Merge tag 'drm-intel-next-2018-06-20' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142 #include "intel_workarounds.h"
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define GEN8_CTX_STATUS_COMPLETED_MASK \
159          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160
161 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
162 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163 #define WA_TAIL_DWORDS 2
164 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165
166 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167                                             struct intel_engine_cs *engine,
168                                             struct intel_context *ce);
169 static void execlists_init_reg_state(u32 *reg_state,
170                                      struct i915_gem_context *ctx,
171                                      struct intel_engine_cs *engine,
172                                      struct intel_ring *ring);
173
174 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
175 {
176         return rb_entry(rb, struct i915_priolist, node);
177 }
178
179 static inline int rq_prio(const struct i915_request *rq)
180 {
181         return rq->sched.attr.priority;
182 }
183
184 static inline bool need_preempt(const struct intel_engine_cs *engine,
185                                 const struct i915_request *last,
186                                 int prio)
187 {
188         return (intel_engine_has_preemption(engine) &&
189                 __execlists_need_preempt(prio, rq_prio(last)) &&
190                 !i915_request_completed(last));
191 }
192
193 /*
194  * The context descriptor encodes various attributes of a context,
195  * including its GTT address and some flags. Because it's fairly
196  * expensive to calculate, we'll just do it once and cache the result,
197  * which remains valid until the context is unpinned.
198  *
199  * This is what a descriptor looks like, from LSB to MSB::
200  *
201  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
202  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
203  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
204  *      bits 53-54:    mbz, reserved for use by hardware
205  *      bits 55-63:    group ID, currently unused and set to 0
206  *
207  * Starting from Gen11, the upper dword of the descriptor has a new format:
208  *
209  *      bits 32-36:    reserved
210  *      bits 37-47:    SW context ID
211  *      bits 48:53:    engine instance
212  *      bit 54:        mbz, reserved for use by hardware
213  *      bits 55-60:    SW counter
214  *      bits 61-63:    engine class
215  *
216  * engine info, SW context ID and SW counter need to form a unique number
217  * (Context ID) per lrc.
218  */
219 static void
220 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
221                                    struct intel_engine_cs *engine,
222                                    struct intel_context *ce)
223 {
224         u64 desc;
225
226         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
227         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
228
229         desc = ctx->desc_template;                              /* bits  0-11 */
230         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
231
232         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
233                                                                 /* bits 12-31 */
234         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
235
236         /*
237          * The following 32bits are copied into the OA reports (dword 2).
238          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
239          * anything below.
240          */
241         if (INTEL_GEN(ctx->i915) >= 11) {
242                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
243                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
244                                                                 /* bits 37-47 */
245
246                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
247                                                                 /* bits 48-53 */
248
249                 /* TODO: decide what to do with SW counter (bits 55-60) */
250
251                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
252                                                                 /* bits 61-63 */
253         } else {
254                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
255                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
256         }
257
258         ce->lrc_desc = desc;
259 }
260
261 static struct i915_priolist *
262 lookup_priolist(struct intel_engine_cs *engine, int prio)
263 {
264         struct intel_engine_execlists * const execlists = &engine->execlists;
265         struct i915_priolist *p;
266         struct rb_node **parent, *rb;
267         bool first = true;
268
269         if (unlikely(execlists->no_priolist))
270                 prio = I915_PRIORITY_NORMAL;
271
272 find_priolist:
273         /* most positive priority is scheduled first, equal priorities fifo */
274         rb = NULL;
275         parent = &execlists->queue.rb_node;
276         while (*parent) {
277                 rb = *parent;
278                 p = to_priolist(rb);
279                 if (prio > p->priority) {
280                         parent = &rb->rb_left;
281                 } else if (prio < p->priority) {
282                         parent = &rb->rb_right;
283                         first = false;
284                 } else {
285                         return p;
286                 }
287         }
288
289         if (prio == I915_PRIORITY_NORMAL) {
290                 p = &execlists->default_priolist;
291         } else {
292                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
293                 /* Convert an allocation failure to a priority bump */
294                 if (unlikely(!p)) {
295                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
296
297                         /* To maintain ordering with all rendering, after an
298                          * allocation failure we have to disable all scheduling.
299                          * Requests will then be executed in fifo, and schedule
300                          * will ensure that dependencies are emitted in fifo.
301                          * There will be still some reordering with existing
302                          * requests, so if userspace lied about their
303                          * dependencies that reordering may be visible.
304                          */
305                         execlists->no_priolist = true;
306                         goto find_priolist;
307                 }
308         }
309
310         p->priority = prio;
311         INIT_LIST_HEAD(&p->requests);
312         rb_link_node(&p->node, rb, parent);
313         rb_insert_color(&p->node, &execlists->queue);
314
315         if (first)
316                 execlists->first = &p->node;
317
318         return p;
319 }
320
321 static void unwind_wa_tail(struct i915_request *rq)
322 {
323         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
324         assert_ring_tail_valid(rq->ring, rq->tail);
325 }
326
327 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
328 {
329         struct i915_request *rq, *rn;
330         struct i915_priolist *uninitialized_var(p);
331         int last_prio = I915_PRIORITY_INVALID;
332
333         lockdep_assert_held(&engine->timeline.lock);
334
335         list_for_each_entry_safe_reverse(rq, rn,
336                                          &engine->timeline.requests,
337                                          link) {
338                 if (i915_request_completed(rq))
339                         return;
340
341                 __i915_request_unsubmit(rq);
342                 unwind_wa_tail(rq);
343
344                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
345                 if (rq_prio(rq) != last_prio) {
346                         last_prio = rq_prio(rq);
347                         p = lookup_priolist(engine, last_prio);
348                 }
349
350                 GEM_BUG_ON(p->priority != rq_prio(rq));
351                 list_add(&rq->sched.link, &p->requests);
352         }
353 }
354
355 void
356 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
357 {
358         struct intel_engine_cs *engine =
359                 container_of(execlists, typeof(*engine), execlists);
360         unsigned long flags;
361
362         spin_lock_irqsave(&engine->timeline.lock, flags);
363
364         __unwind_incomplete_requests(engine);
365
366         spin_unlock_irqrestore(&engine->timeline.lock, flags);
367 }
368
369 static inline void
370 execlists_context_status_change(struct i915_request *rq, unsigned long status)
371 {
372         /*
373          * Only used when GVT-g is enabled now. When GVT-g is disabled,
374          * The compiler should eliminate this function as dead-code.
375          */
376         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
377                 return;
378
379         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
380                                    status, rq);
381 }
382
383 inline void
384 execlists_user_begin(struct intel_engine_execlists *execlists,
385                      const struct execlist_port *port)
386 {
387         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
388 }
389
390 inline void
391 execlists_user_end(struct intel_engine_execlists *execlists)
392 {
393         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
394 }
395
396 static inline void
397 execlists_context_schedule_in(struct i915_request *rq)
398 {
399         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
400         intel_engine_context_in(rq->engine);
401 }
402
403 static inline void
404 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
405 {
406         intel_engine_context_out(rq->engine);
407         execlists_context_status_change(rq, status);
408         trace_i915_request_out(rq);
409 }
410
411 static void
412 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
413 {
414         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
415         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
416         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
417         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
418 }
419
420 static u64 execlists_update_context(struct i915_request *rq)
421 {
422         struct intel_context *ce = rq->hw_context;
423         struct i915_hw_ppgtt *ppgtt =
424                 rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
425         u32 *reg_state = ce->lrc_reg_state;
426
427         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
428
429         /* True 32b PPGTT with dynamic page allocation: update PDP
430          * registers and point the unallocated PDPs to scratch page.
431          * PML4 is allocated during ppgtt init, so this is not needed
432          * in 48-bit mode.
433          */
434         if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
435                 execlists_update_context_pdps(ppgtt, reg_state);
436
437         return ce->lrc_desc;
438 }
439
440 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
441 {
442         if (execlists->ctrl_reg) {
443                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
444                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
445         } else {
446                 writel(upper_32_bits(desc), execlists->submit_reg);
447                 writel(lower_32_bits(desc), execlists->submit_reg);
448         }
449 }
450
451 static void execlists_submit_ports(struct intel_engine_cs *engine)
452 {
453         struct intel_engine_execlists *execlists = &engine->execlists;
454         struct execlist_port *port = execlists->port;
455         unsigned int n;
456
457         /*
458          * ELSQ note: the submit queue is not cleared after being submitted
459          * to the HW so we need to make sure we always clean it up. This is
460          * currently ensured by the fact that we always write the same number
461          * of elsq entries, keep this in mind before changing the loop below.
462          */
463         for (n = execlists_num_ports(execlists); n--; ) {
464                 struct i915_request *rq;
465                 unsigned int count;
466                 u64 desc;
467
468                 rq = port_unpack(&port[n], &count);
469                 if (rq) {
470                         GEM_BUG_ON(count > !n);
471                         if (!count++)
472                                 execlists_context_schedule_in(rq);
473                         port_set(&port[n], port_pack(rq, count));
474                         desc = execlists_update_context(rq);
475                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
476
477                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
478                                   engine->name, n,
479                                   port[n].context_id, count,
480                                   rq->global_seqno,
481                                   rq->fence.context, rq->fence.seqno,
482                                   intel_engine_get_seqno(engine),
483                                   rq_prio(rq));
484                 } else {
485                         GEM_BUG_ON(!n);
486                         desc = 0;
487                 }
488
489                 write_desc(execlists, desc, n);
490         }
491
492         /* we need to manually load the submit queue */
493         if (execlists->ctrl_reg)
494                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
495
496         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
497 }
498
499 static bool ctx_single_port_submission(const struct intel_context *ce)
500 {
501         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
502                 i915_gem_context_force_single_submission(ce->gem_context));
503 }
504
505 static bool can_merge_ctx(const struct intel_context *prev,
506                           const struct intel_context *next)
507 {
508         if (prev != next)
509                 return false;
510
511         if (ctx_single_port_submission(prev))
512                 return false;
513
514         return true;
515 }
516
517 static void port_assign(struct execlist_port *port, struct i915_request *rq)
518 {
519         GEM_BUG_ON(rq == port_request(port));
520
521         if (port_isset(port))
522                 i915_request_put(port_request(port));
523
524         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
525 }
526
527 static void inject_preempt_context(struct intel_engine_cs *engine)
528 {
529         struct intel_engine_execlists *execlists = &engine->execlists;
530         struct intel_context *ce =
531                 to_intel_context(engine->i915->preempt_context, engine);
532         unsigned int n;
533
534         GEM_BUG_ON(execlists->preempt_complete_status !=
535                    upper_32_bits(ce->lrc_desc));
536         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
537                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
538                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
539                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
540                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
541
542         /*
543          * Switch to our empty preempt context so
544          * the state of the GPU is known (idle).
545          */
546         GEM_TRACE("%s\n", engine->name);
547         for (n = execlists_num_ports(execlists); --n; )
548                 write_desc(execlists, 0, n);
549
550         write_desc(execlists, ce->lrc_desc, n);
551
552         /* we need to manually load the submit queue */
553         if (execlists->ctrl_reg)
554                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
555
556         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
557         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
558 }
559
560 static void complete_preempt_context(struct intel_engine_execlists *execlists)
561 {
562         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
563
564         execlists_cancel_port_requests(execlists);
565         execlists_unwind_incomplete_requests(execlists);
566
567         execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
568 }
569
570 static bool __execlists_dequeue(struct intel_engine_cs *engine)
571 {
572         struct intel_engine_execlists * const execlists = &engine->execlists;
573         struct execlist_port *port = execlists->port;
574         const struct execlist_port * const last_port =
575                 &execlists->port[execlists->port_mask];
576         struct i915_request *last = port_request(port);
577         struct rb_node *rb;
578         bool submit = false;
579
580         lockdep_assert_held(&engine->timeline.lock);
581
582         /* Hardware submission is through 2 ports. Conceptually each port
583          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
584          * static for a context, and unique to each, so we only execute
585          * requests belonging to a single context from each ring. RING_HEAD
586          * is maintained by the CS in the context image, it marks the place
587          * where it got up to last time, and through RING_TAIL we tell the CS
588          * where we want to execute up to this time.
589          *
590          * In this list the requests are in order of execution. Consecutive
591          * requests from the same context are adjacent in the ringbuffer. We
592          * can combine these requests into a single RING_TAIL update:
593          *
594          *              RING_HEAD...req1...req2
595          *                                    ^- RING_TAIL
596          * since to execute req2 the CS must first execute req1.
597          *
598          * Our goal then is to point each port to the end of a consecutive
599          * sequence of requests as being the most optimal (fewest wake ups
600          * and context switches) submission.
601          */
602
603         rb = execlists->first;
604         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
605
606         if (last) {
607                 /*
608                  * Don't resubmit or switch until all outstanding
609                  * preemptions (lite-restore) are seen. Then we
610                  * know the next preemption status we see corresponds
611                  * to this ELSP update.
612                  */
613                 GEM_BUG_ON(!execlists_is_active(execlists,
614                                                 EXECLISTS_ACTIVE_USER));
615                 GEM_BUG_ON(!port_count(&port[0]));
616
617                 /*
618                  * If we write to ELSP a second time before the HW has had
619                  * a chance to respond to the previous write, we can confuse
620                  * the HW and hit "undefined behaviour". After writing to ELSP,
621                  * we must then wait until we see a context-switch event from
622                  * the HW to indicate that it has had a chance to respond.
623                  */
624                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
625                         return false;
626
627                 if (need_preempt(engine, last, execlists->queue_priority)) {
628                         inject_preempt_context(engine);
629                         return false;
630                 }
631
632                 /*
633                  * In theory, we could coalesce more requests onto
634                  * the second port (the first port is active, with
635                  * no preemptions pending). However, that means we
636                  * then have to deal with the possible lite-restore
637                  * of the second port (as we submit the ELSP, there
638                  * may be a context-switch) but also we may complete
639                  * the resubmission before the context-switch. Ergo,
640                  * coalescing onto the second port will cause a
641                  * preemption event, but we cannot predict whether
642                  * that will affect port[0] or port[1].
643                  *
644                  * If the second port is already active, we can wait
645                  * until the next context-switch before contemplating
646                  * new requests. The GPU will be busy and we should be
647                  * able to resubmit the new ELSP before it idles,
648                  * avoiding pipeline bubbles (momentary pauses where
649                  * the driver is unable to keep up the supply of new
650                  * work). However, we have to double check that the
651                  * priorities of the ports haven't been switch.
652                  */
653                 if (port_count(&port[1]))
654                         return false;
655
656                 /*
657                  * WaIdleLiteRestore:bdw,skl
658                  * Apply the wa NOOPs to prevent
659                  * ring:HEAD == rq:TAIL as we resubmit the
660                  * request. See gen8_emit_breadcrumb() for
661                  * where we prepare the padding after the
662                  * end of the request.
663                  */
664                 last->tail = last->wa_tail;
665         }
666
667         while (rb) {
668                 struct i915_priolist *p = to_priolist(rb);
669                 struct i915_request *rq, *rn;
670
671                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
672                         /*
673                          * Can we combine this request with the current port?
674                          * It has to be the same context/ringbuffer and not
675                          * have any exceptions (e.g. GVT saying never to
676                          * combine contexts).
677                          *
678                          * If we can combine the requests, we can execute both
679                          * by updating the RING_TAIL to point to the end of the
680                          * second request, and so we never need to tell the
681                          * hardware about the first.
682                          */
683                         if (last &&
684                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
685                                 /*
686                                  * If we are on the second port and cannot
687                                  * combine this request with the last, then we
688                                  * are done.
689                                  */
690                                 if (port == last_port) {
691                                         __list_del_many(&p->requests,
692                                                         &rq->sched.link);
693                                         goto done;
694                                 }
695
696                                 /*
697                                  * If GVT overrides us we only ever submit
698                                  * port[0], leaving port[1] empty. Note that we
699                                  * also have to be careful that we don't queue
700                                  * the same context (even though a different
701                                  * request) to the second port.
702                                  */
703                                 if (ctx_single_port_submission(last->hw_context) ||
704                                     ctx_single_port_submission(rq->hw_context)) {
705                                         __list_del_many(&p->requests,
706                                                         &rq->sched.link);
707                                         goto done;
708                                 }
709
710                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
711
712                                 if (submit)
713                                         port_assign(port, last);
714                                 port++;
715
716                                 GEM_BUG_ON(port_isset(port));
717                         }
718
719                         INIT_LIST_HEAD(&rq->sched.link);
720                         __i915_request_submit(rq);
721                         trace_i915_request_in(rq, port_index(port, execlists));
722                         last = rq;
723                         submit = true;
724                 }
725
726                 rb = rb_next(rb);
727                 rb_erase(&p->node, &execlists->queue);
728                 INIT_LIST_HEAD(&p->requests);
729                 if (p->priority != I915_PRIORITY_NORMAL)
730                         kmem_cache_free(engine->i915->priorities, p);
731         }
732
733 done:
734         /*
735          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
736          *
737          * We choose queue_priority such that if we add a request of greater
738          * priority than this, we kick the submission tasklet to decide on
739          * the right order of submitting the requests to hardware. We must
740          * also be prepared to reorder requests as they are in-flight on the
741          * HW. We derive the queue_priority then as the first "hole" in
742          * the HW submission ports and if there are no available slots,
743          * the priority of the lowest executing request, i.e. last.
744          *
745          * When we do receive a higher priority request ready to run from the
746          * user, see queue_request(), the queue_priority is bumped to that
747          * request triggering preemption on the next dequeue (or subsequent
748          * interrupt for secondary ports).
749          */
750         execlists->queue_priority =
751                 port != execlists->port ? rq_prio(last) : INT_MIN;
752
753         execlists->first = rb;
754         if (submit)
755                 port_assign(port, last);
756
757         /* We must always keep the beast fed if we have work piled up */
758         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
759
760         /* Re-evaluate the executing context setup after each preemptive kick */
761         if (last)
762                 execlists_user_begin(execlists, execlists->port);
763
764         return submit;
765 }
766
767 static void execlists_dequeue(struct intel_engine_cs *engine)
768 {
769         struct intel_engine_execlists * const execlists = &engine->execlists;
770         unsigned long flags;
771         bool submit;
772
773         spin_lock_irqsave(&engine->timeline.lock, flags);
774         submit = __execlists_dequeue(engine);
775         spin_unlock_irqrestore(&engine->timeline.lock, flags);
776
777         if (submit)
778                 execlists_submit_ports(engine);
779
780         GEM_BUG_ON(port_isset(execlists->port) &&
781                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
782 }
783
784 void
785 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
786 {
787         struct execlist_port *port = execlists->port;
788         unsigned int num_ports = execlists_num_ports(execlists);
789
790         while (num_ports-- && port_isset(port)) {
791                 struct i915_request *rq = port_request(port);
792
793                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
794                           rq->engine->name,
795                           (unsigned int)(port - execlists->port),
796                           rq->global_seqno,
797                           rq->fence.context, rq->fence.seqno,
798                           intel_engine_get_seqno(rq->engine));
799
800                 GEM_BUG_ON(!execlists->active);
801                 execlists_context_schedule_out(rq,
802                                                i915_request_completed(rq) ?
803                                                INTEL_CONTEXT_SCHEDULE_OUT :
804                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
805
806                 i915_request_put(rq);
807
808                 memset(port, 0, sizeof(*port));
809                 port++;
810         }
811
812         execlists_user_end(execlists);
813 }
814
815 static void clear_gtiir(struct intel_engine_cs *engine)
816 {
817         struct drm_i915_private *dev_priv = engine->i915;
818         int i;
819
820         /*
821          * Clear any pending interrupt state.
822          *
823          * We do it twice out of paranoia that some of the IIR are
824          * double buffered, and so if we only reset it once there may
825          * still be an interrupt pending.
826          */
827         if (INTEL_GEN(dev_priv) >= 11) {
828                 static const struct {
829                         u8 bank;
830                         u8 bit;
831                 } gen11_gtiir[] = {
832                         [RCS] = {0, GEN11_RCS0},
833                         [BCS] = {0, GEN11_BCS},
834                         [_VCS(0)] = {1, GEN11_VCS(0)},
835                         [_VCS(1)] = {1, GEN11_VCS(1)},
836                         [_VCS(2)] = {1, GEN11_VCS(2)},
837                         [_VCS(3)] = {1, GEN11_VCS(3)},
838                         [_VECS(0)] = {1, GEN11_VECS(0)},
839                         [_VECS(1)] = {1, GEN11_VECS(1)},
840                 };
841                 unsigned long irqflags;
842
843                 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));
844
845                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
846                 for (i = 0; i < 2; i++) {
847                         gen11_reset_one_iir(dev_priv,
848                                             gen11_gtiir[engine->id].bank,
849                                             gen11_gtiir[engine->id].bit);
850                 }
851                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
852         } else {
853                 static const u8 gtiir[] = {
854                         [RCS]  = 0,
855                         [BCS]  = 0,
856                         [VCS]  = 1,
857                         [VCS2] = 1,
858                         [VECS] = 3,
859                 };
860
861                 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
862
863                 for (i = 0; i < 2; i++) {
864                         I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
865                                    engine->irq_keep_mask);
866                         POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
867                 }
868                 GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
869                            engine->irq_keep_mask);
870         }
871 }
872
873 static void reset_irq(struct intel_engine_cs *engine)
874 {
875         /* Mark all CS interrupts as complete */
876         smp_store_mb(engine->execlists.active, 0);
877         synchronize_hardirq(engine->i915->drm.irq);
878
879         clear_gtiir(engine);
880
881         /*
882          * The port is checked prior to scheduling a tasklet, but
883          * just in case we have suspended the tasklet to do the
884          * wedging make sure that when it wakes, it decides there
885          * is no work to do by clearing the irq_posted bit.
886          */
887         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
888 }
889
890 static void execlists_cancel_requests(struct intel_engine_cs *engine)
891 {
892         struct intel_engine_execlists * const execlists = &engine->execlists;
893         struct i915_request *rq, *rn;
894         struct rb_node *rb;
895         unsigned long flags;
896
897         GEM_TRACE("%s current %d\n",
898                   engine->name, intel_engine_get_seqno(engine));
899
900         /*
901          * Before we call engine->cancel_requests(), we should have exclusive
902          * access to the submission state. This is arranged for us by the
903          * caller disabling the interrupt generation, the tasklet and other
904          * threads that may then access the same state, giving us a free hand
905          * to reset state. However, we still need to let lockdep be aware that
906          * we know this state may be accessed in hardirq context, so we
907          * disable the irq around this manipulation and we want to keep
908          * the spinlock focused on its duties and not accidentally conflate
909          * coverage to the submission's irq state. (Similarly, although we
910          * shouldn't need to disable irq around the manipulation of the
911          * submission's irq state, we also wish to remind ourselves that
912          * it is irq state.)
913          */
914         local_irq_save(flags);
915
916         /* Cancel the requests on the HW and clear the ELSP tracker. */
917         execlists_cancel_port_requests(execlists);
918         reset_irq(engine);
919
920         spin_lock(&engine->timeline.lock);
921
922         /* Mark all executing requests as skipped. */
923         list_for_each_entry(rq, &engine->timeline.requests, link) {
924                 GEM_BUG_ON(!rq->global_seqno);
925                 if (!i915_request_completed(rq))
926                         dma_fence_set_error(&rq->fence, -EIO);
927         }
928
929         /* Flush the queued requests to the timeline list (for retiring). */
930         rb = execlists->first;
931         while (rb) {
932                 struct i915_priolist *p = to_priolist(rb);
933
934                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
935                         INIT_LIST_HEAD(&rq->sched.link);
936
937                         dma_fence_set_error(&rq->fence, -EIO);
938                         __i915_request_submit(rq);
939                 }
940
941                 rb = rb_next(rb);
942                 rb_erase(&p->node, &execlists->queue);
943                 INIT_LIST_HEAD(&p->requests);
944                 if (p->priority != I915_PRIORITY_NORMAL)
945                         kmem_cache_free(engine->i915->priorities, p);
946         }
947
948         /* Remaining _unready_ requests will be nop'ed when submitted */
949
950         execlists->queue_priority = INT_MIN;
951         execlists->queue = RB_ROOT;
952         execlists->first = NULL;
953         GEM_BUG_ON(port_isset(execlists->port));
954
955         spin_unlock(&engine->timeline.lock);
956
957         local_irq_restore(flags);
958 }
959
960 static void process_csb(struct intel_engine_cs *engine)
961 {
962         struct intel_engine_execlists * const execlists = &engine->execlists;
963         struct execlist_port *port = execlists->port;
964         struct drm_i915_private *i915 = engine->i915;
965         bool fw = false;
966
967         do {
968                 /* The HWSP contains a (cacheable) mirror of the CSB */
969                 const u32 *buf =
970                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
971                 unsigned int head, tail;
972
973                 /* Clear before reading to catch new interrupts */
974                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
975                 smp_mb__after_atomic();
976
977                 if (unlikely(execlists->csb_use_mmio)) {
978                         if (!fw) {
979                                 intel_uncore_forcewake_get(i915, execlists->fw_domains);
980                                 fw = true;
981                         }
982
983                         buf = (u32 * __force)
984                                 (i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
985
986                         head = readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
987                         tail = GEN8_CSB_WRITE_PTR(head);
988                         head = GEN8_CSB_READ_PTR(head);
989                         execlists->csb_head = head;
990                 } else {
991                         const int write_idx =
992                                 intel_hws_csb_write_index(i915) -
993                                 I915_HWS_CSB_BUF0_INDEX;
994
995                         head = execlists->csb_head;
996                         tail = READ_ONCE(buf[write_idx]);
997                         rmb(); /* Hopefully paired with a wmb() in HW */
998                 }
999                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
1000                           engine->name,
1001                           head, GEN8_CSB_READ_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
1002                           tail, GEN8_CSB_WRITE_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1003
1004                 while (head != tail) {
1005                         struct i915_request *rq;
1006                         unsigned int status;
1007                         unsigned int count;
1008
1009                         if (++head == GEN8_CSB_ENTRIES)
1010                                 head = 0;
1011
1012                         /*
1013                          * We are flying near dragons again.
1014                          *
1015                          * We hold a reference to the request in execlist_port[]
1016                          * but no more than that. We are operating in softirq
1017                          * context and so cannot hold any mutex or sleep. That
1018                          * prevents us stopping the requests we are processing
1019                          * in port[] from being retired simultaneously (the
1020                          * breadcrumb will be complete before we see the
1021                          * context-switch). As we only hold the reference to the
1022                          * request, any pointer chasing underneath the request
1023                          * is subject to a potential use-after-free. Thus we
1024                          * store all of the bookkeeping within port[] as
1025                          * required, and avoid using unguarded pointers beneath
1026                          * request itself. The same applies to the atomic
1027                          * status notifier.
1028                          */
1029
1030                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1031                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1032                                   engine->name, head,
1033                                   status, buf[2*head + 1],
1034                                   execlists->active);
1035
1036                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1037                                       GEN8_CTX_STATUS_PREEMPTED))
1038                                 execlists_set_active(execlists,
1039                                                      EXECLISTS_ACTIVE_HWACK);
1040                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1041                                 execlists_clear_active(execlists,
1042                                                        EXECLISTS_ACTIVE_HWACK);
1043
1044                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1045                                 continue;
1046
1047                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
1048                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1049
1050                         if (status & GEN8_CTX_STATUS_COMPLETE &&
1051                             buf[2*head + 1] == execlists->preempt_complete_status) {
1052                                 GEM_TRACE("%s preempt-idle\n", engine->name);
1053                                 complete_preempt_context(execlists);
1054                                 continue;
1055                         }
1056
1057                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
1058                             execlists_is_active(execlists,
1059                                                 EXECLISTS_ACTIVE_PREEMPT))
1060                                 continue;
1061
1062                         GEM_BUG_ON(!execlists_is_active(execlists,
1063                                                         EXECLISTS_ACTIVE_USER));
1064
1065                         rq = port_unpack(port, &count);
1066                         GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1067                                   engine->name,
1068                                   port->context_id, count,
1069                                   rq ? rq->global_seqno : 0,
1070                                   rq ? rq->fence.context : 0,
1071                                   rq ? rq->fence.seqno : 0,
1072                                   intel_engine_get_seqno(engine),
1073                                   rq ? rq_prio(rq) : 0);
1074
1075                         /* Check the context/desc id for this event matches */
1076                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1077
1078                         GEM_BUG_ON(count == 0);
1079                         if (--count == 0) {
1080                                 /*
1081                                  * On the final event corresponding to the
1082                                  * submission of this context, we expect either
1083                                  * an element-switch event or a completion
1084                                  * event (and on completion, the active-idle
1085                                  * marker). No more preemptions, lite-restore
1086                                  * or otherwise.
1087                                  */
1088                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1089                                 GEM_BUG_ON(port_isset(&port[1]) &&
1090                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1091                                 GEM_BUG_ON(!port_isset(&port[1]) &&
1092                                            !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1093
1094                                 /*
1095                                  * We rely on the hardware being strongly
1096                                  * ordered, that the breadcrumb write is
1097                                  * coherent (visible from the CPU) before the
1098                                  * user interrupt and CSB is processed.
1099                                  */
1100                                 GEM_BUG_ON(!i915_request_completed(rq));
1101
1102                                 execlists_context_schedule_out(rq,
1103                                                                INTEL_CONTEXT_SCHEDULE_OUT);
1104                                 i915_request_put(rq);
1105
1106                                 GEM_TRACE("%s completed ctx=%d\n",
1107                                           engine->name, port->context_id);
1108
1109                                 port = execlists_port_complete(execlists, port);
1110                                 if (port_isset(port))
1111                                         execlists_user_begin(execlists, port);
1112                                 else
1113                                         execlists_user_end(execlists);
1114                         } else {
1115                                 port_set(port, port_pack(rq, count));
1116                         }
1117                 }
1118
1119                 if (head != execlists->csb_head) {
1120                         execlists->csb_head = head;
1121                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1122                                i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1123                 }
1124         } while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));
1125
1126         if (unlikely(fw))
1127                 intel_uncore_forcewake_put(i915, execlists->fw_domains);
1128 }
1129
1130 /*
1131  * Check the unread Context Status Buffers and manage the submission of new
1132  * contexts to the ELSP accordingly.
1133  */
1134 static void execlists_submission_tasklet(unsigned long data)
1135 {
1136         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1137
1138         GEM_TRACE("%s awake?=%d, active=%x, irq-posted?=%d\n",
1139                   engine->name,
1140                   engine->i915->gt.awake,
1141                   engine->execlists.active,
1142                   test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));
1143
1144         /*
1145          * We can skip acquiring intel_runtime_pm_get() here as it was taken
1146          * on our behalf by the request (see i915_gem_mark_busy()) and it will
1147          * not be relinquished until the device is idle (see
1148          * i915_gem_idle_work_handler()). As a precaution, we make sure
1149          * that all ELSP are drained i.e. we have processed the CSB,
1150          * before allowing ourselves to idle and calling intel_runtime_pm_put().
1151          */
1152         GEM_BUG_ON(!engine->i915->gt.awake);
1153
1154         /*
1155          * Prefer doing test_and_clear_bit() as a two stage operation to avoid
1156          * imposing the cost of a locked atomic transaction when submitting a
1157          * new request (outside of the context-switch interrupt).
1158          */
1159         if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
1160                 process_csb(engine);
1161
1162         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1163                 execlists_dequeue(engine);
1164
1165         /* If the engine is now idle, so should be the flag; and vice versa. */
1166         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1167                                        EXECLISTS_ACTIVE_USER) ==
1168                    !port_isset(engine->execlists.port));
1169 }
1170
1171 static void queue_request(struct intel_engine_cs *engine,
1172                           struct i915_sched_node *node,
1173                           int prio)
1174 {
1175         list_add_tail(&node->link,
1176                       &lookup_priolist(engine, prio)->requests);
1177 }
1178
1179 static void __submit_queue(struct intel_engine_cs *engine, int prio)
1180 {
1181         engine->execlists.queue_priority = prio;
1182         tasklet_hi_schedule(&engine->execlists.tasklet);
1183 }
1184
1185 static void submit_queue(struct intel_engine_cs *engine, int prio)
1186 {
1187         if (prio > engine->execlists.queue_priority)
1188                 __submit_queue(engine, prio);
1189 }
1190
1191 static void execlists_submit_request(struct i915_request *request)
1192 {
1193         struct intel_engine_cs *engine = request->engine;
1194         unsigned long flags;
1195
1196         /* Will be called from irq-context when using foreign fences. */
1197         spin_lock_irqsave(&engine->timeline.lock, flags);
1198
1199         queue_request(engine, &request->sched, rq_prio(request));
1200         submit_queue(engine, rq_prio(request));
1201
1202         GEM_BUG_ON(!engine->execlists.first);
1203         GEM_BUG_ON(list_empty(&request->sched.link));
1204
1205         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1206 }
1207
1208 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1209 {
1210         return container_of(node, struct i915_request, sched);
1211 }
1212
1213 static struct intel_engine_cs *
1214 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1215 {
1216         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1217
1218         GEM_BUG_ON(!locked);
1219
1220         if (engine != locked) {
1221                 spin_unlock(&locked->timeline.lock);
1222                 spin_lock(&engine->timeline.lock);
1223         }
1224
1225         return engine;
1226 }
1227
1228 static void execlists_schedule(struct i915_request *request,
1229                                const struct i915_sched_attr *attr)
1230 {
1231         struct i915_priolist *uninitialized_var(pl);
1232         struct intel_engine_cs *engine, *last;
1233         struct i915_dependency *dep, *p;
1234         struct i915_dependency stack;
1235         const int prio = attr->priority;
1236         LIST_HEAD(dfs);
1237
1238         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1239
1240         if (i915_request_completed(request))
1241                 return;
1242
1243         if (prio <= READ_ONCE(request->sched.attr.priority))
1244                 return;
1245
1246         /* Need BKL in order to use the temporary link inside i915_dependency */
1247         lockdep_assert_held(&request->i915->drm.struct_mutex);
1248
1249         stack.signaler = &request->sched;
1250         list_add(&stack.dfs_link, &dfs);
1251
1252         /*
1253          * Recursively bump all dependent priorities to match the new request.
1254          *
1255          * A naive approach would be to use recursion:
1256          * static void update_priorities(struct i915_sched_node *node, prio) {
1257          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1258          *              update_priorities(dep->signal, prio)
1259          *      queue_request(node);
1260          * }
1261          * but that may have unlimited recursion depth and so runs a very
1262          * real risk of overunning the kernel stack. Instead, we build
1263          * a flat list of all dependencies starting with the current request.
1264          * As we walk the list of dependencies, we add all of its dependencies
1265          * to the end of the list (this may include an already visited
1266          * request) and continue to walk onwards onto the new dependencies. The
1267          * end result is a topological list of requests in reverse order, the
1268          * last element in the list is the request we must execute first.
1269          */
1270         list_for_each_entry(dep, &dfs, dfs_link) {
1271                 struct i915_sched_node *node = dep->signaler;
1272
1273                 /*
1274                  * Within an engine, there can be no cycle, but we may
1275                  * refer to the same dependency chain multiple times
1276                  * (redundant dependencies are not eliminated) and across
1277                  * engines.
1278                  */
1279                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1280                         GEM_BUG_ON(p == dep); /* no cycles! */
1281
1282                         if (i915_sched_node_signaled(p->signaler))
1283                                 continue;
1284
1285                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1286                         if (prio > READ_ONCE(p->signaler->attr.priority))
1287                                 list_move_tail(&p->dfs_link, &dfs);
1288                 }
1289         }
1290
1291         /*
1292          * If we didn't need to bump any existing priorities, and we haven't
1293          * yet submitted this request (i.e. there is no potential race with
1294          * execlists_submit_request()), we can set our own priority and skip
1295          * acquiring the engine locks.
1296          */
1297         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1298                 GEM_BUG_ON(!list_empty(&request->sched.link));
1299                 request->sched.attr = *attr;
1300                 if (stack.dfs_link.next == stack.dfs_link.prev)
1301                         return;
1302                 __list_del_entry(&stack.dfs_link);
1303         }
1304
1305         last = NULL;
1306         engine = request->engine;
1307         spin_lock_irq(&engine->timeline.lock);
1308
1309         /* Fifo and depth-first replacement ensure our deps execute before us */
1310         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1311                 struct i915_sched_node *node = dep->signaler;
1312
1313                 INIT_LIST_HEAD(&dep->dfs_link);
1314
1315                 engine = sched_lock_engine(node, engine);
1316
1317                 if (prio <= node->attr.priority)
1318                         continue;
1319
1320                 node->attr.priority = prio;
1321                 if (!list_empty(&node->link)) {
1322                         if (last != engine) {
1323                                 pl = lookup_priolist(engine, prio);
1324                                 last = engine;
1325                         }
1326                         GEM_BUG_ON(pl->priority != prio);
1327                         list_move_tail(&node->link, &pl->requests);
1328                 }
1329
1330                 if (prio > engine->execlists.queue_priority &&
1331                     i915_sw_fence_done(&sched_to_request(node)->submit))
1332                         __submit_queue(engine, prio);
1333         }
1334
1335         spin_unlock_irq(&engine->timeline.lock);
1336 }
1337
1338 static void execlists_context_destroy(struct intel_context *ce)
1339 {
1340         GEM_BUG_ON(!ce->state);
1341         GEM_BUG_ON(ce->pin_count);
1342
1343         intel_ring_free(ce->ring);
1344         __i915_gem_object_release_unless_active(ce->state->obj);
1345 }
1346
1347 static void execlists_context_unpin(struct intel_context *ce)
1348 {
1349         intel_ring_unpin(ce->ring);
1350
1351         ce->state->obj->pin_global--;
1352         i915_gem_object_unpin_map(ce->state->obj);
1353         i915_vma_unpin(ce->state);
1354
1355         i915_gem_context_put(ce->gem_context);
1356 }
1357
1358 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1359 {
1360         unsigned int flags;
1361         int err;
1362
1363         /*
1364          * Clear this page out of any CPU caches for coherent swap-in/out.
1365          * We only want to do this on the first bind so that we do not stall
1366          * on an active context (which by nature is already on the GPU).
1367          */
1368         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1369                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1370                 if (err)
1371                         return err;
1372         }
1373
1374         flags = PIN_GLOBAL | PIN_HIGH;
1375         if (ctx->ggtt_offset_bias)
1376                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1377
1378         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1379 }
1380
1381 static struct intel_context *
1382 __execlists_context_pin(struct intel_engine_cs *engine,
1383                         struct i915_gem_context *ctx,
1384                         struct intel_context *ce)
1385 {
1386         void *vaddr;
1387         int ret;
1388
1389         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1390         if (ret)
1391                 goto err;
1392         GEM_BUG_ON(!ce->state);
1393
1394         ret = __context_pin(ctx, ce->state);
1395         if (ret)
1396                 goto err;
1397
1398         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1399         if (IS_ERR(vaddr)) {
1400                 ret = PTR_ERR(vaddr);
1401                 goto unpin_vma;
1402         }
1403
1404         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1405         if (ret)
1406                 goto unpin_map;
1407
1408         intel_lr_context_descriptor_update(ctx, engine, ce);
1409
1410         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1411         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1412                 i915_ggtt_offset(ce->ring->vma);
1413         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1414         ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1415
1416         ce->state->obj->pin_global++;
1417         i915_gem_context_get(ctx);
1418         return ce;
1419
1420 unpin_map:
1421         i915_gem_object_unpin_map(ce->state->obj);
1422 unpin_vma:
1423         __i915_vma_unpin(ce->state);
1424 err:
1425         ce->pin_count = 0;
1426         return ERR_PTR(ret);
1427 }
1428
1429 static const struct intel_context_ops execlists_context_ops = {
1430         .unpin = execlists_context_unpin,
1431         .destroy = execlists_context_destroy,
1432 };
1433
1434 static struct intel_context *
1435 execlists_context_pin(struct intel_engine_cs *engine,
1436                       struct i915_gem_context *ctx)
1437 {
1438         struct intel_context *ce = to_intel_context(ctx, engine);
1439
1440         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1441
1442         if (likely(ce->pin_count++))
1443                 return ce;
1444         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1445
1446         ce->ops = &execlists_context_ops;
1447
1448         return __execlists_context_pin(engine, ctx, ce);
1449 }
1450
1451 static int execlists_request_alloc(struct i915_request *request)
1452 {
1453         int ret;
1454
1455         GEM_BUG_ON(!request->hw_context->pin_count);
1456
1457         /* Flush enough space to reduce the likelihood of waiting after
1458          * we start building the request - in which case we will just
1459          * have to repeat work.
1460          */
1461         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1462
1463         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1464         if (ret)
1465                 return ret;
1466
1467         /* Note that after this point, we have committed to using
1468          * this request as it is being used to both track the
1469          * state of engine initialisation and liveness of the
1470          * golden renderstate above. Think twice before you try
1471          * to cancel/unwind this request now.
1472          */
1473
1474         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1475         return 0;
1476 }
1477
1478 /*
1479  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1480  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1481  * but there is a slight complication as this is applied in WA batch where the
1482  * values are only initialized once so we cannot take register value at the
1483  * beginning and reuse it further; hence we save its value to memory, upload a
1484  * constant value with bit21 set and then we restore it back with the saved value.
1485  * To simplify the WA, a constant value is formed by using the default value
1486  * of this register. This shouldn't be a problem because we are only modifying
1487  * it for a short period and this batch in non-premptible. We can ofcourse
1488  * use additional instructions that read the actual value of the register
1489  * at that time and set our bit of interest but it makes the WA complicated.
1490  *
1491  * This WA is also required for Gen9 so extracting as a function avoids
1492  * code duplication.
1493  */
1494 static u32 *
1495 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1496 {
1497         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1498         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1499         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1500         *batch++ = 0;
1501
1502         *batch++ = MI_LOAD_REGISTER_IMM(1);
1503         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1504         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1505
1506         batch = gen8_emit_pipe_control(batch,
1507                                        PIPE_CONTROL_CS_STALL |
1508                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1509                                        0);
1510
1511         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1512         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1513         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1514         *batch++ = 0;
1515
1516         return batch;
1517 }
1518
1519 /*
1520  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1521  * initialized at the beginning and shared across all contexts but this field
1522  * helps us to have multiple batches at different offsets and select them based
1523  * on a criteria. At the moment this batch always start at the beginning of the page
1524  * and at this point we don't have multiple wa_ctx batch buffers.
1525  *
1526  * The number of WA applied are not known at the beginning; we use this field
1527  * to return the no of DWORDS written.
1528  *
1529  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1530  * so it adds NOOPs as padding to make it cacheline aligned.
1531  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1532  * makes a complete batch buffer.
1533  */
1534 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1535 {
1536         /* WaDisableCtxRestoreArbitration:bdw,chv */
1537         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1538
1539         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1540         if (IS_BROADWELL(engine->i915))
1541                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1542
1543         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1544         /* Actual scratch location is at 128 bytes offset */
1545         batch = gen8_emit_pipe_control(batch,
1546                                        PIPE_CONTROL_FLUSH_L3 |
1547                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1548                                        PIPE_CONTROL_CS_STALL |
1549                                        PIPE_CONTROL_QW_WRITE,
1550                                        i915_ggtt_offset(engine->scratch) +
1551                                        2 * CACHELINE_BYTES);
1552
1553         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1554
1555         /* Pad to end of cacheline */
1556         while ((unsigned long)batch % CACHELINE_BYTES)
1557                 *batch++ = MI_NOOP;
1558
1559         /*
1560          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1561          * execution depends on the length specified in terms of cache lines
1562          * in the register CTX_RCS_INDIRECT_CTX
1563          */
1564
1565         return batch;
1566 }
1567
1568 struct lri {
1569         i915_reg_t reg;
1570         u32 value;
1571 };
1572
1573 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1574 {
1575         GEM_BUG_ON(!count || count > 63);
1576
1577         *batch++ = MI_LOAD_REGISTER_IMM(count);
1578         do {
1579                 *batch++ = i915_mmio_reg_offset(lri->reg);
1580                 *batch++ = lri->value;
1581         } while (lri++, --count);
1582         *batch++ = MI_NOOP;
1583
1584         return batch;
1585 }
1586
1587 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1588 {
1589         static const struct lri lri[] = {
1590                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1591                 {
1592                         COMMON_SLICE_CHICKEN2,
1593                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1594                                        0),
1595                 },
1596
1597                 /* BSpec: 11391 */
1598                 {
1599                         FF_SLICE_CHICKEN,
1600                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1601                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1602                 },
1603
1604                 /* BSpec: 11299 */
1605                 {
1606                         _3D_CHICKEN3,
1607                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1608                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1609                 }
1610         };
1611
1612         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1613
1614         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1615         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1616
1617         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1618
1619         /* WaClearSlmSpaceAtContextSwitch:kbl */
1620         /* Actual scratch location is at 128 bytes offset */
1621         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1622                 batch = gen8_emit_pipe_control(batch,
1623                                                PIPE_CONTROL_FLUSH_L3 |
1624                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1625                                                PIPE_CONTROL_CS_STALL |
1626                                                PIPE_CONTROL_QW_WRITE,
1627                                                i915_ggtt_offset(engine->scratch)
1628                                                + 2 * CACHELINE_BYTES);
1629         }
1630
1631         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1632         if (HAS_POOLED_EU(engine->i915)) {
1633                 /*
1634                  * EU pool configuration is setup along with golden context
1635                  * during context initialization. This value depends on
1636                  * device type (2x6 or 3x6) and needs to be updated based
1637                  * on which subslice is disabled especially for 2x6
1638                  * devices, however it is safe to load default
1639                  * configuration of 3x6 device instead of masking off
1640                  * corresponding bits because HW ignores bits of a disabled
1641                  * subslice and drops down to appropriate config. Please
1642                  * see render_state_setup() in i915_gem_render_state.c for
1643                  * possible configurations, to avoid duplication they are
1644                  * not shown here again.
1645                  */
1646                 *batch++ = GEN9_MEDIA_POOL_STATE;
1647                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1648                 *batch++ = 0x00777000;
1649                 *batch++ = 0;
1650                 *batch++ = 0;
1651                 *batch++ = 0;
1652         }
1653
1654         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1655
1656         /* Pad to end of cacheline */
1657         while ((unsigned long)batch % CACHELINE_BYTES)
1658                 *batch++ = MI_NOOP;
1659
1660         return batch;
1661 }
1662
1663 static u32 *
1664 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1665 {
1666         int i;
1667
1668         /*
1669          * WaPipeControlBefore3DStateSamplePattern: cnl
1670          *
1671          * Ensure the engine is idle prior to programming a
1672          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1673          */
1674         batch = gen8_emit_pipe_control(batch,
1675                                        PIPE_CONTROL_CS_STALL,
1676                                        0);
1677         /*
1678          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1679          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1680          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1681          * confusing. Since gen8_emit_pipe_control() already advances the
1682          * batch by 6 dwords, we advance the other 10 here, completing a
1683          * cacheline. It's not clear if the workaround requires this padding
1684          * before other commands, or if it's just the regular padding we would
1685          * already have for the workaround bb, so leave it here for now.
1686          */
1687         for (i = 0; i < 10; i++)
1688                 *batch++ = MI_NOOP;
1689
1690         /* Pad to end of cacheline */
1691         while ((unsigned long)batch % CACHELINE_BYTES)
1692                 *batch++ = MI_NOOP;
1693
1694         return batch;
1695 }
1696
1697 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1698
1699 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1700 {
1701         struct drm_i915_gem_object *obj;
1702         struct i915_vma *vma;
1703         int err;
1704
1705         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1706         if (IS_ERR(obj))
1707                 return PTR_ERR(obj);
1708
1709         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1710         if (IS_ERR(vma)) {
1711                 err = PTR_ERR(vma);
1712                 goto err;
1713         }
1714
1715         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1716         if (err)
1717                 goto err;
1718
1719         engine->wa_ctx.vma = vma;
1720         return 0;
1721
1722 err:
1723         i915_gem_object_put(obj);
1724         return err;
1725 }
1726
1727 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1728 {
1729         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1730 }
1731
1732 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1733
1734 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1735 {
1736         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1737         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1738                                             &wa_ctx->per_ctx };
1739         wa_bb_func_t wa_bb_fn[2];
1740         struct page *page;
1741         void *batch, *batch_ptr;
1742         unsigned int i;
1743         int ret;
1744
1745         if (GEM_WARN_ON(engine->id != RCS))
1746                 return -EINVAL;
1747
1748         switch (INTEL_GEN(engine->i915)) {
1749         case 11:
1750                 return 0;
1751         case 10:
1752                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1753                 wa_bb_fn[1] = NULL;
1754                 break;
1755         case 9:
1756                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1757                 wa_bb_fn[1] = NULL;
1758                 break;
1759         case 8:
1760                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1761                 wa_bb_fn[1] = NULL;
1762                 break;
1763         default:
1764                 MISSING_CASE(INTEL_GEN(engine->i915));
1765                 return 0;
1766         }
1767
1768         ret = lrc_setup_wa_ctx(engine);
1769         if (ret) {
1770                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1771                 return ret;
1772         }
1773
1774         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1775         batch = batch_ptr = kmap_atomic(page);
1776
1777         /*
1778          * Emit the two workaround batch buffers, recording the offset from the
1779          * start of the workaround batch buffer object for each and their
1780          * respective sizes.
1781          */
1782         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1783                 wa_bb[i]->offset = batch_ptr - batch;
1784                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1785                                             CACHELINE_BYTES))) {
1786                         ret = -EINVAL;
1787                         break;
1788                 }
1789                 if (wa_bb_fn[i])
1790                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1791                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1792         }
1793
1794         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1795
1796         kunmap_atomic(batch);
1797         if (ret)
1798                 lrc_destroy_wa_ctx(engine);
1799
1800         return ret;
1801 }
1802
1803 static void enable_execlists(struct intel_engine_cs *engine)
1804 {
1805         struct drm_i915_private *dev_priv = engine->i915;
1806
1807         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1808
1809         /*
1810          * Make sure we're not enabling the new 12-deep CSB
1811          * FIFO as that requires a slightly updated handling
1812          * in the ctx switch irq. Since we're currently only
1813          * using only 2 elements of the enhanced execlists the
1814          * deeper FIFO it's not needed and it's not worth adding
1815          * more statements to the irq handler to support it.
1816          */
1817         if (INTEL_GEN(dev_priv) >= 11)
1818                 I915_WRITE(RING_MODE_GEN7(engine),
1819                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1820         else
1821                 I915_WRITE(RING_MODE_GEN7(engine),
1822                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1823
1824         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1825                    _MASKED_BIT_DISABLE(STOP_RING));
1826
1827         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1828                    engine->status_page.ggtt_offset);
1829         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1830 }
1831
1832 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1833 {
1834         struct drm_i915_private *dev_priv = engine->i915;
1835         bool unexpected = false;
1836
1837         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1838                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1839                 unexpected = true;
1840         }
1841
1842         return unexpected;
1843 }
1844
1845 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1846 {
1847         int ret;
1848
1849         ret = intel_mocs_init_engine(engine);
1850         if (ret)
1851                 return ret;
1852
1853         intel_engine_reset_breadcrumbs(engine);
1854         intel_engine_init_hangcheck(engine);
1855
1856         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1857                 struct drm_printer p = drm_debug_printer(__func__);
1858
1859                 intel_engine_dump(engine, &p, NULL);
1860         }
1861
1862         enable_execlists(engine);
1863
1864         return 0;
1865 }
1866
1867 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1868 {
1869         struct drm_i915_private *dev_priv = engine->i915;
1870         int ret;
1871
1872         ret = gen8_init_common_ring(engine);
1873         if (ret)
1874                 return ret;
1875
1876         intel_whitelist_workarounds_apply(engine);
1877
1878         /* We need to disable the AsyncFlip performance optimisations in order
1879          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1880          * programmed to '1' on all products.
1881          *
1882          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1883          */
1884         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1885
1886         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1887
1888         return 0;
1889 }
1890
1891 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1892 {
1893         int ret;
1894
1895         ret = gen8_init_common_ring(engine);
1896         if (ret)
1897                 return ret;
1898
1899         intel_whitelist_workarounds_apply(engine);
1900
1901         return 0;
1902 }
1903
1904 static struct i915_request *
1905 execlists_reset_prepare(struct intel_engine_cs *engine)
1906 {
1907         struct intel_engine_execlists * const execlists = &engine->execlists;
1908         struct i915_request *request, *active;
1909
1910         GEM_TRACE("%s\n", engine->name);
1911
1912         /*
1913          * Prevent request submission to the hardware until we have
1914          * completed the reset in i915_gem_reset_finish(). If a request
1915          * is completed by one engine, it may then queue a request
1916          * to a second via its execlists->tasklet *just* as we are
1917          * calling engine->init_hw() and also writing the ELSP.
1918          * Turning off the execlists->tasklet until the reset is over
1919          * prevents the race.
1920          */
1921         __tasklet_disable_sync_once(&execlists->tasklet);
1922
1923         /*
1924          * We want to flush the pending context switches, having disabled
1925          * the tasklet above, we can assume exclusive access to the execlists.
1926          * For this allows us to catch up with an inflight preemption event,
1927          * and avoid blaming an innocent request if the stall was due to the
1928          * preemption itself.
1929          */
1930         if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
1931                 process_csb(engine);
1932
1933         /*
1934          * The last active request can then be no later than the last request
1935          * now in ELSP[0]. So search backwards from there, so that if the GPU
1936          * has advanced beyond the last CSB update, it will be pardoned.
1937          */
1938         active = NULL;
1939         request = port_request(execlists->port);
1940         if (request) {
1941                 unsigned long flags;
1942
1943                 /*
1944                  * Prevent the breadcrumb from advancing before we decide
1945                  * which request is currently active.
1946                  */
1947                 intel_engine_stop_cs(engine);
1948
1949                 spin_lock_irqsave(&engine->timeline.lock, flags);
1950                 list_for_each_entry_from_reverse(request,
1951                                                  &engine->timeline.requests,
1952                                                  link) {
1953                         if (__i915_request_completed(request,
1954                                                      request->global_seqno))
1955                                 break;
1956
1957                         active = request;
1958                 }
1959                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1960         }
1961
1962         return active;
1963 }
1964
1965 static void execlists_reset(struct intel_engine_cs *engine,
1966                             struct i915_request *request)
1967 {
1968         struct intel_engine_execlists * const execlists = &engine->execlists;
1969         unsigned long flags;
1970         u32 *regs;
1971
1972         GEM_TRACE("%s request global=%x, current=%d\n",
1973                   engine->name, request ? request->global_seqno : 0,
1974                   intel_engine_get_seqno(engine));
1975
1976         /* See execlists_cancel_requests() for the irq/spinlock split. */
1977         local_irq_save(flags);
1978
1979         /*
1980          * Catch up with any missed context-switch interrupts.
1981          *
1982          * Ideally we would just read the remaining CSB entries now that we
1983          * know the gpu is idle. However, the CSB registers are sometimes^W
1984          * often trashed across a GPU reset! Instead we have to rely on
1985          * guessing the missed context-switch events by looking at what
1986          * requests were completed.
1987          */
1988         execlists_cancel_port_requests(execlists);
1989         reset_irq(engine);
1990
1991         /* Push back any incomplete requests for replay after the reset. */
1992         spin_lock(&engine->timeline.lock);
1993         __unwind_incomplete_requests(engine);
1994         spin_unlock(&engine->timeline.lock);
1995
1996         /* Following the reset, we need to reload the CSB read/write pointers */
1997         engine->execlists.csb_head = GEN8_CSB_ENTRIES - 1;
1998
1999         local_irq_restore(flags);
2000
2001         /*
2002          * If the request was innocent, we leave the request in the ELSP
2003          * and will try to replay it on restarting. The context image may
2004          * have been corrupted by the reset, in which case we may have
2005          * to service a new GPU hang, but more likely we can continue on
2006          * without impact.
2007          *
2008          * If the request was guilty, we presume the context is corrupt
2009          * and have to at least restore the RING register in the context
2010          * image back to the expected values to skip over the guilty request.
2011          */
2012         if (!request || request->fence.error != -EIO)
2013                 return;
2014
2015         /*
2016          * We want a simple context + ring to execute the breadcrumb update.
2017          * We cannot rely on the context being intact across the GPU hang,
2018          * so clear it and rebuild just what we need for the breadcrumb.
2019          * All pending requests for this context will be zapped, and any
2020          * future request will be after userspace has had the opportunity
2021          * to recreate its own state.
2022          */
2023         regs = request->hw_context->lrc_reg_state;
2024         if (engine->pinned_default_state) {
2025                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2026                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2027                        engine->context_size - PAGE_SIZE);
2028         }
2029         execlists_init_reg_state(regs,
2030                                  request->gem_context, engine, request->ring);
2031
2032         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
2033         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
2034
2035         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
2036         regs[CTX_RING_HEAD + 1] = request->ring->head;
2037
2038         intel_ring_update_space(request->ring);
2039
2040         /* Reset WaIdleLiteRestore:bdw,skl as well */
2041         unwind_wa_tail(request);
2042 }
2043
2044 static void execlists_reset_finish(struct intel_engine_cs *engine)
2045 {
2046         struct intel_engine_execlists * const execlists = &engine->execlists;
2047
2048         /* After a GPU reset, we may have requests to replay */
2049         if (execlists->first)
2050                 tasklet_schedule(&execlists->tasklet);
2051
2052         /*
2053          * Flush the tasklet while we still have the forcewake to be sure
2054          * that it is not allowed to sleep before we restart and reload a
2055          * context.
2056          *
2057          * As before (with execlists_reset_prepare) we rely on the caller
2058          * serialising multiple attempts to reset so that we know that we
2059          * are the only one manipulating tasklet state.
2060          */
2061         __tasklet_enable_sync_once(&execlists->tasklet);
2062
2063         GEM_TRACE("%s\n", engine->name);
2064 }
2065
2066 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2067 {
2068         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2069         struct intel_engine_cs *engine = rq->engine;
2070         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2071         u32 *cs;
2072         int i;
2073
2074         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2075         if (IS_ERR(cs))
2076                 return PTR_ERR(cs);
2077
2078         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2079         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2080                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2081
2082                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2083                 *cs++ = upper_32_bits(pd_daddr);
2084                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2085                 *cs++ = lower_32_bits(pd_daddr);
2086         }
2087
2088         *cs++ = MI_NOOP;
2089         intel_ring_advance(rq, cs);
2090
2091         return 0;
2092 }
2093
2094 static int gen8_emit_bb_start(struct i915_request *rq,
2095                               u64 offset, u32 len,
2096                               const unsigned int flags)
2097 {
2098         u32 *cs;
2099         int ret;
2100
2101         /* Don't rely in hw updating PDPs, specially in lite-restore.
2102          * Ideally, we should set Force PD Restore in ctx descriptor,
2103          * but we can't. Force Restore would be a second option, but
2104          * it is unsafe in case of lite-restore (because the ctx is
2105          * not idle). PML4 is allocated during ppgtt init so this is
2106          * not needed in 48-bit.*/
2107         if (rq->gem_context->ppgtt &&
2108             (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2109             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2110             !intel_vgpu_active(rq->i915)) {
2111                 ret = intel_logical_ring_emit_pdps(rq);
2112                 if (ret)
2113                         return ret;
2114
2115                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2116         }
2117
2118         cs = intel_ring_begin(rq, 6);
2119         if (IS_ERR(cs))
2120                 return PTR_ERR(cs);
2121
2122         /*
2123          * WaDisableCtxRestoreArbitration:bdw,chv
2124          *
2125          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2126          * particular all the gen that do not need the w/a at all!), if we
2127          * took care to make sure that on every switch into this context
2128          * (both ordinary and for preemption) that arbitrartion was enabled
2129          * we would be fine. However, there doesn't seem to be a downside to
2130          * being paranoid and making sure it is set before each batch and
2131          * every context-switch.
2132          *
2133          * Note that if we fail to enable arbitration before the request
2134          * is complete, then we do not see the context-switch interrupt and
2135          * the engine hangs (with RING_HEAD == RING_TAIL).
2136          *
2137          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2138          */
2139         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2140
2141         /* FIXME(BDW): Address space and security selectors. */
2142         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2143                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
2144                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2145         *cs++ = lower_32_bits(offset);
2146         *cs++ = upper_32_bits(offset);
2147
2148         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2149         *cs++ = MI_NOOP;
2150         intel_ring_advance(rq, cs);
2151
2152         return 0;
2153 }
2154
2155 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2156 {
2157         struct drm_i915_private *dev_priv = engine->i915;
2158         I915_WRITE_IMR(engine,
2159                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
2160         POSTING_READ_FW(RING_IMR(engine->mmio_base));
2161 }
2162
2163 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2164 {
2165         struct drm_i915_private *dev_priv = engine->i915;
2166         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2167 }
2168
2169 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2170 {
2171         u32 cmd, *cs;
2172
2173         cs = intel_ring_begin(request, 4);
2174         if (IS_ERR(cs))
2175                 return PTR_ERR(cs);
2176
2177         cmd = MI_FLUSH_DW + 1;
2178
2179         /* We always require a command barrier so that subsequent
2180          * commands, such as breadcrumb interrupts, are strictly ordered
2181          * wrt the contents of the write cache being flushed to memory
2182          * (and thus being coherent from the CPU).
2183          */
2184         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2185
2186         if (mode & EMIT_INVALIDATE) {
2187                 cmd |= MI_INVALIDATE_TLB;
2188                 if (request->engine->id == VCS)
2189                         cmd |= MI_INVALIDATE_BSD;
2190         }
2191
2192         *cs++ = cmd;
2193         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2194         *cs++ = 0; /* upper addr */
2195         *cs++ = 0; /* value */
2196         intel_ring_advance(request, cs);
2197
2198         return 0;
2199 }
2200
2201 static int gen8_emit_flush_render(struct i915_request *request,
2202                                   u32 mode)
2203 {
2204         struct intel_engine_cs *engine = request->engine;
2205         u32 scratch_addr =
2206                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2207         bool vf_flush_wa = false, dc_flush_wa = false;
2208         u32 *cs, flags = 0;
2209         int len;
2210
2211         flags |= PIPE_CONTROL_CS_STALL;
2212
2213         if (mode & EMIT_FLUSH) {
2214                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2215                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2216                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2217                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2218         }
2219
2220         if (mode & EMIT_INVALIDATE) {
2221                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2222                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2223                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2224                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2225                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2226                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2227                 flags |= PIPE_CONTROL_QW_WRITE;
2228                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2229
2230                 /*
2231                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2232                  * pipe control.
2233                  */
2234                 if (IS_GEN9(request->i915))
2235                         vf_flush_wa = true;
2236
2237                 /* WaForGAMHang:kbl */
2238                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2239                         dc_flush_wa = true;
2240         }
2241
2242         len = 6;
2243
2244         if (vf_flush_wa)
2245                 len += 6;
2246
2247         if (dc_flush_wa)
2248                 len += 12;
2249
2250         cs = intel_ring_begin(request, len);
2251         if (IS_ERR(cs))
2252                 return PTR_ERR(cs);
2253
2254         if (vf_flush_wa)
2255                 cs = gen8_emit_pipe_control(cs, 0, 0);
2256
2257         if (dc_flush_wa)
2258                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2259                                             0);
2260
2261         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2262
2263         if (dc_flush_wa)
2264                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2265
2266         intel_ring_advance(request, cs);
2267
2268         return 0;
2269 }
2270
2271 /*
2272  * Reserve space for 2 NOOPs at the end of each request to be
2273  * used as a workaround for not being allowed to do lite
2274  * restore with HEAD==TAIL (WaIdleLiteRestore).
2275  */
2276 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2277 {
2278         /* Ensure there's always at least one preemption point per-request. */
2279         *cs++ = MI_ARB_CHECK;
2280         *cs++ = MI_NOOP;
2281         request->wa_tail = intel_ring_offset(request, cs);
2282 }
2283
2284 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2285 {
2286         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2287         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2288
2289         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2290                                   intel_hws_seqno_address(request->engine));
2291         *cs++ = MI_USER_INTERRUPT;
2292         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2293         request->tail = intel_ring_offset(request, cs);
2294         assert_ring_tail_valid(request->ring, request->tail);
2295
2296         gen8_emit_wa_tail(request, cs);
2297 }
2298 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2299
2300 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2301 {
2302         /* We're using qword write, seqno should be aligned to 8 bytes. */
2303         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2304
2305         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2306                                       intel_hws_seqno_address(request->engine));
2307         *cs++ = MI_USER_INTERRUPT;
2308         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2309         request->tail = intel_ring_offset(request, cs);
2310         assert_ring_tail_valid(request->ring, request->tail);
2311
2312         gen8_emit_wa_tail(request, cs);
2313 }
2314 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2315
2316 static int gen8_init_rcs_context(struct i915_request *rq)
2317 {
2318         int ret;
2319
2320         ret = intel_ctx_workarounds_emit(rq);
2321         if (ret)
2322                 return ret;
2323
2324         ret = intel_rcs_context_init_mocs(rq);
2325         /*
2326          * Failing to program the MOCS is non-fatal.The system will not
2327          * run at peak performance. So generate an error and carry on.
2328          */
2329         if (ret)
2330                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2331
2332         return i915_gem_render_state_emit(rq);
2333 }
2334
2335 /**
2336  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2337  * @engine: Engine Command Streamer.
2338  */
2339 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2340 {
2341         struct drm_i915_private *dev_priv;
2342
2343         /*
2344          * Tasklet cannot be active at this point due intel_mark_active/idle
2345          * so this is just for documentation.
2346          */
2347         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2348                              &engine->execlists.tasklet.state)))
2349                 tasklet_kill(&engine->execlists.tasklet);
2350
2351         dev_priv = engine->i915;
2352
2353         if (engine->buffer) {
2354                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2355         }
2356
2357         if (engine->cleanup)
2358                 engine->cleanup(engine);
2359
2360         intel_engine_cleanup_common(engine);
2361
2362         lrc_destroy_wa_ctx(engine);
2363
2364         engine->i915 = NULL;
2365         dev_priv->engine[engine->id] = NULL;
2366         kfree(engine);
2367 }
2368
2369 static void execlists_set_default_submission(struct intel_engine_cs *engine)
2370 {
2371         engine->submit_request = execlists_submit_request;
2372         engine->cancel_requests = execlists_cancel_requests;
2373         engine->schedule = execlists_schedule;
2374         engine->execlists.tasklet.func = execlists_submission_tasklet;
2375
2376         engine->reset.prepare = execlists_reset_prepare;
2377
2378         engine->park = NULL;
2379         engine->unpark = NULL;
2380
2381         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2382         if (engine->i915->preempt_context)
2383                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2384
2385         engine->i915->caps.scheduler =
2386                 I915_SCHEDULER_CAP_ENABLED |
2387                 I915_SCHEDULER_CAP_PRIORITY;
2388         if (intel_engine_has_preemption(engine))
2389                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2390 }
2391
2392 static void
2393 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2394 {
2395         /* Default vfuncs which can be overriden by each engine. */
2396         engine->init_hw = gen8_init_common_ring;
2397
2398         engine->reset.prepare = execlists_reset_prepare;
2399         engine->reset.reset = execlists_reset;
2400         engine->reset.finish = execlists_reset_finish;
2401
2402         engine->context_pin = execlists_context_pin;
2403         engine->request_alloc = execlists_request_alloc;
2404
2405         engine->emit_flush = gen8_emit_flush;
2406         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2407         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2408
2409         engine->set_default_submission = execlists_set_default_submission;
2410
2411         if (INTEL_GEN(engine->i915) < 11) {
2412                 engine->irq_enable = gen8_logical_ring_enable_irq;
2413                 engine->irq_disable = gen8_logical_ring_disable_irq;
2414         } else {
2415                 /*
2416                  * TODO: On Gen11 interrupt masks need to be clear
2417                  * to allow C6 entry. Keep interrupts enabled at
2418                  * and take the hit of generating extra interrupts
2419                  * until a more refined solution exists.
2420                  */
2421         }
2422         engine->emit_bb_start = gen8_emit_bb_start;
2423 }
2424
2425 static inline void
2426 logical_ring_default_irqs(struct intel_engine_cs *engine)
2427 {
2428         unsigned int shift = 0;
2429
2430         if (INTEL_GEN(engine->i915) < 11) {
2431                 const u8 irq_shifts[] = {
2432                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2433                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2434                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2435                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2436                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2437                 };
2438
2439                 shift = irq_shifts[engine->id];
2440         }
2441
2442         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2443         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2444 }
2445
2446 static void
2447 logical_ring_setup(struct intel_engine_cs *engine)
2448 {
2449         struct drm_i915_private *dev_priv = engine->i915;
2450         enum forcewake_domains fw_domains;
2451
2452         intel_engine_setup_common(engine);
2453
2454         /* Intentionally left blank. */
2455         engine->buffer = NULL;
2456
2457         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2458                                                     RING_ELSP(engine),
2459                                                     FW_REG_WRITE);
2460
2461         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2462                                                      RING_CONTEXT_STATUS_PTR(engine),
2463                                                      FW_REG_READ | FW_REG_WRITE);
2464
2465         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2466                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2467                                                      FW_REG_READ);
2468
2469         engine->execlists.fw_domains = fw_domains;
2470
2471         tasklet_init(&engine->execlists.tasklet,
2472                      execlists_submission_tasklet, (unsigned long)engine);
2473
2474         logical_ring_default_vfuncs(engine);
2475         logical_ring_default_irqs(engine);
2476 }
2477
2478 static int logical_ring_init(struct intel_engine_cs *engine)
2479 {
2480         int ret;
2481
2482         ret = intel_engine_init_common(engine);
2483         if (ret)
2484                 goto error;
2485
2486         if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2487                 engine->execlists.submit_reg = engine->i915->regs +
2488                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2489                 engine->execlists.ctrl_reg = engine->i915->regs +
2490                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2491         } else {
2492                 engine->execlists.submit_reg = engine->i915->regs +
2493                         i915_mmio_reg_offset(RING_ELSP(engine));
2494         }
2495
2496         engine->execlists.preempt_complete_status = ~0u;
2497         if (engine->i915->preempt_context) {
2498                 struct intel_context *ce =
2499                         to_intel_context(engine->i915->preempt_context, engine);
2500
2501                 engine->execlists.preempt_complete_status =
2502                         upper_32_bits(ce->lrc_desc);
2503         }
2504
2505         engine->execlists.csb_head = GEN8_CSB_ENTRIES - 1;
2506
2507         return 0;
2508
2509 error:
2510         intel_logical_ring_cleanup(engine);
2511         return ret;
2512 }
2513
2514 int logical_render_ring_init(struct intel_engine_cs *engine)
2515 {
2516         struct drm_i915_private *dev_priv = engine->i915;
2517         int ret;
2518
2519         logical_ring_setup(engine);
2520
2521         if (HAS_L3_DPF(dev_priv))
2522                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2523
2524         /* Override some for render ring. */
2525         if (INTEL_GEN(dev_priv) >= 9)
2526                 engine->init_hw = gen9_init_render_ring;
2527         else
2528                 engine->init_hw = gen8_init_render_ring;
2529         engine->init_context = gen8_init_rcs_context;
2530         engine->emit_flush = gen8_emit_flush_render;
2531         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2532         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2533
2534         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2535         if (ret)
2536                 return ret;
2537
2538         ret = intel_init_workaround_bb(engine);
2539         if (ret) {
2540                 /*
2541                  * We continue even if we fail to initialize WA batch
2542                  * because we only expect rare glitches but nothing
2543                  * critical to prevent us from using GPU
2544                  */
2545                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2546                           ret);
2547         }
2548
2549         return logical_ring_init(engine);
2550 }
2551
2552 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2553 {
2554         logical_ring_setup(engine);
2555
2556         return logical_ring_init(engine);
2557 }
2558
2559 static u32
2560 make_rpcs(struct drm_i915_private *dev_priv)
2561 {
2562         u32 rpcs = 0;
2563
2564         /*
2565          * No explicit RPCS request is needed to ensure full
2566          * slice/subslice/EU enablement prior to Gen9.
2567         */
2568         if (INTEL_GEN(dev_priv) < 9)
2569                 return 0;
2570
2571         /*
2572          * Starting in Gen9, render power gating can leave
2573          * slice/subslice/EU in a partially enabled state. We
2574          * must make an explicit request through RPCS for full
2575          * enablement.
2576         */
2577         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2578                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2579                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2580                         GEN8_RPCS_S_CNT_SHIFT;
2581                 rpcs |= GEN8_RPCS_ENABLE;
2582         }
2583
2584         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2585                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2586                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2587                         GEN8_RPCS_SS_CNT_SHIFT;
2588                 rpcs |= GEN8_RPCS_ENABLE;
2589         }
2590
2591         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2592                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2593                         GEN8_RPCS_EU_MIN_SHIFT;
2594                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2595                         GEN8_RPCS_EU_MAX_SHIFT;
2596                 rpcs |= GEN8_RPCS_ENABLE;
2597         }
2598
2599         return rpcs;
2600 }
2601
2602 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2603 {
2604         u32 indirect_ctx_offset;
2605
2606         switch (INTEL_GEN(engine->i915)) {
2607         default:
2608                 MISSING_CASE(INTEL_GEN(engine->i915));
2609                 /* fall through */
2610         case 11:
2611                 indirect_ctx_offset =
2612                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2613                 break;
2614         case 10:
2615                 indirect_ctx_offset =
2616                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2617                 break;
2618         case 9:
2619                 indirect_ctx_offset =
2620                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2621                 break;
2622         case 8:
2623                 indirect_ctx_offset =
2624                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2625                 break;
2626         }
2627
2628         return indirect_ctx_offset;
2629 }
2630
2631 static void execlists_init_reg_state(u32 *regs,
2632                                      struct i915_gem_context *ctx,
2633                                      struct intel_engine_cs *engine,
2634                                      struct intel_ring *ring)
2635 {
2636         struct drm_i915_private *dev_priv = engine->i915;
2637         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2638         u32 base = engine->mmio_base;
2639         bool rcs = engine->class == RENDER_CLASS;
2640
2641         /* A context is actually a big batch buffer with several
2642          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2643          * values we are setting here are only for the first context restore:
2644          * on a subsequent save, the GPU will recreate this batchbuffer with new
2645          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2646          * we are not initializing here).
2647          */
2648         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2649                                  MI_LRI_FORCE_POSTED;
2650
2651         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2652                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2653                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2654                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2655                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2656                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2657         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2658         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2659         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2660         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2661                 RING_CTL_SIZE(ring->size) | RING_VALID);
2662         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2663         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2664         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2665         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2666         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2667         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2668         if (rcs) {
2669                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2670
2671                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2672                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2673                         RING_INDIRECT_CTX_OFFSET(base), 0);
2674                 if (wa_ctx->indirect_ctx.size) {
2675                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2676
2677                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2678                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2679                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2680
2681                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2682                                 intel_lr_indirect_ctx_offset(engine) << 6;
2683                 }
2684
2685                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2686                 if (wa_ctx->per_ctx.size) {
2687                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2688
2689                         regs[CTX_BB_PER_CTX_PTR + 1] =
2690                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2691                 }
2692         }
2693
2694         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2695
2696         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2697         /* PDP values well be assigned later if needed */
2698         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2699         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2700         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2701         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2702         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2703         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2704         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2705         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2706
2707         if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2708                 /* 64b PPGTT (48bit canonical)
2709                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2710                  * other PDP Descriptors are ignored.
2711                  */
2712                 ASSIGN_CTX_PML4(ppgtt, regs);
2713         }
2714
2715         if (rcs) {
2716                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2717                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2718                         make_rpcs(dev_priv));
2719
2720                 i915_oa_init_reg_state(engine, ctx, regs);
2721         }
2722 }
2723
2724 static int
2725 populate_lr_context(struct i915_gem_context *ctx,
2726                     struct drm_i915_gem_object *ctx_obj,
2727                     struct intel_engine_cs *engine,
2728                     struct intel_ring *ring)
2729 {
2730         void *vaddr;
2731         u32 *regs;
2732         int ret;
2733
2734         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2735         if (ret) {
2736                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2737                 return ret;
2738         }
2739
2740         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2741         if (IS_ERR(vaddr)) {
2742                 ret = PTR_ERR(vaddr);
2743                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2744                 return ret;
2745         }
2746         ctx_obj->mm.dirty = true;
2747
2748         if (engine->default_state) {
2749                 /*
2750                  * We only want to copy over the template context state;
2751                  * skipping over the headers reserved for GuC communication,
2752                  * leaving those as zero.
2753                  */
2754                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2755                 void *defaults;
2756
2757                 defaults = i915_gem_object_pin_map(engine->default_state,
2758                                                    I915_MAP_WB);
2759                 if (IS_ERR(defaults)) {
2760                         ret = PTR_ERR(defaults);
2761                         goto err_unpin_ctx;
2762                 }
2763
2764                 memcpy(vaddr + start, defaults + start, engine->context_size);
2765                 i915_gem_object_unpin_map(engine->default_state);
2766         }
2767
2768         /* The second page of the context object contains some fields which must
2769          * be set up prior to the first execution. */
2770         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2771         execlists_init_reg_state(regs, ctx, engine, ring);
2772         if (!engine->default_state)
2773                 regs[CTX_CONTEXT_CONTROL + 1] |=
2774                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2775         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2776                 regs[CTX_CONTEXT_CONTROL + 1] |=
2777                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2778                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2779
2780 err_unpin_ctx:
2781         i915_gem_object_unpin_map(ctx_obj);
2782         return ret;
2783 }
2784
2785 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2786                                             struct intel_engine_cs *engine,
2787                                             struct intel_context *ce)
2788 {
2789         struct drm_i915_gem_object *ctx_obj;
2790         struct i915_vma *vma;
2791         uint32_t context_size;
2792         struct intel_ring *ring;
2793         struct i915_timeline *timeline;
2794         int ret;
2795
2796         if (ce->state)
2797                 return 0;
2798
2799         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2800
2801         /*
2802          * Before the actual start of the context image, we insert a few pages
2803          * for our own use and for sharing with the GuC.
2804          */
2805         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2806
2807         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2808         if (IS_ERR(ctx_obj))
2809                 return PTR_ERR(ctx_obj);
2810
2811         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2812         if (IS_ERR(vma)) {
2813                 ret = PTR_ERR(vma);
2814                 goto error_deref_obj;
2815         }
2816
2817         timeline = i915_timeline_create(ctx->i915, ctx->name);
2818         if (IS_ERR(timeline)) {
2819                 ret = PTR_ERR(timeline);
2820                 goto error_deref_obj;
2821         }
2822
2823         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2824         i915_timeline_put(timeline);
2825         if (IS_ERR(ring)) {
2826                 ret = PTR_ERR(ring);
2827                 goto error_deref_obj;
2828         }
2829
2830         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2831         if (ret) {
2832                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2833                 goto error_ring_free;
2834         }
2835
2836         ce->ring = ring;
2837         ce->state = vma;
2838
2839         return 0;
2840
2841 error_ring_free:
2842         intel_ring_free(ring);
2843 error_deref_obj:
2844         i915_gem_object_put(ctx_obj);
2845         return ret;
2846 }
2847
2848 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2849 {
2850         struct intel_engine_cs *engine;
2851         struct i915_gem_context *ctx;
2852         enum intel_engine_id id;
2853
2854         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2855          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2856          * that stored in context. As we only write new commands from
2857          * ce->ring->tail onwards, everything before that is junk. If the GPU
2858          * starts reading from its RING_HEAD from the context, it may try to
2859          * execute that junk and die.
2860          *
2861          * So to avoid that we reset the context images upon resume. For
2862          * simplicity, we just zero everything out.
2863          */
2864         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2865                 for_each_engine(engine, dev_priv, id) {
2866                         struct intel_context *ce =
2867                                 to_intel_context(ctx, engine);
2868                         u32 *reg;
2869
2870                         if (!ce->state)
2871                                 continue;
2872
2873                         reg = i915_gem_object_pin_map(ce->state->obj,
2874                                                       I915_MAP_WB);
2875                         if (WARN_ON(IS_ERR(reg)))
2876                                 continue;
2877
2878                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2879                         reg[CTX_RING_HEAD+1] = 0;
2880                         reg[CTX_RING_TAIL+1] = 0;
2881
2882                         ce->state->obj->mm.dirty = true;
2883                         i915_gem_object_unpin_map(ce->state->obj);
2884
2885                         intel_ring_reset(ce->ring, 0);
2886                 }
2887         }
2888 }
2889
2890 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2891 #include "selftests/intel_lrc.c"
2892 #endif