Add IPFIX_RECORDS_TO_CHECK to the environment variable section.
[metze/wireshark/wip.git] / doc / tshark.pod
1
2 =head1 NAME
3
4 tshark - Dump and analyze network traffic
5
6 =head1 SYNOPSIS
7
8 B<tshark>
9 S<[ B<-a> E<lt>capture autostop conditionE<gt> ] ...>
10 S<[ B<-b> E<lt>capture ring buffer optionE<gt>] ...>
11 S<[ B<-B> E<lt>capture buffer sizeE<gt> ] >
12 S<[ B<-c> E<lt>capture packet countE<gt> ]>
13 S<[ B<-C> E<lt>configuration profileE<gt> ]>
14 S<[ B<-d> E<lt>layer typeE<gt>==E<lt>selectorE<gt>,E<lt>decode-as protocolE<gt> ]>
15 S<[ B<-D> ]>
16 S<[ B<-e> E<lt>fieldE<gt> ]>
17 S<[ B<-E> E<lt>field print optionE<gt> ]>
18 S<[ B<-f> E<lt>capture filterE<gt> ]>
19 S<[ B<-F> E<lt>file formatE<gt> ]>
20 S<[ B<-h> ]>
21 S<[ B<-i> E<lt>capture interfaceE<gt>|- ]>
22 S<[ B<-I> ]>
23 S<[ B<-K> E<lt>keytabE<gt> ]>
24 S<[ B<-l> ]>
25 S<[ B<-L> ]>
26 S<[ B<-n> ]>
27 S<[ B<-N> E<lt>name resolving flagsE<gt> ]>
28 S<[ B<-o> E<lt>preference settingE<gt> ] ...>
29 S<[ B<-p> ]>
30 S<[ B<-q> ]>
31 S<[ B<-r> E<lt>infileE<gt> ]>
32 S<[ B<-R> E<lt>read (display) filterE<gt> ]>
33 S<[ B<-s> E<lt>capture snaplenE<gt> ]>
34 S<[ B<-S> ]>
35 S<[ B<-t> ad|a|r|d|dd|e ]>
36 S<[ B<-T> pdml|psml|ps|text|fields ]>
37 S<[ B<-v> ]>
38 S<[ B<-V> ]>
39 S<[ B<-w> E<lt>outfileE<gt>|- ]>
40 S<[ B<-x> ]>
41 S<[ B<-X> E<lt>eXtension optionE<gt>]>
42 S<[ B<-y> E<lt>capture link typeE<gt> ]>
43 S<[ B<-z> E<lt>statisticsE<gt> ]>
44 S<[ E<lt>capture filterE<gt> ]>
45
46 B<tshark>
47 B<-G> [fields|fields2|fields3|protocols|values|decodes|defaultprefs|currentprefs]
48
49 =head1 DESCRIPTION
50
51 B<TShark> is a network protocol analyzer.  It lets you capture packet
52 data from a live network, or read packets from a previously saved
53 capture file, either printing a decoded form of those packets to the
54 standard output or writing the packets to a file.  B<TShark>'s native
55 capture file format is B<libpcap> format, which is also the format used
56 by B<tcpdump> and various other tools.
57
58 Without any options set, B<TShark> will work much like B<tcpdump>. It will
59 use the pcap library to capture traffic from the first available network
60 interface and displays a summary line on stdout for each received packet.
61
62 B<TShark> is able to detect, read and write the same capture files that
63 are supported by B<Wireshark>.
64 The input file doesn't need a specific filename extension; the file
65 format and an optional gzip compression will be automatically detected.
66 Near the beginning of the DESCRIPTION section of wireshark(1) or
67 L<http://www.wireshark.org/docs/man-pages/wireshark.html>
68 is a detailed description of the way B<Wireshark> handles this, which is
69 the same way B<Tshark> handles this.
70
71 Compressed file support uses (and therefore requires) the zlib library.
72 If the zlib library is not present, B<TShark> will compile, but will
73 be unable to read compressed files.
74
75 If the B<-w> option is not specified, B<TShark> writes to the standard
76 output the text of a decoded form of the packets it captures or reads.
77 If the B<-w> option is specified, B<TShark> writes to the file
78 specified by that option the raw data of the packets, along with the
79 packets' time stamps.
80
81 When writing a decoded form of packets, B<TShark> writes, by
82 default, a summary line containing the fields specified by the
83 preferences file (which are also the fields displayed in the packet list
84 pane in B<Wireshark>), although if it's writing packets as it captures
85 them, rather than writing packets from a saved capture file, it won't
86 show the "frame number" field.  If the B<-V> option is specified, it
87 writes instead a view of the details of the packet, showing all the
88 fields of all protocols in the packet.
89
90 If you want to write the decoded form of packets to a file, run
91 B<TShark> without the B<-w> option, and redirect its standard output to
92 the file (do I<not> use the B<-w> option).
93
94 When writing packets to a file, B<TShark>, by default, writes the
95 file in B<libpcap> format, and writes all of the packets it sees to the
96 output file.  The B<-F> option can be used to specify the format in which
97 to write the file. This list of available file formats is displayed by
98 the B<-F> flag without a value. However, you can't specify a file format
99 for a live capture.
100
101 Read filters in B<TShark>, which allow you to select which packets
102 are to be decoded or written to a file, are very powerful; more fields
103 are filterable in B<TShark> than in other protocol analyzers, and the
104 syntax you can use to create your filters is richer.  As B<TShark>
105 progresses, expect more and more protocol fields to be allowed in read
106 filters.
107
108 Packet capturing is performed with the pcap library.  The capture filter
109 syntax follows the rules of the pcap library.  This syntax is different
110 from the read filter syntax.  A read filter can also be specified when
111 capturing, and only packets that pass the read filter will be displayed
112 or saved to the output file; note, however, that capture filters are much
113 more efficient than read filters, and it may be more difficult for
114 B<TShark> to keep up with a busy network if a read filter is
115 specified for a live capture.
116
117 A capture or read filter can either be specified with the B<-f> or B<-R>
118 option, respectively, in which case the entire filter expression must be
119 specified as a single argument (which means that if it contains spaces,
120 it must be quoted), or can be specified with command-line arguments
121 after the option arguments, in which case all the arguments after the
122 filter arguments are treated as a filter expression.  Capture filters
123 are supported only when doing a live capture; read filters are supported
124 when doing a live capture and when reading a capture file, but require
125 TShark to do more work when filtering, so you might be more likely to
126 lose packets under heavy load if you're using a read filter.  If the
127 filter is specified with command-line arguments after the option
128 arguments, it's a capture filter if a capture is being done (i.e., if no
129 B<-r> option was specified) and a read filter if a capture file is being
130 read (i.e., if a B<-r> option was specified).
131
132 The B<-G> option is a special mode that simply causes B<Tshark>
133 to dump one of several types of internal glossaries and then exit.
134
135 =head1 OPTIONS
136
137 =over 4
138
139 =item -a  E<lt>capture autostop conditionE<gt>
140
141 Specify a criterion that specifies when B<TShark> is to stop writing
142 to a capture file.  The criterion is of the form I<test>B<:>I<value>,
143 where I<test> is one of:
144
145 B<duration>:I<value> Stop writing to a capture file after I<value> seconds
146 have elapsed.
147
148 B<filesize>:I<value> Stop writing to a capture file after it reaches a size of
149 I<value> kilobytes (where a kilobyte is 1024 bytes). If this option is used
150 together with the -b option, B<TShark> will stop writing to the current
151 capture file and switch to the next one if filesize is reached. When reading a
152 capture file, B<TShark> will stop reading the file after the number of bytes
153 read exceeds this number (the complete packet will be read, so more bytes than
154 this number may be read).
155
156 B<files>:I<value> Stop writing to capture files after I<value> number of files
157 were written.
158
159 =item -b  E<lt>capture ring buffer optionE<gt>
160
161 Cause B<TShark> to run in "multiple files" mode.  In "multiple files" mode,
162 B<TShark> will write to several capture files. When the first capture file
163 fills up, B<TShark> will switch writing to the next file and so on.
164
165 The created filenames are based on the filename given with the B<-w> option,
166 the number of the file and on the creation date and time,
167 e.g. outfile_00001_20050604120117.pcap, outfile_00002_20050604120523.pcap, ...
168
169 With the I<files> option it's also possible to form a "ring buffer".
170 This will fill up new files until the number of files specified,
171 at which point B<TShark> will discard the data in the first file and start
172 writing to that file and so on. If the I<files> option is not set,
173 new files filled up until one of the capture stop conditions match (or
174 until the disk is full).
175
176 The criterion is of the form I<key>B<:>I<value>,
177 where I<key> is one of:
178
179 B<duration>:I<value> switch to the next file after I<value> seconds have
180 elapsed, even if the current file is not completely filled up.
181
182 B<filesize>:I<value> switch to the next file after it reaches a size of
183 I<value> kilobytes (where a kilobyte is 1024 bytes).
184
185 B<files>:I<value> begin again with the first file after I<value> number of
186 files were written (form a ring buffer).  This value must be less than 100000.
187 Caution should be used when using large numbers of files: some filesystems do
188 not handle many files in a single directory well.  The B<files> criterion
189 requires either B<duration> or B<filesize> to be specified to control when to
190 go to the next file.  It should be noted that each B<-b> parameter takes exactly
191 one criterion; to specify two criterion, each must be preceded by the B<-b>
192 option.
193
194 Example: B<-b filesize:1024 -b files:5> results in a ring buffer of five files
195 of size one megabyte.
196
197 =item -B  E<lt>capture buffer sizeE<gt>
198
199 Set capture buffer size (in MB, default is 1MB).  This is used by the
200 the capture driver to buffer packet data until that data can be written
201 to disk.  If you encounter packet drops while capturing, try to increase
202 this size.  Note that, while B<Tshark> attempts to set the buffer size
203 to 1MB by default, and can be told to set it to a larger value, the
204 system or interface on which you're capturing might silently limit the
205 capture buffer size to a lower value or raise it to a higher value.
206
207 This is available on on UNIX systems with libpcap 1.0.0 or later and on
208 Windows.  It is not available on UNIX systems with earlier versions of
209 libpcap.
210
211 =item -c  E<lt>capture packet countE<gt>
212
213 Set the maximum number of packets to read when capturing live
214 data. If reading a capture file, set the maximum number of packets to read.
215
216 =item -C  E<lt>configuration profileE<gt>
217
218 Run with the given configuration profile.
219
220 =item -d  E<lt>layer typeE<gt>==E<lt>selectorE<gt>,E<lt>decode-as protocolE<gt>
221
222 Like Wireshark's B<Decode As...> feature, this lets you specify how a
223 layer type should be dissected. If the layer type in question (for example,
224 B<tcp.port> or B<udp.port> for a TCP or UDP port number) has the specified
225 selector value, packets should be dissected as the specified protocol.
226
227 Example: B<-d tcp.port==8888,http> will decode any traffic running over
228 TCP port 8888 as HTTP.
229
230 Using an invalid selector or protocol will print out a list of valid selectors
231 and protocol names, respectively.
232
233 Example: B<-d .> is a quick way to get a list of valid selectors.
234
235 Example: B<-d ethertype==0x0800.> is a quick way to get a list of protocols that can be
236 selected with an ethertype.
237
238 =item -D
239
240 Print a list of the interfaces on which B<TShark> can capture, and
241 exit.  For each network interface, a number and an
242 interface name, possibly followed by a text description of the
243 interface, is printed.  The interface name or the number can be supplied
244 to the B<-i> option to specify an interface on which to capture.
245
246 This can be useful on systems that don't have a command to list them
247 (e.g., Windows systems, or UNIX systems lacking B<ifconfig -a>);
248 the number can be useful on Windows 2000 and later systems, where the
249 interface name is a somewhat complex string.
250
251 Note that "can capture" means that B<TShark> was able to open that
252 device to do a live capture.  Depending on your system you may need to
253 run tshark from an account with special privileges (for example, as
254 root) to be able to capture network traffic.  If B<TShark -D> is not run
255 from such an account, it will not list any interfaces.
256
257 =item -e  E<lt>fieldE<gt>
258
259 Add a field to the list of fields to display if B<-T fields> is
260 selected.  This option can be used multiple times on the command line.
261 At least one field must be provided if the B<-T fields> option is
262 selected.
263
264 Example: B<-e frame.number -e ip.addr -e udp>
265
266 Giving a protocol rather than a single field will print multiple items
267 of data about the protocol as a single field.  Fields are separated by
268 tab characters by default.  B<-E> controls the format of the printed
269 fields.
270
271 =item -E  E<lt>field print optionE<gt>
272
273 Set an option controlling the printing of fields when B<-T fields> is
274 selected.
275
276 Options are:
277
278 B<header=y|n> If B<y>, print a list of the field names given using B<-e>
279 as the first line of the output; the field name will be separated using
280 the same character as the field values.  Defaults to B<n>.
281
282 B<separator=/t|/s|>E<lt>characterE<gt> Set the separator character to
283 use for fields.  If B</t> tab will be used (this is the default), if
284 B</s>, a single space will be used.  Otherwise any character that can be
285 accepted by the command line as part of the option may be used.
286
287 B<occurrence=f|l|a> Select which occurrence to use for fields that have
288 multiple occurences.  If B<f> the first occurrence will be used, if B<l>
289 the last occurrence will be used and if B<a> all occurrences will be used
290 (this is the default).
291
292 B<aggregator=,|/s|>E<lt>characterE<gt> Set the aggregator character to
293 use for fields that have multiple occurences.  If B<,> a comma will be used
294 (this is the default), if B</s>, a single space will be used.  Otherwise
295 any character that can be accepted by the command line as part of the
296 option may be used.
297
298 B<quote=d|s|n> Set the quote character to use to surround fields.  B<d>
299 uses double-quotes, B<s> single-quotes, B<n> no quotes (the default).
300
301 =item -f  E<lt>capture filterE<gt>
302
303 Set the capture filter expression.
304
305 =item -F  E<lt>file formatE<gt>
306
307 Set the file format of the output capture file written using the B<-w>
308 option.  The output written with the B<-w> option is raw packet data, not
309 text, so there is no B<-F> option to request text output.  The option B<-F>
310 without a value will list the available formats.
311
312 =item -G  [fields|fields2|fields3|protocols|values|decodes|defaultprefs|currentprefs]
313
314 The B<-G> option will cause B<Tshark> to dump one of several types of glossaries
315 and then exit.  If no specfic glossary type if specified then the B<fields> report
316 will be generated by default.
317
318 The available report types include:
319
320 B<fields>  Dumps the contents of the registration database to
321 stdout. An independent program can take this output and format it into nice
322 tables or HTML or whatever.  There is one record per line. Each record is
323 either a protocol or a header field, differentiated by the first field.
324 The fields are tab-delimited.
325
326  * Protocols
327  * ---------
328  * Field 1 = 'P'
329  * Field 2 = descriptive protocol name
330  * Field 3 = protocol abbreviation
331  *
332  * Header Fields
333  * -------------
334  * Field 1 = 'F'
335  * Field 2 = descriptive field name
336  * Field 3 = field abbreviation
337  * Field 4 = type ( textual representation of the the ftenum type )
338  * Field 5 = parent protocol abbreviation
339  * Field 6 = blurb describing field
340
341 B<fields2>  Same as the B<fields> report but includes two additional columns.
342
343  * Field 7 = base for display (for integer types); "parent bitfield width" for FT_BOOLEAN
344  * Field 8 = blurb describing field (yes, apparently we repeated this accidentally)
345
346 B<fields3>  Same as the B<fields> report but includes two additional columns.
347
348  * Field 7 = base for display (for integer types); "parent bitfield width" for FT_BOOLEAN
349  * Field 8 = bitmask: format: hex: 0x....
350
351 B<protocols> Dumps the protocols in the registration database to stdout.
352 An independent program can take this output and format it into nice tables
353 or HTML or whatever. There is one record per line. The fields are tab-delimited.
354
355  * Field 1 = protocol name
356  * Field 2 = protocol short name
357  * Field 3 = protocol filter name
358
359 B<values> Dumps the value_strings, range_strings or true/false strings
360 for fields that have them. There is one record per line. Fields are
361 tab-delimited.  There are three types of records: Value String, Range
362 String and True/False String. The first field, 'V', 'R' or 'T', indicates
363 the type of record.
364
365  * Value Strings
366  * -------------
367  * Field 1 = 'V'
368  * Field 2 = field abbreviation to which this value string corresponds
369  * Field 3 = Integer value
370  * Field 4 = String
371  *
372  * Range Strings
373  * -------------
374  * Field 1 = 'R'
375  * Field 2 = field abbreviation to which this range string corresponds
376  * Field 3 = Integer value: lower bound
377  * Field 4 = Integer value: upper bound
378  * Field 5 = String
379  *
380  * True/False Strings
381  * ------------------
382  * Field 1 = 'T'
383  * Field 2 = field abbreviation to which this true/false string corresponds
384  * Field 3 = True String
385  * Field 4 = False String
386
387 B<decodes> Dumps the "layer type"/"decode as" associations to stdout.
388 There is one record per line. The fields are tab-delimited.
389
390  * Field 1 = layer type, e.g. "tcp.port"
391  * Field 2 = selector in decimal
392  * Field 3 = "decode as" name, e.g. "http"
393
394 B<defaultprefs>  Dumps a default preferences file to stdout.
395
396 B<currentprefs>  Dumps a copy of the current preferences file to stdout.
397
398 =item -h
399
400 Print the version and options and exits.
401
402 =item -i  E<lt>capture interfaceE<gt> | -
403
404 Set the name of the network interface or pipe to use for live packet
405 capture.
406
407 Network interface names should match one of the names listed in
408 "B<tshark -D>" (described above); a number, as reported by
409 "B<tshark -D>", can also be used.  If you're using UNIX, "B<netstat
410 -i>" or "B<ifconfig -a>" might also work to list interface names,
411 although not all versions of UNIX support the B<-a> option to B<ifconfig>.
412
413 If no interface is specified, B<TShark> searches the list of
414 interfaces, choosing the first non-loopback interface if there are any
415 non-loopback interfaces, and choosing the first loopback interface if
416 there are no non-loopback interfaces. If there are no interfaces at all,
417 B<TShark> reports an error and doesn't start the capture.
418
419 Pipe names should be either the name of a FIFO (named pipe) or ``-'' to
420 read data from the standard input.  Data read from pipes must be in
421 standard libpcap format.
422
423 Note: the Win32 version of B<TShark> doesn't support capturing from
424 pipes!
425
426 =item -I
427
428 Put the interface in "monitor mode"; this is supported only on IEEE
429 802.11 Wi-Fi interfaces, and supported only on some operating systems.
430
431 Note that in monitor mode the adapter might disassociate from the
432 network with which it's associated, so that you will not be able to use
433 any wireless networks with that adapter.  This could prevent accessing
434 files on a network server, or resolving host names or network addresses,
435 if you are capturing in monitor mode and are not connected to another
436 network with another adapter.
437
438 =item -K  E<lt>keytabE<gt>
439
440 Load kerberos crypto keys from the specified keytab file.
441 This option can be used multiple times to load keys from several files.
442
443 Example: B<-K krb5.keytab>
444
445 =item -l
446
447 Flush the standard output after the information for each packet is
448 printed.  (This is not, strictly speaking, line-buffered if B<-V>
449 was specified; however, it is the same as line-buffered if B<-V> wasn't
450 specified, as only one line is printed for each packet, and, as B<-l> is
451 normally used when piping a live capture to a program or script, so that
452 output for a packet shows up as soon as the packet is seen and
453 dissected, it should work just as well as true line-buffering.  We do
454 this as a workaround for a deficiency in the Microsoft Visual C++ C
455 library.)
456
457 This may be useful when piping the output of B<TShark> to another
458 program, as it means that the program to which the output is piped will
459 see the dissected data for a packet as soon as B<TShark> sees the
460 packet and generates that output, rather than seeing it only when the
461 standard output buffer containing that data fills up.
462
463 =item -L
464
465 List the data link types supported by the interface and exit. The reported
466 link types can be used for the B<-y> option.
467
468 =item -n
469
470 Disable network object name resolution (such as hostname, TCP and UDP port
471 names); the B<-N> flag might override this one.
472
473 =item -N  E<lt>name resolving flagsE<gt>
474
475 Turn on name resolving only for particular types of addresses and port
476 numbers, with name resolving for other types of addresses and port
477 numbers turned off. This flag overrides B<-n> if both B<-N> and B<-n> are
478 present. If both B<-N> and B<-n> flags are not present, all name resolutions are
479 turned on.
480
481 The argument is a string that may contain the letters:
482
483 B<m> to enable MAC address resolution
484
485 B<n> to enable network address resolution
486
487 B<t> to enable transport-layer port number resolution
488
489 B<C> to enable concurrent (asynchronous) DNS lookups
490
491 =item -o  E<lt>preferenceE<gt>:E<lt>valueE<gt>
492
493 Set a preference value, overriding the default value and any value read
494 from a preference file.  The argument to the option is a string of the
495 form I<prefname>B<:>I<value>, where I<prefname> is the name of the
496 preference (which is the same name that would appear in the preference
497 file), and I<value> is the value to which it should be set.
498
499 =item -p
500
501 I<Don't> put the interface into promiscuous mode.  Note that the
502 interface might be in promiscuous mode for some other reason; hence,
503 B<-p> cannot be used to ensure that the only traffic that is captured is
504 traffic sent to or from the machine on which B<TShark> is running,
505 broadcast traffic, and multicast traffic to addresses received by that
506 machine.
507
508 =item -q
509
510 When capturing packets, don't display the continuous count of packets
511 captured that is normally shown when saving a capture to a file;
512 instead, just display, at the end of the capture, a count of packets
513 captured.  On systems that support the SIGINFO signal, such as various
514 BSDs, you can cause the current count to be displayed by typing your
515 "status" character (typically control-T, although it
516 might be set to "disabled" by default on at least some BSDs, so you'd
517 have to explicitly set it to use it).
518
519 When reading a capture file, or when capturing and not saving to a file,
520 don't print packet information; this is useful if you're using a B<-z>
521 option to calculate statistics and don't want the packet information
522 printed, just the statistics.
523
524 =item -r  E<lt>infileE<gt>
525
526 Read packet data from I<infile>, can be any supported capture file format
527 (including gzipped files). It's B<not> possible to use named pipes
528 or stdin here!
529
530 =item -R  E<lt>read (display) filterE<gt>
531
532 Cause the specified filter (which uses the syntax of read/display filters,
533 rather than that of capture filters) to be applied before printing a
534 decoded form of packets or writing packets to a file; packets not
535 matching the filter are discarded rather than being printed or written.
536
537 =item -s  E<lt>capture snaplenE<gt>
538
539 Set the default snapshot length to use when capturing live data.
540 No more than I<snaplen> bytes of each network packet will be read into
541 memory, or saved to disk.  A value of 0 specifies a snapshot length of
542 65535, so that the full packet is captured; this is the default.
543
544 =item -S
545
546 Decode and display packets even while writing raw packet data using the
547 B<-w> option.
548
549 =item -t  ad|a|r|d|dd|e
550
551 Set the format of the packet timestamp printed in summary lines.
552 The format can be one of:
553
554 B<ad> absolute with date: The absolute date and time is the actual time and
555 date the packet was captured
556
557 B<a> absolute: The absolute time is the actual time the packet was captured,
558 with no date displayed
559
560 B<r> relative: The relative time is the time elapsed between the first packet
561 and the current packet
562
563 B<d> delta: The delta time is the time since the previous packet was
564 captured
565
566 B<dd> delta_displayed: The delta_displayed time is the time since the
567 previous displayed packet was captured
568
569 B<e> epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)
570
571 The default format is relative.
572
573 =item -T  pdml|psml|ps|text|fields
574
575 Set the format of the output when viewing decoded packet data.  The
576 options are one of:
577
578 B<pdml> Packet Details Markup Language, an XML-based format for the details of
579 a decoded packet.  This information is equivalent to the packet details
580 printed with the B<-V> flag.
581
582 B<psml> Packet Summary Markup Language, an XML-based format for the summary
583 information of a decoded packet.  This information is equivalent to the
584 information shown in the one-line summary printed by default.
585
586 B<ps> PostScript for a human-readable one-line summary of each of the packets,
587 or a multi-line view of the details of each of the packets, depending on
588 whether the B<-V> flag was specified.
589
590 B<text> Text of a human-readable one-line summary of each of the packets, or a
591 multi-line view of the details of each of the packets, depending on
592 whether the B<-V> flag was specified.  This is the default.
593
594 B<fields> The values of fields specified with the B<-e> option, in a
595 form specified by the B<-E> option. For example,
596
597   -T fields -E separator=, -E quote=d
598
599 would generate comma-separated values (CSV) output suitable for importing
600 into your favorite spreadsheet program.
601
602
603 =item -v
604
605 Print the version and exit.
606
607 =item -V
608
609 Cause B<TShark> to print a view of the packet details rather
610 than a one-line summary of the packet.
611
612 =item -w  E<lt>outfileE<gt> | -
613
614 Write raw packet data to I<outfile> or to the standard output if
615 I<outfile> is '-'.
616
617 NOTE: -w provides raw packet data, not text. If you want text output
618 you need to redirect stdout (e.g. using '>'), don't use the B<-w>
619 option for this.
620
621 =item -x
622
623 Cause B<TShark> to print a hex and ASCII dump of the packet data
624 after printing the summary or details.
625
626 =item -X E<lt>eXtension optionsE<gt>
627
628 Specify an option to be passed to a B<TShark> module. The eXtension option
629 is in the form I<extension_key>B<:>I<value>, where I<extension_key> can be:
630
631 B<lua_script>:I<lua_script_filename> tells B<Wireshark> to load the given script in addition to the
632 default Lua scripts.
633
634 =item -y  E<lt>capture link typeE<gt>
635
636 Set the data link type to use while capturing packets.  The values
637 reported by B<-L> are the values that can be used.
638
639 =item -z  E<lt>statisticsE<gt>
640
641 Get B<TShark> to collect various types of statistics and display the result
642 after finishing reading the capture file.  Use the B<-q> flag if you're
643 reading a capture file and only want the statistics printed, not any
644 per-packet information.
645
646 Note that the B<-z proto> option is different - it doesn't cause
647 statistics to be gathered and printed when the capture is complete, it
648 modifies the regular packet summary output to include the values of
649 fields specified with the option.  Therefore you must not use the B<-q>
650 option, as that option would suppress the printing of the regular packet
651 summary output, and must also not use the B<-V> option, as that would
652 cause packet detail information rather than packet summary information
653 to be printed.
654
655 Currently implemented statistics are:
656
657 =over 4
658
659 =item B<-z> dcerpc,rtt,I<uuid>,I<major>.I<minor>[,I<filter>]
660
661 Collect call/reply RTT data for DCERPC interface I<uuid>,
662 version I<major>.I<minor>.
663 Data collected is the number of calls for each procedure, MinRTT, MaxRTT
664 and AvgRTT.
665
666 Example: S<B<-z dcerpc,rtt,12345778-1234-abcd-ef00-0123456789ac,1.0>> will collect data for the CIFS SAMR Interface.
667
668 If the optional I<filter> is provided, the stats will only be calculated
669 on those calls that match that filter.
670
671 Example: S<B<-z dcerpc,rtt,12345778-1234-abcd-ef00-0123456789ac,1.0,ip.addr==1.2.3.4>>
672 will collect SAMR RTT statistics for a specific host.
673
674 This option can be used multiple times on the command line.
675
676 =item B<-z> io,phs[,I<filter>]
677
678 Create Protocol Hierarchy Statistics listing both number of packets and bytes.
679 If no I<filter> is specified the statistics will be calculated for all packets.
680 If a I<filter> is specified statistics will be only calculated for those
681 packets that match the filter.
682
683 This option can be used multiple times on the command line.
684
685 =item B<-z> io,stat,I<interval>[,I<filter>][,I<filter>][,I<filter>]...
686
687 Collect packet/bytes statistics for the capture in intervals of
688 I<interval> seconds.  I<Interval> can be specified either as a whole or
689 fractional second and can be specified with ms resolution.
690 If I<interval> is 0, the statistics will be calculated over all packets.
691
692 If no I<filter> is specified the statistics will be calculated for all packets.
693 If one or more I<filters> are specified statistics will be calculated for
694 all filters and presented with one column of statistics for each filter.
695
696 This option can be used multiple times on the command line.
697
698 Example: B<-z io,stat,1,ip.addr==1.2.3.4> will generate 1 second
699 statistics for all traffic to/from host 1.2.3.4.
700
701 Example: B<-z "io,stat,0.001,smb&&ip.addr==1.2.3.4"> will generate 1ms
702 statistics for all SMB packets to/from host 1.2.3.4.
703
704 The examples above all use the standard syntax for generating statistics
705 which only calculates the number of packets and bytes in each interval.
706
707 B<io,stat> can also do much more statistics and calculate COUNT(), SUM(),
708 MIN(), MAX(), and AVG() using a slightly different filter syntax:
709
710   [COUNT|SUM|MIN|MAX|AVG](<field>)<filter>
711
712 NOTE: One important thing to note here is that the field that the
713 calculation is based on MUST also be part of the filter string or
714 else the calculation will fail.
715
716 So: B<-z io,stat,0.010,AVG(smb.time)> does not work.  Use B<-z
717 io,stat,0.010,AVG(smb.time)smb.time> instead.  Also be aware that a field
718 can exist multiple times inside the same packet and will then be counted
719 multiple times in those packets.
720
721 NOTE: A second important thing to note is that the system setting for
722 decimal separator is set to "."! If it is set to "," the statistics
723 will not be displayed per filter.
724
725 COUNT(<field>) can be used on any type which has a display filter name.
726 It will count how many times this particular field is encountered in the
727 filtered packet list.
728
729 Example: B<-z io,stat,0.010,COUNT(smb.sid)smb.sid>
730
731 This will count the total number of SIDs seen in each 10ms interval.
732
733 SUM(<field>) can only be used on named fields of integer type.
734 This will sum together every occurence of this fields value for each interval.
735
736 Example: B<-z io,stat,0.010,SUM(frame.pkt_len)frame.pkt_len>
737
738 This will report the total number of bytes seen in all the packets within
739 an interval.
740
741 MIN/MAX/AVG(<field>) can only be used on named fields that are either
742 integers or relative time fields.  This will calculate maximum/minimum
743 or average seen in each interval.  If the field is a relative time field
744 the output will be presented in seconds and three digits after the
745 decimal point.  The resolution for time calculations is 1ms and anything
746 smaller will be truncated.
747
748 Example:  B<-z "io,stat,0.010,smb.time&&ip.addr==1.1.1.1,MIN(smb.time)smb.time&&ip.addr==1.1.1.1,MAX(smb.time)smb.time&&ip.addr==1.1.1.1,MAX(smb.time)smb.time&&ip.addr==1.1.1.1">
749
750 This will calculate statistics for all smb response times we see to/from
751 host 1.1.1.1 in 10ms intervals.  The output will be displayed in 4
752 columns; number of packets/bytes, minimum response time, maximum response
753 time and average response time.
754
755 =item B<-z> conv,I<type>[,I<filter>]
756
757 Create a table that lists all conversations that could be seen in the
758 capture.  I<type> specifies the conversation endpoint types for which we
759 want to generate the statistics; currently the supported ones are:
760
761   "eth"   Ethernet addresses
762   "fc"    Fibre Channel addresses
763   "fddi"  FDDI addresses
764   "ip"    IPv4 addresses
765   "ipv6"  IPv6 addresses
766   "ipx"   IPX addresses
767   "tcp"   TCP/IP socket pairs  Both IPv4 and IPv6 are supported
768   "tr"    Token Ring addresses
769   "udp"   UDP/IP socket pairs  Both IPv4 and IPv6 are supported
770
771 If the optional I<filter> is specified, only those packets that match the
772 filter will be used in the calculations.
773
774 The table is presented with one line for each conversation and displays
775 the number of packets/bytes in each direction as well as the total
776 number of packets/bytes.  The table is sorted according to the total
777 number of bytes.
778
779 =item B<-z> proto,colinfo,I<filter>,I<field>
780
781 Append all I<field> values for the packet to the Info column of the
782 one-line summary output.
783 This feature can be used to append arbitrary fields to the Info column
784 in addition to the normal content of that column.
785 I<field> is the display-filter name of a field which value should be placed
786 in the Info column.
787 I<filter> is a filterstring that controls for which packets the field value
788 will be presented in the info column. I<field> will only be presented in the
789 Info column for the packets which match I<filter>.
790
791 NOTE: In order for B<TShark> to be able to extract the I<field> value
792 from the packet, I<field> MUST be part of the I<filter> string.  If not,
793 B<TShark> will not be able to extract its value.
794
795 For a simple example to add the "nfs.fh.hash" field to the Info column
796 for all packets containing the "nfs.fh.hash" field, use
797
798 B<-z proto,colinfo,nfs.fh.hash,nfs.fh.hash>
799
800 To put "nfs.fh.hash" in the Info column but only for packets coming from
801 host 1.2.3.4 use:
802
803 B<-z "proto,colinfo,nfs.fh.hash && ip.src==1.2.3.4,nfs.fh.hash">
804
805 This option can be used multiple times on the command line.
806
807 =item B<-z> diameter,avp[,I<cmd.code>,I<field>,I<field>,I<...>]
808
809 This option enables extraction of most important diameter fields from large capture files.
810 Exactly one text line for each diameter message with matched B<diameter.cmd.code> will be printed.
811
812 Empty diameter command code or '*' can be specified to mach any B<diameter.cmd.code>
813
814 Example: B<-z diameter,avp>  extract default field set from diameter messages.
815
816 Example: B<-z diameter,avp,280>  extract default field set from diameter DWR messages.
817
818 Example: B<-z diameter,avp,272>  extract default field set from diameter CC messages.
819
820 Extract most important fields from diameter CC messages:
821
822 B<tshark -r file.cap.gz -q -z diameter,avp,272,CC-Request-Type,CC-Request-Number,Session-Id,Subscription-Id-Data,Rating-Group,Result-Code>
823
824 Following fields will be printed out for each diameter message:
825
826   "frame"        Frame number.
827   "time"         Unix time of the frame arrival.
828   "src"          Source address.
829   "srcport"      Source port.
830   "dst"          Destination address.
831   "dstport"      Destination port.
832   "proto"        Constant string 'diameter', which can be used for post processing of tshark output. e.g. grep/sed/awk.
833   "msgnr"        seq. number of diameter message within the frame. E.g. '2' for the third diameter message in the same frame.
834   "is_request"   '0' if message is a request, '1' if message is an answer.
835   "cmd"          diameter.cmd_code, E.g. '272' for credit control messages.
836   "req_frame"    Number of frame where matched request was found or '0'.
837   "ans_frame"    Number of frame where matched answer was found or '0'.
838   "resp_time"    response time in seconds, '0' in case if matched Request/Answer is not found in trace. E.g. in the begin or end of capture.
839
840 B<-z diameter,avp> option is much faster than B<-V -T text> or B<-T pdml> options.
841
842 B<-z diameter,avp> option is more powerful than B<-T field> and B<-z proto,colinfo> options.
843
844 Multiple diameter messages in one frame are supported.
845
846 Several fields with same name within one diameter message are supported, e.g. I<diameter.Subscription-Id-Data> or I<diameter.Rating-Group>.
847
848 Note: B<tshark -q> option is recommended to suppress default B<tshark> output.
849
850 =item B<-z> rpc,rtt,I<program>,I<version>[,I<filter>]
851
852 Collect call/reply RTT data for I<program>/I<version>.  Data collected
853 is number of calls for each procedure, MinRTT, MaxRTT and AvgRTT.
854 Example: B<-z rpc,rtt,100003,3> will collect data for NFS v3.
855
856 If the optional I<filter> is provided, the stats will only be calculated
857 on those calls that match that filter.
858
859 Example: B<-z rpc,rtt,100003,3,nfs.fh.hash==0x12345678> will collect NFS v3
860 RTT statistics for a specific file.
861
862 This option can be used multiple times on the command line.
863
864 =item B<-z> rpc,programs
865
866 Collect call/reply RTT data for all known ONC-RPC programs/versions.
867 Data collected is number of calls for each protocol/version, MinRTT,
868 MaxRTT and AvgRTT.
869 This option can only be used once on the command line.
870
871 =item B<-z> rtp,streams
872
873 Collect statistics for all RTP streams and calculate max. delta, max. and
874 mean jitter and packet loss percentages.
875
876 =item B<-z> smb,rtt[,I<filter>]
877
878 Collect call/reply RTT data for SMB.  Data collected
879 is number of calls for each SMB command, MinRTT, MaxRTT and AvgRTT.
880 Example: B<-z smb,rtt>.
881 The data will be presented as separate tables for all normal SMB commands,
882 all Transaction2 commands and all NT Transaction commands.
883 Only those commands that are seen in the capture will have its stats
884 displayed.
885 Only the first command in a xAndX command chain will be used in the
886 calculation.  So for common SessionSetupAndX + TreeConnectAndX chains,
887 only the SessionSetupAndX call will be used in the statistics.
888 This is a flaw that might be fixed in the future.
889
890 This option can be used multiple times on the command line.
891
892 If the optional I<filter> is provided, the stats will only be calculated
893 on those calls that match that filter.
894
895 Example: B<-z "smb,rtt,ip.addr==1.2.3.4"> will only collect stats for
896 SMB packets echanged by the host at IP address 1.2.3.4 .
897
898 =item B<-z> smb,sids
899
900 When this feature is used B<TShark> will print a report with all the
901 discovered SID and account name mappings.  Only those SIDs where the
902 account name is known will be presented in the table.
903
904 For this feature to work you will need to either to enable
905 "Edit/Preferences/Protocols/SMB/Snoop SID to name mappings" in the
906 preferences or you can override the preferences by specifying
907 S<B<-o "smb.sid_name_snooping:TRUE">> on the B<TShark> command line.
908
909 The current method used by B<TShark> to find the SID->name mapping
910 is relatively restricted with a hope of future expansion.
911
912 =item B<-z> mgcp,rtd[I<,filter>]
913
914 Collect requests/response RTD (Response Time Delay) data for MGCP.
915 (This is similar to B<-z smb,rtt>). Data collected is the number of calls
916 for each known MGCP Type, MinRTD, MaxRTD and AvgRTD.
917 Additionally you get the number of duplicate requests/responses,
918 unresponded requests, responses ,which don't match with
919 any request.
920 Example: B<-z mgcp,rtd>.
921
922 This option can be used multiple times on the command line.
923
924 If the optional I<filter> is provided, the stats will only be calculated
925 on those calls that match that filter.
926 Example: B<-z "mgcp,rtd,ip.addr==1.2.3.4"> will only collect stats for
927 MGCP packets exchanged by the host at IP address 1.2.3.4 .
928
929 =item B<-z> megaco,rtd[I<,filter>]
930
931 Collect requests/response RTD (Response Time Delay) data for MEGACO.
932 (This is similar to B<-z smb,rtt>). Data collected is the number of calls
933 for each known MEGACO Type, MinRTD, MaxRTD and AvgRTD.
934 Additionally you get the number of duplicate requests/responses,
935 unresponded requests, responses ,which don't match with
936 any request.
937 Example: B<-z megaco,rtd>.
938
939 If the optional I<filter> is provided, the stats will only be calculated
940 on those calls that match that filter.
941 Example: B<-z "megaco,rtd,ip.addr==1.2.3.4"> will only collect stats for
942 MEGACO packets exchanged by the host at IP address 1.2.3.4 .
943
944 This option can be used multiple times on the command line.
945
946 =item B<-z> h225,counter[I<,filter>]
947
948 Count ITU-T H.225 messages and their reasons. In the first column you get a
949 list of H.225 messages and H.225 message reasons, which occur in the current
950 capture file. The number of occurences of each message or reason is displayed
951 in the second column.
952
953 Example: B<-z h225,counter>.
954
955 If the optional I<filter> is provided, the stats will only be calculated
956 on those calls that match that filter.
957 Example: use B<-z "h225,counter,ip.addr==1.2.3.4"> to only collect stats for
958 H.225 packets exchanged by the host at IP address 1.2.3.4 .
959
960 This option can be used multiple times on the command line.
961
962 =item B<-z> h225,srt[I<,filter>]
963
964 Collect requests/response SRT (Service Response Time) data for ITU-T H.225 RAS.
965 Data collected is number of calls of each ITU-T H.225 RAS Message Type,
966 Minimum SRT, Maximum SRT, Average SRT, Minimum in Frame, and Maximum in Frame.
967 You will also get the number of Open Requests (Unresponded Requests),
968 Discarded Responses (Responses without matching request) and Duplicate Messages.
969 Example: B<-z h225,srt>.
970
971 If the optional I<filter> is provided, the stats will only be calculated
972 on those calls that match that filter.
973 Example: B<-z "h225,srt,ip.addr==1.2.3.4"> will only collect stats for
974 ITU-T H.225 RAS packets exchanged by the host at IP address 1.2.3.4 .
975
976 This option can be used multiple times on the command line.
977
978 =item B<-z> sip,stat[I<,filter>]
979
980 This option will activate a counter for SIP messages. You will get the number
981 of occurences of each SIP Method and of each SIP Status-Code. Additionally you
982 also get the number of resent SIP Messages (only for SIP over UDP).
983
984 Example: B<-z sip,stat>.
985
986 This option can be used multiple times on the command line.
987
988 If the optional I<filter> is provided, the stats will only be calculated
989 on those calls that match that filter.
990 Example: B<-z "sip,stat,ip.addr==1.2.3.4"> will only collect stats for
991 SIP packets exchanged by the host at IP address 1.2.3.4 .
992
993 =back
994
995 =back
996
997 =head1 CAPTURE FILTER SYNTAX
998
999 See the manual page of pcap-filter(4) or, if that doesn't exist, tcpdump(8),
1000 or, if that doesn't exist, L<http://wiki.wireshark.org/CaptureFilters>.
1001
1002 =head1 READ FILTER SYNTAX
1003
1004 For a complete table of protocol and protocol fields that are filterable
1005 in B<TShark> see the wireshark-filter(4) manual page.
1006
1007 =head1 FILES
1008
1009 These files contains various B<Wireshark> configuration values.
1010
1011 =over 4
1012
1013 =item Preferences
1014
1015 The F<preferences> files contain global (system-wide) and personal
1016 preference settings. If the system-wide preference file exists, it is
1017 read first, overriding the default settings. If the personal preferences
1018 file exists, it is read next, overriding any previous values. Note: If
1019 the command line option B<-o> is used (possibly more than once), it will
1020 in turn override values from the preferences files.
1021
1022 The preferences settings are in the form I<prefname>B<:>I<value>,
1023 one per line,
1024 where I<prefname> is the name of the preference
1025 and I<value> is the value to
1026 which it should be set; white space is allowed between B<:> and
1027 I<value>.  A preference setting can be continued on subsequent lines by
1028 indenting the continuation lines with white space.  A B<#> character
1029 starts a comment that runs to the end of the line:
1030
1031   # Capture in promiscuous mode?
1032   # TRUE or FALSE (case-insensitive).
1033   capture.prom_mode: TRUE
1034
1035 The global preferences file is looked for in the F<wireshark> directory
1036 under the F<share> subdirectory of the main installation directory (for
1037 example, F</usr/local/share/wireshark/preferences>) on UNIX-compatible
1038 systems, and in the main installation directory (for example,
1039 F<C:\Program Files\Wireshark\preferences>) on Windows systems.
1040
1041 The personal preferences file is looked for in
1042 F<$HOME/.wireshark/preferences> on
1043 UNIX-compatible systems and F<%APPDATA%\Wireshark\preferences> (or, if
1044 %APPDATA% isn't defined, F<%USERPROFILE%\Application
1045 Data\Wireshark\preferences>) on Windows systems.
1046
1047 =item Disabled (Enabled) Protocols
1048
1049 The F<disabled_protos> files contain system-wide and personal lists of
1050 protocols that have been disabled, so that their dissectors are never
1051 called.  The files contain protocol names, one per line, where the
1052 protocol name is the same name that would be used in a display filter
1053 for the protocol:
1054
1055   http
1056   tcp     # a comment
1057
1058 The global F<disabled_protos> file uses the same directory as the global
1059 preferences file.
1060
1061 The personal F<disabled_protos> file uses the same directory as the
1062 personal preferences file.
1063
1064 =item Name Resolution (hosts)
1065
1066 If the personal F<hosts> file exists, it is
1067 used to resolve IPv4 and IPv6 addresses before any other
1068 attempts are made to resolve them.  The file has the standard F<hosts>
1069 file syntax; each line contains one IP address and name, separated by
1070 whitespace. The same directory as for the personal preferences file is
1071 used.
1072
1073 Capture filter name resolution is handled by libpcap on UNIX-compatible
1074 systems and WinPCAP on Windows.  As such the Wireshark personal F<hosts> file
1075 will not be consulted for capture filter name resolution.
1076
1077 =item Name Resolution (ethers)
1078
1079 The F<ethers> files are consulted to correlate 6-byte hardware addresses to
1080 names. First the personal F<ethers> file is tried and if an address is not
1081 found there the global F<ethers> file is tried next.
1082
1083 Each line contains one hardware address and name, separated by
1084 whitespace.  The digits of the hardware address are separated by colons
1085 (:), dashes (-) or periods (.).  The same separator character must be
1086 used consistently in an address. The following three lines are valid
1087 lines of an F<ethers> file:
1088
1089   ff:ff:ff:ff:ff:ff          Broadcast
1090   c0-00-ff-ff-ff-ff          TR_broadcast
1091   00.00.00.00.00.00          Zero_broadcast
1092
1093 The global F<ethers> file is looked for in the F</etc> directory on
1094 UNIX-compatible systems, and in the main installation directory (for
1095 example, F<C:\Program Files\Wireshark>) on Windows systems.
1096
1097 The personal F<ethers> file is looked for in the same directory as the personal
1098 preferences file.
1099
1100 Capture filter name resolution is handled by libpcap on UNIX-compatible
1101 systems and WinPCAP on Windows.  As such the Wireshark personal F<ethers> file
1102 will not be consulted for capture filter name resolution.
1103
1104 =item Name Resolution (manuf)
1105
1106 The F<manuf> file is used to match the 3-byte vendor portion of a 6-byte
1107 hardware address with the manufacturer's name; it can also contain well-known
1108 MAC addresses and address ranges specified with a netmask.  The format of the
1109 file is the same as the F<ethers> files, except that entries of the form:
1110
1111   00:00:0C      Cisco
1112
1113 can be provided, with the 3-byte OUI and the name for a vendor, and
1114 entries such as:
1115
1116   00-00-0C-07-AC/40     All-HSRP-routers
1117
1118 can be specified, with a MAC address and a mask indicating how many bits
1119 of the address must match. The above entry, for example, has 40
1120 significant bits, or 5 bytes, and would match addresses from
1121 00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF. The mask need not be a
1122 multiple of 8.
1123
1124 The F<manuf> file is looked for in the same directory as the global
1125 preferences file.
1126
1127 =item Name Resolution (ipxnets)
1128
1129 The F<ipxnets> files are used to correlate 4-byte IPX network numbers to
1130 names. First the global F<ipxnets> file is tried and if that address is not
1131 found there the personal one is tried next.
1132
1133 The format is the same as the F<ethers>
1134 file, except that each address is four bytes instead of six.
1135 Additionally, the address can be represented as a single hexadecimal
1136 number, as is more common in the IPX world, rather than four hex octets.
1137 For example, these four lines are valid lines of an F<ipxnets> file:
1138
1139   C0.A8.2C.00              HR
1140   c0-a8-1c-00              CEO
1141   00:00:BE:EF              IT_Server1
1142   110f                     FileServer3
1143
1144 The global F<ipxnets> file is looked for in the F</etc> directory on
1145 UNIX-compatible systems, and in the main installation directory (for
1146 example, F<C:\Program Files\Wireshark>) on Windows systems.
1147
1148 The personal F<ipxnets> file is looked for in the same directory as the
1149 personal preferences file.
1150
1151 =back
1152
1153 =head1 ENVIRONMENT VARIABLES
1154
1155 =over 4
1156
1157 =item WIRESHARK_DEBUG_EP_NO_CHUNKS
1158
1159 Normally per-packet memory is allocated in large "chunks."  This behavior
1160 doesn't work well with debugging tools such as Valgrind or ElectricFence.
1161 Export this environment variable to force individual allocations.
1162 Note: disabling chunks also disables canaries (see below).
1163
1164 =item WIRESHARK_DEBUG_SE_NO_CHUNKS
1165
1166 Normally per-file memory is allocated in large "chunks."  This behavior
1167 doesn't work well with debugging tools such as Valgrind or ElectricFence.
1168 Export this environment variable to force individual allocations.
1169 Note: disabling chunks also disables canaries (see below).
1170
1171 =item WIRESHARK_DEBUG_EP_NO_CANARY
1172
1173 Normally per-packet memory allocations are separated by "canaries" which
1174 allow detection of memory overruns.  This comes at the expense of some extra
1175 memory usage.  Exporting this environment variable disables these canaries.
1176
1177 =item WIRESHARK_DEBUG_SE_USE_CANARY
1178
1179 Exporting this environment variable causes per-file memory allocations to be
1180 protected with "canaries" which allow for detection of memory overruns.
1181 This comes at the expense of significant extra memory usage.
1182
1183 =item WIRESHARK_DEBUG_SCRUB_MEMORY
1184
1185 If this environment variable is exported, the contents of per-packet and
1186 per-file memory is initialized to 0xBADDCAFE when the memory is allocated
1187 and is reset to 0xDEADBEEF when the memory is freed.  This functionality is
1188 useful mainly to developers looking for bugs in the way memory is handled.
1189
1190 =item WIRESHARK_RUN_FROM_BUILD_DIRECTORY
1191
1192 This environment variable causes the plugins and other data files to be loaded
1193 from the build directory (where the program was compiled) rather than from the
1194 standard locations.  It has no effect when the program in question is running
1195 with root (or setuid) permissions on *NIX.
1196
1197 =item WIRESHARK_DATA_DIR
1198
1199 This environment variable causes the various data files to be loaded from
1200 a directory other than the standard locations.  It has no effect when the
1201 program in question is running with root (or setuid) permissions on *NIX.
1202
1203 =item WIRESHARK_PYTHON_DIR
1204
1205 This environment variable points to an alternate location for Python.
1206 It has no effect when the program in question is running with root (or setuid)
1207 permissions on *NIX.
1208
1209 =item ERF_RECORDS_TO_CHECK
1210
1211 This environment variable controls the number of ERF records checked when
1212 deciding if a file really is in the ERF format.  Setting this environment
1213 variable a number higher than the default (20) would make false positives
1214 less likely.
1215
1216 =item IPFIX_RECORDS_TO_CHECK
1217
1218 This environment variable controls the number of IPFIX records checked when
1219 deciding if a file really is in the IPFIX format.  Setting this environment
1220 variable a number higher than the default (20) would make false positives
1221 less likely.
1222
1223 =item WIRESHARK_ABORT_ON_DISSECTOR_BUG
1224
1225 If this environment variable is set, B<TShark> will call abort(3)
1226 when a dissector bug is encountered.  abort(3) will cause the program to
1227 exit abnormally; if you are running B<TShark> in a debugger, it
1228 should halt in the debugger and allow inspection of the process, and, if
1229 you are not running it in a debugger, it will, on some OSes, assuming
1230 your environment is configured correctly, generate a core dump file.
1231 This can be useful to developers attempting to troubleshoot a problem
1232 with a protocol dissector.
1233
1234 =item WIRESHARK_EP_VERIFY_POINTERS
1235
1236 This environment variable, if exported, causes certain uses of pointers to be
1237 audited to ensure they do not point to memory that is deallocated after each
1238 packet has been fully dissected.  This can be useful to developers writing or
1239 auditing code.
1240
1241 =item WIRESHARK_SE_VERIFY_POINTERS
1242
1243 This environment variable, if exported, causes certain uses of pointers to be
1244 audited to ensure they do not point to memory that is deallocated after when
1245 a capture file is closed.  This can be useful to developers writing or
1246 auditing code.
1247
1248 =back
1249
1250 =head1 SEE ALSO
1251
1252 wireshark-filter(4), wireshark(1), editcap(1), pcap-filter(4), tcpdump(8),
1253 pcap(3), dumpcap(1), text2pcap(1), mergecap(1)
1254
1255 =head1 NOTES
1256
1257 B<TShark> is part of the B<Wireshark> distribution.  The latest version
1258 of B<Wireshark> can be found at L<http://www.wireshark.org>.
1259
1260 HTML versions of the Wireshark project man pages are available at:
1261 L<http://www.wireshark.org/docs/man-pages>.
1262
1263 =head1 AUTHORS
1264
1265 B<TShark> uses the same packet dissection code that B<Wireshark> does,
1266 as well as using many other modules from B<Wireshark>; see the list of
1267 authors in the B<Wireshark> man page for a list of authors of that code.