Merge root@10.1.1.27:/shared/ctdb/ctdb-git
[sahlberg/ctdb.git] / doc / ctdbd.1.html
1 <html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>ctdbd</title><meta name="generator" content="DocBook XSL Stylesheets V1.73.2"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="refentry" lang="en"><a name="ctdbd.1"></a><div class="titlepage"></div><div class="refnamediv"><h2>Name</h2><p>ctdbd &#8212; The CTDB cluster daemon</p></div><div class="refsynopsisdiv"><h2>Synopsis</h2><div class="cmdsynopsis"><p><code class="command">ctdbd</code> </p></div><div class="cmdsynopsis"><p><code class="command">ctdbd</code>  [-? --help] [-d --debug=&lt;INTEGER&gt;] {--dbdir=&lt;directory&gt;} {--dbdir-persistent=&lt;directory&gt;} [--event-script-dir=&lt;directory&gt;] [-i --interactive] [--listen=&lt;address&gt;] [--logfile=&lt;filename&gt;] [--lvs] {--nlist=&lt;filename&gt;} [--no-lmaster] [--no-recmaster] [--nosetsched] [--public-addresses=&lt;filename&gt;] [--public-interface=&lt;interface&gt;] {--reclock=&lt;filename&gt;} [--single-public-ip=&lt;address&gt;] [--socket=&lt;filename&gt;] [--start-as-disabled] [--start-as-stopped] [--syslog] [--torture] [--transport=&lt;STRING&gt;] [--usage]</p></div></div><div class="refsect1" lang="en"><a name="id2479655"></a><h2>DESCRIPTION</h2><p>
2       ctdbd is the main ctdb daemon.
3     </p><p>
4       ctdbd provides a clustered version of the TDB database with automatic rebuild/recovery of the databases upon nodefailures.
5     </p><p>
6       Combined with a cluster filesystem ctdbd provides a full HA environment for services such as clustered Samba and NFS as well as other services.
7     </p><p>
8       ctdbd provides monitoring of all nodes in the cluster and automatically reconfigures the cluster and recovers upon node failures.
9     </p><p>
10       ctdbd is the main component in clustered Samba that provides a high-availability load-sharing CIFS server cluster.
11     </p></div><div class="refsect1" lang="en"><a name="id2479687"></a><h2>OPTIONS</h2><div class="variablelist"><dl><dt><span class="term">-? --help</span></dt><dd><p>
12             Print some help text to the screen.
13           </p></dd><dt><span class="term">-d --debug=&lt;DEBUGLEVEL&gt;</span></dt><dd><p>
14             This option sets the debuglevel on the ctdbd daemon which controls what will be written to the logfile. The default is 0 which will only log important events and errors. A larger number will provide additional logging.
15           </p></dd><dt><span class="term">--dbdir=&lt;directory&gt;</span></dt><dd><p>
16             This is the directory on local storage where ctdbd keeps the local
17             copy of the TDB databases. This directory is local for each node and should not be stored on the shared cluster filesystem.
18           </p><p>
19             This directory would usually be /var/ctdb .
20           </p></dd><dt><span class="term">--dbdir-persistent=&lt;directory&gt;</span></dt><dd><p>
21             This is the directory on local storage where ctdbd keeps the local
22             copy of the persistent TDB databases. This directory is local for each node and should not be stored on the shared cluster filesystem.
23           </p><p>
24             This directory would usually be /etc/ctdb/persistent .
25           </p></dd><dt><span class="term">--event-script-dir=&lt;directory&gt;</span></dt><dd><p>
26             This option is used to specify the directory where the CTDB event
27             scripts are stored.
28           </p><p>
29             This will normally be /etc/ctdb/events.d which is part of the ctdb distribution.
30           </p></dd><dt><span class="term">-i --interactive</span></dt><dd><p>
31             By default ctdbd will detach itself from the shell and run in
32             the background as a daemon. This option makes ctdbd to start in interactive mode.
33           </p></dd><dt><span class="term">--listen=&lt;address&gt;</span></dt><dd><p>
34             This specifies which ip address ctdb will bind to. By default ctdbd will bind to the first address it finds in the /etc/ctdb/nodes file and which is also present on the local system in which case you do not need to provide this option.
35           </p><p>
36             This option is only required when you want to run multiple ctdbd daemons/nodes on the same physical host in which case there would be multiple entries in /etc/ctdb/nodes what would match a local interface.
37           </p></dd><dt><span class="term">--logfile=&lt;filename&gt;</span></dt><dd><p>
38             This is the file where ctdbd will write its log. This is usually /var/log/log.ctdb .
39           </p></dd><dt><span class="term">--lvs</span></dt><dd><p>
40           This option is used to activate the LVS capability on a CTDB node.
41           Please see the LVS section.
42           </p></dd><dt><span class="term">--nlist=&lt;filename&gt;</span></dt><dd><p>
43             This file contains a list of the private ip addresses of every node in the cluster. There is one line/ip address for each node. This file must be the same for all nodes in the cluster.
44           </p><p>
45             This file is usually /etc/ctdb/nodes .
46           </p></dd><dt><span class="term">--no-lmaster</span></dt><dd><p>
47           This argument specifies that this node can NOT become an lmaster
48           for records in the database. This means that it will never show up
49           in the vnnmap. This feature is primarily used for making a cluster
50         span across a WAN link and use CTDB as a WAN-accelerator.
51           </p><p>
52           Please see the "remote cluster nodes" section for more information.
53           </p></dd><dt><span class="term">--no-recmaster</span></dt><dd><p>
54           This argument specifies that this node can NOT become a recmaster
55           for the database. This feature is primarily used for making a cluster
56         span across a WAN link and use CTDB as a WAN-accelerator.
57           </p><p>
58           Please see the "remote cluster nodes" section for more information.
59           </p></dd><dt><span class="term">--nosetsched</span></dt><dd><p>
60             This is a ctdbd debugging option. this option is only used when
61             debugging ctdbd.
62           </p><p>
63             Normally ctdb will change its scheduler to run as a real-time 
64             process. This is the default mode for a normal ctdbd operation
65             to gurarantee that ctdbd always gets the cpu cycles that it needs.
66           </p><p>
67             This option is used to tell ctdbd to NOT run as a real-time process
68             and instead run ctdbd as a normal userspace process.
69             This is useful for debugging and when you want to run ctdbd under
70             valgrind or gdb. (You dont want to attach valgrind or gdb to a
71             real-time process.)
72           </p></dd><dt><span class="term">--public_addresses=&lt;filename&gt;</span></dt><dd><p>
73             When used with IP takeover this specifies a file containing the public ip addresses to use on the cluster. This file contains a list of ip addresses netmasks and interfaces. When ctdb is operational it will distribute these public ip addresses evenly across the available nodes.
74           </p><p>
75             This is usually the file /etc/ctdb/public_addresses
76           </p></dd><dt><span class="term">--public-interface=&lt;interface&gt;</span></dt><dd><p>
77             This option tells ctdb which interface to attach public-addresses
78             to and also where to attach the single-public-ip when used.
79             </p><p>
80             This is only required when using public ip addresses and only when
81             you dont specify the interface explicitly in /etc/ctdb/public_addresses or when you are using --single-public-ip.
82           </p><p>
83           If you omit this argument when using public addresses or single public ip, ctdb will not be able to send out Gratious ARPs correctly or be able to kill tcp connections correctly which will lead to application failures. 
84           </p></dd><dt><span class="term">--reclock=&lt;filename&gt;</span></dt><dd><p>
85             This is the name of the lock file stored of the shared cluster filesystem that ctdbd uses to prevent split brains from occuring.
86             This file must be stored on shared storage.
87           </p><p>
88             It is possible to run CTDB without a reclock file, but then there 
89             will be no protection against split brain if the network becomes
90             partitioned. Using CTDB without a reclock file is strongly
91             discouraged.
92           </p></dd><dt><span class="term">--socket=&lt;filename&gt;</span></dt><dd><p>
93             This specifies the name of the domain socket that ctdbd will create. This socket is used for local clients to attach to and communicate with the ctdbd daemon.
94           </p><p>
95             The default is /tmp/ctdb.socket . You only need to use this option if you plan to run multiple ctdbd daemons on the same physical host.
96           </p></dd><dt><span class="term">--start-as-disabled</span></dt><dd><p>
97           This makes the ctdb daemon to be DISABLED when it starts up.
98           </p><p>
99           As it is DISABLED it will not get any of the public ip addresses
100           allocated to it, and thus this allow you to start ctdb on a node 
101           without causing any ip address to failover from other nodes onto
102           the new node.
103           </p><p>
104           When used, the administrator must keep track of when nodes start and
105           manually enable them again using the "ctdb enable" command, or else
106           the node will not host any services.
107           </p><p>
108           A node that is DISABLED will not host any services and will not be
109           reachable/used by any clients.
110           </p></dd><dt><span class="term">--start-as-stopped</span></dt><dd><p>
111           This makes the ctdb daemon to be STOPPED when it starts up.
112           </p><p>
113           A node that is STOPPED does not host any public addresses. It is not part of the VNNMAP so it does act as an LMASTER. It also has all databases locked in recovery mode until restarted.
114           </p><p>
115           To restart and activate a STOPPED node, the command "ctdb continue" is used.
116           </p><p>
117           A node that is STOPPED will not host any services and will not be
118           reachable/used by any clients.
119           </p></dd><dt><span class="term">--syslog</span></dt><dd><p>
120             Send all log messages to syslog instead of to the ctdb logfile.
121           </p></dd><dt><span class="term">--torture</span></dt><dd><p>
122             This option is only used for development and testing of ctdbd. It adds artificial errors and failures to the common codepaths in ctdbd to verify that ctdbd can recover correctly for failures.
123           </p><p>
124             You do NOT want to use this option unless you are developing and testing new functionality in ctdbd.
125           </p></dd><dt><span class="term">--transport=&lt;STRING&gt;</span></dt><dd><p>
126             This option specifies which transport to use for ctdbd internode communications. The default is "tcp".
127           </p><p>
128             Currently only "tcp" is supported but "infiniband" might be
129             implemented in the future.
130           </p></dd><dt><span class="term">--usage</span></dt><dd><p>
131             Print useage information to the screen.
132           </p></dd></dl></div></div><div class="refsect1" lang="en"><a name="id2528824"></a><h2>Private vs Public addresses</h2><p>
133       When used for ip takeover in a HA environment, each node in a ctdb 
134       cluster has multiple ip addresses assigned to it. One private and one or more public.
135     </p><div class="refsect2" lang="en"><a name="id2528835"></a><h3>Private address</h3><p>
136         This is the physical ip address of the node which is configured in 
137         linux and attached to a physical interface. This address uniquely
138         identifies a physical node in the cluster and is the ip addresses
139         that ctdbd will use to communicate with the ctdbd daemons on the
140         other nodes in the cluster.
141       </p><p>
142         The private addresses are configured in /etc/ctdb/nodes 
143         (unless the --nlist option is used) and contain one line for each 
144         node in the cluster. Each line contains the private ip address for one
145         node in the cluster. This file must be the same on all nodes in the
146         cluster.
147       </p><p>
148         Since the private addresses are only available to the network when the
149         corresponding node is up and running you should not use these addresses
150         for clients to connect to services provided by the cluster. Instead
151         client applications should only attach to the public addresses since
152         these are guaranteed to always be available.
153       </p><p>
154         When using ip takeover, it is strongly recommended that the private 
155         addresses are configured on a private network physically separated
156         from the rest of the network and that this private network is dedicated
157         to CTDB traffic.
158       </p>
159       Example /etc/ctdb/nodes for a four node cluster:
160       <pre class="screen">
161         10.1.1.1
162         10.1.1.2
163         10.1.1.3
164         10.1.1.4
165       </pre></div><div class="refsect2" lang="en"><a name="id2528883"></a><h3>Public address</h3><p>
166         A public address on the other hand is not attached to an interface.
167         This address is managed by ctdbd itself and is attached/detached to
168         a physical node at runtime.
169       </p><p>
170         The ctdb cluster will assign/reassign these public addresses across the
171         available healthy nodes in the cluster. When one node fails, its public address
172         will be migrated to and taken over by a different node in the cluster
173         to ensure that all public addresses are always available to clients as 
174         long as there are still nodes available capable of hosting this address.
175       </p><p>
176         These addresses are not physically attached to a specific node. 
177         The 'ctdb ip' command can be used to view the current assignment of 
178         public addresses and which physical node is currently serving it.
179       </p><p>
180         On each node this file contains a list of the public addresses that 
181         this node is capable of hosting.
182         The list also contain the netmask and the 
183         interface where this address should be attached for the case where you
184         may want to serve data out through multiple different interfaces.
185       </p>
186       Example /etc/ctdb/public_addresses for a node that can host 4 public addresses:
187       <pre class="screen">
188         11.1.1.1/24 eth0
189         11.1.1.2/24 eth0
190         11.1.2.1/24 eth1
191         11.1.2.2/24 eth1
192       </pre><p>
193         In most cases this file would be the same on all nodes in a cluster but
194         there are exceptions when one may want to use different files
195         on different nodes.
196         </p>
197         Example: 4 nodes partitioned into two subgroups :
198         <pre class="screen">
199         Node 0:/etc/ctdb/public_addresses
200                 10.1.1.1/24 eth0
201                 10.1.1.2/24 eth0
202
203         Node 1:/etc/ctdb/public_addresses
204                 10.1.1.1/24 eth0
205                 10.1.1.2/24 eth0
206
207         Node 2:/etc/ctdb/public_addresses
208                 10.2.1.1/24 eth0
209                 10.2.1.2/24 eth0
210
211         Node 3:/etc/ctdb/public_addresses
212                 10.2.1.1/24 eth0
213                 10.2.1.2/24 eth0
214         </pre><p>
215         In this example nodes 0 and 1 host two public addresses on the 
216         10.1.1.x network  while nodes 2 and 3 host two public addresses for the 
217         10.2.1.x network.
218         </p><p>
219         Ip address 10.1.1.1 can be hosted by either of nodes 0 or 1 and will be
220         available to clients as long as at least one of these two nodes are
221         available.
222         If both nodes 0 and node 1 become unavailable 10.1.1.1 also becomes 
223         unavailable. 10.1.1.1 can not be failed over to node 2 or node 3 since
224         these nodes do not have this ip address listed in their public
225         addresses file.
226         </p></div></div><div class="refsect1" lang="en"><a name="id2528965"></a><h2>Node status</h2><p>
227       The current status of each node in the cluster can be viewed by the 
228       'ctdb status' command.
229     </p><p>
230       There are five possible states for a node.
231     </p><p>
232       OK - This node is fully functional.
233     </p><p>
234       DISCONNECTED - This node could not be connected through the network 
235       and is currently not particpating in the cluster. If there is a 
236       public IP address associated with this node it should have been taken 
237       over by a different node. No services are running on this node.
238     </p><p>
239       DISABLED - This node has been administratively disabled. This node is 
240       still functional and participates in the CTDB cluster but its IP 
241       addresses have been taken over by a different node and no services are 
242       currently being hosted.
243     </p><p>
244       UNHEALTHY - A service provided by this node is malfunctioning and should 
245       be investigated. The CTDB daemon itself is operational and participates 
246       in the cluster. Its public IP address has been taken over by a different 
247       node and no services are currently being hosted. All unhealthy nodes 
248       should be investigated and require an administrative action to rectify.
249     </p><p>
250       BANNED - This node failed too many recovery attempts and has been banned 
251       from participating in the cluster for a period of RecoveryBanPeriod 
252       seconds. Any public IP address has been taken over by other nodes. This 
253       node does not provide any services. All banned nodes should be 
254       investigated and require an administrative action to rectify. This node 
255       does not perticipate in the CTDB cluster but can still be communicated 
256       with. I.e. ctdb commands can be sent to it.
257     </p><p>
258       STOPPED - A node that is stopped does not host any public ip addresses,
259       nor is it part of the VNNMAP. A stopped node can not become LVSMASTER,
260       RECMASTER or NATGW.
261       This node does not perticipate in the CTDB cluster but can still be
262       communicated with. I.e. ctdb commands can be sent to it.
263     </p></div><div class="refsect1" lang="en"><a name="id2529031"></a><h2>PUBLIC TUNABLES</h2><p>
264     These are the public tuneables that can be used to control how ctdb behaves.
265     </p><div class="refsect2" lang="en"><a name="id2529041"></a><h3>KeepaliveInterval</h3><p>Default: 1</p><p>
266     How often should the nodes send keepalives to eachother.
267     </p></div><div class="refsect2" lang="en"><a name="id2529055"></a><h3>KeepaliveLimit</h3><p>Default: 5</p><p>
268     After how many keepalive intervals without any traffic should a node
269     wait until marking the peer as DISCONNECTED.
270     </p></div><div class="refsect2" lang="en"><a name="id2529070"></a><h3>MonitorInterval</h3><p>Default: 15</p><p>
271     How often should ctdb run the event scripts to check for a nodes health.
272     </p></div><div class="refsect2" lang="en"><a name="id2529084"></a><h3>TickleUpdateInterval</h3><p>Default: 20</p><p>
273     How often will ctdb record and store the "tickle" information used to
274     kickstart stalled tcp connections after a recovery.
275     </p></div><div class="refsect2" lang="en"><a name="id2529098"></a><h3>EventScriptTimeout</h3><p>Default: 20</p><p>
276     How long should ctdb let an event script run before aborting it and
277     marking the node unhealthy.
278     </p></div><div class="refsect2" lang="en"><a name="id2529112"></a><h3>RecoveryBanPeriod</h3><p>Default: 300</p><p>
279     If a node becomes banned causing repetitive recovery failures. The node will
280     eventually become banned from the cluster.
281     This controls how long the culprit node will be banned from the cluster
282     before it is allowed to try to join the cluster again.
283     Dont set to small. A node gets banned for a reason and it is usually due
284     to real problems with the node.
285     </p></div><div class="refsect2" lang="en"><a name="id2529131"></a><h3>DatabaseHashSize</h3><p>Default: 100000</p><p>
286     Size of the hash chains for the local store of the tdbs that ctdb manages.
287     </p></div><div class="refsect2" lang="en"><a name="id2529146"></a><h3>RerecoveryTimeout</h3><p>Default: 10</p><p>
288     Once a recovery has completed, no additional recoveries are permitted until this timeout has expired.
289     </p></div><div class="refsect2" lang="en"><a name="id2529160"></a><h3>EnableBans</h3><p>Default: 1</p><p>
290     When set to 0, this disables BANNING completely in the cluster and thus nodes can not get banned, even it they break. Dont set to 0.
291     </p></div><div class="refsect2" lang="en"><a name="id2529175"></a><h3>DeterministicIPs</h3><p>Default: 1</p><p>
292     When enabled, this tunable makes ctdb try to keep public IP addresses locked to specific nodes as far as possible. This makes it easier for debugging since you can know that as long as all nodes are healthy public IP X will always be hosted by node Y. 
293     </p><p>
294     The cost of using deterministic IP address assignment is that it disables part of the logic where ctdb tries to reduce the number of public IP assignment changes in the cluster. This tunable may increase the number of IP failover/failbacks that are performed on the cluster by a small margin.
295     </p></div><div class="refsect2" lang="en"><a name="id2529200"></a><h3>DisableWhenUnhealthy</h3><p>Default: 0</p><p>
296     When set, As soon as a node becomes unhealthy, that node will also automatically become permanently DISABLED. Once a node is DISABLED, the only way to make it participate in the cluster again and host services is by manually enabling the node again using 'ctdb enable'. 
297     </p><p>
298     This disables parts of the resilience and robustness of the cluster and should ONLY be used when the system administrator is actively monitoring the cluster, so that nodes can be enabled again.
299     </p></div><div class="refsect2" lang="en"><a name="id2529224"></a><h3>NoIPFailback</h3><p>Default: 0</p><p>
300     When set to 1, ctdb will not perform failback of IP addresses when a node becomes healthy. Ctdb WILL perform failover of public IP addresses when a node becomes UNHEALTHY, but when the node becomes HEALTHY again, ctdb will not fail the addresses back.
301     </p><p>
302     Use with caution! Normally when a node becomes available to the cluster
303 ctdb will try to reassign public IP addresses onto the new node as a way to distribute the workload evenly across the clusternode. Ctdb tries to make sure that all running nodes have approximately the same number of public addresses it hosts.
304     </p><p>
305     When you enable this tunable, CTDB will no longer attempt to rebalance the cluster by failing IP addresses back to the new nodes. An unbalanced cluster will therefore remain unbalanced until there is manual intervention from the administrator. When this parameter is set, you can manually fail public IP addresses over to the new node(s) using the 'ctdb moveip' command.
306     </p></div></div><div class="refsect1" lang="en"><a name="id2529260"></a><h2>LVS</h2><p>
307     LVS is a mode where CTDB presents one single IP address for the entire
308     cluster. This is an alternative to using public IP addresses and round-robin
309     DNS to loadbalance clients across the cluster.
310     </p><p>
311     This is similar to using a layer-4 loadbalancing switch but with some restrictions.
312     </p><p>
313     In this mode the cluster select a set of nodes in the cluster and loadbalance
314     all client access to the LVS address across this set of nodes. This set of nodes are all LVS capable nodes that are HEALTHY, or if no HEALTHY nodes exists
315     all LVS capable nodes regardless of health status.
316     LVS will however never loadbalance traffic to nodes that are BANNED,
317     STOPPED, DISABLED or DISCONNECTED. The "ctdb lvs" command is used to show
318     which nodes are currently load-balanced across.
319     </p><p>
320     One of the these nodes are elected as the LVSMASTER. This node receives all
321     traffic from clients coming in to the LVS address and multiplexes it
322     across the internal network to one of the nodes that LVS is using.
323     When responding to the client, that node will send the data back
324     directly to the client, bypassing the LVSMASTER node.
325     The command "ctdb lvsmaster" will show which node is the current
326     LVSMASTER.
327     </p><p>
328     The path used for a client i/o is thus :
329     </p><pre class="screen">
330         (1) Client sends request packet to LVSMASTER
331         (2) LVSMASTER passes the request on to one node across the internal network.
332         (3) Selected node processes the request.
333         (4) Node responds back to client.
334     </pre><p>
335     </p><p> 
336     This means that all incoming traffic to the cluster will pass through
337     one physical node, which limits scalability. You can send more data to the
338     LVS address that one physical node can multiplex. This means that you 
339     should not use LVS if your I/O pattern is write-intensive since you will be
340     limited in the available network bandwidth that node can handle.
341     LVS does work wery well for read-intensive workloads where only smallish
342     READ requests are going through the LVSMASTER bottleneck and the majority
343     of the traffic volume (the data in the read replies) goes straight from
344     the processing node back to the clients. For read-intensive i/o patterns you can acheive very high throughput rates in this mode.
345     </p><p>
346     Note: you can use LVS and public addresses at the same time.
347     </p><div class="refsect2" lang="en"><a name="id2529332"></a><h3>Configuration</h3><p>
348     To activate LVS on a CTDB node you must specify CTDB_PUBLIC_INTERFACE and 
349     CTDB_LVS_PUBLIC_ADDRESS in /etc/sysconfig/ctdb.
350         </p><p>
351 You must also specify the "--lvs" command line argument to ctdbd to activete LVS as a capability of the node. This should be done automatically for you by the /etc/init.d/ctdb script.
352         </p><p>
353         Example:
354     </p><pre class="screen">
355         CTDB_PUBLIC_INTERFACE=eth0
356         CTDB_LVS_PUBLIC_IP=10.0.0.237
357         </pre><p>
358         </p></div><p>
359     If you use LVS, you must still have a real/permanent address configured
360     for the public interface on each node. This address must be routable
361     and the cluster nodes must be configured so that all traffic back to client
362     hosts are routed through this interface. This is also required in order
363     to allow samba/winbind on the node to talk to the domain controller.
364     (we can not use the lvs IP address to initiate outgoing traffic)
365     </p><p>
366     I.e. make sure that you can "ping" both the domain controller and also
367     all of the clients from the node BEFORE you enable LVS. Also make sure
368     that when you ping these hosts that the traffic is routed out through the
369     eth0 interface.
370     </p></div><div class="refsect1" lang="en"><a name="id2529380"></a><h2>REMOTE CLUSTER NODES</h2><p>
371 It is possible to have a CTDB cluster that spans across a WAN link. 
372 For example where you have a CTDB cluster in your datacentre but you also
373 want to have one additional CTDB node located at a remote branch site.
374 This is similar to how a WAN accelerator works but with the difference 
375 that while a WAN-accelerator often acts as a Proxy or a MitM, in 
376 the ctdb remote cluster node configuration the Samba instance at the remote site
377 IS the genuine server, not a proxy and not a MitM, and thus provides 100%
378 correct CIFS semantics to clients.
379     </p><p>
380         See the cluster as one single multihomed samba server where one of
381         the NICs (the remote node) is very far away.
382     </p><p>
383         NOTE: This does require that the cluster filesystem you use can cope
384         with WAN-link latencies. Not all cluster filesystems can handle
385         WAN-link latencies! Whether this will provide very good WAN-accelerator
386         performance or it will perform very poorly depends entirely
387         on how optimized your cluster filesystem is in handling high latency
388         for data and metadata operations.
389     </p><p>
390         To activate a node as being a remote cluster node you need to set
391         the following two parameters in /etc/sysconfig/ctdb  for the remote node:
392         </p><pre class="screen">
393 CTDB_CAPABILITY_LMASTER=no
394 CTDB_CAPABILITY_RECMASTER=no
395         </pre><p>
396     </p><p>
397         Verify with the command "ctdb getcapabilities" that that node no longer
398         has the recmaster or the lmaster capabilities.
399     </p></div><div class="refsect1" lang="en"><a name="id2529431"></a><h2>NAT-GW</h2><p>
400       Sometimes it is desireable to run services on the CTDB node which will
401       need to originate outgoing traffic to external servers. This might
402       be contacting NIS servers, LDAP servers etc. etc.
403     </p><p>
404       This can sometimes be problematic since there are situations when a
405       node does not have any public ip addresses assigned. This could
406       be due to the nobe just being started up and no addresses have been
407       assigned yet or it could be that the node is UNHEALTHY in which
408       case all public addresses have been migrated off.
409     </p><p>
410       If then the service status of CTDB depends on such services being
411       able to always being able to originate traffic to external resources
412       this becomes extra troublesome. The node might be UNHEALTHY because
413       the service can not be reached, and the service can not be reached
414       because the node is UNHEALTHY.
415     </p><p>
416       There are two ways to solve this problem. The first is by assigning a
417       static ip address for one public interface on every node which will allow
418       every node to be able to route traffic to the public network even
419       if there are no public addresses assigned to the node.
420       This is the simplest way but it uses up a lot of ip addresses since you
421       have to assign both static and also public addresses to each node.
422     </p><div class="refsect2" lang="en"><a name="id2529471"></a><h3>NAT-GW</h3><p>
423       A second way is to use the built in NAT-GW feature in CTDB.
424       With NAT-GW you assign one public NATGW address for each natgw group.
425       Each NATGW group is a set of nodes in the cluster that shares the same
426       NATGW address to talk to the outside world. Normally there would only be
427       one NATGW group spanning the entire cluster, but in situations where one
428       ctdb cluster spans multiple physical sites it is useful to have one
429       NATGW group for each of the two sites.
430     </p><p>
431       There can be multiple NATGW groups in one cluster but each node can only
432       be member of one NATGW group.
433     </p><p>
434       In each NATGW group, one of the nodes is designated the NAT Gateway
435       through which all traffic that is originated by nodes in this group
436       will be routed through if a public addresses are not available. 
437     </p></div><div class="refsect2" lang="en"><a name="id2529501"></a><h3>Configuration</h3><p>
438       NAT-GW is configured in /etc/sysconfigctdb by setting the following
439       variables:
440     </p><pre class="screen">
441 # NAT-GW configuration
442 # Some services running on nthe CTDB node may need to originate traffic to
443 # remote servers before the node is assigned any IP addresses,
444 # This is problematic since before the node has public addresses the node might
445 # not be able to route traffic to the public networks.
446 # One solution is to have static public addresses assigned with routing
447 # in addition to the public address interfaces, thus guaranteeing that
448 # a node always can route traffic to the external network.
449 # This is the most simple solution but it uses up a large number of 
450 # additional ip addresses.
451 #
452 # A more complex solution is NAT-GW.
453 # In this mode we only need one additional ip address for the cluster from
454 # the exsternal public network.
455 # One of the nodes in the cluster is elected to be hosting this ip address
456 # so it can reach the external services. This node is also configured
457 # to use NAT MASQUERADING for all traffic from the internal private network
458 # to the external network. This node is the NAT-GW node.
459 #
460 # All other nodes are set up with a default rote with a metric of 10 to point
461 # to the nat-gw node.
462
463 # The effect of this is that only when a node does not have a public address
464 # and thus no proper routes to the external world it will instead
465 # route all packets through the nat-gw node.
466 #
467 # CTDB_NATGW_NODES is the list of nodes that belong to this natgw group.
468 # You can have multiple natgw groups in one cluster but each node
469 # can only belong to one single natgw group.
470 #
471 # CTDB_NATGW_PUBLIC_IP=10.0.0.227/24
472 # CTDB_NATGW_PUBLIC_IFACE=eth0
473 # CTDB_NATGW_DEFAULT_GATEWAY=10.0.0.1
474 # CTDB_NATGW_PRIVATE_NETWORK=10.1.1.0/24
475 # CTDB_NATGW_NODES=/etc/ctdb/natgw_nodes
476     </pre></div><div class="refsect2" lang="en"><a name="id2529545"></a><h3>CTDB_NATGW_PUBLIC_IP</h3><p>
477       This is an ip address in the public network that is used for all outgoing
478       traffic when the public addresses are not assigned.
479       This address will be assigned to one of the nodes in the cluster which
480       will masquerade all traffic for the other nodes.
481     </p><p>
482       Format of this parameter is IPADDRESS/NETMASK
483     </p></div><div class="refsect2" lang="en"><a name="id2529563"></a><h3>CTDB_NATGW_PUBLIC_IFACE</h3><p>
484       This is the physical interface where the CTDB_NATGW_PUBLIC_IP will be
485       assigned to. This should be an interface connected to the public network.
486     </p><p>
487       Format of this parameter is INTERFACE
488     </p></div><div class="refsect2" lang="en"><a name="id2476134"></a><h3>CTDB_NATGW_DEFAULT_GATEWAY</h3><p>
489       This is the default gateway to use on the node that is elected to host
490       the CTDB_NATGW_PUBLIC_IP. This is the default gateway on the public network.
491     </p><p>
492       Format of this parameter is IPADDRESS
493     </p></div><div class="refsect2" lang="en"><a name="id2476150"></a><h3>CTDB_NATGW_PRIVATE_NETWORK</h3><p>
494       This is the network/netmask used for the interal private network.
495     </p><p>
496       Format of this parameter is IPADDRESS/NETMASK
497     </p></div><div class="refsect2" lang="en"><a name="id2476164"></a><h3>CTDB_NATGW_NODES</h3><p>
498       This is the list of all nodes that belong to the same NATGW group
499       as this node. The default is /etc/ctdb/natgw_nodes.
500     </p></div><div class="refsect2" lang="en"><a name="id2476176"></a><h3>Operation</h3><p>
501       When the NAT-GW functionality is used, one of the nodes is elected
502       to act as a NAT router for all the other nodes in the group when
503       they need to originate traffic to the external public network.
504     </p><p>
505       The NAT-GW node is assigned the CTDB_NATGW_PUBLIC_IP to the designated
506       interface and the provided default route. The NAT-GW is configured
507       to act as a router and to masquerade all traffic it receives from the
508       internal private network and which is destined to the external network(s).
509     </p><p>
510       All other nodes in the group are configured with a default route of
511       metric 10 pointing to the designated NAT GW node.
512     </p><p>
513       This is implemented in the 11.natgw eventscript. Please see the
514       eventscript for further information.
515     </p></div></div><div class="refsect1" lang="en"><a name="id2476209"></a><h2>ClamAV Daemon</h2><p>
516 CTDB has support to manage the popular anti-virus daemon ClamAV.
517 This support is implemented through the
518 eventscript : /etc/ctdb/events.d/31.clamd.
519 </p><div class="refsect2" lang="en"><a name="id2476220"></a><h3>Configuration</h3><p>
520 Start by configuring CLAMAV normally and test that it works. Once this is
521 done, copy the configuration files over to all the nodes so that all nodes
522 share identical CLAMAV configurations.
523 Once this is done you can proceed with the intructions below to activate
524 CTDB support for CLAMAV.
525 </p><p>
526 First, to activate CLAMAV support in CTDB, edit /etc/sysconfig/ctdb and add the two lines :
527 </p><pre class="screen">
528 CTDB_MANAGES_CLAMD=yes
529 CTDB_CLAMD_SOCKET="/path/to/clamd.socket"
530 </pre><p>
531 Second, activate the eventscript by making it executable:
532 </p><pre class="screen">
533 chmod +x /etc/ctdb/events.d/31.clamd
534 </pre><p>
535 Third, CTDB will now be starting and stopping this service accordingly,
536 so make sure that the system is not configured to start/stop this service
537 automatically.
538 On RedHat systems you can disable the system starting/stopping CLAMAV automatically by running :
539 </p><pre class="screen">
540 chkconfig clamd off
541 </pre><p>
542 </p><p>
543 Once you have restarted CTDBD, use
544 </p><pre class="screen">
545 ctdb scriptstatus
546 </pre><p>
547 and verify that the 31.clamd eventscript is listed and that it was executed successfully.
548 </p></div></div><div class="refsect1" lang="en"><a name="id2476280"></a><h2>SEE ALSO</h2><p>
549       ctdb(1), onnode(1)
550       <a class="ulink" href="http://ctdb.samba.org/" target="_top">http://ctdb.samba.org/</a>
551     </p></div><div class="refsect1" lang="en"><a name="id2476293"></a><h2>COPYRIGHT/LICENSE</h2><div class="literallayout"><p><br>
552 Copyright (C) Andrew Tridgell 2007<br>
553 Copyright (C) Ronnie sahlberg 2007<br>
554 <br>
555 This program is free software; you can redistribute it and/or modify<br>
556 it under the terms of the GNU General Public License as published by<br>
557 the Free Software Foundation; either version 3 of the License, or (at<br>
558 your option) any later version.<br>
559 <br>
560 This program is distributed in the hope that it will be useful, but<br>
561 WITHOUT ANY WARRANTY; without even the implied warranty of<br>
562 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU<br>
563 General Public License for more details.<br>
564 <br>
565 You should have received a copy of the GNU General Public License<br>
566 along with this program; if not, see http://www.gnu.org/licenses/.<br>
567 </p></div></div></div></body></html>