb_get_guint8(tvb, 0);
1786         mpf = mpf_value(th_0);
1787
1788         if (tree) {
1789
1790                 /* Byte 0 */
1791                 bf_item = proto_tree_add_item(tree, hf_sna_th_0, tvb, 0, 1, ENC_NA);
1792                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1793
1794                 proto_tree_add_item(bf_tree, hf_sna_th_fid, tvb, 0, 1, ENC_NA);
1795                 proto_tree_add_item(bf_tree, hf_sna_th_mpf, tvb, 0, 1, ENC_NA);
1796                 proto_tree_add_item(bf_tree, hf_sna_th_odai,tvb, 0, 1, ENC_NA);
1797                 proto_tree_add_item(bf_tree, hf_sna_th_efi, tvb, 0, 1, ENC_NA);
1798
1799
1800                 /* Byte 1 */
1801                 proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
1802
1803                 /* Byte 2 */
1804                 proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 1, ENC_NA);
1805         }
1806
1807         /* Set DST addr */
1808         ptr = tvb_get_ptr(tvb, 2, SNA_FID2_ADDR_LEN);
1809         SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
1810         SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
1811
1812         /* Byte 3 */
1813         proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 3, 1, ENC_NA);
1814
1815         /* Set SRC addr */
1816         ptr = tvb_get_ptr(tvb, 3, SNA_FID2_ADDR_LEN);
1817         SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
1818         SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
1819
1820         id = tvb_get_ntohs(tvb, 4);
1821         proto_tree_add_item(tree, hf_sna_th_snf, tvb, 4, 2, ENC_BIG_ENDIAN);
1822
1823         if (mpf != MPF_WHOLE_BIU && !sna_defragment) {
1824                 if (mpf == MPF_FIRST_SEGMENT) {
1825                         *continue_dissecting = rh_only;
1826                         } else {
1827                         *continue_dissecting = stop_here;
1828                         }
1829
1830                 }
1831         else if (sna_defragment) {
1832                 *rh_tvb_ptr = defragment_by_sequence(pinfo, tvb,
1833                     bytes_in_header, mpf, id);
1834         }
1835
1836         return bytes_in_header;
1837 }
1838
1839 /* FID Type 3 */
1840 static int
1841 dissect_fid3(tvbuff_t *tvb, proto_tree *tree)
1842 {
1843         proto_tree      *bf_tree;
1844         proto_item      *bf_item;
1845         guint8          th_0;
1846
1847         const int bytes_in_header = 2;
1848
1849         /* If we're not filling a proto_tree, return now */
1850         if (!tree)
1851                 return bytes_in_header;
1852
1853         th_0 = tvb_get_guint8(tvb, 0);
1854
1855         /* Create the bitfield tree */
1856         bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
1857         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1858
1859         proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
1860         proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
1861         proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
1862
1863         proto_tree_add_item(tree, hf_sna_th_lsid, tvb, 1, 1, ENC_BIG_ENDIAN);
1864
1865         return bytes_in_header;
1866 }
1867
1868 static int
1869 dissect_fid4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
1870 {
1871         proto_tree      *bf_tree;
1872         proto_item      *bf_item;
1873         int             offset = 0;
1874         guint8          th_byte, mft;
1875         guint16         th_word;
1876         guint16         def, oef;
1877         guint32         dsaf, osaf;
1878         static struct sna_fid_type_4_addr src, dst; /* has to be static due to SET_ADDRESS */
1879
1880         const int bytes_in_header = 26;
1881
1882         /* If we're not filling a proto_tree, return now */
1883         if (!tree)
1884                 return bytes_in_header;
1885
1886         th_byte = tvb_get_guint8(tvb, offset);
1887
1888         /* Create the bitfield tree */
1889         bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, offset,
1890             1, th_byte);
1891         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1892
1893         /* Byte 0 */
1894         proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb,
1895             offset, 1, th_byte);
1896         proto_tree_add_uint(bf_tree, hf_sna_th_tg_sweep, tvb,
1897             offset, 1, th_byte);
1898         proto_tree_add_uint(bf_tree, hf_sna_th_er_vr_supp_ind, tvb,
1899             offset, 1, th_byte);
1900         proto_tree_add_uint(bf_tree, hf_sna_th_vr_pac_cnt_ind, tvb,
1901             offset, 1, th_byte);
1902         proto_tree_add_uint(bf_tree, hf_sna_th_ntwk_prty, tvb,
1903             offset, 1, th_byte);
1904
1905         offset += 1;
1906         th_byte = tvb_get_guint8(tvb, offset);
1907
1908         /* Create the bitfield tree */
1909         bf_item = proto_tree_add_text(tree, tvb, offset, 1,
1910             "Transmission Header Byte 1");
1911         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1912
1913         /* Byte 1 */
1914         proto_tree_add_uint(bf_tree, hf_sna_th_tgsf, tvb, offset, 1,
1915             th_byte);
1916         proto_tree_add_boolean(bf_tree, hf_sna_th_mft, tvb, offset, 1,
1917             th_byte);
1918         proto_tree_add_uint(bf_tree, hf_sna_th_piubf, tvb, offset, 1,
1919             th_byte);
1920
1921         mft = th_byte & 0x04;
1922         offset += 1;
1923         th_byte = tvb_get_guint8(tvb, offset);
1924
1925         /* Create the bitfield tree */
1926         bf_item = proto_tree_add_text(tree, tvb, offset, 1,
1927             "Transmission Header Byte 2");
1928         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1929
1930         /* Byte 2 */
1931         if (mft) {
1932                 proto_tree_add_uint(bf_tree, hf_sna_th_nlpoi, tvb,
1933                     offset, 1, th_byte);
1934                 proto_tree_add_uint(bf_tree, hf_sna_th_nlp_cp, tvb,
1935                     offset, 1, th_byte);
1936         } else {
1937                 proto_tree_add_uint(bf_tree, hf_sna_th_iern, tvb,
1938                     offset, 1, th_byte);
1939         }
1940         proto_tree_add_uint(bf_tree, hf_sna_th_ern, tvb, offset, 1,
1941             th_byte);
1942
1943         offset += 1;
1944         th_byte = tvb_get_guint8(tvb, offset);
1945
1946         /* Create the bitfield tree */
1947         bf_item = proto_tree_add_text(tree, tvb, offset, 1,
1948             "Transmission Header Byte 3");
1949         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1950
1951         /* Byte 3 */
1952         proto_tree_add_uint(bf_tree, hf_sna_th_vrn, tvb, offset, 1,
1953             th_byte);
1954         proto_tree_add_uint(bf_tree, hf_sna_th_tpf, tvb, offset, 1,
1955             th_byte);
1956
1957         offset += 1;
1958         th_word = tvb_get_ntohs(tvb, offset);
1959
1960         /* Create the bitfield tree */
1961         bf_item = proto_tree_add_text(tree, tvb, offset, 2,
1962             "Transmission Header Bytes 4-5");
1963         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1964
1965         /* Bytes 4-5 */
1966         proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwi, tvb,
1967             offset, 2, th_word);
1968         proto_tree_add_boolean(bf_tree, hf_sna_th_tg_nonfifo_ind, tvb,
1969             offset, 2, th_word);
1970         proto_tree_add_uint(bf_tree, hf_sna_th_vr_sqti, tvb,
1971             offset, 2, th_word);
1972
1973         /* I'm not sure about byte-order on this one... */
1974         proto_tree_add_uint(bf_tree, hf_sna_th_tg_snf, tvb,
1975             offset, 2, th_word);
1976
1977         offset += 2;
1978         th_word = tvb_get_ntohs(tvb, offset);
1979
1980         /* Create the bitfield tree */
1981         bf_item = proto_tree_add_text(tree, tvb, offset, 2,
1982             "Transmission Header Bytes 6-7");
1983         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
1984
1985         /* Bytes 6-7 */
1986         proto_tree_add_boolean(bf_tree, hf_sna_th_vrprq, tvb, offset,
1987             2, th_word);
1988         proto_tree_add_boolean(bf_tree, hf_sna_th_vrprs, tvb, offset,
1989             2, th_word);
1990         proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwri, tvb, offset,
1991             2, th_word);
1992         proto_tree_add_boolean(bf_tree, hf_sna_th_vr_rwi, tvb, offset,
1993             2, th_word);
1994
1995         /* I'm not sure about byte-order on this one... */
1996         proto_tree_add_uint(bf_tree, hf_sna_th_vr_snf_send, tvb,
1997             offset, 2, th_word);
1998
1999         offset += 2;
2000
2001         dsaf = tvb_get_ntohl(tvb, 8);
2002         /* Bytes 8-11 */
2003         proto_tree_add_uint(tree, hf_sna_th_dsaf, tvb, offset, 4, dsaf);
2004
2005         offset += 4;
2006
2007         osaf = tvb_get_ntohl(tvb, 12);
2008         /* Bytes 12-15 */
2009         proto_tree_add_uint(tree, hf_sna_th_osaf, tvb, offset, 4, osaf);
2010
2011         offset += 4;
2012         th_byte = tvb_get_guint8(tvb, offset);
2013
2014         /* Create the bitfield tree */
2015         bf_item = proto_tree_add_text(tree, tvb, offset, 2,
2016             "Transmission Header Byte 16");
2017         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
2018
2019         /* Byte 16 */
2020         proto_tree_add_boolean(bf_tree, hf_sna_th_snai, tvb, offset, 1, th_byte);
2021
2022         /* We luck out here because in their infinite wisdom the SNA
2023          * architects placed the MPF and EFI fields in the same bitfield
2024          * locations, even though for FID4 they're not in byte 0.
2025          * Thank you IBM! */
2026         proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, offset, 1, th_byte);
2027         proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, offset, 1, th_byte);
2028
2029         offset += 2;
2030         /* 1 for byte 16, 1 for byte 17 which is reserved */
2031
2032         def = tvb_get_ntohs(tvb, 18);
2033         /* Bytes 18-25 */
2034         proto_tree_add_uint(tree, hf_sna_th_def, tvb, offset, 2, def);
2035
2036         /* Addresses in FID 4 are discontiguous, sigh */
2037         dst.saf = dsaf;
2038         dst.ef = def;
2039         SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
2040             (guint8* )&dst);
2041         SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
2042             (guint8 *)&dst);
2043
2044         oef = tvb_get_ntohs(tvb, 20);
2045         proto_tree_add_uint(tree, hf_sna_th_oef, tvb, offset+2, 2, oef);
2046
2047         /* Addresses in FID 4 are discontiguous, sigh */
2048         src.saf = osaf;
2049         src.ef = oef;
2050         SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
2051             (guint8 *)&src);
2052         SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
2053             (guint8 *)&src);
2054
2055         proto_tree_add_item(tree, hf_sna_th_snf, tvb, offset+4, 2, ENC_BIG_ENDIAN);
2056         proto_tree_add_item(tree, hf_sna_th_dcf, tvb, offset+6, 2, ENC_BIG_ENDIAN);
2057
2058         return bytes_in_header;
2059 }
2060
2061 /* FID Type 5 */
2062 static int
2063 dissect_fid5(tvbuff_t *tvb, proto_tree *tree)
2064 {
2065         proto_tree      *bf_tree;
2066         proto_item      *bf_item;
2067         guint8          th_0;
2068
2069         const int bytes_in_header = 12;
2070
2071         /* If we're not filling a proto_tree, return now */
2072         if (!tree)
2073                 return bytes_in_header;
2074
2075         th_0 = tvb_get_guint8(tvb, 0);
2076
2077         /* Create the bitfield tree */
2078         bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
2079         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
2080
2081         proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
2082         proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
2083         proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
2084
2085         proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
2086         proto_tree_add_item(tree, hf_sna_th_snf, tvb, 2, 2, ENC_BIG_ENDIAN);
2087
2088         proto_tree_add_item(tree, hf_sna_th_sa, tvb, 4, 8, ENC_NA);
2089
2090         return bytes_in_header;
2091
2092 }
2093
2094 /* FID Type f */
2095 static int
2096 dissect_fidf(tvbuff_t *tvb, proto_tree *tree)
2097 {
2098         proto_tree      *bf_tree;
2099         proto_item      *bf_item;
2100         guint8          th_0;
2101
2102         const int bytes_in_header = 26;
2103
2104         /* If we're not filling a proto_tree, return now */
2105         if (!tree)
2106                 return bytes_in_header;
2107
2108         th_0 = tvb_get_guint8(tvb, 0);
2109
2110         /* Create the bitfield tree */
2111         bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
2112         bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
2113
2114         proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
2115         proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
2116
2117         proto_tree_add_item(tree, hf_sna_th_cmd_fmt, tvb,  2, 1, ENC_BIG_ENDIAN);
2118         proto_tree_add_item(tree, hf_sna_th_cmd_type, tvb, 3, 1, ENC_BIG_ENDIAN);
2119         proto_tree_add_item(tree, hf_sna_th_cmd_sn, tvb,   4, 2, ENC_BIG_ENDIAN);
2120
2121         /* Yup, bytes 6-23 are reserved! */
2122         proto_tree_add_text(tree, tvb, 6, 18, "Reserved");
2123
2124         proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 24, 2, ENC_BIG_ENDIAN);
2125
2126         return bytes_in_header;
2127 }
2128
2129 static void
2130 dissect_fid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
2131     proto_tree *parent_tree)
2132 {
2133
2134         proto_tree      *th_tree = NULL, *rh_tree = NULL;
2135         proto_item      *th_ti = NULL, *rh_ti = NULL;
2136         guint8          th_fid;
2137         int             th_header_len = 0;
2138         int             offset, rh_offset;
2139         tvbuff_t        *rh_tvb = NULL;
2140         next_dissection_t continue_dissecting = everything;
2141
2142         /* Transmission Header Format Identifier */
2143         th_fid = hi_nibble(tvb_get_guint8(tvb, 0));
2144
2145         /* Summary information */
2146         col_add_str(pinfo->cinfo, COL_INFO,
2147                     val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x"));
2148
2149         if (tree) {
2150                 /* --- TH --- */
2151                 /* Don't bother setting length. We'll set it later after we
2152                  * find the length of TH */
2153                 th_ti = proto_tree_add_item(tree, hf_sna_th, tvb,  0, -1,
2154                     ENC_NA);
2155                 th_tree = proto_item_add_subtree(th_ti, ett_sna_th);
2156         }
2157
2158         /* Get size of TH */
2159         switch(th_fid) {
2160                 case 0x0:
2161                 case 0x1:
2162                         th_header_len = dissect_fid0_1(tvb, pinfo, th_tree);
2163                         break;
2164                 case 0x2:
2165                         th_header_len = dissect_fid2(tvb, pinfo, th_tree,
2166                             &rh_tvb, &continue_dissecting);
2167                         break;
2168                 case 0x3:
2169                         th_header_len = dissect_fid3(tvb, th_tree);
2170                         break;
2171                 case 0x4:
2172                         th_header_len = dissect_fid4(tvb, pinfo, th_tree);
2173                         break;
2174                 case 0x5:
2175                         th_header_len = dissect_fid5(tvb, th_tree);
2176                         break;
2177                 case 0xf:
2178                         th_header_len = dissect_fidf(tvb, th_tree);
2179                         break;
2180                 default:
2181                         call_dissector(data_handle,
2182                             tvb_new_subset_remaining(tvb, 1), pinfo, parent_tree);
2183                         return;
2184         }
2185
2186         offset = th_header_len;
2187
2188         /* Short-circuit ? */
2189         if (continue_dissecting == stop_here) {
2190                 if (tree) {
2191                         proto_tree_add_text(tree, tvb, offset, -1,
2192                             "BIU segment data");
2193                 }
2194                 return;
2195         }
2196
2197         /* If the FID dissector function didn't create an rh_tvb, then we just
2198          * use the rest of our tvbuff as the rh_tvb. */
2199         if (!rh_tvb)
2200                 rh_tvb = tvb_new_subset_remaining(tvb, offset);
2201         rh_offset = 0;
2202
2203         /* Process the rest of the SNA packet, starting with RH */
2204         if (tree) {
2205                 proto_item_set_len(th_ti, th_header_len);
2206
2207                 /* --- RH --- */
2208                 rh_ti = proto_tree_add_item(tree, hf_sna_rh, rh_tvb, rh_offset,
2209                     RH_LEN, ENC_NA);
2210                 rh_tree = proto_item_add_subtree(rh_ti, ett_sna_rh);
2211                 dissect_rh(rh_tvb, rh_offset, rh_tree);
2212         }
2213
2214         rh_offset += RH_LEN;
2215
2216         if (tvb_offset_exists(rh_tvb, rh_offset)) {
2217                 /* Short-circuit ? */
2218                 if (continue_dissecting == rh_only) {
2219                         if (tree)
2220                                 proto_tree_add_text(tree, rh_tvb, rh_offset, -1,
2221                                     "BIU segment data");
2222                         return;
2223                 }
2224
2225                 call_dissector(data_handle,
2226                     tvb_new_subset_remaining(rh_tvb, rh_offset),
2227                     pinfo, parent_tree);
2228         }
2229 }
2230
2231 /* --------------------------------------------------------------------
2232  * Chapter 5 Request/Response Headers (RHs)
2233  * --------------------------------------------------------------------
2234  */
2235
2236 static void
2237 dissect_rh(tvbuff_t *tvb, int offset, proto_tree *tree)
2238 {
2239         proto_tree      *bf_tree;
2240         proto_item      *bf_item;
2241         gboolean        is_response;
2242         guint8          rh_0, rh_1, rh_2;
2243
2244         if (!tree)
2245                 return;
2246
2247         /* Create the bitfield tree for byte 0*/
2248         rh_0 = tvb_get_guint8(tvb, offset);
2249         is_response = (rh_0 & 0x80);
2250
2251         bf_item = proto_tree_add_uint(tree, hf_sna_rh_0, tvb, offset, 1, rh_0);
2252         bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_0);
2253
2254         proto_tree_add_uint(bf_tree, hf_sna_rh_rri, tvb, offset, 1, rh_0);
2255         proto_tree_add_uint(bf_tree, hf_sna_rh_ru_category, tvb, offset, 1,
2256             rh_0);
2257         proto_tree_add_boolean(bf_tree, hf_sna_rh_fi, tvb, offset, 1, rh_0);
2258         proto_tree_add_boolean(bf_tree, hf_sna_rh_sdi, tvb, offset, 1, rh_0);
2259         proto_tree_add_boolean(bf_tree, hf_sna_rh_bci, tvb, offset, 1, rh_0);
2260         proto_tree_add_boolean(bf_tree, hf_sna_rh_eci, tvb, offset, 1, rh_0);
2261
2262         offset += 1;
2263         rh_1 = tvb_get_guint8(tvb, offset);
2264
2265         /* Create the bitfield tree for byte 1*/
2266         bf_item = proto_tree_add_uint(tree, hf_sna_rh_1, tvb, offset, 1, rh_1);
2267         bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_1);
2268
2269         proto_tree_add_boolean(bf_tree, hf_sna_rh_dr1, tvb,  offset, 1, rh_1);
2270
2271         if (!is_response)
2272                 proto_tree_add_boolean(bf_tree, hf_sna_rh_lcci, tvb, offset, 1,
2273                     rh_1);
2274
2275         proto_tree_add_boolean(bf_tree, hf_sna_rh_dr2, tvb,  offset, 1, rh_1);
2276
2277         if (is_response) {
2278                 proto_tree_add_boolean(bf_tree, hf_sna_rh_rti, tvb,  offset, 1,
2279                     rh_1);
2280         } else {
2281                 proto_tree_add_boolean(bf_tree, hf_sna_rh_eri, tvb,  offset, 1,
2282                     rh_1);
2283                 proto_tree_add_boolean(bf_tree, hf_sna_rh_rlwi, tvb, offset, 1,
2284                     rh_1);
2285         }
2286
2287         proto_tree_add_boolean(bf_tree, hf_sna_rh_qri, tvb, offset, 1, rh_1);
2288         proto_tree_add_boolean(bf_tree, hf_sna_rh_pi, tvb,  offset, 1, rh_1);
2289
2290         offset += 1;
2291         rh_2 = tvb_get_guint8(tvb, offset);
2292
2293         /* Create the bitfield tree for byte 2*/
2294         bf_item = proto_tree_add_uint(tree, hf_sna_rh_2, tvb, offset, 1, rh_2);
2295
2296         if (!is_response) {
2297                 bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_2);
2298
2299                 proto_tree_add_boolean(bf_tree, hf_sna_rh_bbi, tvb,  offset, 1,
2300                     rh_2);
2301                 proto_tree_add_boolean(bf_tree, hf_sna_rh_ebi, tvb,  offset, 1,
2302                     rh_2);
2303                 proto_tree_add_boolean(bf_tree, hf_sna_rh_cdi, tvb,  offset, 1,
2304                     rh_2);
2305                 proto_tree_add_uint(bf_tree, hf_sna_rh_csi, tvb,  offset, 1,
2306                     rh_2);
2307                 proto_tree_add_boolean(bf_tree, hf_sna_rh_edi, tvb,  offset, 1,
2308                     rh_2);
2309                 proto_tree_add_boolean(bf_tree, hf_sna_rh_pdi, tvb,  offset, 1,
2310                     rh_2);
2311                 proto_tree_add_boolean(bf_tree, hf_sna_rh_cebi, tvb, offset, 1,
2312                     rh_2);
2313         }
2314
2315         /* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */
2316 }
2317
2318 /* --------------------------------------------------------------------
2319  * Chapter 6 Request/Response Units (RUs)
2320  * --------------------------------------------------------------------
2321  */
2322
2323 /* --------------------------------------------------------------------
2324  * Chapter 9 Common Fields
2325  * --------------------------------------------------------------------
2326  */
2327
2328 static void
2329 dissect_control_05hpr(tvbuff_t *tvb, proto_tree *tree, int hpr,
2330     enum parse parse)
2331 {
2332         proto_tree      *bf_tree;
2333         proto_item      *bf_item;
2334         guint8          type;
2335         guint16         offset, len, pad;
2336
2337         if (!tree)
2338                 return;
2339
2340         type = tvb_get_guint8(tvb, 2);
2341
2342         bf_item = proto_tree_add_uint(tree, hf_sna_control_05_type, tvb,
2343             2, 1, type);
2344         bf_tree = proto_item_add_subtree(bf_item, ett_sna_control_05hpr_type);
2345
2346         proto_tree_add_boolean(bf_tree, hf_sna_control_05_ptp, tvb, 2, 1, type);
2347         proto_tree_add_text(tree, tvb, 3, 1, "Reserved");
2348
2349         offset = 4;
2350
2351         while (tvb_offset_exists(tvb, offset)) {
2352                 if (parse == LT) {
2353                         len = tvb_get_guint8(tvb, offset+0);
2354                 } else {
2355                         len = tvb_get_guint8(tvb, offset+1);
2356                 }
2357                 if (len) {
2358                         dissect_control(tvb, offset, len, tree, hpr, parse);
2359                         pad = (len+3) & 0xfffc;
2360             if (pad > len) {
2361                 /* XXX - fix this, ensure tvb is large enough for pad */
2362                 tvb_ensure_bytes_exist(tvb, offset+len, pad-len);
2363                                 proto_tree_add_text(tree, tvb, offset+len,
2364                                     pad-len, "Padding");
2365             }
2366                         offset += pad;
2367                 } else {
2368                         return;
2369                 }
2370         }
2371 }
2372
2373 static void
2374 dissect_control_05(tvbuff_t *tvb, proto_tree *tree)
2375 {
2376         if(!tree)
2377                 return;
2378
2379         proto_tree_add_item(tree, hf_sna_control_05_delay, tvb, 2, 2, ENC_BIG_ENDIAN);
2380 }
2381
2382 static void
2383 dissect_control_0e(tvbuff_t *tvb, proto_tree *tree)
2384 {
2385         gint    len;
2386         guint8  *buf;
2387
2388         if (!tree)
2389                 return;
2390
2391         proto_tree_add_item(tree, hf_sna_control_0e_type, tvb, 2, 1, ENC_BIG_ENDIAN);
2392
2393         len = tvb_reported_length_remaining(tvb, 3);
2394         if (len <= 0)
2395                 return;
2396
2397         buf = tvb_get_string(wmem_packet_scope(), tvb, 3, len);
2398         EBCDIC_to_ASCII(buf, len);
2399         proto_tree_add_string(tree, hf_sna_control_0e_value, tvb, 3, len, (char *)buf);
2400 }
2401
2402 static void
2403 dissect_control(tvbuff_t *parent_tvb, int offset, int control_len,
2404     proto_tree *tree, int hpr, enum parse parse)
2405 {
2406         tvbuff_t        *tvb;
2407         gint            length, reported_length;
2408         proto_tree      *sub_tree;
2409         proto_item      *sub_item;
2410         int             len, key;
2411         gint            ett;
2412
2413         length = tvb_length_remaining(parent_tvb, offset);
2414         reported_length = tvb_reported_length_remaining(parent_tvb, offset);
2415         if (control_len < length)
2416                 length = control_len;
2417         if (control_len < reported_length)
2418                 reported_length = control_len;
2419         tvb = tvb_new_subset(parent_tvb, offset, length, reported_length);
2420
2421         sub_tree = NULL;
2422
2423         if (parse == LT) {
2424                 len = tvb_get_guint8(tvb, 0);
2425                 key = tvb_get_guint8(tvb, 1);
2426         } else {
2427                 key = tvb_get_guint8(tvb, 0);
2428                 len = tvb_get_guint8(tvb, 1);
2429         }
2430         ett = ett_sna_control_un;
2431
2432         if (tree) {
2433                 if (key == 5) {
2434                          if (hpr) ett = ett_sna_control_05hpr;
2435                          else ett = ett_sna_control_05;
2436                 }
2437                 if (key == 0x0e) ett = ett_sna_control_0e;
2438
2439                 if (((key == 0) || (key == 3) || (key == 5)) && hpr)
2440                         sub_item = proto_tree_add_text(tree, tvb, 0, -1, "%s",
2441                             val_to_str_const(key, sna_control_hpr_vals,
2442                             "Unknown Control Vector"));
2443                 else
2444                         sub_item = proto_tree_add_text(tree, tvb, 0, -1, "%s",
2445                             val_to_str_const(key, sna_control_vals,
2446                             "Unknown Control Vector"));
2447                 sub_tree = proto_item_add_subtree(sub_item, ett);
2448                 if (parse == LT) {
2449                         proto_tree_add_uint(sub_tree, hf_sna_control_len,
2450                             tvb, 0, 1, len);
2451                         if (((key == 0) || (key == 3) || (key == 5)) && hpr)
2452                                 proto_tree_add_uint(sub_tree,
2453                                     hf_sna_control_hprkey, tvb, 1, 1, key);
2454                         else
2455                                 proto_tree_add_uint(sub_tree,
2456                                     hf_sna_control_key, tvb, 1, 1, key);
2457                 } else {
2458                         if (((key == 0) || (key == 3) || (key == 5)) && hpr)
2459                                 proto_tree_add_uint(sub_tree,
2460                                     hf_sna_control_hprkey, tvb, 0, 1, key);
2461                         else
2462                                 proto_tree_add_uint(sub_tree,
2463                                     hf_sna_control_key, tvb, 0, 1, key);
2464                         proto_tree_add_uint(sub_tree, hf_sna_control_len,
2465                             tvb, 1, 1, len);
2466                 }
2467         }
2468         switch(key) {
2469                 case 0x05:
2470                         if (hpr)
2471                                 dissect_control_05hpr(tvb, sub_tree, hpr,
2472                                     parse);
2473                         else
2474                                 dissect_control_05(tvb, sub_tree);
2475                         break;
2476                 case 0x0e:
2477                         dissect_control_0e(tvb, sub_tree);
2478                         break;
2479         }
2480 }
2481
2482 /* --------------------------------------------------------------------
2483  * Chapter 11 Function Management (FM) Headers
2484  * --------------------------------------------------------------------
2485  */
2486
2487 /* --------------------------------------------------------------------
2488  * Chapter 12 Presentation Services (PS) Headers
2489  * --------------------------------------------------------------------
2490  */
2491
2492 /* --------------------------------------------------------------------
2493  * Chapter 13 GDS Variables
2494  * --------------------------------------------------------------------
2495  */
2496
2497 static void
2498 dissect_gds(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
2499     proto_tree *parent_tree)
2500 {
2501         guint16         length;
2502         guint16         type;
2503         int             cont;
2504         int             offset = 0;
2505         proto_tree      *gds_tree;
2506         proto_item      *gds_item;
2507
2508         do {
2509                 length = tvb_get_ntohs(tvb, offset) & 0x7fff;
2510                 cont   = (tvb_get_ntohs(tvb, offset) & 0x8000) ? 1 : 0;
2511                 type   = tvb_get_ntohs(tvb, offset+2);
2512
2513                 if (length < 2 ) /* escape sequence ? */
2514                         return;
2515                 if (tree) {
2516                         gds_item = proto_tree_add_item(tree, hf_sna_gds, tvb,
2517                             offset, length, ENC_NA);
2518                         gds_tree = proto_item_add_subtree(gds_item,
2519                             ett_sna_gds);
2520
2521                         proto_tree_add_uint(gds_tree, hf_sna_gds_len, tvb,
2522                             offset, 2, length);
2523                         proto_tree_add_boolean(gds_tree, hf_sna_gds_cont, tvb,
2524                             offset, 2, cont);
2525                         proto_tree_add_uint(gds_tree, hf_sna_gds_type, tvb,
2526                             offset+2, 2, type);
2527                 }
2528                 offset += length;
2529         } while(cont);
2530         if (tvb_offset_exists(tvb, offset))
2531                 call_dissector(data_handle,
2532                     tvb_new_subset_remaining(tvb, offset), pinfo, parent_tree);
2533 }
2534
2535 /* --------------------------------------------------------------------
2536  * General stuff
2537  * --------------------------------------------------------------------
2538  */
2539
2540 static void
2541 dissect_sna(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
2542 {
2543         guint8          fid;
2544         proto_tree      *sna_tree = NULL;
2545         proto_item      *sna_ti = NULL;
2546
2547         col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA");
2548         col_clear(pinfo->cinfo, COL_INFO);
2549
2550         /* SNA data should be printed in EBCDIC, not ASCII */
2551         pinfo->fd->flags.encoding = PACKET_CHAR_ENC_CHAR_EBCDIC;
2552
2553         if (tree) {
2554
2555                 /* Don't bother setting length. We'll set it later after we find
2556                  * the lengths of TH/RH/RU */
2557                 sna_ti = proto_tree_add_item(tree, proto_sna, tvb, 0, -1,
2558                     ENC_NA);
2559                 sna_tree = proto_item_add_subtree(sna_ti, ett_sna);
2560         }
2561
2562         /* Transmission Header Format Identifier */
2563         fid = hi_nibble(tvb_get_guint8(tvb, 0));
2564         switch(fid) {
2565                 case 0xa:       /* HPR Network Layer Packet */
2566                 case 0xb:
2567                 case 0xc:
2568                 case 0xd:
2569                         dissect_nlp(tvb, pinfo, sna_tree, tree);
2570                         break;
2571                 default:
2572                         dissect_fid(tvb, pinfo, sna_tree, tree);
2573         }
2574 }
2575
2576 static void
2577 dissect_sna_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
2578 {
2579         proto_tree      *sna_tree = NULL;
2580         proto_item      *sna_ti = NULL;
2581
2582         col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA");
2583         col_clear(pinfo->cinfo, COL_INFO);
2584
2585         /* SNA data should be printed in EBCDIC, not ASCII */
2586         pinfo->fd->flags.encoding = PACKET_CHAR_ENC_CHAR_EBCDIC;
2587
2588         if (tree) {
2589
2590                 /* Don't bother setting length. We'll set it later after we find
2591                  * the lengths of XID */
2592                 sna_ti = proto_tree_add_item(tree, proto_sna_xid, tvb, 0, -1,
2593                     ENC_NA);
2594                 sna_tree = proto_item_add_subtree(sna_ti, ett_sna);
2595         }
2596         dissect_xid(tvb, pinfo, sna_tree, tree);
2597 }
2598
2599 static void
2600 sna_init(void)
2601 {
2602         reassembly_table_init(&sna_reassembly_table,
2603             &addresses_reassembly_table_functions);
2604 }
2605
2606
2607 void
2608 proto_register_sna(void)
2609 {
2610         static hf_register_info hf[] = {
2611                 { &hf_sna_th,
2612                 { "Transmission Header", "sna.th", FT_NONE, BASE_NONE,
2613                      NULL, 0x0, NULL, HFILL }},
2614
2615                 { &hf_sna_th_0,
2616                 { "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX,
2617                     NULL, 0x0,
2618                     "TH Byte 0", HFILL }},
2619
2620                 { &hf_sna_th_fid,
2621                 { "Format Identifier", "sna.th.fid", FT_UINT8, BASE_HEX,
2622                     VALS(sna_th_fid_vals), 0xf0, NULL, HFILL }},
2623
2624                 { &hf_sna_th_mpf,
2625                 { "Mapping Field", "sna.th.mpf", FT_UINT8,
2626                     BASE_DEC, VALS(sna_th_mpf_vals), 0x0c, NULL, HFILL }},
2627
2628                 { &hf_sna_th_odai,
2629                 { "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8,
2630                     BASE_DEC, NULL, 0x02, NULL, HFILL }},
2631
2632                 { &hf_sna_th_efi,
2633                 { "Expedited Flow Indicator", "sna.th.efi", FT_UINT8,
2634                     BASE_DEC, VALS(sna_th_efi_vals), 0x01, NULL, HFILL }},
2635
2636                 { &hf_sna_th_daf,
2637                 { "Destination Address Field", "sna.th.daf", FT_UINT16,
2638                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
2639
2640                 { &hf_sna_th_oaf,
2641                 { "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX,
2642                     NULL, 0x0, NULL, HFILL }},
2643
2644                 { &hf_sna_th_snf,
2645                 { "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_DEC,
2646                     NULL, 0x0, NULL, HFILL }},
2647
2648                 { &hf_sna_th_dcf,
2649                 { "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC,
2650                     NULL, 0x0, NULL, HFILL }},
2651
2652                 { &hf_sna_th_lsid,
2653                 { "Local Session Identification", "sna.th.lsid", FT_UINT8,
2654                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
2655
2656                 { &hf_sna_th_tg_sweep,
2657                 { "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8,
2658                     BASE_DEC, VALS(sna_th_tg_sweep_vals), 0x08, NULL, HFILL }},
2659
2660                 { &hf_sna_th_er_vr_supp_ind,
2661                 { "ER and VR Support Indicator", "sna.th.er_vr_supp_ind",
2662                     FT_UINT8, BASE_DEC, VALS(sna_th_er_vr_supp_ind_vals),
2663                     0x04, NULL, HFILL }},
2664
2665                 { &hf_sna_th_vr_pac_cnt_ind,
2666                 { "Virtual Route Pacing Count Indicator",
2667                     "sna.th.vr_pac_cnt_ind", FT_UINT8, BASE_DEC,
2668                     VALS(sna_th_vr_pac_cnt_ind_vals), 0x02, NULL, HFILL }},
2669
2670                 { &hf_sna_th_ntwk_prty,
2671                 { "Network Priority", "sna.th.ntwk_prty", FT_UINT8, BASE_DEC,
2672                     VALS(sna_th_ntwk_prty_vals), 0x01, NULL, HFILL }},
2673
2674                 { &hf_sna_th_tgsf,
2675                 { "Transmission Group Segmenting Field", "sna.th.tgsf",
2676                     FT_UINT8, BASE_HEX, VALS(sna_th_tgsf_vals), 0xc0,
2677                     NULL, HFILL }},
2678
2679                 { &hf_sna_th_mft,
2680                 { "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN, 8,
2681                     NULL, 0x04, NULL, HFILL }},
2682
2683                 { &hf_sna_th_piubf,
2684                 { "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX,
2685                     VALS(sna_th_piubf_vals), 0x03, NULL, HFILL }},
2686
2687                 { &hf_sna_th_iern,
2688                 { "Initial Explicit Route Number", "sna.th.iern", FT_UINT8,
2689                     BASE_DEC, NULL, 0xf0, NULL, HFILL }},
2690
2691                 { &hf_sna_th_nlpoi,
2692                 { "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8, BASE_DEC,
2693                     VALS(sna_th_nlpoi_vals), 0x80, NULL, HFILL }},
2694
2695                 { &hf_sna_th_nlp_cp,
2696                 { "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8, BASE_DEC,
2697                     NULL, 0x70, NULL, HFILL }},
2698
2699                 { &hf_sna_th_ern,
2700                 { "Explicit Route Number", "sna.th.ern", FT_UINT8, BASE_DEC,
2701                     NULL, 0x0f, NULL, HFILL }},
2702
2703                 { &hf_sna_th_vrn,
2704                 { "Virtual Route Number", "sna.th.vrn", FT_UINT8, BASE_DEC,
2705                     NULL, 0xf0, NULL, HFILL }},
2706
2707                 { &hf_sna_th_tpf,
2708                 { "Transmission Priority Field", "sna.th.tpf", FT_UINT8,
2709                     BASE_HEX, VALS(sna_th_tpf_vals), 0x03, NULL, HFILL }},
2710
2711                 { &hf_sna_th_vr_cwi,
2712                 { "Virtual Route Change Window Indicator", "sna.th.vr_cwi",
2713                     FT_UINT16, BASE_DEC, VALS(sna_th_vr_cwi_vals), 0x8000,
2714                     "Change Window Indicator", HFILL }},
2715
2716                 { &hf_sna_th_tg_nonfifo_ind,
2717                 { "Transmission Group Non-FIFO Indicator",
2718                     "sna.th.tg_nonfifo_ind", FT_BOOLEAN, 16,
2719                     TFS(&sna_th_tg_nonfifo_ind_truth), 0x4000, NULL, HFILL }},
2720
2721                 { &hf_sna_th_vr_sqti,
2722                 { "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti",
2723                     FT_UINT16, BASE_HEX, VALS(sna_th_vr_sqti_vals), 0x3000,
2724                     "Route Sequence and Type", HFILL }},
2725
2726                 { &hf_sna_th_tg_snf,
2727                 { "Transmission Group Sequence Number Field", "sna.th.tg_snf",
2728                     FT_UINT16, BASE_DEC, NULL, 0x0fff, NULL, HFILL }},
2729
2730                 { &hf_sna_th_vrprq,
2731                 { "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN,
2732                     16, TFS(&sna_th_vrprq_truth), 0x8000, NULL, HFILL }},
2733
2734                 { &hf_sna_th_vrprs,
2735                 { "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN,
2736                     16, TFS(&sna_th_vrprs_truth), 0x4000, NULL, HFILL }},
2737
2738                 { &hf_sna_th_vr_cwri,
2739                 { "Virtual Route Change Window Reply Indicator",
2740                     "sna.th.vr_cwri", FT_UINT16, BASE_DEC,
2741                     VALS(sna_th_vr_cwri_vals), 0x2000, NULL, HFILL }},
2742
2743                 { &hf_sna_th_vr_rwi,
2744                 { "Virtual Route Reset Window Indicator", "sna.th.vr_rwi",
2745                     FT_BOOLEAN, 16, TFS(&sna_th_vr_rwi_truth), 0x1000,
2746                     NULL, HFILL }},
2747
2748                 { &hf_sna_th_vr_snf_send,
2749                 { "Virtual Route Send Sequence Number Field",
2750                     "sna.th.vr_snf_send", FT_UINT16, BASE_DEC, NULL, 0x0fff,
2751                     "Send Sequence Number Field", HFILL }},
2752
2753                 { &hf_sna_th_dsaf,
2754                 { "Destination Subarea Address Field", "sna.th.dsaf",
2755                     FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2756
2757                 { &hf_sna_th_osaf,
2758                 { "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32,
2759                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
2760
2761                 { &hf_sna_th_snai,
2762                 { "SNA Indicator", "sna.th.snai", FT_BOOLEAN, 8, NULL, 0x10,
2763                     "Used to identify whether the PIU originated or is destined for an SNA or non-SNA device.", HFILL }},
2764
2765                 { &hf_sna_th_def,
2766                 { "Destination Element Field", "sna.th.def", FT_UINT16,
2767                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
2768
2769                 { &hf_sna_th_oef,
2770                 { "Origin Element Field", "sna.th.oef", FT_UINT16, BASE_HEX,
2771                     NULL, 0x0, NULL, HFILL }},
2772
2773                 { &hf_sna_th_sa,
2774                 { "Session Address", "sna.th.sa", FT_BYTES, BASE_NONE,
2775                     NULL, 0x0, NULL, HFILL }},
2776
2777                 { &hf_sna_th_cmd_fmt,
2778                 { "Command Format", "sna.th.cmd_fmt", FT_UINT8, BASE_HEX,
2779                     NULL, 0x0, NULL, HFILL }},
2780
2781                 { &hf_sna_th_cmd_type,
2782                 { "Command Type", "sna.th.cmd_type", FT_UINT8, BASE_HEX,
2783                     NULL, 0x0, NULL, HFILL }},
2784
2785                 { &hf_sna_th_cmd_sn,
2786                 { "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16,
2787                     BASE_DEC, NULL, 0x0, NULL, HFILL }},
2788
2789                 { &hf_sna_nlp_nhdr,
2790                 { "Network Layer Packet Header", "sna.nlp.nhdr", FT_NONE,
2791                     BASE_NONE, NULL, 0x0, "NHDR", HFILL }},
2792
2793                 { &hf_sna_nlp_nhdr_0,
2794                 { "Network Layer Packet Header Byte 0", "sna.nlp.nhdr.0",
2795                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2796
2797                 { &hf_sna_nlp_nhdr_1,
2798                 { "Network Layer Packet Header Byte 1", "sna.nlp.nhdr.1",
2799                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2800
2801                 { &hf_sna_nlp_sm,
2802                 { "Switching Mode Field", "sna.nlp.nhdr.sm", FT_UINT8,
2803                     BASE_HEX, VALS(sna_nlp_sm_vals), 0xe0, NULL, HFILL }},
2804
2805                 { &hf_sna_nlp_tpf,
2806                 { "Transmission Priority Field", "sna.nlp.nhdr.tpf", FT_UINT8,
2807                     BASE_HEX, VALS(sna_th_tpf_vals), 0x06, NULL, HFILL }},
2808
2809                 { &hf_sna_nlp_ft,
2810                 { "Function Type", "sna.nlp.nhdr.ft", FT_UINT8, BASE_HEX,
2811                     VALS(sna_nlp_ft_vals), 0xF0, NULL, HFILL }},
2812
2813                 { &hf_sna_nlp_tspi,
2814                 { "Time Sensitive Packet Indicator", "sna.nlp.nhdr.tspi",
2815                     FT_BOOLEAN, 8, TFS(&sna_nlp_tspi_truth), 0x08, NULL, HFILL }},
2816
2817                 { &hf_sna_nlp_slowdn1,
2818                 { "Slowdown 1", "sna.nlp.nhdr.slowdn1", FT_BOOLEAN, 8,
2819                     TFS(&sna_nlp_slowdn1_truth), 0x04, NULL, HFILL }},
2820
2821                 { &hf_sna_nlp_slowdn2,
2822                 { "Slowdown 2", "sna.nlp.nhdr.slowdn2", FT_BOOLEAN, 8,
2823                     TFS(&sna_nlp_slowdn2_truth), 0x02, NULL, HFILL }},
2824
2825                 { &hf_sna_nlp_fra,
2826                 { "Function Routing Address Entry", "sna.nlp.nhdr.fra",
2827                     FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
2828
2829                 { &hf_sna_nlp_anr,
2830                 { "Automatic Network Routing Entry", "sna.nlp.nhdr.anr",
2831                     FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
2832
2833                 { &hf_sna_nlp_frh,
2834                 { "Transmission Priority Field", "sna.nlp.frh", FT_UINT8,
2835                     BASE_HEX, VALS(sna_nlp_frh_vals), 0, NULL, HFILL }},
2836
2837                 { &hf_sna_nlp_thdr,
2838                 { "RTP Transport Header", "sna.nlp.thdr", FT_NONE, BASE_NONE,
2839                     NULL, 0x0, "THDR", HFILL }},
2840
2841                 { &hf_sna_nlp_tcid,
2842                 { "Transport Connection Identifier", "sna.nlp.thdr.tcid",
2843                     FT_BYTES, BASE_NONE, NULL, 0x0, "TCID", HFILL }},
2844
2845                 { &hf_sna_nlp_thdr_8,
2846                 { "RTP Transport Packet Header Byte 8", "sna.nlp.thdr.8",
2847                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2848
2849                 { &hf_sna_nlp_setupi,
2850                 { "Setup Indicator", "sna.nlp.thdr.setupi", FT_BOOLEAN, 8,
2851                     TFS(&sna_nlp_setupi_truth), 0x40, NULL, HFILL }},
2852
2853                 { &hf_sna_nlp_somi,
2854                 { "Start Of Message Indicator", "sna.nlp.thdr.somi",
2855                     FT_BOOLEAN, 8, TFS(&sna_nlp_somi_truth), 0x20, NULL, HFILL }},
2856
2857                 { &hf_sna_nlp_eomi,
2858                 { "End Of Message Indicator", "sna.nlp.thdr.eomi", FT_BOOLEAN,
2859                     8, TFS(&sna_nlp_eomi_truth), 0x10, NULL, HFILL }},
2860
2861                 { &hf_sna_nlp_sri,
2862                 { "Session Request Indicator", "sna.nlp.thdr.sri", FT_BOOLEAN,
2863                     8, TFS(&sna_nlp_sri_truth), 0x08, NULL, HFILL }},
2864
2865                 { &hf_sna_nlp_rasapi,
2866                 { "Reply ASAP Indicator", "sna.nlp.thdr.rasapi", FT_BOOLEAN,
2867                     8, TFS(&sna_nlp_rasapi_truth), 0x04, NULL, HFILL }},
2868
2869                 { &hf_sna_nlp_retryi,
2870                 { "Retry Indicator", "sna.nlp.thdr.retryi", FT_BOOLEAN,
2871                     8, TFS(&sna_nlp_retryi_truth), 0x02, NULL, HFILL }},
2872
2873                 { &hf_sna_nlp_thdr_9,
2874                 { "RTP Transport Packet Header Byte 9", "sna.nlp.thdr.9",
2875                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2876
2877                 { &hf_sna_nlp_lmi,
2878                 { "Last Message Indicator", "sna.nlp.thdr.lmi", FT_BOOLEAN,
2879                     8, TFS(&sna_nlp_lmi_truth), 0x80, NULL, HFILL }},
2880
2881                 { &hf_sna_nlp_cqfi,
2882                 { "Connection Qualifier Field Indicator", "sna.nlp.thdr.cqfi",
2883                     FT_BOOLEAN, 8, TFS(&sna_nlp_cqfi_truth), 0x08, NULL, HFILL }},
2884
2885                 { &hf_sna_nlp_osi,
2886                 { "Optional Segments Present Indicator", "sna.nlp.thdr.osi",
2887                     FT_BOOLEAN, 8, TFS(&sna_nlp_osi_truth), 0x04, NULL, HFILL }},
2888
2889                 { &hf_sna_nlp_offset,
2890                 { "Data Offset/4", "sna.nlp.thdr.offset", FT_UINT16, BASE_HEX,
2891                     NULL, 0x0, "Data Offset in Words", HFILL }},
2892
2893                 { &hf_sna_nlp_dlf,
2894                 { "Data Length Field", "sna.nlp.thdr.dlf", FT_UINT32, BASE_HEX,
2895                     NULL, 0x0, NULL, HFILL }},
2896
2897                 { &hf_sna_nlp_bsn,
2898                 { "Byte Sequence Number", "sna.nlp.thdr.bsn", FT_UINT32,
2899                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
2900
2901                 { &hf_sna_nlp_opti_len,
2902                 { "Optional Segment Length/4", "sna.nlp.thdr.optional.len",
2903                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
2904
2905                 { &hf_sna_nlp_opti_type,
2906                 { "Optional Segment Type", "sna.nlp.thdr.optional.type",
2907                     FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_vals), 0x0, NULL,
2908                     HFILL }},
2909
2910                 { &hf_sna_nlp_opti_0d_version,
2911                 { "Version", "sna.nlp.thdr.optional.0d.version",
2912                     FT_UINT16, BASE_HEX, VALS(sna_nlp_opti_0d_version_vals),
2913                     0, NULL, HFILL }},
2914
2915                 { &hf_sna_nlp_opti_0d_4,
2916                 { "Connection Setup Byte 4", "sna.nlp.thdr.optional.0e.4",
2917                     FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }},
2918
2919                 { &hf_sna_nlp_opti_0d_target,
2920                 { "Target Resource ID Present",
2921                     "sna.nlp.thdr.optional.0d.target",
2922                     FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
2923
2924                 { &hf_sna_nlp_opti_0d_arb,
2925                 { "ARB Flow Control", "sna.nlp.thdr.optional.0d.arb",
2926                     FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
2927
2928                 { &hf_sna_nlp_opti_0d_reliable,
2929                 { "Reliable Connection", "sna.nlp.thdr.optional.0d.reliable",
2930                     FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
2931
2932                 { &hf_sna_nlp_opti_0d_dedicated,
2933                 { "Dedicated RTP Connection",
2934                     "sna.nlp.thdr.optional.0d.dedicated",
2935                     FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
2936
2937                 { &hf_sna_nlp_opti_0e_stat,
2938                 { "Status", "sna.nlp.thdr.optional.0e.stat",
2939                     FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }},
2940
2941                 { &hf_sna_nlp_opti_0e_gap,
2942                 { "Gap Detected", "sna.nlp.thdr.optional.0e.gap",
2943                     FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
2944
2945                 { &hf_sna_nlp_opti_0e_idle,
2946                 { "RTP Idle Packet", "sna.nlp.thdr.optional.0e.idle",
2947                     FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
2948
2949                 { &hf_sna_nlp_opti_0e_nabsp,
2950                 { "Number Of ABSP", "sna.nlp.thdr.optional.0e.nabsp",
2951                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
2952
2953                 { &hf_sna_nlp_opti_0e_sync,
2954                 { "Status Report Number", "sna.nlp.thdr.optional.0e.sync",
2955                     FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2956
2957                 { &hf_sna_nlp_opti_0e_echo,
2958                 { "Status Acknowledge Number", "sna.nlp.thdr.optional.0e.echo",
2959                     FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2960
2961                 { &hf_sna_nlp_opti_0e_rseq,
2962                 { "Received Sequence Number", "sna.nlp.thdr.optional.0e.rseq",
2963                     FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2964
2965 #if 0
2966                 { &hf_sna_nlp_opti_0e_abspbeg,
2967                 { "ABSP Begin", "sna.nlp.thdr.optional.0e.abspbeg",
2968                     FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2969 #endif
2970
2971 #if 0
2972                 { &hf_sna_nlp_opti_0e_abspend,
2973                 { "ABSP End", "sna.nlp.thdr.optional.0e.abspend",
2974                     FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2975 #endif
2976
2977                 { &hf_sna_nlp_opti_0f_bits,
2978                 { "Client Bits", "sna.nlp.thdr.optional.0f.bits",
2979                     FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_0f_bits_vals),
2980                     0x0, NULL, HFILL }},
2981
2982                 { &hf_sna_nlp_opti_10_tcid,
2983                 { "Transport Connection Identifier",
2984                     "sna.nlp.thdr.optional.10.tcid",
2985                     FT_BYTES, BASE_NONE, NULL, 0x0, "TCID", HFILL }},
2986
2987                 { &hf_sna_nlp_opti_12_sense,
2988                 { "Sense Data", "sna.nlp.thdr.optional.12.sense",
2989                     FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
2990
2991                 { &hf_sna_nlp_opti_14_si_len,
2992                 { "Length", "sna.nlp.thdr.optional.14.si.len",
2993                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
2994
2995                 { &hf_sna_nlp_opti_14_si_key,
2996                 { "Key", "sna.nlp.thdr.optional.14.si.key",
2997                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
2998
2999                 { &hf_sna_nlp_opti_14_si_2,
3000                 { "Switching Information Byte 2",
3001                     "sna.nlp.thdr.optional.14.si.2",
3002                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
3003
3004                 { &hf_sna_nlp_opti_14_si_refifo,
3005                 { "Resequencing (REFIFO) Indicator",
3006                     "sna.nlp.thdr.optional.14.si.refifo",
3007                     FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
3008
3009                 { &hf_sna_nlp_opti_14_si_mobility,
3010                 { "Mobility Indicator",
3011                     "sna.nlp.thdr.optional.14.si.mobility",
3012                     FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
3013
3014                 { &hf_sna_nlp_opti_14_si_dirsearch,
3015                 { "Directory Search Required on Path Switch Indicator",
3016                     "sna.nlp.thdr.optional.14.si.dirsearch",
3017                     FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }},
3018
3019                 { &hf_sna_nlp_opti_14_si_limitres,
3020                 { "Limited Resource Link Indicator",
3021                     "sna.nlp.thdr.optional.14.si.limitres",
3022                     FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
3023
3024                 { &hf_sna_nlp_opti_14_si_ncescope,
3025                 { "NCE Scope Indicator",
3026                     "sna.nlp.thdr.optional.14.si.ncescope",
3027                     FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
3028
3029                 { &hf_sna_nlp_opti_14_si_mnpsrscv,
3030                 { "MNPS RSCV Retention Indicator",
3031                     "sna.nlp.thdr.optional.14.si.mnpsrscv",
3032                     FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
3033
3034                 { &hf_sna_nlp_opti_14_si_maxpsize,
3035                 { "Maximum Packet Size On Return Path",
3036                     "sna.nlp.thdr.optional.14.si.maxpsize",
3037                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3038
3039                 { &hf_sna_nlp_opti_14_si_switch,
3040                 { "Path Switch Time", "sna.nlp.thdr.optional.14.si.switch",
3041                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3042
3043                 { &hf_sna_nlp_opti_14_si_alive,
3044                 { "RTP Alive Timer", "sna.nlp.thdr.optional.14.si.alive",
3045                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3046
3047                 { &hf_sna_nlp_opti_14_rr_len,
3048                 { "Length", "sna.nlp.thdr.optional.14.rr.len",
3049                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3050
3051                 { &hf_sna_nlp_opti_14_rr_key,
3052                 { "Key", "sna.nlp.thdr.optional.14.rr.key",
3053                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
3054
3055                 { &hf_sna_nlp_opti_14_rr_2,
3056                 { "Return Route TG Descriptor Byte 2",
3057                     "sna.nlp.thdr.optional.14.rr.2",
3058                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
3059
3060                 { &hf_sna_nlp_opti_14_rr_bfe,
3061                 { "BF Entry Indicator",
3062                     "sna.nlp.thdr.optional.14.rr.bfe",
3063                     FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
3064
3065                 { &hf_sna_nlp_opti_14_rr_num,
3066                 { "Number Of TG Control Vectors",
3067                     "sna.nlp.thdr.optional.14.rr.num",
3068                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3069
3070                 { &hf_sna_nlp_opti_22_2,
3071                 { "Adaptive Rate Based Segment Byte 2",
3072                     "sna.nlp.thdr.optional.22.2",
3073                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
3074
3075                 { &hf_sna_nlp_opti_22_type,
3076                 { "Message Type",
3077                     "sna.nlp.thdr.optional.22.type",
3078                     FT_UINT8, BASE_HEX,
3079                     VALS(sna_nlp_opti_22_type_vals), 0xc0, NULL, HFILL }},
3080
3081                 { &hf_sna_nlp_opti_22_raa,
3082                 { "Rate Adjustment Action",
3083                     "sna.nlp.thdr.optional.22.raa",
3084                     FT_UINT8, BASE_HEX,
3085                     VALS(sna_nlp_opti_22_raa_vals), 0x38, NULL, HFILL }},
3086
3087                 { &hf_sna_nlp_opti_22_parity,
3088                 { "Parity Indicator",
3089                     "sna.nlp.thdr.optional.22.parity",
3090                     FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
3091
3092                 { &hf_sna_nlp_opti_22_arb,
3093                 { "ARB Mode",
3094                     "sna.nlp.thdr.optional.22.arb",
3095                     FT_UINT8, BASE_HEX,
3096                     VALS(sna_nlp_opti_22_arb_vals), 0x03, NULL, HFILL }},
3097
3098                 { &hf_sna_nlp_opti_22_3,
3099                 { "Adaptive Rate Based Segment Byte 3",
3100                     "sna.nlp.thdr.optional.22.3",
3101                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
3102
3103                 { &hf_sna_nlp_opti_22_ratereq,
3104                 { "Rate Request Correlator",
3105                     "sna.nlp.thdr.optional.22.ratereq",
3106                     FT_UINT8, BASE_DEC, NULL, 0xf0, NULL, HFILL }},
3107
3108                 { &hf_sna_nlp_opti_22_raterep,
3109                 { "Rate Reply Correlator",
3110                     "sna.nlp.thdr.optional.22.raterep",
3111                     FT_UINT8, BASE_DEC, NULL, 0x0f, NULL, HFILL }},
3112
3113                 { &hf_sna_nlp_opti_22_field1,
3114                 { "Field 1", "sna.nlp.thdr.optional.22.field1",
3115                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3116
3117                 { &hf_sna_nlp_opti_22_field2,
3118                 { "Field 2", "sna.nlp.thdr.optional.22.field2",
3119                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3120
3121                 { &hf_sna_nlp_opti_22_field3,
3122                 { "Field 3", "sna.nlp.thdr.optional.22.field3",
3123                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3124
3125                 { &hf_sna_nlp_opti_22_field4,
3126                 { "Field 4", "sna.nlp.thdr.optional.22.field4",
3127                     FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3128
3129                 { &hf_sna_rh,
3130                 { "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE,
3131                     NULL, 0x0, NULL, HFILL }},
3132
3133                 { &hf_sna_rh_0,
3134                 { "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8,
3135                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
3136
3137                 { &hf_sna_rh_1,
3138                 { "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8,
3139                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
3140
3141                 { &hf_sna_rh_2,
3142                 { "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8,
3143                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
3144
3145                 { &hf_sna_rh_rri,
3146                 { "Request/Response Indicator", "sna.rh.rri", FT_UINT8,
3147                     BASE_DEC, VALS(sna_rh_rri_vals), 0x80, NULL, HFILL }},
3148
3149                 { &hf_sna_rh_ru_category,
3150                 { "Request/Response Unit Category", "sna.rh.ru_category",
3151                     FT_UINT8, BASE_HEX, VALS(sna_rh_ru_category_vals), 0x60,
3152                     NULL, HFILL }},
3153
3154                 { &hf_sna_rh_fi,
3155                 { "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8,
3156                     TFS(&sna_rh_fi_truth), 0x08, NULL, HFILL }},
3157
3158                 { &hf_sna_rh_sdi,
3159                 { "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8,
3160                     TFS(&sna_rh_sdi_truth), 0x04, NULL, HFILL }},
3161
3162                 { &hf_sna_rh_bci,
3163                 { "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8,
3164                     TFS(&sna_rh_bci_truth), 0x02, NULL, HFILL }},
3165
3166                 { &hf_sna_rh_eci,
3167                 { "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8,
3168                     TFS(&sna_rh_eci_truth), 0x01, NULL, HFILL }},
3169
3170                 { &hf_sna_rh_dr1,
3171                 { "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN,
3172                     8, NULL, 0x80, NULL, HFILL }},
3173
3174                 { &hf_sna_rh_lcci,
3175                 { "Length-Checked Compression Indicator", "sna.rh.lcci",
3176                     FT_BOOLEAN, 8, TFS(&sna_rh_lcci_truth), 0x40, NULL, HFILL }},
3177
3178                 { &hf_sna_rh_dr2,
3179                 { "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN,
3180                     8, NULL, 0x20, NULL, HFILL }},
3181
3182                 { &hf_sna_rh_eri,
3183                 { "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN,
3184                     8, NULL, 0x10, NULL, HFILL }},
3185
3186                 { &hf_sna_rh_rti,
3187                 { "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN,
3188                     8, TFS(&sna_rh_rti_truth), 0x10, NULL, HFILL }},
3189
3190                 { &hf_sna_rh_rlwi,
3191                 { "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN,
3192                     8, NULL, 0x04, NULL, HFILL }},
3193
3194                 { &hf_sna_rh_qri,
3195                 { "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN,
3196                     8, TFS(&sna_rh_qri_truth), 0x02, NULL, HFILL }},
3197
3198                 { &hf_sna_rh_pi,
3199                 { "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN,
3200                     8, NULL, 0x01, NULL, HFILL }},
3201
3202                 { &hf_sna_rh_bbi,
3203                 { "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN,
3204                     8, NULL, 0x80, NULL, HFILL }},
3205
3206                 { &hf_sna_rh_ebi,
3207                 { "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN,
3208                     8, NULL, 0x40, NULL, HFILL }},
3209
3210                 { &hf_sna_rh_cdi,
3211                 { "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN,
3212                     8, NULL, 0x20, NULL, HFILL }},
3213
3214                 { &hf_sna_rh_csi,
3215                 { "Code Selection Indicator", "sna.rh.csi", FT_UINT8, BASE_DEC,
3216                     VALS(sna_rh_csi_vals), 0x08, NULL, HFILL }},
3217
3218                 { &hf_sna_rh_edi,
3219                 { "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8,
3220                     NULL, 0x04, NULL, HFILL }},
3221
3222                 { &hf_sna_rh_pdi,
3223                 { "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL,
3224                     0x02, NULL, HFILL }},
3225
3226                 { &hf_sna_rh_cebi,
3227                 { "Conditional End Bracket Indicator", "sna.rh.cebi",
3228                     FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL }},
3229
3230 /*              { &hf_sna_ru,
3231                 { "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE,
3232                     NULL, 0x0, NULL, HFILL }},*/
3233
3234                 { &hf_sna_gds,
3235                 { "GDS Variable", "sna.gds", FT_NONE, BASE_NONE, NULL, 0x0,
3236                     NULL, HFILL }},
3237
3238                 { &hf_sna_gds_len,
3239                 { "GDS Variable Length", "sna.gds.len", FT_UINT16, BASE_DEC,
3240                     NULL, 0x7fff, NULL, HFILL }},
3241
3242                 { &hf_sna_gds_cont,
3243                 { "Continuation Flag", "sna.gds.cont", FT_BOOLEAN, 16, NULL,
3244                     0x8000, NULL, HFILL }},
3245
3246                 { &hf_sna_gds_type,
3247                 { "Type of Variable", "sna.gds.type", FT_UINT16, BASE_HEX,
3248                     VALS(sna_gds_var_vals), 0x0, NULL, HFILL }},
3249
3250 #if 0
3251                 { &hf_sna_xid,
3252                 { "XID", "sna.xid", FT_NONE, BASE_NONE, NULL, 0x0,
3253                     "XID Frame", HFILL }},
3254 #endif
3255
3256                 { &hf_sna_xid_0,
3257                 { "XID Byte 0", "sna.xid.0", FT_UINT8, BASE_HEX, NULL, 0x0,
3258                     NULL, HFILL }},
3259
3260                 { &hf_sna_xid_format,
3261                 { "XID Format", "sna.xid.format", FT_UINT8, BASE_DEC, NULL,
3262                     0xf0, NULL, HFILL }},
3263
3264                 { &hf_sna_xid_type,
3265                 { "XID Type", "sna.xid.type", FT_UINT8, BASE_DEC,
3266                     VALS(sna_xid_type_vals), 0x0f, NULL, HFILL }},
3267
3268                 { &hf_sna_xid_len,
3269                 { "XID Length", "sna.xid.len", FT_UINT8, BASE_DEC, NULL, 0x0,
3270                     NULL, HFILL }},
3271
3272                 { &hf_sna_xid_id,
3273                 { "Node Identification", "sna.xid.id", FT_UINT32, BASE_HEX,
3274                     NULL, 0x0, NULL, HFILL }},
3275
3276                 { &hf_sna_xid_idblock,
3277                 { "ID Block", "sna.xid.idblock", FT_UINT32, BASE_HEX, NULL,
3278                     0xfff00000, NULL, HFILL }},
3279
3280                 { &hf_sna_xid_idnum,
3281                 { "ID Number", "sna.xid.idnum", FT_UINT32, BASE_HEX, NULL,
3282                     0x0fffff, NULL, HFILL }},
3283
3284                 { &hf_sna_xid_3_8,
3285                 { "Characteristics of XID sender", "sna.xid.type3.8", FT_UINT16,
3286                     BASE_HEX, NULL, 0x0, NULL, HFILL }},
3287
3288                 { &hf_sna_xid_3_init_self,
3289                 { "INIT-SELF support", "sna.xid.type3.initself",
3290                     FT_BOOLEAN, 16, NULL, 0x8000, NULL, HFILL }},
3291
3292                 { &hf_sna_xid_3_stand_bind,
3293                 { "Stand-Alone BIND Support", "sna.xid.type3.stand_bind",
3294                     FT_BOOLEAN, 16, NULL, 0x4000, NULL, HFILL }},
3295
3296                 { &hf_sna_xid_3_gener_bind,
3297                 { "Whole BIND PIU generated indicator",
3298                     "sna.xid.type3.gener_bind", FT_BOOLEAN, 16, NULL, 0x2000,
3299                     "Whole BIND PIU generated", HFILL }},
3300
3301                 { &hf_sna_xid_3_recve_bind,
3302                 { "Whole BIND PIU required indicator",
3303                     "sna.xid.type3.recve_bind", FT_BOOLEAN, 16, NULL, 0x1000,
3304                     "Whole BIND PIU required", HFILL }},
3305
3306                 { &hf_sna_xid_3_actpu,
3307                 { "ACTPU suppression indicator", "sna.xid.type3.actpu",
3308                     FT_BOOLEAN, 16, NULL, 0x0080, NULL, HFILL }},
3309
3310                 { &hf_sna_xid_3_nwnode,
3311                 { "Sender is network node", "sna.xid.type3.nwnode",
3312                     FT_BOOLEAN, 16, NULL, 0x0040, NULL, HFILL }},
3313
3314                 { &hf_sna_xid_3_cp,
3315                 { "Control Point Services", "sna.xid.type3.cp",
3316                     FT_BOOLEAN, 16, NULL, 0x0020, NULL, HFILL }},
3317
3318                 { &hf_sna_xid_3_cpcp,
3319                 { "CP-CP session support", "sna.xid.type3.cpcp",
3320                     FT_BOOLEAN, 16, NULL, 0x0010, NULL, HFILL }},
3321
3322                 { &hf_sna_xid_3_state,
3323                 { "XID exchange state indicator", "sna.xid.type3.state",
3324                     FT_UINT16, BASE_HEX, VALS(sna_xid_3_state_vals),
3325                     0x000c, NULL, HFILL }},
3326
3327                 { &hf_sna_xid_3_nonact,
3328                 { "Nonactivation Exchange", "sna.xid.type3.nonact",
3329                     FT_BOOLEAN, 16, NULL, 0x0002, NULL, HFILL }},
3330
3331                 { &hf_sna_xid_3_cpchange,
3332                 { "CP name change support", "sna.xid.type3.cpchange",
3333                     FT_BOOLEAN, 16, NULL, 0x0001, NULL, HFILL }},
3334
3335                 { &hf_sna_xid_3_10,
3336                 { "XID Type 3 Byte 10", "sna.xid.type3.10", FT_UINT8, BASE_HEX,
3337                     NULL, 0x0, NULL, HFILL }},
3338
3339                 { &hf_sna_xid_3_asend_bind,
3340                 { "Adaptive BIND pacing support as sender",
3341                     "sna.xid.type3.asend_bind", FT_BOOLEAN, 8, NULL, 0x80,
3342                     "Pacing support as sender", HFILL }},
3343
3344                 { &hf_sna_xid_3_arecv_bind,
3345                 { "Adaptive BIND pacing support as receiver",
3346                     "sna.xid.type3.asend_recv", FT_BOOLEAN, 8, NULL, 0x40,
3347                     "Pacing support as receive", HFILL }},
3348
3349                 { &hf_sna_xid_3_quiesce,
3350                 { "Quiesce TG Request",
3351                     "sna.xid.type3.quiesce", FT_BOOLEAN, 8, NULL, 0x20,
3352                     NULL, HFILL }},
3353
3354                 { &hf_sna_xid_3_pucap,
3355                 { "PU Capabilities",
3356                     "sna.xid.type3.pucap", FT_BOOLEAN, 8, NULL, 0x10,
3357                     NULL, HFILL }},
3358
3359                 { &hf_sna_xid_3_pbn,
3360                 { "Peripheral Border Node",
3361                     "sna.xid.type3.pbn", FT_BOOLEAN, 8, NULL, 0x08,
3362                     NULL, HFILL }},
3363
3364                 { &hf_sna_xid_3_pacing,
3365                 { "Qualifier for adaptive BIND pacing support",
3366                     "sna.xid.type3.pacing", FT_UINT8, BASE_HEX, NULL, 0x03,
3367                     NULL, HFILL }},
3368
3369                 { &hf_sna_xid_3_11,
3370                 { "XID Type 3 Byte 11", "sna.xid.type3.11", FT_UINT8, BASE_HEX,
3371                     NULL, 0x0, NULL, HFILL }},
3372
3373                 { &hf_sna_xid_3_tgshare,
3374                 { "TG Sharing Prohibited Indicator",
3375                     "sna.xid.type3.tgshare", FT_BOOLEAN, 8, NULL, 0x40,
3376                     NULL, HFILL }},
3377
3378                 { &hf_sna_xid_3_dedsvc,
3379                 { "Dedicated SVC Indicator",
3380                     "sna.xid.type3.dedsvc", FT_BOOLEAN, 8, NULL, 0x20,
3381                     NULL, HFILL }},
3382
3383                 { &hf_sna_xid_3_12,
3384                 { "XID Type 3 Byte 12", "sna.xid.type3.12", FT_UINT8, BASE_HEX,
3385                     NULL, 0x0, NULL, HFILL }},
3386
3387                 { &hf_sna_xid_3_negcsup,
3388                 { "Negotiation Complete Supported",
3389                     "sna.xid.type3.negcsup", FT_BOOLEAN, 8, NULL, 0x80,
3390                     NULL, HFILL }},
3391
3392                 { &hf_sna_xid_3_negcomp,
3393                 { "Negotiation Complete",
3394                     "sna.xid.type3.negcomp", FT_BOOLEAN, 8, NULL, 0x40,
3395                     NULL, HFILL }},
3396
3397                 { &hf_sna_xid_3_15,
3398                 { "XID Type 3 Byte 15", "sna.xid.type3.15", FT_UINT8, BASE_HEX,
3399                     NULL, 0x0, NULL, HFILL }},
3400
3401                 { &hf_sna_xid_3_partg,
3402                 { "Parallel TG Support",
3403                     "sna.xid.type3.partg", FT_BOOLEAN, 8, NULL, 0x80,
3404                     NULL, HFILL }},
3405
3406                 { &hf_sna_xid_3_dlur,
3407                 { "Dependent LU Requester Indicator",
3408                     "sna.xid.type3.dlur", FT_BOOLEAN, 8, NULL, 0x40,
3409                     NULL, HFILL }},
3410
3411                 { &hf_sna_xid_3_dlus,
3412                 { "DLUS Served LU Registration Indicator",
3413                     "sna.xid.type3.dlus", FT_BOOLEAN, 8, NULL, 0x20,
3414                     NULL, HFILL }},
3415
3416                 { &hf_sna_xid_3_exbn,
3417                 { "Extended HPR Border Node",
3418                     "sna.xid.type3.exbn", FT_BOOLEAN, 8, NULL, 0x10,
3419                     NULL, HFILL }},
3420
3421                 { &hf_sna_xid_3_genodai,
3422                 { "Generalized ODAI Usage Option",
3423                     "sna.xid.type3.genodai", FT_BOOLEAN, 8, NULL, 0x08,
3424                     NULL, HFILL }},
3425
3426                 { &hf_sna_xid_3_branch,
3427                 { "Branch Indicator", "sna.xid.type3.branch",
3428                     FT_UINT8, BASE_HEX, VALS(sna_xid_3_branch_vals),
3429                     0x06, NULL, HFILL }},
3430
3431                 { &hf_sna_xid_3_brnn,
3432                 { "Option Set 1123 Indicator",
3433                     "sna.xid.type3.brnn", FT_BOOLEAN, 8, NULL, 0x01,
3434                     NULL, HFILL }},
3435
3436                 { &hf_sna_xid_3_tg,
3437                 { "XID TG", "sna.xid.type3.tg", FT_UINT8, BASE_HEX, NULL, 0x0,
3438                     NULL, HFILL }},
3439
3440                 { &hf_sna_xid_3_dlc,
3441                 { "XID DLC", "sna.xid.type3.dlc", FT_UINT8, BASE_HEX, NULL, 0x0,
3442                     NULL, HFILL }},
3443
3444                 { &hf_sna_xid_3_dlen,
3445                 { "DLC Dependent Section Length", "sna.xid.type3.dlen",
3446                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3447
3448                 { &hf_sna_control_len,
3449                 { "Control Vector Length", "sna.control.len",
3450                     FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3451
3452                 { &hf_sna_control_key,
3453                 { "Control Vector Key", "sna.control.key",
3454                     FT_UINT8, BASE_HEX, VALS(sna_control_vals), 0x0, NULL,
3455                     HFILL }},
3456
3457                 { &hf_sna_control_hprkey,
3458                 { "Control Vector HPR Key", "sna.control.hprkey",
3459                     FT_UINT8, BASE_HEX, VALS(sna_control_hpr_vals), 0x0, NULL,
3460                     HFILL }},
3461
3462                 { &hf_sna_control_05_delay,
3463                 { "Channel Delay", "sna.control.05.delay",
3464                     FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
3465
3466                 { &hf_sna_control_05_type,
3467                 { "Network Address Type", "sna.control.05.type",
3468                     FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
3469
3470                 { &hf_sna_control_05_ptp,
3471                 { "Point-to-point", "sna.control.05.ptp",
3472                     FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
3473
3474                 { &hf_sna_control_0e_type,
3475                 { "Type", "sna.control.0e.type",
3476                     FT_UINT8, BASE_HEX, VALS(sna_control_0e_type_vals),
3477                     0, NULL, HFILL }},
3478
3479                 { &hf_sna_control_0e_value,
3480                 { "Value", "sna.control.0e.value",
3481                     FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }},
3482         };
3483         static gint *ett[] = {
3484                 &ett_sna,
3485                 &ett_sna_th,
3486                 &ett_sna_th_fid,
3487                 &ett_sna_nlp_nhdr,
3488                 &ett_sna_nlp_nhdr_0,
3489                 &ett_sna_nlp_nhdr_1,
3490                 &ett_sna_nlp_thdr,
3491                 &ett_sna_nlp_thdr_8,
3492                 &ett_sna_nlp_thdr_9,
3493                 &ett_sna_nlp_opti_un,
3494                 &ett_sna_nlp_opti_0d,
3495                 &ett_sna_nlp_opti_0d_4,
3496                 &ett_sna_nlp_opti_0e,
3497                 &ett_sna_nlp_opti_0e_stat,
3498                 &ett_sna_nlp_opti_0e_absp,
3499                 &ett_sna_nlp_opti_0f,
3500                 &ett_sna_nlp_opti_10,
3501                 &ett_sna_nlp_opti_12,
3502                 &ett_sna_nlp_opti_14,
3503                 &ett_sna_nlp_opti_14_si,
3504                 &ett_sna_nlp_opti_14_si_2,
3505                 &ett_sna_nlp_opti_14_rr,
3506                 &ett_sna_nlp_opti_14_rr_2,
3507                 &ett_sna_nlp_opti_22,
3508                 &ett_sna_nlp_opti_22_2,
3509                 &ett_sna_nlp_opti_22_3,
3510                 &ett_sna_rh,
3511                 &ett_sna_rh_0,
3512                 &ett_sna_rh_1,
3513                 &ett_sna_rh_2,
3514                 &ett_sna_gds,
3515                 &ett_sna_xid_0,
3516                 &ett_sna_xid_id,
3517                 &ett_sna_xid_3_8,
3518                 &ett_sna_xid_3_10,
3519                 &ett_sna_xid_3_11,
3520                 &ett_sna_xid_3_12,
3521                 &ett_sna_xid_3_15,
3522                 &ett_sna_control_un,
3523                 &ett_sna_control_05,
3524                 &ett_sna_control_05hpr,
3525                 &ett_sna_control_05hpr_type,
3526                 &ett_sna_control_0e,
3527         };
3528         module_t *sna_module;
3529
3530         proto_sna = proto_register_protocol("Systems Network Architecture",
3531             "SNA", "sna");
3532         proto_register_field_array(proto_sna, hf, array_length(hf));
3533         proto_register_subtree_array(ett, array_length(ett));
3534         register_dissector("sna", dissect_sna, proto_sna);
3535
3536         proto_sna_xid = proto_register_protocol(
3537             "Systems Network Architecture XID", "SNA XID", "sna_xid");
3538         register_dissector("sna_xid", dissect_sna_xid, proto_sna_xid);
3539
3540         /* Register configuration options */
3541         sna_module = prefs_register_protocol(proto_sna, NULL);
3542         prefs_register_bool_preference(sna_module, "defragment",
3543                 "Reassemble fragmented BIUs",
3544                 "Whether fragmented BIUs should be reassembled",
3545                 &sna_defragment);
3546
3547         register_init_routine(sna_init);
3548 }
3549
3550 void
3551 proto_reg_handoff_sna(void)
3552 {
3553         dissector_handle_t sna_handle;
3554         dissector_handle_t sna_xid_handle;
3555
3556         sna_handle = find_dissector("sna");
3557         sna_xid_handle = find_dissector("sna_xid");
3558         dissector_add_uint("llc.dsap", SAP_SNA_PATHCTRL, sna_handle);
3559         dissector_add_uint("llc.dsap", SAP_SNA1, sna_handle);
3560         dissector_add_uint("llc.dsap", SAP_SNA2, sna_handle);
3561         dissector_add_uint("llc.dsap", SAP_SNA3, sna_handle);
3562         dissector_add_uint("llc.xid_dsap", SAP_SNA_PATHCTRL, sna_xid_handle);
3563         dissector_add_uint("llc.xid_dsap", SAP_SNA1, sna_xid_handle);
3564         dissector_add_uint("llc.xid_dsap", SAP_SNA2, sna_xid_handle);
3565         dissector_add_uint("llc.xid_dsap", SAP_SNA3, sna_xid_handle);
3566         /* RFC 2043 */
3567         dissector_add_uint("ppp.protocol", PPP_SNA, sna_handle);
3568         data_handle = find_dissector("data");
3569
3570 }